Functionalized periodic Au@MOFs nanoparticle arrays as biosensors for dual-channel detection through the complementary effect of SPR and diffraction peaks
A facile and low-cost method to prepare periodic Au@metal-organic framework (MOF) (MIL-100(Fe)) nanoparticle arrays was developed. The arrays were fabricated in situ using monolayer colloidal crystals as templates, followed by Au deposition on substrates, and annealing. MIL-100(Fe) coatings were app...
Saved in:
Published in | Nano research Vol. 10; no. 7; pp. 2257 - 2270 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Tsinghua University Press
01.07.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A facile and low-cost method to prepare periodic Au@metal-organic framework (MOF) (MIL-100(Fe)) nanoparticle arrays was developed. The arrays were fabricated in situ using monolayer colloidal crystals as templates, followed by Au deposition on substrates, and annealing. MIL-100(Fe) coatings were applied on the nanospheres using a simple solvent thermal process. The prepared periodic Au@MIL-100(Fe) nanoparticle (NP) arrays were characterized by two peaks in the visible spectra. The first peak represented the surface plasmon resonance (SPR) of the Au nanospheres, and the other peak, or the diffraction peak originated from the periodic structure in the NP array. After modification with 3-aminophenylboronic acid hemisulfate (PBA), the Au@MIL-100(Fe) NP arrays exhibited sensitive responses to different glucose concentrations with good selectivity. These responses could be due to the strong interaction between PBA and glucose molecules. The diffraction peak was sensitive at low glucose concentrations (less than 12 mM), whereas the SPR peak rapidly responded at high concentrations. The peaks thus demonstrated satisfactory complementary sensitivity for glucose detection in different concentration regions. These results can be used to develop a dual-channel biosensor. We also created a standard diagram, which can be used to efficiently monitor blood glucose levels. The proposed strategy can be extended to develop different dual-channel sensors using Au@MIL-100(Fe) NP arrays agents. functionalized with different recognition |
---|---|
AbstractList | A facile and low-cost method to prepare periodic Au@metal-organic framework (MOF) (MIL-100(Fe)) nanoparticle arrays was developed. The arrays were fabricated in situ using monolayer colloidal crystals as templates, followed by Au deposition on substrates, and annealing. MIL-100(Fe) coatings were applied on the nanospheres using a simple solvent thermal process. The prepared periodic Au@MIL-100(Fe) nanoparticle (NP) arrays were characterized by two peaks in the visible spectra. The first peak represented the surface plasmon resonance (SPR) of the Au nanospheres, and the other peak, or the diffraction peak originated from the periodic structure in the NP array. After modification with 3-aminophenylboronic acid hemisulfate (PBA), the Au@MIL-100(Fe) NP arrays exhibited sensitive responses to different glucose concentrations with good selectivity. These responses could be due to the strong interaction between PBA and glucose molecules. The diffraction peak was sensitive at low glucose concentrations (less than 12 mM), whereas the SPR peak rapidly responded at high concentrations. The peaks thus demonstrated satisfactory complementary sensitivity for glucose detection in different concentration regions. These results can be used to develop a dual-channel biosensor. We also created a standard diagram, which can be used to efficiently monitor blood glucose levels. The proposed strategy can be extended to develop different dual-channel sensors using Au@MIL-100(Fe) NP arrays agents. functionalized with different recognition A facile and low-cost method to prepare periodic Au@metal–organic framework (MOF) (MIL-100(Fe)) nanoparticle arrays was developed. The arrays were fabricated in situ using monolayer colloidal crystals as templates, followed by Au deposition on substrates, and annealing. MIL-100(Fe) coatings were applied on the nanospheres using a simple solvent thermal process. The prepared periodic Au@MIL-100(Fe) nanoparticle (NP) arrays were characterized by two peaks in the visible spectra. The first peak represented the surface plasmon resonance (SPR) of the Au nanospheres, and the other peak, or the diffraction peak, originated from the periodic structure in the NP array. After modification with 3-aminophenylboronic acid hemisulfate (PBA), the Au@MIL-100(Fe) NP arrays exhibited sensitive responses to different glucose concentrations with good selectivity. These responses could be due to the strong interaction between PBA and glucose molecules. The diffraction peak was sensitive at low glucose concentrations (less than 12 mM), whereas the SPR peak rapidly responded at high concentrations. The peaks thus demonstrated satisfactory complementary sensitivity for glucose detection in different concentration regions. These results can be used to develop a dual-channel biosensor. We also created a standard diagram, which can be used to efficiently monitor blood glucose levels. The proposed strategy can be extended to develop different dual-channel sensors using Au@MIL-100(Fe) NP arrays functionalized with different recognition agents. A facile and low-cost method to prepare periodic Au@metal–organic framework (MOF) (MIL-100(Fe)) nanoparticle arrays was developed. The arrays were fabricated in situ using monolayer colloidal crystals as templates, followed by Au deposition on substrates, and annealing. MIL-100(Fe) coatings were applied on the nanospheres using a simple solvent thermal process. The prepared periodic Au@MIL-100(Fe) nanoparticle (NP) arrays were characterized by two peaks in the visible spectra. The first peak represented the surface plasmon resonance (SPR) of the Au nanospheres, and the other peak, or the diffraction peak, originated from the periodic structure in the NP array. After modification with 3-aminophenylboronic acid hemisulfate (PBA), the Au@MIL-100(Fe) NP arrays exhibited sensitive responses to different glucose concentrations with good selectivity. These responses could be due to the strong interaction between PBA and glucose molecules. The diffraction peak was sensitive at low glucose concentrations (less than 12 mM), whereas the SPR peak rapidly responded at high concentrations. The peaks thus demonstrated satisfactory complementary sensitivity for glucose detection in different concentration regions. These results can be used to develop a dual-channel biosensor. We also created a standard diagram, which can be used to efficiently monitor blood glucose levels. The proposed strategy can be extended to develop different dual-channel sensors using Au@MIL-100(Fe) NP arrays functionalized with different recognition agents. |
