Functionalized periodic Au@MOFs nanoparticle arrays as biosensors for dual-channel detection through the complementary effect of SPR and diffraction peaks

A facile and low-cost method to prepare periodic Au@metal-organic framework (MOF) (MIL-100(Fe)) nanoparticle arrays was developed. The arrays were fabricated in situ using monolayer colloidal crystals as templates, followed by Au deposition on substrates, and annealing. MIL-100(Fe) coatings were app...

Full description

Saved in:
Bibliographic Details
Published inNano research Vol. 10; no. 7; pp. 2257 - 2270
Main Authors Hang, Lifeng, Zhou, Fei, Men, Dandan, Li, Huilin, Li, Xinyang, Zhang, Honghua, Liu, Guangqiang, Cai, Weiping, Li, Cuncheng, Li, Yue
Format Journal Article
LanguageEnglish
Published Beijing Tsinghua University Press 01.07.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A facile and low-cost method to prepare periodic Au@metal-organic framework (MOF) (MIL-100(Fe)) nanoparticle arrays was developed. The arrays were fabricated in situ using monolayer colloidal crystals as templates, followed by Au deposition on substrates, and annealing. MIL-100(Fe) coatings were applied on the nanospheres using a simple solvent thermal process. The prepared periodic Au@MIL-100(Fe) nanoparticle (NP) arrays were characterized by two peaks in the visible spectra. The first peak represented the surface plasmon resonance (SPR) of the Au nanospheres, and the other peak, or the diffraction peak originated from the periodic structure in the NP array. After modification with 3-aminophenylboronic acid hemisulfate (PBA), the Au@MIL-100(Fe) NP arrays exhibited sensitive responses to different glucose concentrations with good selectivity. These responses could be due to the strong interaction between PBA and glucose molecules. The diffraction peak was sensitive at low glucose concentrations (less than 12 mM), whereas the SPR peak rapidly responded at high concentrations. The peaks thus demonstrated satisfactory complementary sensitivity for glucose detection in different concentration regions. These results can be used to develop a dual-channel biosensor. We also created a standard diagram, which can be used to efficiently monitor blood glucose levels. The proposed strategy can be extended to develop different dual-channel sensors using Au@MIL-100(Fe) NP arrays agents. functionalized with different recognition
AbstractList A facile and low-cost method to prepare periodic Au@metal-organic framework (MOF) (MIL-100(Fe)) nanoparticle arrays was developed. The arrays were fabricated in situ using monolayer colloidal crystals as templates, followed by Au deposition on substrates, and annealing. MIL-100(Fe) coatings were applied on the nanospheres using a simple solvent thermal process. The prepared periodic Au@MIL-100(Fe) nanoparticle (NP) arrays were characterized by two peaks in the visible spectra. The first peak represented the surface plasmon resonance (SPR) of the Au nanospheres, and the other peak, or the diffraction peak originated from the periodic structure in the NP array. After modification with 3-aminophenylboronic acid hemisulfate (PBA), the Au@MIL-100(Fe) NP arrays exhibited sensitive responses to different glucose concentrations with good selectivity. These responses could be due to the strong interaction between PBA and glucose molecules. The diffraction peak was sensitive at low glucose concentrations (less than 12 mM), whereas the SPR peak rapidly responded at high concentrations. The peaks thus demonstrated satisfactory complementary sensitivity for glucose detection in different concentration regions. These results can be used to develop a dual-channel biosensor. We also created a standard diagram, which can be used to efficiently monitor blood glucose levels. The proposed strategy can be extended to develop different dual-channel sensors using Au@MIL-100(Fe) NP arrays agents. functionalized with different recognition
A facile and low-cost method to prepare periodic Au@metal–organic framework (MOF) (MIL-100(Fe)) nanoparticle arrays was developed. The arrays were fabricated in situ using monolayer colloidal crystals as templates, followed by Au deposition on substrates, and annealing. MIL-100(Fe) coatings were applied on the nanospheres using a simple solvent thermal process. The prepared periodic Au@MIL-100(Fe) nanoparticle (NP) arrays were characterized by two peaks in the visible spectra. The first peak represented the surface plasmon resonance (SPR) of the Au nanospheres, and the other peak, or the diffraction peak, originated from the periodic structure in the NP array. After modification with 3-aminophenylboronic acid hemisulfate (PBA), the Au@MIL-100(Fe) NP arrays exhibited sensitive responses to different glucose concentrations with good selectivity. These responses could be due to the strong interaction between PBA and glucose molecules. The diffraction peak was sensitive at low glucose concentrations (less than 12 mM), whereas the SPR peak rapidly responded at high concentrations. The peaks thus demonstrated satisfactory complementary sensitivity for glucose detection in different concentration regions. These results can be used to develop a dual-channel biosensor. We also created a standard diagram, which can be used to efficiently monitor blood glucose levels. The proposed strategy can be extended to develop different dual-channel sensors using Au@MIL-100(Fe) NP arrays functionalized with different recognition agents.
A facile and low-cost method to prepare periodic Au@metal–organic framework (MOF) (MIL-100(Fe)) nanoparticle arrays was developed. The arrays were fabricated in situ using monolayer colloidal crystals as templates, followed by Au deposition on substrates, and annealing. MIL-100(Fe) coatings were applied on the nanospheres using a simple solvent thermal process. The prepared periodic Au@MIL-100(Fe) nanoparticle (NP) arrays were characterized by two peaks in the visible spectra. The first peak represented the surface plasmon resonance (SPR) of the Au nanospheres, and the other peak, or the diffraction peak, originated from the periodic structure in the NP array. After modification with 3-aminophenylboronic acid hemisulfate (PBA), the Au@MIL-100(Fe) NP arrays exhibited sensitive responses to different glucose concentrations with good selectivity. These responses could be due to the strong interaction between PBA and glucose molecules. The diffraction peak was sensitive at low glucose concentrations (less than 12 mM), whereas the SPR peak rapidly responded at high concentrations. The peaks thus demonstrated satisfactory complementary sensitivity for glucose detection in different concentration regions. These results can be used to develop a dual-channel biosensor. We also created a standard diagram, which can be used to efficiently monitor blood glucose levels. The proposed strategy can be extended to develop different dual-channel sensors using Au@MIL-100(Fe) NP arrays functionalized with different recognition agents.