Author | Lifeng Hang Fei Zhou Dandan Men Huilin Li Xinyang Li Honghua Zhang Guangqiang Liu Weiping Cai Cuncheng Li Yue Li |
AuthorAffiliation | Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China University of Science and Technology of China, Hefei 230026, China School of Chemistry and Chemical Engineering, University ofJinan, Jinan 250022, China |
Author_xml | – sequence: 1 givenname: Lifeng surname: Hang fullname: Hang, Lifeng organization: Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, University of Science and Technology of China – sequence: 2 givenname: Fei surname: Zhou fullname: Zhou, Fei organization: Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences – sequence: 3 givenname: Dandan surname: Men fullname: Men, Dandan organization: Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, University of Science and Technology of China – sequence: 4 givenname: Huilin surname: Li fullname: Li, Huilin organization: Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, University of Science and Technology of China – sequence: 5 givenname: Xinyang surname: Li fullname: Li, Xinyang organization: Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences – sequence: 6 givenname: Honghua surname: Zhang fullname: Zhang, Honghua organization: Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences – sequence: 7 givenname: Guangqiang surname: Liu fullname: Liu, Guangqiang organization: Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences – sequence: 8 givenname: Weiping surname: Cai fullname: Cai, Weiping organization: Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences – sequence: 9 givenname: Cuncheng surname: Li fullname: Li, Cuncheng organization: School of Chemistry and Chemical Engineering, University of Jinan – sequence: 10 givenname: Yue surname: Li fullname: Li, Yue email: yueli@issp.ac.cn organization: Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, University of Science and Technology of China |
BookMark | eNp9kctu1TAQhiPUSvTCA7CzYB3wOE7s7KgqDiAVteKythxnfI5Ljp3azqI8Ck-LDykgddHZzCz-b27_aXXkg8eqegn0DVAq3iZgTPCaQlcDB17Ds-oE-l7WtMTR3xoYf16dpnRLaceAy5Pq12bxJrvg9eR-4khmjC6MzpCL5d3n600iXvsw65idmZDoGPV9IjqRwYWEPoWYiA2RjIuearPT3uNERsz4pyfJuxiW7a5kJCbs5wn36LOO9wStLRoSLPl684VoP5LRWRv1ys2of6Tz6tjqKeGLh3xWfd-8_3b5sb66_vDp8uKqNg1vci2YaYWkg9Rtz03PO5DI2qa30PbNMIARQ6el4DjajnHbWiaRG9q2w0gHg6Y5q16vfecY7hZMWd2GJZaHJMUoBd5JBm1RwaoyMaQU0ao5un05RQFVBwvUaoEqFqiDBQoKIx4xxmV9uDBH7aYnSbaSqUzxW4z_d3oKevUwbhf89q5w_3bsBBONkADNb-BZqwc |
CitedBy_id | crossref_primary_10_1016_j_jddst_2024_106532 crossref_primary_10_1016_j_colcom_2021_100436 crossref_primary_10_1039_D3TB00138E crossref_primary_10_1088_1361_6528_aaf157 crossref_primary_10_1007_s00604_019_3402_0 crossref_primary_10_1039_D1NR03864H crossref_primary_10_1002_nano_202200010 crossref_primary_10_1002_slct_202004117 crossref_primary_10_1021_acsanm_9b00420 crossref_primary_10_1002_adfm_202106023 crossref_primary_10_1002_slct_201803706 crossref_primary_10_1007_s12274_024_6737_8 crossref_primary_10_3390_nano9020140 crossref_primary_10_1016_j_matchemphys_2021_125536 crossref_primary_10_1021_acsami_0c12557 crossref_primary_10_1088_1361_6528_ac3c7d crossref_primary_10_3390_bioengineering10060733 crossref_primary_10_1039_D2DT00774F crossref_primary_10_1016_j_bioadv_2022_213049 crossref_primary_10_1002_cnma_201900322 crossref_primary_10_1016_j_cej_2025_161513 crossref_primary_10_1039_C9DT04051J crossref_primary_10_1021_acsami_7b17461 crossref_primary_10_1007_s12274_022_4219_4 crossref_primary_10_1021_acsami_8b22572 crossref_primary_10_1021_acsami_9b13470 crossref_primary_10_3390_inorganics11060226 crossref_primary_10_1039_C9NR00041K crossref_primary_10_1002_adom_201800980 crossref_primary_10_1016_j_colsurfa_2022_129325 crossref_primary_10_3389_fchem_2021_834171 crossref_primary_10_1016_j_jhazmat_2020_124426 crossref_primary_10_1016_j_ccr_2023_215098 crossref_primary_10_1002_adhm_201800022 crossref_primary_10_1039_C7RA13567J crossref_primary_10_3390_bios8040092 crossref_primary_10_1016_j_trac_2023_117325 crossref_primary_10_1021_acsapm_8b00103 crossref_primary_10_1039_D1TA08741J crossref_primary_10_1016_j_saa_2022_122018 crossref_primary_10_1021_acsami_1c23638 crossref_primary_10_1109_JPHOT_2023_3347569 crossref_primary_10_1039_D3RA06284H crossref_primary_10_1039_D1NR02688G crossref_primary_10_1002_ppsc_201900452 crossref_primary_10_1016_j_colcom_2021_100492 crossref_primary_10_1142_S0217979218501928 |
Cites_doi | 10.1021/acsnano.5b01138 10.1021/ja028255v 10.1039/c2ee03573a 10.1021/ja101415b 10.1021/ac050227i 10.1021/cm401738p 10.1007/s12274-016-1079-9 10.1039/b100618p 10.1021/jacs.5b13163 10.1021/nl503585m 10.1039/b708613j 10.1002/anie.200300610 10.1021/ja401727n 10.1016/j.actamat.2015.12.029 10.1002/adfm.201504217 10.1038/46248 10.1039/C2CS35369E 10.1126/science.1116275 10.1021/la0268855 10.1039/c3cs35482b 10.1021/nn800264q 10.1364/OL.39.001302 10.1002/smll.201402630 10.1002/adfm.201502366 10.1021/bm060557s 10.1038/ncomms2552 10.1007/s12274-011-0159-0 10.1039/c1cc00069a 10.1021/la203558b 10.1016/j.snb.2007.11.006 10.1002/anie.201503384 10.1021/ja111102u 10.1016/j.bios.2014.07.083 10.1002/adma.201000197 10.1021/ja049408c 10.1021/ja509960n 10.1021/jp026731y 10.1021/ja511539a 10.1021/acs.chemmater.5b02476 10.1002/1521-3773(20020402)41:7<1153::AID-ANIE1153>3.0.CO;2-4 10.1021/ja9040016 10.1021/ja052431t 10.1039/C5TC04281J 10.1038/nchem.1272 10.1002/ange.200460592 10.1021/ja309300d 10.1039/c3cs60078e 10.1038/214986a0 10.1007/s12274-010-0001-0 10.1007/s12274-016-1078-x 10.1002/anie.201602801 10.1007/s12274-009-9061-4 10.1002/1521-4095(20020618)14:12<930::AID-ADMA930>3.0.CO;2-L 10.1016/j.ccr.2010.09.015 10.1002/anie.201209903 10.1021/la300042q 10.1002/adma.201002854 10.1002/anie.201000431 10.1021/nn3013178 10.1016/S1452-3981(23)15359-4 |
ContentType | Journal Article |
Copyright | Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016 Nano Research is a copyright of Springer, (2016). All Rights Reserved. |
Copyright_xml | – notice: Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016 – notice: Nano Research is a copyright of Springer, (2016). All Rights Reserved. |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 3V. 7QF 7QO 7QQ 7SE 7SR 7U5 7X7 7XB 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H8G HCIFZ JG9 K9. KB. L7M LK8 M0S M7P P64 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1007/s12274-016-1414-1 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 CrossRef ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Corrosion Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database Advanced Technologies Database with Aerospace Biological Sciences Health & Medical Collection (Alumni) Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Materials Research Database ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Biological Science Collection ProQuest Central (New) Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Copper Technical Reference Library Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection METADEX Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Functionalized periodic Au@MOFs nanoparticle arrays as biosensors for dual-channel detection through the complementary effect of SPR and diffraction peaks |
EISSN | 1998-0000 |
EndPage | 2270 |
ExternalDocumentID | 10_1007_s12274_016_1414_1 672737811 |
GroupedDBID | -58 -5G -BR -EM -~C 06C 06D 0R~ 0VY 123 1N0 29M 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 3V. 4.4 406 408 40D 6NX 7X7 8AO 8FE 8FG 8FH 8FI 8FJ 92L 95- 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBMV ACBRV ACBYP ACCUX ACGFO ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACREN ACTTH ACVWB ACWMK ACZOJ ADBBV ADFRT ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AEVLU AEVTX AEXYK AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BGNMA BHPHI BPHCQ BVXVI CAG CCPQU COF CQIGP CS3 CSCUP CW9 D1I DDRTE DNIVK DPUIP DU5 E3Z EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRP FRRFC FSGXE FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HCIFZ HF~ HG6 HH5 HMCUK HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD J-C JBSCW JZLTJ KB. KOV LK8 LLZTM M4Y M7P N2Q NPVJJ NQJWS NU0 O9- O9J OK1 P2P P9N PDBOC PQQKQ PROAC PT4 Q2X QOR R89 R9I RNS ROL RSV S1Z S27 S3B SCL SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE SZN T13 TSG U2A UG4 UKHRP UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 ZMTXR ~A9 ~WA AACDK AAJBT AASML AAYZH ABAKF ABQSL ACPIV ADMLS AEFQL AEMSY AEUYN AFBBN AGQEE AGRTI AIGIU ALIPV BSONS FRJ H13 AAPKM AAYXX ABFSG ACMFV ACSTC ADHKG AEZWR AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT TGP 7QF 7QO 7QQ 7SE 7SR 7U5 7XB 8BQ 8FD 8FK AZQEC DWQXO FR3 GNUQQ H8G JG9 K9. L7M P64 PKEHL PQEST PQGLB PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c343t-72c5780b8a594c94618e2539f1593bb1c7b6a874edf624f5f28e4c055bd0bcec3 |
IEDL.DBID | 7X7 |
ISSN | 1998-0124 |
IngestDate | Sat Aug 23 14:53:32 EDT 2025 Tue Jul 01 01:46:49 EDT 2025 Thu Apr 24 23:00:00 EDT 2025 Fri Feb 21 02:35:30 EST 2025 Wed Feb 14 09:59:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | glucose Au nanosphere array dual-channel detection Au@MIL-100(Fe) 3-aminophenylboronic acid hemisulfate |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-72c5780b8a594c94618e2539f1593bb1c7b6a874edf624f5f28e4c055bd0bcec3 |
Notes | Au nanosphere array,Au@MIL-100(Fe),3-aminophenylboronicacid hemisulfate,glucose,dual-channel detection 11-5974/O4 A facile and low-cost method to prepare periodic Au@metal-organic framework (MOF) (MIL-100(Fe)) nanoparticle arrays was developed. The arrays were fabricated in situ using monolayer colloidal crystals as templates, followed by Au deposition on substrates, and annealing. MIL-100(Fe) coatings were applied on the nanospheres using a simple solvent thermal process. The prepared periodic Au@MIL-100(Fe) nanoparticle (NP) arrays were characterized by two peaks in the visible spectra. The first peak represented the surface plasmon resonance (SPR) of the Au nanospheres, and the other peak, or the diffraction peak originated from the periodic structure in the NP array. After modification with 3-aminophenylboronic acid hemisulfate (PBA), the Au@MIL-100(Fe) NP arrays exhibited sensitive responses to different glucose concentrations with good selectivity. These responses could be due to the strong interaction between PBA and glucose molecules. The diffraction peak was sensitive at low glucose concentrations (less than 12 mM), whereas the SPR peak rapidly responded at high concentrations. The peaks thus demonstrated satisfactory complementary sensitivity for glucose detection in different concentration regions. These results can be used to develop a dual-channel biosensor. We also created a standard diagram, which can be used to efficiently monitor blood glucose levels. The proposed strategy can be extended to develop different dual-channel sensors using Au@MIL-100(Fe) NP arrays agents. functionalized with different recognition ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2001468215 |
PQPubID | 326270 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2001468215 crossref_primary_10_1007_s12274_016_1414_1 crossref_citationtrail_10_1007_s12274_016_1414_1 springer_journals_10_1007_s12274_016_1414_1 chongqing_primary_672737811 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-01 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Nano research |
PublicationTitleAbbrev | Nano Res |
PublicationTitleAlternate | Nano Research |
PublicationYear | 2017 |
Publisher | Tsinghua University Press |
Publisher_xml | – name: Tsinghua University Press |