Author Lifeng Hang Fei Zhou Dandan Men Huilin Li Xinyang Li Honghua Zhang Guangqiang Liu Weiping Cai Cuncheng Li Yue Li
AuthorAffiliation Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China University of Science and Technology of China, Hefei 230026, China School of Chemistry and Chemical Engineering, University ofJinan, Jinan 250022, China
Author_xml – sequence: 1
  givenname: Lifeng
  surname: Hang
  fullname: Hang, Lifeng
  organization: Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, University of Science and Technology of China
– sequence: 2
  givenname: Fei
  surname: Zhou
  fullname: Zhou, Fei
  organization: Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences
– sequence: 3
  givenname: Dandan
  surname: Men
  fullname: Men, Dandan
  organization: Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, University of Science and Technology of China
– sequence: 4
  givenname: Huilin
  surname: Li
  fullname: Li, Huilin
  organization: Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, University of Science and Technology of China
– sequence: 5
  givenname: Xinyang
  surname: Li
  fullname: Li, Xinyang
  organization: Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences
– sequence: 6
  givenname: Honghua
  surname: Zhang
  fullname: Zhang, Honghua
  organization: Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences
– sequence: 7
  givenname: Guangqiang
  surname: Liu
  fullname: Liu, Guangqiang
  organization: Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences
– sequence: 8
  givenname: Weiping
  surname: Cai
  fullname: Cai, Weiping
  organization: Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences
– sequence: 9
  givenname: Cuncheng
  surname: Li
  fullname: Li, Cuncheng
  organization: School of Chemistry and Chemical Engineering, University of Jinan
– sequence: 10
  givenname: Yue
  surname: Li
  fullname: Li, Yue
  email: yueli@issp.ac.cn
  organization: Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, University of Science and Technology of China
BookMark eNp9kctu1TAQhiPUSvTCA7CzYB3wOE7s7KgqDiAVteKythxnfI5Ljp3azqI8Ck-LDykgddHZzCz-b27_aXXkg8eqegn0DVAq3iZgTPCaQlcDB17Ds-oE-l7WtMTR3xoYf16dpnRLaceAy5Pq12bxJrvg9eR-4khmjC6MzpCL5d3n600iXvsw65idmZDoGPV9IjqRwYWEPoWYiA2RjIuearPT3uNERsz4pyfJuxiW7a5kJCbs5wn36LOO9wStLRoSLPl684VoP5LRWRv1ys2of6Tz6tjqKeGLh3xWfd-8_3b5sb66_vDp8uKqNg1vci2YaYWkg9Rtz03PO5DI2qa30PbNMIARQ6el4DjajnHbWiaRG9q2w0gHg6Y5q16vfecY7hZMWd2GJZaHJMUoBd5JBm1RwaoyMaQU0ao5un05RQFVBwvUaoEqFqiDBQoKIx4xxmV9uDBH7aYnSbaSqUzxW4z_d3oKevUwbhf89q5w_3bsBBONkADNb-BZqwc
CitedBy_id crossref_primary_10_1016_j_jddst_2024_106532
crossref_primary_10_1016_j_colcom_2021_100436
crossref_primary_10_1039_D3TB00138E
crossref_primary_10_1088_1361_6528_aaf157
crossref_primary_10_1007_s00604_019_3402_0
crossref_primary_10_1039_D1NR03864H
crossref_primary_10_1002_nano_202200010
crossref_primary_10_1002_slct_202004117
crossref_primary_10_1021_acsanm_9b00420
crossref_primary_10_1002_adfm_202106023
crossref_primary_10_1002_slct_201803706
crossref_primary_10_1007_s12274_024_6737_8
crossref_primary_10_3390_nano9020140
crossref_primary_10_1016_j_matchemphys_2021_125536
crossref_primary_10_1021_acsami_0c12557
crossref_primary_10_1088_1361_6528_ac3c7d
crossref_primary_10_3390_bioengineering10060733
crossref_primary_10_1039_D2DT00774F
crossref_primary_10_1016_j_bioadv_2022_213049
crossref_primary_10_1002_cnma_201900322
crossref_primary_10_1016_j_cej_2025_161513
crossref_primary_10_1039_C9DT04051J
crossref_primary_10_1021_acsami_7b17461
crossref_primary_10_1007_s12274_022_4219_4
crossref_primary_10_1021_acsami_8b22572
crossref_primary_10_1021_acsami_9b13470
crossref_primary_10_3390_inorganics11060226
crossref_primary_10_1039_C9NR00041K
crossref_primary_10_1002_adom_201800980
crossref_primary_10_1016_j_colsurfa_2022_129325
crossref_primary_10_3389_fchem_2021_834171
crossref_primary_10_1016_j_jhazmat_2020_124426
crossref_primary_10_1016_j_ccr_2023_215098
crossref_primary_10_1002_adhm_201800022
crossref_primary_10_1039_C7RA13567J
crossref_primary_10_3390_bios8040092
crossref_primary_10_1016_j_trac_2023_117325
crossref_primary_10_1021_acsapm_8b00103
crossref_primary_10_1039_D1TA08741J
crossref_primary_10_1016_j_saa_2022_122018
crossref_primary_10_1021_acsami_1c23638
crossref_primary_10_1109_JPHOT_2023_3347569
crossref_primary_10_1039_D3RA06284H
crossref_primary_10_1039_D1NR02688G
crossref_primary_10_1002_ppsc_201900452
crossref_primary_10_1016_j_colcom_2021_100492
crossref_primary_10_1142_S0217979218501928
Cites_doi 10.1021/acsnano.5b01138
10.1021/ja028255v
10.1039/c2ee03573a
10.1021/ja101415b
10.1021/ac050227i
10.1021/cm401738p
10.1007/s12274-016-1079-9
10.1039/b100618p
10.1021/jacs.5b13163
10.1021/nl503585m
10.1039/b708613j
10.1002/anie.200300610
10.1021/ja401727n
10.1016/j.actamat.2015.12.029
10.1002/adfm.201504217
10.1038/46248
10.1039/C2CS35369E
10.1126/science.1116275
10.1021/la0268855
10.1039/c3cs35482b
10.1021/nn800264q
10.1364/OL.39.001302
10.1002/smll.201402630
10.1002/adfm.201502366
10.1021/bm060557s
10.1038/ncomms2552
10.1007/s12274-011-0159-0
10.1039/c1cc00069a
10.1021/la203558b
10.1016/j.snb.2007.11.006
10.1002/anie.201503384
10.1021/ja111102u
10.1016/j.bios.2014.07.083
10.1002/adma.201000197
10.1021/ja049408c
10.1021/ja509960n
10.1021/jp026731y
10.1021/ja511539a
10.1021/acs.chemmater.5b02476
10.1002/1521-3773(20020402)41:7<1153::AID-ANIE1153>3.0.CO;2-4
10.1021/ja9040016
10.1021/ja052431t
10.1039/C5TC04281J
10.1038/nchem.1272
10.1002/ange.200460592
10.1021/ja309300d
10.1039/c3cs60078e
10.1038/214986a0
10.1007/s12274-010-0001-0
10.1007/s12274-016-1078-x
10.1002/anie.201602801
10.1007/s12274-009-9061-4
10.1002/1521-4095(20020618)14:12<930::AID-ADMA930>3.0.CO;2-L
10.1016/j.ccr.2010.09.015
10.1002/anie.201209903
10.1021/la300042q
10.1002/adma.201002854
10.1002/anie.201000431
10.1021/nn3013178
10.1016/S1452-3981(23)15359-4
ContentType Journal Article
Copyright Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Nano Research is a copyright of Springer, (2016). All Rights Reserved.
Copyright_xml – notice: Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
– notice: Nano Research is a copyright of Springer, (2016). All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
3V.
7QF
7QO
7QQ
7SE
7SR
7U5
7X7
7XB
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H8G
HCIFZ
JG9
K9.
KB.