References | Luo, Ruditskiy, Peng, Tao, Cosme, He, Xia (CR9) 2016; 26 Kitagawa, Kitaura, Noro (CR21) 2004; 43 Xue, Chen, Hong, Lin, Tan (CR12) 2001; 11 Liu, Goebl, Yin (CR38) 2013; 42 Zhou, Liu, Cai (CR17) 2014; 39 Li, Yu, Lu, Sun, Sculley, Balbuena, Zhou (CR25) 2013; 4 Li, Jiao, Chen, Lotsch, Li (CR34) 2015; 27 Zhang, Hu, Ge, Jiang, Yu (CR23) 2014; 136 Li, Koshizaki, Cai (CR39) 2011; 255 Férey, Serre, Mellot-Draznieks, Millange, Surblé, Dutour, Margiolaki (CR45) 2004; 116 Xia, Yan, Li, Wu, Lou, Wang (CR30) 2016; 1 Gu, Horie, Kubo, Yamada, Fujishima, Sato (CR58) 2002; 41 Li, Eddaoudi, O’Keeffe, Yaghi (CR20) 1999; 402 Férey, Mellot-Draznieks, Serre, Millange, Dutour, Margiolaki (CR46) 2005; 309 He, Liu, Liu, Xiong, Zheng, Liu, Tang (CR32) 2013; 52 Shafer-Peltier, Haynes, Glucksberg, Duyne (CR54) 2003; 125 Park, Kim, Sohn, Nam, Kang, Jun (CR3) 2016; 9 ToghilI, Compton (CR56) 2010; 5 Matsui, Akamatsu, Hara, Miyoshi, Nawafune, Tamaki, Sugimoto (CR55) 2005; 77 Bhattachaijee, Yang, Ahn (CR47) 2011; 47 Zhou, Yang, Ni, Li, Zhang (CR8) 2010; 3 Hang, Zhao, Zhang, Liu, Cai, Li, Qu (CR43) 2016; 105 Pyykkö (CR10) 2008; 37 Palik (CR59) 1997 Ding, Liu, He, Gao, Yin (CR4) 2014; 14 Men, Zhou, Hang, Li, Duan, Cai, Li (CR15) 2016; 4 Liu, Liu, Zhang, Han, Gao, Yin (CR5) 2015; 25 Updike, Hicks (CR53) 1967; 214 Lu, Hupp (CR62) 2010; 132 Kelly, Coronado, Zhao, Schatz (CR16) 2003; 107 Som, Karmakar (CR1) 2009; 2 Liu, Zhou, Li, Zhang, Zhang, Cai, Li (CR7) 2015; 54 Liu, Xuan, Cui (CR27) 2010; 22 Zhang, Losego, Braun (CR51) 2013; 25 Dodson, Cao, Zaribafzadeh, Li, Xiong (CR11) 2015; 63 Cong, Yu, Tang, Li, Liu (CR41) 2013; 42 He, Cao, Liu, Miao, Ma, Ding (CR19) 2016; 9 Zhang, Guan, Zhou (CR52) 2006; 7 Lu, Li, Guo, Farha, Hauser, Qi, Wang, Wang, Han, Liu (CR57) 2012; 4 Zhang, Wu, Lou (CR22) 2013; 135 Li, Duan, Liu, Cai (CR40) 2013; 42 Li, Wei, Wu, Peng, Li (CR2) 2011; 133 Zhou, Wang, Wang, Goh, Fang, Messersmith, Duan (CR33) 2015; 9 Wu, Hu, Zhang, Lin (CR48) 2005; 127 Sadakiyo, Yamada, Kitagawa (CR28) 2009; 131 D’Alessandro, Smit, Long (CR24) 2010; 49 Li, Shuford, Chen, Lee, Cho (CR6) 2008; 2 Ruditskiy, Xia (CR14) 2016; 138 Meek, Greathouse, Allendorf (CR18) 2011; 23 Kleinman, Sharma, Blaber, Henry, Valley, Freeman, Natan, Schatz, Duyne (CR36) 2013; 135 Mikrajuddin Iskandar, Okuyanma (CR44) 2002; 14 Dai, Li, Duan, Jia, Cai (CR49) 2012; 6 Zhang, Asakura, Zhang, Zhang, De, Yan (CR26) 2016; 55 Tang, Salunkhe, Liu, Torad, Imura, Furukawa, Yamauch (CR31) 2015; 137 Cai, Ye, Chen, Zhao, Zhang, Chen, Ma, Jin, Qi (CR35) 2012; 5 Kanai, Sawada, Kitamura (CR60) 2003; 19 Zhang, Liu, Zhou, Liu, Liu, Duan, Cai, Li (CR50) 2015; 11 Rowsell, Millward, Park, Yaghi (CR29) 2004; 126 Qian, Mookherjee (CR13) 2011; 4 Li, Zheng (CR61) 2008; 131 Zhu, Huang, Zhang, Zhang, Li, Zhang, Wang, Yang (CR42) 2012; 28 Liu, Wang (CR37) 2012; 28 H. P. Liu (1414_CR5) 2015; 25 J. Matsui (1414_CR55) 2005; 77 A. Ruditskiy (1414_CR14) 2016; 138 M. Luo (1414_CR9) 2016; 26 Y. J. Zhang (1414_CR52) 2006; 7 Y. D. Liu (1414_CR38) 2013; 42 P. Li (1414_CR2) 2011; 133 J. L. C. Rowsell (1414_CR29) 2004; 126 L. C. He (1414_CR32) 2013; 52 Y. Li (1414_CR39) 2011; 255 B. Zhang (1414_CR26) 2016; 55 C. D. Wu (1414_CR48) 2005; 127 D. D. Men (1414_CR15) 2016; 4 F. Zhou (1414_CR17) 2014; 39 J. L. Li (1414_CR61) 2008; 131 E. D. Palik (1414_CR59) 1997 Z. Z. Gu (1414_CR58) 2002; 41 B. Xue (1414_CR12) 2001; 11 L. Zhang (1414_CR22) 2013; 135 K. L. Kelly (1414_CR16) 2003; 107 J. Tang (1414_CR31) 2015; 137 K. E. Shafer-Peltier (1414_CR54) 2003; 125 W. Zhang (1414_CR23) 2014; 136 K. E. ToghilI (1414_CR56) 2010; 5 J. J. Zhou (1414_CR33) 2015; 9 F. Mikrajuddin Iskandar (1414_CR44) 2002; 14 T. Kanai (1414_CR60) 2003; 19 H. L. Li (1414_CR20) 1999; 402 L. H. Qian (1414_CR13) 2011; 4 Z. F. Dai (1414_CR49) 2012; 6 C. C. Li (1414_CR6) 2008; 2 Y. Li (1414_CR40) 2013; 42 D. W. Ding (1414_CR4) 2014; 14 G. Férey (1414_CR45) 2004; 116 G. Férey (1414_CR46) 2005; 309 H. L. Cong (1414_CR41) 2013; 42 Y. Liu (1414_CR27) 2010; 22 T. Som (1414_CR1) 2009; 2 S. T. Meek (1414_CR18) 2011; 23 D. L. Liu (1414_CR7) 2015; 54 K. He (1414_CR19) 2016; 9 J. R. Li (1414_CR25) 2013; 4 S. L. Kleinman (1414_CR36) 2013; 135 P. Pyykkö (1414_CR10) 2008; 37 S. Kitagawa (1414_CR21) 2004; 43 M. Sadakiyo (1414_CR28) 2009; 131 C. J. Zhang (1414_CR51) 2013; 25 D. M. D’Alessandro (1414_CR24) 2010; 49 J. G. Cai (1414_CR35) 2012; 5 Q. Zhou (1414_CR8) 2010; 3 B. Park (1414_CR3) 2016; 9 D. F. Zhu (1414_CR42) 2012; 28 G. Lu (1414_CR62) 2010; 132 L. M. Li (1414_CR34) 2015; 27 S. J. Updike (1414_CR53) 1967; 214 H. H. Zhang (1414_CR50) 2015; 11 S. L. Dodson (1414_CR11) 2015; 63 B. Liu (1414_CR37) 2012; 28 S. Bhattachaijee (1414_CR47) 2011; 47 L. F. Hang (1414_CR43) 2016; 105 G. Lu (1414_CR57) 2012; 4 B. Y. Xia (1414_CR30) 2016; 1 |
References_xml | – volume: 9 start-page: 6951 year: 2015 end-page: 6960 ident: CR33 article-title: Versatile core–shell nanoparticle@metal–organic framework nanohybrids: Exploiting mussel-inspired polydopamine for tailored structural integration publication-title: ACS Nano doi: 10.1021/acsnano.5b01138 – volume: 125 start-page: 588 year: 2003 end-page: 593 ident: CR54 article-title: Toward a glucose biosensor based on surface-enhanced Raman scattering publication-title: J. Am. Chem. Soc. doi: 10.1021/ja028255v – volume: 5 start-page: 7575 year: 2012 end-page: 7581 ident: CR35 article-title: Self-cleaning, broadband and quasi-omnidirectional antireflective structures based on mesocrystalline rutile TiO nanorod arrays publication-title: Energy Environ. Sci. doi: 10.1039/c2ee03573a – volume: 1 start-page: 15006 year: 2016 ident: CR30 article-title: Nat publication-title: Energy – volume: 132 start-page: 7832 year: 2010 end-page: 7833 ident: CR62 article-title: Metal-organic frameworks as sensors: A ZIF-8 based Fabry-Pérot device as a selective sensor for chemical vapors and gases publication-title: J. Am. Chem. Soc. doi: 10.1021/ja101415b – volume: 77 start-page: 4282 year: 2005 end-page: 4285 ident: CR55 article-title: SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles publication-title: Anal. Chem. doi: 10.1021/ac050227i – volume: 25 start-page: 3239 year: 2013 end-page: 3250 ident: CR51 article-title: Hydrogel-based glucose sensors: Effects of phenylboronic acid chemical structure on response publication-title: Chem. Mater. doi: 10.1021/cm401738p – volume: 9 start-page: 1866 year: 2016 end-page: 1875 ident: CR3 article-title: Surface plasmon enhancement of photoluminescence in photo-chemically synthesized graphene quantum dot and Au nanosphere publication-title: Nano Res. doi: 10.1007/s12274-016-1079-9 – volume: 11 start-page: 2378 year: 2001 end-page: 2381 ident: CR12 article-title: Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes publication-title: J. Mater. Chem. doi: 10.1039/b100618p – volume: 138 start-page: 3161 year: 2016 end-page: 3167 ident: CR14 article-title: Toward the synthesis of sub-15 nm Ag nanocubes with sharp corners and edges: The roles of heterogeneous nucleation and surface capping publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b13163 – volume: 14 start-page: 6731 year: 2014 end-page: 6736 ident: CR4 article-title: Ligand-exchange assisted formation of Au/TiO schottky contact for visible-light photocatalysis publication-title: Nano Lett. doi: 10.1021/nl503585m – volume: 37 start-page: 1967 year: 2008 end-page: 1997 ident: CR10 article-title: Theoretical chemistry of gold publication-title: III. Chem. Soc. Rev. doi: 10.1039/b708613j – volume: 43 start-page: 2334 year: 2004 end-page: 2375 ident: CR21 article-title: Functional porous coordination polymers publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200300610 – volume: 135 start-page: 10664 year: 2013 end-page: 10672 ident: CR22 article-title: Metal–organicframeworks- derived general formation of hollow structures with high complexity publication-title: J. Am. Chem. Soc. doi: 10.1021/ja401727n – volume: 105 start-page: 59 year: 2016 end-page: 67 ident: CR43 article-title: Copper nanoparticle@graphene composite arrays and their enhanced catalytic performance publication-title: Acta. Mater. doi: 10.1016/j.actamat.2015.12.029 – volume: 26 start-page: 1209 year: 2016 end-page: 1216 ident: CR9 article-title: Penta-twinned copper nanorods: Facile synthesis via seed-mediated growth and their tunable plasmonic properties publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504217 – volume: 402 start-page: 276 year: 1999 end-page: 279 ident: CR20 article-title: Design and synthesis of an exceptionally stable and highly porous metal-organic framework publication-title: Nature doi: 10.1038/46248 – volume: 42 start-page: 2610 year: 2013 end-page: 2653 ident: CR38 article-title: Templated synthesis of nanostructured materials publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35369E – volume: 309 start-page: 2040 year: 2005 end-page: 2042 ident: CR46 article-title: A chromium terephthalate-based solid with unusually large pore volumes and surface area publication-title: Science doi: 10.1126/science.1116275 – volume: 19 start-page: 1984 year: 2003 end-page: 1986 ident: CR60 article-title: Optical determination of the lattice constants of colloidal crystals without use of the refractive index publication-title: Langmuir doi: 10.1021/la0268855 – volume: 42 start-page: 3614 year: 2013 end-page: 3627 ident: CR40 article-title: Physical processes-aided periodic micro/nanostructured arrays by colloidal template technique: Fabrication and applications publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs35482b – volume: 2 start-page: 1760 year: 2008 end-page: 1769 ident: CR6 article-title: A facile polyol route to uniform gold octahedra with tailorable size and their optical properties publication-title: ACS Nano doi: 10.1021/nn800264q – volume: 39 start-page: 1302 year: 2014 end-page: 1305 ident: CR17 article-title: Huge local electric field enhancement in hybrid plasmonic arrays publication-title: Opt. Lett. doi: 10.1364/OL.39.001302 – volume: 11 start-page: 844 year: 2015 end-page: 853 ident: CR50 article-title: Physical deposition improved SERS stability of morphology controlled periodic micro/nanostructured arrays based on colloidal templates publication-title: Small doi: 10.1002/smll.201402630 – volume: 25 start-page: 5435 year: 2015 end-page: 5443 ident: CR5 article-title: Etching-free epitaxial growth of gold on silver nanostructures for high chemical stability and plasmonic activity publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201502366 – volume: 7 start-page: 3196 year: 2006 end-page: 3201 ident: CR52 article-title: Synthesis and volume phase transitions of glucose-sensitive microgels publication-title: Biomacromolecules doi: 10.1021/bm060557s – volume: 4 start-page: 1538 year: 2013 end-page: 1544 ident: CR25 article-title: Porous materials with predesigned single-molecule traps for CO2 selective adsorption publication-title: Nat. Commun. doi: 10.1038/ncomms2552 – volume: 4 start-page: 1117 year: 2011 end-page: 1128 ident: CR13 article-title: Convective assembly of linear gold nanoparticle arrays at the micron scale for surface enhanced Raman scattering publication-title: Nano Res. doi: 10.1007/s12274-011-0159-0 – volume: 47 start-page: 3637 year: 2011 end-page: 3639 ident: CR47 article-title: A new heterogeneous catalyst for epoxidation of alkenesvia one-step postfunctionalization of IRMOF-3 with a manganese(II) acetylacetonate complex publication-title: Chem. Commun. doi: 10.1039/c1cc00069a – volume: 28 start-page: 2873 year: 2012 end-page: 2880 ident: CR42 article-title: Fabrication of heterogeneous double-ring-like structure arrays by combination of colloidal lithography and controllable dewetting publication-title: Langmuir doi: 10.1021/la203558b – volume: 131 start-page: 190 year: 2008 end-page: 195 ident: CR61 article-title: A comparison of chemical sensors based on the different ordered inverse opal films publication-title: Sensor. Actuat. B-Chem. doi: 10.1016/j.snb.2007.11.006 – volume: 54 start-page: 9596 year: 2015 end-page: 9600 ident: CR7 article-title: Black gold: Plasmonic colloidosomes with broadband absorption self-assembled from monodispersed gold nanospheres by using a reverse emulsion system publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201503384 – volume: 133 start-page: 5660 year: 2011 end-page: 5663 ident: CR2 article-title: Au-ZnO hybrid nanopyramids and their photocatalytic properties publication-title: J. Am. Chem. Soc. doi: 10.1021/ja111102u – year: 1997 ident: CR59 publication-title: Handbook of Optical Constants of Solids – volume: 63 start-page: 472 year: 2015 end-page: 