L7M
LK8
M0S
M7P
P64
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s12274-016-1414-1
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Corrosion Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Advanced Technologies Database with Aerospace
Biological Sciences
Health & Medical Collection (Alumni)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Copper Technical Reference Library
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
METADEX
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Functionalized periodic Au@MOFs nanoparticle arrays as biosensors for dual-channel detection through the complementary effect of SPR and diffraction peaks
EISSN 1998-0000
EndPage 2270
ExternalDocumentID 10_1007_s12274_016_1414_1
672737811
GroupedDBID -58
-5G
-BR
-EM
-~C
06C
06D
0R~
0VY
123
1N0
29M
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
3V.
4.4
406
408
40D
6NX
7X7
8AO
8FE
8FG
8FH
8FI
8FJ
92L
95-
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBYP
ACCUX
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACREN
ACTTH
ACVWB
ACWMK
ACZOJ
ADBBV
ADFRT
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AEVLU
AEVTX
AEXYK
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CQIGP
CS3
CSCUP
CW9
D1I
DDRTE
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRP
FRRFC
FSGXE
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HCIFZ
HF~
HG6
HH5
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
J-C
JBSCW
JZLTJ
KB.
KOV
LK8
LLZTM
M4Y
M7P
N2Q
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
P2P
P9N
PDBOC
PQQKQ
PROAC
PT4
Q2X
QOR
R89
R9I
RNS
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UKHRP
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
~A9
~WA
AACDK
AAJBT
AASML
AAYZH
ABAKF
ABQSL
ACPIV
ADMLS
AEFQL
AEMSY
AEUYN
AFBBN
AGQEE
AGRTI
AIGIU
ALIPV
BSONS
FRJ
H13
AAPKM
AAYXX
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
TGP
7QF
7QO
7QQ
7SE
7SR
7U5
7XB
8BQ
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H8G
JG9
K9.
L7M
P64
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c343t-72c5780b8a594c94618e2539f1593bb1c7b6a874edf624f5f28e4c055bd0bcec3
IEDL.DBID 7X7
ISSN 1998-0124
IngestDate Sat Aug 23 14:53:32 EDT 2025
Tue Jul 01 01:46:49 EDT 2025
Thu Apr 24 23:00:00 EDT 2025
Fri Feb 21 02:35:30 EST 2025
Wed Feb 14 09:59:05 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords glucose
Au nanosphere array
dual-channel detection
Au@MIL-100(Fe)
3-aminophenylboronic acid hemisulfate
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-72c5780b8a594c94618e2539f1593bb1c7b6a874edf624f5f28e4c055bd0bcec3
Notes Au nanosphere array,Au@MIL-100(Fe),3-aminophenylboronicacid hemisulfate,glucose,dual-channel detection
11-5974/O4
A facile and low-cost method to prepare periodic Au@metal-organic framework (MOF) (MIL-100(Fe)) nanoparticle arrays was developed. The arrays were fabricated in situ using monolayer colloidal crystals as templates, followed by Au deposition on substrates, and annealing. MIL-100(Fe) coatings were applied on the nanospheres using a simple solvent thermal process. The prepared periodic Au@MIL-100(Fe) nanoparticle (NP) arrays were characterized by two peaks in the visible spectra. The first peak represented the surface plasmon resonance (SPR) of the Au nanospheres, and the other peak, or the diffraction peak originated from the periodic structure in the NP array. After modification with 3-aminophenylboronic acid hemisulfate (PBA), the Au@MIL-100(Fe) NP arrays exhibited sensitive responses to different glucose concentrations with good selectivity. These responses could be due to the strong interaction between PBA and glucose molecules. The diffraction peak was sensitive at low glucose concentrations (less than 12 mM), whereas the SPR peak rapidly responded at high concentrations. The peaks thus demonstrated satisfactory complementary sensitivity for glucose detection in different concentration regions. These results can be used to develop a dual-channel biosensor. We also created a standard diagram, which can be used to efficiently monitor blood glucose levels. The proposed strategy can be extended to develop different dual-channel sensors using Au@MIL-100(Fe) NP arrays agents. functionalized with different recognition
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2001468215
PQPubID 326270
PageCount 14
ParticipantIDs proquest_journals_2001468215
crossref_primary_10_1007_s12274_016_1414_1
crossref_citationtrail_10_1007_s12274_016_1414_1
springer_journals_10_1007_s12274_016_1414_1
chongqing_primary_672737811
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Nano research
PublicationTitleAbbrev Nano Res
PublicationTitleAlternate Nano Research
PublicationYear 2017
Publisher Tsinghua University Press
Publisher_xml – name: Tsinghua University Press
References Luo, Ruditskiy, Peng, Tao, Cosme, He, Xia (CR9) 2016; 26
Kitagawa, Kitaura, Noro (CR21) 2004; 43
Xue, Chen, Hong, Lin, Tan (CR12) 2001; 11
Liu, Goebl, Yin (CR38) 2013; 42
Zhou, Liu, Cai (CR17) 2014; 39
Li, Yu, Lu, Sun, Sculley, Balbuena, Zhou (CR25) 2013; 4
Li, Jiao, Chen, Lotsch, Li (CR34) 2015; 27
Zhang, Hu, Ge, Jiang, Yu (CR23) 2014; 136
Li, Koshizaki, Cai (CR39) 2011; 255
Férey, Serre, Mellot-Draznieks, Millange, Surblé, Dutour, Margiolaki (CR45) 2004; 116
Xia, Yan, Li, Wu, Lou, Wang (CR30) 2016; 1
Gu, Horie, Kubo, Yamada, Fujishima, Sato (CR58) 2002; 41
Li, Eddaoudi, O’Keeffe, Yaghi (CR20) 1999; 402
Férey, Mellot-Draznieks, Serre, Millange, Dutour, Margiolaki (CR46) 2005; 309
He, Liu, Liu, Xiong, Zheng, Liu, Tang (CR32) 2013; 52
Shafer-Peltier, Haynes, Glucksberg, Duyne (CR54) 2003; 125
Park, Kim, Sohn, Nam, Kang, Jun (CR3) 2016; 9
ToghilI, Compton (CR56) 2010; 5
Matsui, Akamatsu, Hara, Miyoshi, Nawafune, Tamaki, Sugimoto (CR55) 2005; 77
Bhattachaijee, Yang, Ahn (CR47) 2011; 47
Zhou, Yang, Ni, Li, Zhang (CR8) 2010; 3
Hang, Zhao, Zhang, Liu, Cai, Li, Qu (CR43) 2016; 105
Pyykkö (CR10) 2008; 37
Palik (CR59) 1997
Ding, Liu, He, Gao, Yin (CR4) 2014; 14
Men, Zhou, Hang, Li, Duan, Cai, Li (CR15) 2016; 4
Liu, Liu, Zhang, Han, Gao, Yin (CR5) 2015; 25
Updike, Hicks (CR53) 1967; 214
Lu, Hupp (CR62) 2010; 132
Kelly, Coronado, Zhao, Schatz (CR16) 2003; 107
Som, Karmakar (CR1) 2009; 2
Liu, Zhou, Li, Zhang, Zhang, Cai, Li (CR7) 2015; 54
Liu, Xuan, Cui (CR27) 2010; 22
Zhang, Losego, Braun (CR51) 2013; 25
Dodson, Cao, Zaribafzadeh, Li, Xiong (CR11) 2015; 63
Cong, Yu, Tang, Li, Liu (CR41) 2013; 42
He, Cao, Liu, Miao, Ma, Ding (CR19) 2016; 9
Zhang, Guan, Zhou (CR52) 2006; 7
Lu, Li, Guo, Farha, Hauser, Qi, Wang, Wang, Han, Liu (CR57) 2012; 4
Zhang, Wu, Lou (CR22) 2013; 135
Li, Duan, Liu, Cai (CR40) 2013; 42
Li, Wei, Wu, Peng, Li (CR2) 2011; 133
Zhou, Wang, Wang, Goh, Fang, Messersmith, Duan (CR33) 2015; 9
Wu, Hu, Zhang, Lin (CR48) 2005; 127
Sadakiyo, Yamada, Kitagawa (CR28) 2009; 131
D’Alessandro, Smit, Long (CR24) 2010; 49
Li, Shuford, Chen, Lee, Cho (CR6) 2008; 2
Ruditskiy, Xia (CR14) 2016; 138
Meek, Greathouse, Allendorf (CR18) 2011; 23
Kleinman, Sharma, Blaber, Henry, Valley, Freeman, Natan, Schatz, Duyne (CR36) 2013; 135
Mikrajuddin Iskandar, Okuyanma (CR44) 2002; 14
Dai, Li, Duan, Jia, Cai (CR49) 2012; 6
Zhang, Asakura, Zhang, Zhang, De, Yan (CR26) 2016; 55
Tang, Salunkhe, Liu, Torad, Imura, Furukawa, Yamauch (CR31) 2015; 137
Cai, Ye, Chen, Zhao, Zhang, Chen, Ma, Jin, Qi (CR35) 2012; 5
Kanai, Sawada, Kitamura (CR60) 2003; 19
Zhang, Liu, Zhou, Liu, Liu, Duan, Cai, Li (CR50) 2015; 11
Rowsell, Millward, Park, Yaghi (CR29) 2004; 126
Qian, Mookherjee (CR13) 2011; 4
Li, Zheng (CR61) 2008; 131
Zhu, Huang, Zhang, Zhang, Li, Zhang, Wang, Yang (CR42) 2012; 28
Liu, Wang (CR37) 2012; 28
H. P. Liu (1414_CR5) 2015; 25
J. Matsui (1414_CR55) 2005; 77
A. Ruditskiy (1414_CR14) 2016; 138
M. Luo (1414_CR9) 2016; 26
Y. J. Zhang (1414_CR52) 2006; 7
Y. D. Liu (1414_CR38) 2013; 42
P. Li (1414_CR2) 2011; 133
J. L. C. Rowsell (1414_CR29) 2004; 126
L. C. He (1414_CR32) 2013; 52
Y. Li (1414_CR39) 2011; 255
B. Zhang (1414_CR26) 2016; 55
C. D. Wu (1414_CR48) 2005; 127
D. D. Men (1414_CR15) 2016; 4
F. Zhou (1414_CR17) 2014; 39
J. L. Li (1414_CR61) 2008; 131
E. D. Palik (1414_CR59) 1997
Z. Z. Gu (1414_CR58) 2002; 41
B. Xue (1414_CR12) 2001; 11
L. Zhang (1414_CR22) 2013; 135
K. L. Kelly (1414_CR16) 2003; 107
J. Tang (1414_CR31) 2015; 137
K. E. Shafer-Peltier (1414_CR54) 2003; 125
W. Zhang (1414_CR23) 2014; 136
K. E. ToghilI (1414_CR56) 2010; 5
J. J. Zhou (1414_CR33) 2015; 9
F. Mikrajuddin Iskandar (1414_CR44) 2002; 14
T. Kanai (1414_CR60) 2003; 19
H. L. Li (1414_CR20) 1999; 402
L. H. Qian (1414_CR13) 2011; 4
Z. F. Dai (1414_CR49) 2012; 6
C. C. Li (1414_CR6) 2008; 2
Y. Li (1414_CR40) 2013; 42
D. W. Ding (1414_CR4) 2014; 14
G. Férey (1414_CR45) 2004; 116
G. Férey (1414_CR46) 2005; 309
H. L. Cong (1414_CR41) 2013; 42
Y. Liu (1414_CR27) 2010; 22
T. Som (1414_CR1) 2009; 2
S. T. Meek (1414_CR18) 2011; 23
D. L. Liu (1414_CR7) 2015; 54
K. He (1414_CR19) 2016; 9
J. R. Li (1414_CR25) 2013; 4
S. L. Kleinman (1414_CR36) 2013; 135
P. Pyykkö (1414_CR10) 2008; 37
S. Kitagawa (1414_CR21) 2004; 43
M. Sadakiyo (1414_CR28) 2009; 131
C. J. Zhang (1414_CR51) 2013; 25
D. M. D’Alessandro (1414_CR24) 2010; 49
J. G. Cai (1414_CR35) 2012; 5
Q. Zhou (1414_CR8) 2010; 3
B. Park (1414_CR3) 2016; 9
D. F. Zhu (1414_CR42) 2012; 28
G. Lu (1414_CR62) 2010; 132
L. M. Li (1414_CR34) 2015; 27
S. J. Updike (1414_CR53) 1967; 214
H. H. Zhang (1414_CR50) 2015; 11
S. L. Dodson (1414_CR11) 2015; 63
B. Liu (1414_CR37) 2012; 28
S. Bhattachaijee (1414_CR47) 2011; 47
L. F. Hang (1414_CR43) 2016; 105
G. Lu (1414_CR57) 2012; 4
B. Y. Xia (1414_CR30) 2016; 1
References_xml – volume: 9
  start-page: 6951
  year: 2015
  end-page: 6960
  ident: CR33
  article-title: Versatile core–shell nanoparticle@metal–organic framework nanohybrids: Exploiting mussel-inspired polydopamine for tailored structural integration
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01138
– volume: 125
  start-page: 588
  year: 2003
  end-page: 593
  ident: CR54
  article-title: Toward a glucose biosensor based on surface-enhanced Raman scattering
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja028255v
– volume: 5
  start-page: 7575
  year: 2012
  end-page: 7581
  ident: CR35
  article-title: Self-cleaning, broadband and quasi-omnidirectional antireflective structures based on mesocrystalline rutile TiO nanorod arrays
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee03573a
– volume: 1
  start-page: 15006
  year: 2016
  ident: CR30
  article-title: Nat
  publication-title: Energy
– volume: 132
  start-page: 7832
  year: 2010
  end-page: 7833
  ident: CR62
  article-title: Metal-organic frameworks as sensors: A ZIF-8 based Fabry-Pérot device as a selective sensor for chemical vapors and gases
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja101415b
– volume: 77
  start-page: 4282
  year: 2005
  end-page: 4285
  ident: CR55
  article-title: SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles
  publication-title: Anal. Chem.
  doi: 10.1021/ac050227i
– volume: 25
  start-page: 3239
  year: 2013
  end-page: 3250
  ident: CR51
  article-title: Hydrogel-based glucose sensors: Effects of phenylboronic acid chemical structure on response
  publication-title: Chem. Mater.