477 ident: CR11 article-title: Engineering plasmonic nanorod arrays for colon cancer marker detection publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2014.07.083 – volume: 22 start-page: 4112 year: 2010 end-page: 4135 ident: CR27 article-title: Engineering homochiral metalorganic frameworks for heterogeneous asymmetric catalysis and enantioselective separation publication-title: Adv. Mater. doi: 10.1002/adma.201000197 – volume: 126 start-page: 5666 year: 2004 end-page: 5667 ident: CR29 article-title: Hydrogen sorption in functionalized metal-organic frameworks publication-title: J. Am. Chem. Soc. doi: 10.1021/ja049408c – volume: 136 start-page: 16978 year: 2014 end-page: 16981 ident: CR23 article-title: A facile and general coating approach to moisture/waterresistant metal–organic frameworks with intact porosity publication-title: J. Am. Chem. Soc. doi: 10.1021/ja509960n – volume: 107 start-page: 668 year: 2003 end-page: 677 ident: CR16 article-title: The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment publication-title: J. Phys. Chem. B doi: 10.1021/jp026731y – volume: 137 start-page: 1572 year: 2015 end-page: 1580 ident: CR31 article-title: Thermal conversion of core-shell metal-organic frameworks: A new method for selectively functionalized nanoporous hybrid carbon publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511539a – volume: 27 start-page: 7601 year: 2015 end-page: 7609 ident: CR34 article-title: Facile fabrication of ultrathin metal-organic frameworkcoated monolayer colloidal crystals for highly efficient vapor sensing publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b02476 – volume: 41 start-page: 1153 year: 2002 end-page: 1156 ident: CR58 article-title: Fabrication of a metal-coated three-dimensionally ordered macroporous film and its application as a refractive index sensor publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20020402)41:7<1153::AID-ANIE1153>3.0.CO;2-4 – volume: 131 start-page: 9906 year: 2009 end-page: 9907 ident: CR28 article-title: Rational designs for highly proton-conductive metal-organic frameworks publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9040016 – volume: 127 start-page: 8940 year: 2005 end-page: 8941 ident: CR48 article-title: A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis publication-title: J. Am. Chem. Soc. doi: 10.1021/ja052431t – volume: 4 start-page: 2117 year: 2016 end-page: 2122 ident: CR15 article-title: A functional hydrogel film attached with a 2D Au nanosphere array and its ultrahigh optical diffraction intensity as a visualized sensor publication-title: J. Mater. Chem. C doi: 10.1039/C5TC04281J – volume: 4 start-page: 310 year: 2012 end-page: 316 ident: CR57 article-title: Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation publication-title: Nat. Chem. doi: 10.1038/nchem.1272 – volume: 116 start-page: 6456 year: 2004 end-page: 6461 ident: CR45 article-title: A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.200460592 – volume: 135 start-page: 301 year: 2013 end-page: 308 ident: CR36 article-title: Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced raman excitation spectroscopy publication-title: J. Am. Chem. Soc. doi: 10.1021/ja309300d – volume: 42 start-page: 7774 year: 2013 end-page: 7800 ident: CR41 article-title: Current status and future developments in preparation and application of colloidal crystals publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60078e – volume: 214 start-page: 986 year: 1967 end-page: 988 ident: CR53 article-title: The enzyme electrode publication-title: Nature doi: 10.1038/214986a0 – volume: 3 start-page: 423 year: 2010 end-page: 428 ident: CR8 article-title: Rapid recognition of isomers of monochlorobiphenyls at trace levels by surface-enhanced Raman scattering using Ag nanorods as a substrate publication-title: Nano Res. doi: 10.1007/s12274-010-0001-0 – volume: 9 start-page: 1856 year: 2016 end-page: 1865 ident: CR19 article-title: In situ decomposition of metal-organic frameworks into ultrathin nanosheets for the oxygen evolution reaction publication-title: Nano Res. doi: 10.1007/s12274-016-1078-x – volume: 55 start-page: 8319 year: 2016 end-page: 8323 ident: CR26 article-title: Stabilizing a platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201602801 – volume: 2 start-page: 607 year: 2009 end-page: 616 ident: CR1 article-title: Core-shell Au-Ag nanoparticles in dielectric nanocomposites with plasmon-enhanced fluorescence: A new paradigm in antimony glasses publication-title: Nano Res. doi: 10.1007/s12274-009-9061-4 – volume: 14 start-page: 930 year: 2002 end-page: 933 ident: CR44 article-title: Single route for producing organized metallic domes, dots, and pores by colloidal templating and over-sputtering publication-title: Adv. Mater. doi: 10.1002/1521-4095(20020618)14:12<930::AID-ADMA930>3.0.CO;2-L – volume: 255 start-page: 357 year: 2011 end-page: 373 ident: CR39 article-title: Periodic one-dimensional nanostructured arrays based on colloidal templates, applications, and devices publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2010.09.015 – volume: 52 start-page: 3741 year: 2013 end-page: 3745 ident: CR32 article-title: Core-shell noble-metal@metal-organicframework nanoparticles with highly selective sensing property publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201209903 – volume: 5 start-page: 1246 year: 2010 end-page: 1301 ident: CR56 article-title: Electrochemical nonenzymatic glucose sensors: A perspective and an evaluation publication-title: Int. J. Electrochem. Sci. – volume: 28 start-page: 6436 year: 2012 end-page: 6440 ident: CR37 article-title: High-throughput transformation of colloidal polymer spheres to discs simply via magnetic stirring of their dispersions publication-title: Langmuir doi: 10.1021/la300042q – volume: 23 start-page: 249 year: 2011 end-page: 267 ident: CR18 article-title: Metalorganic frameworks: A rapidly growing class of versatile nanoporous materials publication-title: Adv. Mater. doi: 10.1002/adma.201002854 – volume: 49 start-page: 6058 year: 2010 end-page: 6082 ident: CR24 article-title: Carbon dioxide capture: Prospects for new materials publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201000431 – volume: 6 start-page: 6706 year: 2012 end-page: 6716 ident: CR49 article-title: Phase diagram, design of monolayer binary colloidal crystals, and their fabrication based on ethanol-assisted self-assembly at the air/water interface publication-title: ACS Nano doi: 10.1021/nn3013178 – volume: 55 start-page: 8319 year: 2016 ident: 1414_CR26 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201602801 – volume: 28 start-page: 2873 year: 2012 ident: 1414_CR42 publication-title: Langmuir doi: 10.1021/la203558b – volume: 25 start-page: 3239 year: 2013 ident: 1414_CR51 publication-title: Chem. Mater. doi: 10.1021/cm401738p – volume: 42 start-page: 3614 year: 2013 ident: 1414_CR40 publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs35482b – volume: 4 start-page: 1117 year: 2011 ident: 1414_CR13 publication-title: Nano Res. doi: 10.1007/s12274-011-0159-0 – volume: 25 start-page: 5435 year: 2015 ident: 1414_CR5 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201502366 – volume: 9 start-page: 6951 year: 2015 ident: 1414_CR33 publication-title: ACS Nano doi: 10.1021/acsnano.5b01138 – volume: 42 start-page: 7774 year: 2013 ident: 1414_CR41 publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60078e – volume: 131 start-page: 190 year: 2008 ident: 1414_CR61 publication-title: Sensor. Actuat. B-Chem. doi: 10.1016/j.snb.2007.11.006 – volume: 136 start-page: 16978 year: 2014 ident: 1414_CR23 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja509960n – volume: 42 start-page: 2610 year: 2013 ident: 1414_CR38 publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35369E – volume: 47 start-page: 3637 year: 2011 ident: 1414_CR47 publication-title: Chem. Commun. doi: 10.1039/c1cc00069a – volume: 5 start-page: 1246 year: 2010 ident: 1414_CR56 publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)15359-4 – volume: 11 start-page: 2378 year: 2001 ident: 1414_CR12 publication-title: J. Mater. Chem. doi: 10.1039/b100618p – volume: 132 start-page: 7832 year: 2010 ident: 1414_CR62 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja101415b – volume: 52 start-page: 3741 year: 2013 ident: 1414_CR32 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201209903 – volume: 116 start-page: 6456 year: 2004 ident: 1414_CR45 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.200460592 – volume: 402 start-page: 276 year: 1999 ident: 1414_CR20 publication-title: Nature doi: 10.1038/46248 – volume: 255 start-page: 357 year: 2011 ident: 1414_CR39 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2010.09.015 – volume: 37 start-page: 1967 year: 2008 ident: 1414_CR10 publication-title: III. Chem. Soc. Rev. doi: 10.1039/b708613j – volume: 135 start-page: 301 year: 2013 ident: 1414_CR36 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja309300d – volume: 4 start-page: 2117 year: 2016 ident: 1414_CR15 publication-title: J. Mater. Chem. C doi: 10.1039/C5TC04281J – volume: 11 start-page: 844 year: 2015 ident: 1414_CR50 publication-title: Small doi: 10.1002/smll.201402630 – volume: 9 start-page: 1866 year: 2016 ident: 1414_CR3 publication-title: Nano Res. doi: 10.1007/s12274-016-1079-9 – volume: 138 start-page: 3161 year: 2016 ident: 1414_CR14 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b13163 – volume: 14 start-page: 6731 year: 2014 ident: 1414_CR4 publication-title: Nano Lett. doi: 10.1021/nl503585m – volume: 105 start-page: 59 year: 2016 ident: 1414_CR43 publication-title: Acta. Mater. doi: 10.1016/j.actamat.2015.12.029 – volume: 14 start-page: 930 year: 2002 ident: 1414_CR44 publication-title: Adv. Mater. doi: 10.1002/1521-4095(20020618)14:12<930::AID-ADMA930>3.0.CO;2-L – volume: 107 start-page: 668 year: 2003 ident: 1414_CR16 publication-title: J. Phys. Chem. B doi: 10.1021/jp026731y – volume: 4 start-page: 310 year: 2012 ident: 1414_CR57 publication-title: Nat. Chem. doi: 10.1038/nchem.1272 – volume: 19 start-page: 1984 year: 2003 ident: 1414_CR60 publication-title: Langmuir doi: 10.1021/la0268855 – volume: 49 start-page: 6058 year: 2010 ident: 1414_CR24 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201000431 – volume: 41 start-page: 1153 year: 2002 ident: 1414_CR58 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20020402)41:7<1153::AID-ANIE1153>3.0.CO;2-4 – volume: 3 start-page: 423 year: 2010 ident: 1414_CR8 publication-title: Nano Res. doi: 10.1007/s12274-010-0001-0 – volume: 22 start-page: 4112 year: 2010 ident: 1414_CR27 publication-title: Adv. Mater. doi: 10.1002/adma.201000197 – volume: 214 start-page: 986 year: 1967 ident: 1414_CR53 publication-title: Nature doi: 10.1038/214986a0 – volume: 4 start-page: 1538 year: 2013 ident: 1414_CR25 publication-title: Nat. Commun. doi: 10.1038/ncomms2552 – volume: 137 start-page: 1572 year: 2015 ident: 1414_CR31 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511539a – volume: 27 start-page: 7601 year: 2015 ident: 1414_CR34 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b02476 – volume: 309 start-page: 2040 year: 2005 ident: 1414_CR46 publication-title: Science doi: 10.1126/science.1116275 – volume: 43 start-page: 2334 year: 2004 ident: 1414_CR21 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200300610 – volume: 39 start-page: 1302 year: 2014 ident: 1414_CR17 publication-title: Opt. Lett. doi: 10.1364/OL.39.001302 – volume: 54 start-page: 9596 year: 2015 ident: 1414_CR7 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201503384 – volume: 133 start-page: 5660 year: 2011 ident: 1414_CR2 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja111102u – volume: 6 start-page: 6706 year: 2012 ident: 1414_CR49 publication-title: ACS Nano doi: 10.1021/nn3013178 – volume: 2 start-page: 1760 year: 2008 ident: 1414_CR6 publication-title: ACS Nano doi: 10.1021/nn800264q – volume: 131 start-page: 9906 year: 2009 ident: 1414_CR28 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9040016 – volume: 1 start-page: 15006 year: 2016 ident: 1414_CR30 publication-title: Energy – volume: 5 start-page: 7575 year: 2012 ident: 1414_CR35 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee03573a – volume: 127 start-page: 8940 year: 2005 ident: 1414_CR48 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja052431t – volume-title: Handbook of Optical Constants of Solids year: 1997 ident: 1414_CR59 – volume: 2 start-page: 607 year: 2009 ident: 1414_CR1 publication-title: Nano Res. doi: 10.1007/s12274-009-9061-4 – volume: 26 start-page: 1209 year: 2016 ident: 1414_CR9 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504217 – volume: 125 start-page: 588 year: 2003 ident: 1414_CR54 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja028255v – volume: 63 start-page: 472 year: 2015 ident: 1414_CR11 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2014.07.083 – volume: 135 start-page: 10664 year: 2013 ident: 1414_CR22 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja401727n – volume: 9 start-page: 1856 year: 2016 ident: 1414_CR19 publication-title: Nano Res. doi: 10.1007/s12274-016-1078-x – volume: 77 start-page: 4282 year: 2005 ident: 1414_CR55 publication-title: Anal. Chem. doi: 10.1021/ac050227i – volume: 28 start-page: 6436 year: 2012 ident: 1414_CR37 publication-title: Langmuir doi: 10.1021/la300042q – volume: 126 start-page: 5666 year: 2004 ident: 1414_CR29 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja049408c – volume: 7 start-page: 3196 year: 2006 ident: 1414_CR52 publication-title: Biomacromolecules doi: 10.1021/bm060557s – volume: 23 start-page: 249 year: 2011 ident: 1414_CR18 publication-title: Adv. Mater. doi: 10.1002/adma.201002854 |
SSID | ssj0062148 |
Score | 2.3936212 |
Snippet | A facile and low-cost method to prepare periodic Au@metal-organic framework (MOF) (MIL-100(Fe)) nanoparticle arrays was developed. The arrays were fabricated... A facile and low-cost method to prepare periodic Au@metal–organic framework (MOF) (MIL-100(Fe)) nanoparticle arrays was developed. The arrays were fabricated... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2257 |
SubjectTerms | Atomic/Molecular Structure and Spectra Biomedicine Biosensors Biotechnology Chemistry and Materials Science Condensed Matter Physics Crystals Diffraction Glucose Gold Iron Materials Science Metal-organic frameworks Nanoparticles Nanospheres Nanotechnology Periodic structures Research Article Sensor arrays SPR Strong interactions (field theory) Substrates Surface plasmon resonance 互补效应 双通道 周期性结构 生物传感器 纳米阵列 衍射峰 金属有机 |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQXOCASgGxQNEcegJZShw7j1tXVVcIiRYBK3GL_KQrkAPJcqA_pb-24zxYQBSJUw6xJ1HG9nyTmW-GkK-aFZmVuaCxMIbyXBmqtCuoMlojYNAmb7uWnP5Mj6f85Epc9TzuZsh2H0KS7Um9ILsx9KDQ9U1pzGNO0eVZEcF1x0U8ZePh-E1Z3LbM6rhjaL2GUOZbIkJBhd-Vv77Hx700TAu0-SpA2tqdySey3gNGGHca3iBL1n8ma8_KCG6SvxM0Tt0_vdkfayAUL67MTMP44dvpr0kDXnr0jTsJIOtaPjYgG1CzqkEvtqobQOgKgZVFAxHY21swdt4maXnoO_ng1UKbgN7lm9eP0OWCQOXg4uwcpDcQ2q3UHVUC30LeNFtkOvlx-f2Y9j0XqE54MqcZ07iHI5VLUXBd8DTOLRNJ4RD2JErFOlOpzDNujUsZd8Kx3HIdCaFMpLTVyTZZ9pW3OwQQakTcSa6ty3ggxAqVu0Lo1Ig4wXNjRPaePn5519XWKENgOAns1xGJBnWUui9XHrpm3JaLQstBm2VIUQvaLHHK4dOUQd47g_cHHZf9tm1CT85ARUMYNCJHg94Xt_8rbPdDo_fIKgvgoE363SfL8_rBfkFoM1cH7VL-B2Iu8Ys priority: 102 providerName: Springer Nature |
Title | Functionalized periodic Au@MOFs nanoparticle arrays as biosensors for dual-channel detection through the complementary effect of SPR and diffraction peaks |
URI | http://lib.cqvip.com/qk/71233X/201707/672737811.html https://link.springer.com/article/10.1007/s12274-016-1414-1 https://www.proquest.com/docview/2001468215 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcABUR5iaal84ASySBw7cU6woE0rUEtVWGk5RX4FVlRJm2wP5afwa5lxkt1Sqb3EUhJbUcb2zHi-mY-Q15bnmddKslg6x4Qyjhlb5cw4a8FgsE4F1pKj4_RwLj4v5GI4cOsGWOW4J4aN2jUWz8jfIfZHpAo01PvzC4asURhdHSg07pNtLF2GkK5ssXa4Uh4H9qw-jQwU2RjVDKlzHPwxuJuyWMSCxVhb4VdT_7wAjfG_jtoYnjdipUEFFY_Jo8F2pNNe2Dvknq-fkIfXKgo-JX8L0FP98d7yj3cU6xg3bmnp9PLD0deio7WuwU3uR6C6bfVVR3VHzbLpwKFt2o6CFUsxQYthTnDtz6jzq4DXqulA6gOtpwGL3kPP2yvaw0JoU9FvJ6dU144i80rbZ03AV-jf3TMyL2bfPx2ygX6B2UQkK5ZxC8s5MkrLXNhcpLHyXCZ5BRZQYkxsM5NqlQnvqpSLSlZceWEjKY2LjPU2eU626qb2LwgFqyMSlRbWV5nA3FhpVJVLmzoZJ7CFTMju-ueX532ZjRJjxAkmwk5INIqjtEPlciTQOCs3NZdRmiWi1VCaJXR5s-4yjnfHy3ujjMthBXflZr5NyNtR7pvHtw728u7BdskDjoZBAPzuka1Ve-lfgVmzMvth7sJVFQf7ZHt68OPLDNqPs-OTU7g759N_uov5_w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQCHiqfYtsAc4AKySBw7cQ4VVEDY0m5B0Eq9pX4FVq2SNtkKLT-lP6K_kXEeXUCit54iJfEoyozn4flmhpDnhqWJU1LQUFhLudSWalOkVFtj0GEwVrZTSya78XiffzoQB0vkYqiF8bDKQSe2itpWxp-Rv_bYHx5LtFBvTk6pnxrls6vDCI1OLLbd_CeGbM3G1nvk7wvGsg9778a0nypATcSjGU2YQSkNtFQi5SblcSgdE1FaoGGPtA5NomMlE-5sETNeiIJJx00ghLaBNs5ESPcGucmjKPU7SmYfB80fs7Cd1tWVraHhHLKobakew_gP78Y05CGnoe_l8KMqv5-ihfrbJi4c3X9ys63Jy-6Sld5Xhc1OuO6RJVfeJ3f-6GD4gJxnaBe748TpL2fB902u7NTA5tnbyeesgVKVGJZ3FEDVtZo3oBrQ06rBALqqG0CvGXxBGPU1yKU7ButmLT6shH6IEF4dtNj3Dupez6GDoUBVwLcvX0GVFvykl7qr0sCvUEfNQ7J_LYx5RJbLqnSPCaCXE_BCceOKhPtaXKFlkQoTWxFGqLJGZO3y5-cnXVuP3OekI194OyLBwI7c9J3S_cCO43zR49lzM_foOM_NHJe8vFwy0Lvi5fWBx3mvMZp8Id8j8mrg--Lxf4mtXk3sGbk13pvs5Dtbu9tr5DbzTkkLNl4ny7P6zD1Bl2qmn7ZyDOTwujfOb0OBMdc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9VAEN4gJkYfiNd4AHUe9EWzod3u9vJAlIgNiCBRSc5b2aueQFpoDzGHn8JP8dc528s5aiJvPDVpu5OmMzuXnW9mCHmpWZZYmQoaCmMoT5WhSruMKqM1OgzapO3Ukv2DeOeIfxyL8RL5NdTCeFjloBNbRW0q7c_INzz2h8cpWqgN18MiDrfzt2fn1E-Q8pnWYZxGJyJ7dvYTw7dmc3cbef2KsfzDt_c7tJ8wQHXEoylNmEaJDVQqRcZ1xuMwtUxEmUMjHykV6kTFMk24NS5m3AnHUst1IIQygdJWR0j3FrmdRCL0eywZz4O9mIXt5K6uhA2N6JBRbcv2GMaCeDemIQ85DX1fhx9V-f0crdXf9nHh9P6Tp23NX36frPR-K2x1gvaALNnyIbn3RzfDR-QqRxvZHS1OLq0B30O5MhMNWxfv9j_nDZSyxBC9owCyruWsAdmAmlQNBtNV3QB60OCLw6ivRy7tKRg7bbFiJfQDhfBqocXBd7D3egYdJAUqB18Pv4AsDfipL3VXsYFfIU-ax-ToRhjzhCyXVWmfEkCPJ-BOcm1dwn1drlCpy4SODTIN1deIrM1_fnHWtfgofH468kW4IxIM7Ch03zXdD-84LRb9nj03C4-U89wscMnr-ZKB3jUvrw88Lnrt0RQLWR-RNwPfF4__S2z1emIvyB3cMsWn3YO9NXKXef-kxR2vk-VpfWGfoXc1Vc9bMQZyfNP75jdlAjYE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functionalized+periodic+Au%40MOFs+nanoparticle+arrays+as+biosensors+for+dual-channel+detection+through+the+complementary+effect+of+SPR+and+diffraction+peaks&rft.jtitle=Nano+research&rft.au=Hang%2C+Lifeng&rft.au=Zhou%2C+Fei&rft.au=Men%2C+Dandan&rft.au=Li%2C+Huilin&rft.date=2017-07-01&rft.issn=1998-0124&rft.eissn=1998-0000&rft.volume=10&rft.issue=7&rft.spage=2257&rft.epage=2270&rft_id=info:doi/10.1007%2Fs12274-016-1414-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12274_016_1414_1 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F71233X%2F71233X.jpg |