  doi: 10.1021/cm401738p
– volume: 9
  start-page: 1866
  year: 2016
  end-page: 1875
  ident: CR3
  article-title: Surface plasmon enhancement of photoluminescence in photo-chemically synthesized graphene quantum dot and Au nanosphere
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1079-9
– volume: 11
  start-page: 2378
  year: 2001
  end-page: 2381
  ident: CR12
  article-title: Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes
  publication-title: J. Mater. Chem.
  doi: 10.1039/b100618p
– volume: 138
  start-page: 3161
  year: 2016
  end-page: 3167
  ident: CR14
  article-title: Toward the synthesis of sub-15 nm Ag nanocubes with sharp corners and edges: The roles of heterogeneous nucleation and surface capping
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b13163
– volume: 14
  start-page: 6731
  year: 2014
  end-page: 6736
  ident: CR4
  article-title: Ligand-exchange assisted formation of Au/TiO schottky contact for visible-light photocatalysis
  publication-title: Nano Lett.
  doi: 10.1021/nl503585m
– volume: 37
  start-page: 1967
  year: 2008
  end-page: 1997
  ident: CR10
  article-title: Theoretical chemistry of gold
  publication-title: III. Chem. Soc. Rev.
  doi: 10.1039/b708613j
– volume: 43
  start-page: 2334
  year: 2004
  end-page: 2375
  ident: CR21
  article-title: Functional porous coordination polymers
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200300610
– volume: 135
  start-page: 10664
  year: 2013
  end-page: 10672
  ident: CR22
  article-title: Metal–organicframeworks- derived general formation of hollow structures with high complexity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja401727n
– volume: 105
  start-page: 59
  year: 2016
  end-page: 67
  ident: CR43
  article-title: Copper nanoparticle@graphene composite arrays and their enhanced catalytic performance
  publication-title: Acta. Mater.
  doi: 10.1016/j.actamat.2015.12.029
– volume: 26
  start-page: 1209
  year: 2016
  end-page: 1216
  ident: CR9
  article-title: Penta-twinned copper nanorods: Facile synthesis via seed-mediated growth and their tunable plasmonic properties
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504217
– volume: 402
  start-page: 276
  year: 1999
  end-page: 279
  ident: CR20
  article-title: Design and synthesis of an exceptionally stable and highly porous metal-organic framework
  publication-title: Nature
  doi: 10.1038/46248
– volume: 42
  start-page: 2610
  year: 2013
  end-page: 2653
  ident: CR38
  article-title: Templated synthesis of nanostructured materials
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35369E
– volume: 309
  start-page: 2040
  year: 2005
  end-page: 2042
  ident: CR46
  article-title: A chromium terephthalate-based solid with unusually large pore volumes and surface area
  publication-title: Science
  doi: 10.1126/science.1116275
– volume: 19
  start-page: 1984
  year: 2003
  end-page: 1986
  ident: CR60
  article-title: Optical determination of the lattice constants of colloidal crystals without use of the refractive index
  publication-title: Langmuir
  doi: 10.1021/la0268855
– volume: 42
  start-page: 3614
  year: 2013
  end-page: 3627
  ident: CR40
  article-title: Physical processes-aided periodic micro/nanostructured arrays by colloidal template technique: Fabrication and applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs35482b
– volume: 2
  start-page: 1760
  year: 2008
  end-page: 1769
  ident: CR6
  article-title: A facile polyol route to uniform gold octahedra with tailorable size and their optical properties
  publication-title: ACS Nano
  doi: 10.1021/nn800264q
– volume: 39
  start-page: 1302
  year: 2014
  end-page: 1305
  ident: CR17
  article-title: Huge local electric field enhancement in hybrid plasmonic arrays
  publication-title: Opt. Lett.
  doi: 10.1364/OL.39.001302
– volume: 11
  start-page: 844
  year: 2015
  end-page: 853
  ident: CR50
  article-title: Physical deposition improved SERS stability of morphology controlled periodic micro/nanostructured arrays based on colloidal templates
  publication-title: Small
  doi: 10.1002/smll.201402630
– volume: 25
  start-page: 5435
  year: 2015
  end-page: 5443
  ident: CR5
  article-title: Etching-free epitaxial growth of gold on silver nanostructures for high chemical stability and plasmonic activity
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201502366
– volume: 7
  start-page: 3196
  year: 2006
  end-page: 3201
  ident: CR52
  article-title: Synthesis and volume phase transitions of glucose-sensitive microgels
  publication-title: Biomacromolecules
  doi: 10.1021/bm060557s
– volume: 4
  start-page: 1538
  year: 2013
  end-page: 1544
  ident: CR25
  article-title: Porous materials with predesigned single-molecule traps for CO2 selective adsorption
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2552
– volume: 4
  start-page: 1117
  year: 2011
  end-page: 1128
  ident: CR13
  article-title: Convective assembly of linear gold nanoparticle arrays at the micron scale for surface enhanced Raman scattering
  publication-title: Nano Res.
  doi: 10.1007/s12274-011-0159-0
– volume: 47
  start-page: 3637
  year: 2011
  end-page: 3639
  ident: CR47
  article-title: A new heterogeneous catalyst for epoxidation of alkenesvia one-step postfunctionalization of IRMOF-3 with a manganese(II) acetylacetonate complex
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc00069a
– volume: 28
  start-page: 2873
  year: 2012
  end-page: 2880
  ident: CR42
  article-title: Fabrication of heterogeneous double-ring-like structure arrays by combination of colloidal lithography and controllable dewetting
  publication-title: Langmuir
  doi: 10.1021/la203558b
– volume: 131
  start-page: 190
  year: 2008
  end-page: 195
  ident: CR61
  article-title: A comparison of chemical sensors based on the different ordered inverse opal films
  publication-title: Sensor. Actuat. B-Chem.
  doi: 10.1016/j.snb.2007.11.006
– volume: 54
  start-page: 9596
  year: 2015
  end-page: 9600
  ident: CR7
  article-title: Black gold: Plasmonic colloidosomes with broadband absorption self-assembled from monodispersed gold nanospheres by using a reverse emulsion system
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201503384
– volume: 133
  start-page: 5660
  year: 2011
  end-page: 5663
  ident: CR2
  article-title: Au-ZnO hybrid nanopyramids and their photocatalytic properties
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja111102u
– year: 1997
  ident: CR59
  publication-title: Handbook of Optical Constants of Solids
– volume: 63
  start-page: 472
  year: 2015
  end-page: 477
  ident: CR11
  article-title: Engineering plasmonic nanorod arrays for colon cancer marker detection
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2014.07.083
– volume: 22
  start-page: 4112
  year: 2010
  end-page: 4135
  ident: CR27
  article-title: Engineering homochiral metalorganic frameworks for heterogeneous asymmetric catalysis and enantioselective separation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201000197
– volume: 126
  start-page: 5666
  year: 2004
  end-page: 5667
  ident: CR29
  article-title: Hydrogen sorption in functionalized metal-organic frameworks
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja049408c
– volume: 136
  start-page: 16978
  year: 2014
  end-page: 16981
  ident: CR23
  article-title: A facile and general coating approach to moisture/waterresistant metal–organic frameworks with intact porosity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja509960n
– volume: 107
  start-page: 668
  year: 2003
  end-page: 677
  ident: CR16
  article-title: The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp026731y
– volume: 137
  start-page: 1572
  year: 2015
  end-page: 1580
  ident: CR31
  article-title: Thermal conversion of core-shell metal-organic frameworks: A new method for selectively functionalized nanoporous hybrid carbon
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511539a
– volume: 27
  start-page: 7601
  year: 2015
  end-page: 7609
  ident: CR34
  article-title: Facile fabrication of ultrathin metal-organic frameworkcoated monolayer colloidal crystals for highly efficient vapor sensing
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b02476
– volume: 41
  start-page: 1153
  year: 2002
  end-page: 1156
  ident: CR58
  article-title: Fabrication of a metal-coated three-dimensionally ordered macroporous film and its application as a refractive index sensor
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20020402)41:7<1153::AID-ANIE1153>3.0.CO;2-4
– volume: 131
  start-page: 9906
  year: 2009
  end-page: 9907
  ident: CR28
  article-title: Rational designs for highly proton-conductive metal-organic frameworks
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9040016
– volume: 127
  start-page: 8940
  year: 2005
  end-page: 8941
  ident: CR48
  article-title: A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja052431t
– volume: 4
  start-page: 2117
  year: 2016
  end-page: 2122
  ident: CR15
  article-title: A functional hydrogel film attached with a 2D Au nanosphere array and its ultrahigh optical diffraction intensity as a visualized sensor
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC04281J
– volume: 4
  start-page: 310
  year: 2012
  end-page: 316
  ident: CR57
  article-title: Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1272
– volume: 116
  start-page: 6456
  year: 2004
  end-page: 6461
  ident: CR45
  article-title: A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.200460592
– volume: 135
  start-page: 301
  year: 2013
  end-page: 308
  ident: CR36
  article-title: Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced raman excitation spectroscopy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja309300d
– volume: 42
  start-page: 7774
  year: 2013
  end-page: 7800
  ident: CR41
  article-title: Current status and future developments in preparation and application of colloidal crystals
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60078e
– volume: 214
  start-page: 986
  year: 1967
  end-page: 988
  ident: CR53
  article-title: The enzyme electrode
  publication-title: Nature
  doi: 10.1038/214986a0
– volume: 3
  start-page: 423
  year: 2010
  end-page: 428
  ident: CR8
  article-title: Rapid recognition of isomers of monochlorobiphenyls at trace levels by surface-enhanced Raman scattering using Ag nanorods as a substrate
  publication-title: Nano Res.
  doi: 10.1007/s12274-010-0001-0
– volume: 9
  start-page: 1856
  year: 2016
  end-page: 1865
  ident: CR19
  article-title: In situ decomposition of metal-organic frameworks into ultrathin nanosheets for the oxygen evolution reaction
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1078-x
– volume: 55
  start-page: 8319
  year: 2016
  end-page: 8323
  ident: CR26
  article-title: Stabilizing a platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201602801
– volume: 2
  start-page: 607
  year: 2009
  end-page: 616
  ident: CR1
  article-title: Core-shell Au-Ag nanoparticles in dielectric nanocomposites with plasmon-enhanced fluorescence: A new paradigm in antimony glasses
  publication-title: Nano Res.
  doi: 10.1007/s12274-009-9061-4
– volume: 14
  start-page: 930
  year: 2002
  end-page: 933
  ident: CR44
  article-title: Single route for producing organized metallic domes, dots, and pores by colloidal templating and over-sputtering
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(20020618)14:12<930::AID-ADMA930>3.0.CO;2-L
– volume: 255
  start-page: 357
  year: 2011
  end-page: 373
  ident: CR39
  article-title: Periodic one-dimensional nanostructured arrays based on colloidal templates, applications, and devices
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2010.09.015
– volume: 52
  start-page: 3741
  year: 2013
  end-page: 3745
  ident: CR32
  article-title: Core-shell noble-metal@metal-organicframework nanoparticles with highly selective sensing property
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201209903
– volume: 5
  start-page: 1246
  year: 2010
  end-page: 1301
  ident: CR56
  article-title: Electrochemical nonenzymatic glucose sensors: A perspective and an evaluation
  publication-title: Int. J. Electrochem. Sci.
– volume: 28
  start-page: 6436
  year: 2012
  end-page: 6440
  ident: CR37
  article-title: High-throughput transformation of colloidal polymer spheres to discs simply via magnetic stirring of their dispersions
  publication-title: Langmuir
  doi: 10.1021/la300042q
– volume: 23
  start-page: 249
  year: 2011
  end-page: 267
  ident: CR18
  article-title: Metalorganic frameworks: A rapidly growing class of versatile nanoporous materials
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201002854
– volume: 49
  start-page: 6058
  year: 2010
  end-page: 6082
  ident: CR24
  article-title: Carbon dioxide capture: Prospects for new materials
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201000431
– volume: 6
  start-page: 6706
  year: 2012
  end-page: 6716
  ident: CR49
  article-title: Phase diagram, design of monolayer binary colloidal crystals, and their fabrication based on ethanol-assisted self-assembly at the air/water interface
  publication-title: ACS Nano
  doi: 10.1021/nn3013178
– volume: 55
  start-page: 8319
  year: 2016
  ident: 1414_CR26
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201602801
– volume: 28
  start-page: 2873
  year: 2012
  ident: 1414_CR42
  publication-title: Langmuir
  doi: 10.1021/la203558b
– volume: 25
  start-page: 3239
  year: 2013
  ident: 1414_CR51
  publication-title: Chem. Mater.
  doi: 10.1021/cm401738p
– volume: 42
  start-page: 3614
  year: 2013
  ident: 1414_CR40
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs35482b
– volume: 4
  start-page: 1117
  year: 2011
  ident: 1414_CR13
  publication-title: Nano Res.
  doi: 10.1007/s12274-011-0159-0
– volume: 25
  start-page: 5435
  year: 2015
  ident: 1414_CR5
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201502366
– volume: 9
  start-page: 6951
  year: 2015
  ident: 1414_CR33
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01138
– volume: 42
  start-page: 7774
  year: 2013
  ident: 1414_CR41
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60078e
– volume: 131
  start-page: 190
  year: 2008
  ident: 1414_CR61
  publication-title: Sensor. Actuat. B-Chem.
  doi: 10.1016/j.snb.2007.11.006
– volume: 136
  start-page: 16978
  year: 2014
  ident: 1414_CR23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja509960n
– volume: 42
  start-page: 2610
  year: 2013
  ident: 1414_CR38
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35369E
– volume: 47
  start-page: 3637
  year: 2011
  ident: 1414_CR47
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc00069a
– volume: 5
  start-page: 1246
  year: 2010
  ident: 1414_CR56
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)15359-4
– volume: 11
  start-page: 2378
  year: 2001
  ident: 1414_CR12
  publication-title: J. Mater. Chem.
  doi: 10.1039/b100618p
– volume: 132
  start-page: 7832
  year: 2010
  ident: 1414_CR62
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja101415b
– volume: 52
  start-page: 3741
  year: 2013
  ident: 1414_CR32
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201209903
– volume: 116
  start-page: 6456
  year: 2004
  ident: 1414_CR45
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.200460592
– volume: 402
  start-page: 276
  year: 1999
  ident: 1414_CR20
  publication-title: Nature
  doi: 10.1038/46248
– volume: 255
  start-page: 357
  year: 2011
  ident: 1414_CR39
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2010.09.015
– volume: 37
  start-page: 1967
  year: 2008
  ident: 1414_CR10
  publication-title: III. Chem. Soc. Rev.
  doi: 10.1039/b708613j
– volume: 135
  start-page: 301
  year: 2013
  ident: 1414_CR36
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja309300d
– volume: 4
  start-page: 2117
  year: 2016
  ident: 1414_CR15
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC04281J
– volume: 11
  start-page: 844
  year: 2015
  ident: 1414_CR50
  publication-title: Small
  doi: 10.1002/smll.201402630
– volume: 9
  start-page: 1866
  year: 2016
  ident: 1414_CR3
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1079-9
– volume: 138
  start-page: 3161
  year: 2016
  ident: 1414_CR14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b13163
– volume: 14
  start-page: 6731
  year: 2014
  ident: 1414_CR4
  publication-title: Nano Lett.
  doi: 10.1021/nl503585m
– volume: 105
  start-page: 59
  year: 2016
  ident: 1414_CR43
  publication-title: Acta. Mater.
  doi: 10.1016/j.actamat.2015.12.029
– volume: 14
  start-page: 930
  year: 2002
  ident: 1414_CR44
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(20020618)14:12<930::AID-ADMA930>3.0.CO;2-L
– volume: 107
  start-page: 668
  year: 2003
  ident: 1414_CR16
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp026731y
– volume: 4
  start-page: 310
  year: 2012
  ident: 1414_CR57
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1272
– volume: 19
  start-page: 1984
  year: 2003
  ident: 1414_CR60
  publication-title: Langmuir
  doi: 10.1021/la0268855
– volume: 49
  start-page: 6058
  year: 2010
  ident: 1414_CR24
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201000431
– volume: 41
  start-page: 1153
  year: 2002
  ident: 1414_CR58
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20020402)41:7<1153::AID-ANIE1153>3.0.CO;2-4
– volume: 3
  start-page: 423
  year: 2010
  ident: 1414_CR8
  publication-title: Nano Res.
  doi: 10.1007/s12274-010-0001-0
– volume: 22
  start-page: 4112
  year: 2010
  ident: 1414_CR27
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201000197
– volume: 214
  start-page: 986
  year: 1967
  ident: 1414_CR53
  publication-title: Nature
  doi: 10.1038/214986a0
– volume: 4
  start-page: 1538
  year: 2013
  ident: 1414_CR25
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2552
– volume: 137
  start-page: 1572
  year: 2015
  ident: 1414_CR31
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511539a
– volume: 27
  start-page: 7601
  year: 2015
  ident: 1414_CR34
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b02476
– volume: 309
  start-page: 2040
  year: 2005
  ident: 1414_CR46
  publication-title: Science
  doi: 10.1126/science.1116275
– volume: 43
  start-page: 2334
  year: 2004
  ident: 1414_CR21
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200300610
– volume: 39
  start-page: 1302
  year: 2014
  ident: 1414_CR17
  publication-title: Opt. Lett.
  doi: 10.1364/OL.39.001302
– volume: 54
  start-page: 9596
  year: 2015
  ident: 1414_CR7
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201503384
– volume: 133
  start-page: 5660
  year: 2011
  ident: 1414_CR2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja111102u
– volume: 6
  start-page: 6706
  year: 2012
  ident: 1414_CR49
  publication-title: ACS Nano
  doi: 10.1021/nn3013178
– volume: 2
  start-page: 1760
  year: 2008
  ident: 1414_CR6
  publication-title: ACS Nano
  doi: 10.1021/nn800264q
– volume: 131
  start-page: 9906
  year: 2009
  ident: 1414_CR28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9040016
– volume: 1
  start-page: 15006
  year: 2016
  ident: 1414_CR30
  publication-title: Energy
– volume: 5
  start-page: 7575
  year: 2012
  ident: 1414_CR35
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee03573a
– volume: 127
  start-page: 8940
  year: 2005
  ident: 1414_CR48
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja052431t
– volume-title: Handbook of Optical Constants of Solids
  year: 1997
  ident: 1414_CR59
– volume: 2
  start-page: 607
  year: 2009
  ident: 1414_CR1
  publication-title: Nano Res.
  doi: 10.1007/s12274-009-9061-4
– volume: 26
  start-page: 1209
  year: 2016
  ident: 1414_CR9
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504217
– volume: 125
  start-page: 588
  year: 2003
  ident: 1414_CR54
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja028255v
– volume: 63
  start-page: 472
  year: 2015
  ident: 1414_CR11
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2014.07.083
– volume: 135
  start-page: 10664
  year: 2013
  ident: 1414_CR22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja401727n
– volume: 9
  start-page: 1856
  year: 2016
  ident: 1414_CR19
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1078-x
– volume: 77
  start-page: 4282
  year: 2005
  ident: 1414_CR55
  publication-title: Anal. Chem.
  doi: 10.1021/ac050227i
– volume: 28
  start-page: 6436
  year: 2012
  ident: 1414_CR37
  publication-title: Langmuir
  doi: 10.1021/la300042q
– volume: 126
  start-page: 5666
  year: 2004
  ident: 1414_CR29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja049408c
– volume: 7
  start-page: 3196
  year: 2006
  ident: 1414_CR52
  publication-title: Biomacromolecules
  doi: 10.1021/bm060557s
– volume: 23
  start-page: 249
  year: 2011
  ident: 1414_CR18
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201002854
SSID ssj0062148
Score 2.3936212
Snippet A facile and low-cost method to prepare periodic Au@metal-organic framework (MOF) (MIL-100(Fe)) nanoparticle arrays was developed. The arrays were fabricated...
A facile and low-cost method to prepare periodic Au@metal–organic framework (MOF) (MIL-100(Fe)) nanoparticle arrays was developed. The arrays were fabricated...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2257
SubjectTerms Atomic/Molecular Structure and Spectra
Biomedicine
Biosensors
Biotechnology
Chemistry and Materials Science
Condensed Matter Physics
Crystals
Diffraction
Glucose
Gold
Iron
Materials Science
Metal-organic frameworks
Nanoparticles
Nanospheres
Nanotechnology
Periodic structures
Research Article
Sensor arrays
SPR
Strong interactions (field theory)
Substrates
Surface plasmon resonance
互补效应
双通道
周期性结构
生物传感器
纳米阵列
衍射峰
金属有机
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQXOCASgGxQNEcegJZShw7j1tXVVcIiRYBK3GL_KQrkAPJcqA_pb-24zxYQBSJUw6xJ1HG9nyTmW-GkK-aFZmVuaCxMIbyXBmqtCuoMlojYNAmb7uWnP5Mj6f85Epc9TzuZsh2H0KS7Um9ILsx9KDQ9U1pzGNO0eVZEcF1x0U8ZePh-E1Z3LbM6rhjaL2GUOZbIkJBhd-Vv77Hx700TAu0-SpA2tqdySey3gNGGHca3iBL1n8ma8_KCG6SvxM0Tt0_vdkfayAUL67MTMP44dvpr0kDXnr0jTsJIOtaPjYgG1CzqkEvtqobQOgKgZVFAxHY21swdt4maXnoO_ng1UKbgN7lm9eP0OWCQOXg4uwcpDcQ2q3UHVUC30LeNFtkOvlx-f2Y9j0XqE54MqcZ07iHI5VLUXBd8DTOLRNJ4RD2JErFOlOpzDNujUsZd8Kx3HIdCaFMpLTVyTZZ9pW3OwQQakTcSa6ty3ggxAqVu0Lo1Ig4wXNjRPaePn5519XWKENgOAns1xGJBnWUui9XHrpm3JaLQstBm2VIUQvaLHHK4dOUQd47g_cHHZf9tm1CT85ARUMYNCJHg94Xt_8rbPdDo_fIKgvgoE363SfL8_rBfkFoM1cH7VL-B2Iu8Ys
  priority: 102
  providerName: Springer Nature
Title Functionalized periodic Au@MOFs nanoparticle arrays as biosensors for dual-channel detection through the complementary effect of SPR and diffraction peaks
URI http://lib.cqvip.com/qk/71233X/201707/672737811.html
https://link.springer.com/article/10.1007/s12274-016-1414-1
https://www.proquest.com/docview/2001468215
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcABUR5iaal84ASySBw7cU6woE0rUEtVWGk5RX4FVlRJm2wP5afwa5lxkt1Sqb3EUhJbUcb2zHi-mY-Q15bnmddKslg6x4Qyjhlb5cw4a8FgsE4F1pKj4_RwLj4v5GI4cOsGWOW4J4aN2jUWz8jfIfZHpAo01PvzC4asURhdHSg07pNtLF2GkK5ssXa4Uh4H9qw-jQwU2RjVDKlzHPwxuJuyWMSCxVhb4VdT_7wAjfG_jtoYnjdipUEFFY_Jo8F2pNNe2Dvknq-fkIfXKgo-JX8L0FP98d7yj3cU6xg3bmnp9PLD0deio7WuwU3uR6C6bfVVR3VHzbLpwKFt2o6CFUsxQYthTnDtz6jzq4DXqulA6gOtpwGL3kPP2yvaw0JoU9FvJ6dU144i80rbZ03AV-jf3TMyL2bfPx2ygX6B2UQkK5ZxC8s5MkrLXNhcpLHyXCZ5BRZQYkxsM5NqlQnvqpSLSlZceWEjKY2LjPU2eU626qb2LwgFqyMSlRbWV5nA3FhpVJVLmzoZJ7CFTMju-ueX532ZjRJjxAkmwk5INIqjtEPlciTQOCs3NZdRmiWi1VCaJXR5s-4yjnfHy3ujjMthBXflZr5NyNtR7pvHtw728u7BdskDjoZBAPzuka1Ve-lfgVmzMvth7sJVFQf7ZHt68OPLDNqPs-OTU7g759N_uov5_w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQCHiqfYtsAc4AKySBw7cQ4VVEDY0m5B0Eq9pX4FVq2SNtkKLT-lP6K_kXEeXUCit54iJfEoyozn4flmhpDnhqWJU1LQUFhLudSWalOkVFtj0GEwVrZTSya78XiffzoQB0vkYqiF8bDKQSe2itpWxp-Rv_bYHx5LtFBvTk6pnxrls6vDCI1OLLbd_CeGbM3G1nvk7wvGsg9778a0nypATcSjGU2YQSkNtFQi5SblcSgdE1FaoGGPtA5NomMlE-5sETNeiIJJx00ghLaBNs5ESPcGucmjKPU7SmYfB80fs7Cd1tWVraHhHLKobakew_gP78Y05CGnoe_l8KMqv5-ihfrbJi4c3X9ys63Jy-6Sld5Xhc1OuO6RJVfeJ3f-6GD4gJxnaBe748TpL2fB902u7NTA5tnbyeesgVKVGJZ3FEDVtZo3oBrQ06rBALqqG0CvGXxBGPU1yKU7ButmLT6shH6IEF4dtNj3Dupez6GDoUBVwLcvX0GVFvykl7qr0sCvUEfNQ7J_LYx5RJbLqnSPCaCXE_BCceOKhPtaXKFlkQoTWxFGqLJGZO3y5-cnXVuP3OekI194OyLBwI7c9J3S_cCO43zR49lzM_foOM_NHJe8vFwy0Lvi5fWBx3mvMZp8Id8j8mrg--Lxf4mtXk3sGbk13pvs5Dtbu9tr5DbzTkkLNl4ny7P6zD1Bl2qmn7ZyDOTwujfOb0OBMdc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9VAEN4gJkYfiNd4AHUe9EWzod3u9vJAlIgNiCBRSc5b2aueQFpoDzGHn8JP8dc528s5aiJvPDVpu5OmMzuXnW9mCHmpWZZYmQoaCmMoT5WhSruMKqM1OgzapO3Ukv2DeOeIfxyL8RL5NdTCeFjloBNbRW0q7c_INzz2h8cpWqgN18MiDrfzt2fn1E-Q8pnWYZxGJyJ7dvYTw7dmc3cbef2KsfzDt_c7tJ8wQHXEoylNmEaJDVQqRcZ1xuMwtUxEmUMjHykV6kTFMk24NS5m3AnHUst1IIQygdJWR0j3FrmdRCL0eywZz4O9mIXt5K6uhA2N6JBRbcv2GMaCeDemIQ85DX1fhx9V-f0crdXf9nHh9P6Tp23NX36frPR-K2x1gvaALNnyIbn3RzfDR-QqRxvZHS1OLq0B30O5MhMNWxfv9j_nDZSyxBC9owCyruWsAdmAmlQNBtNV3QB60OCLw6ivRy7tKRg7bbFiJfQDhfBqocXBd7D3egYdJAUqB18Pv4AsDfipL3VXsYFfIU-ax-ToRhjzhCyXVWmfEkCPJ-BOcm1dwn1drlCpy4SODTIN1deIrM1_fnHWtfgofH468kW4IxIM7Ch03zXdD-84LRb9nj03C4-U89wscMnr-ZKB3jUvrw88Lnrt0RQLWR-RNwPfF4__S2z1emIvyB3cMsWn3YO9NXKXef-kxR2vk-VpfWGfoXc1Vc9bMQZyfNP75jdlAjYE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functionalized+periodic+Au%40MOFs+nanoparticle+arrays+as+biosensors+for+dual-channel+detection+through+the+complementary+effect+of+SPR+and+diffraction+peaks&rft.jtitle=Nano+research&rft.au=Hang%2C+Lifeng&rft.au=Zhou%2C+Fei&rft.au=Men%2C+Dandan&rft.au=Li%2C+Huilin&rft.date=2017-07-01&rft.issn=1998-0124&rft.eissn=1998-0000&rft.volume=10&rft.issue=7&rft.spage=2257&rft.epage=2270&rft_id=info:doi/10.1007%2Fs12274-016-1414-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12274_016_1414_1
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F71233X%2F71233X.jpg