Out-of-plane behaviour of masonry specimens strengthened with ECC under impact loading
•Investigate the behaviour of ECC-retrofitted masonry specimens subjected to impact loads.•Confirmation of effectiveness of using the ECC layer(s) for retrofitting of masonry specimens subjected to impact loads.•Comparing the performance of ECC-retrofitted masonry specimens under static and impact l...
Saved in:
Published in | Engineering structures Vol. 173; pp. 1002 - 1018 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
15.10.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Investigate the behaviour of ECC-retrofitted masonry specimens subjected to impact loads.•Confirmation of effectiveness of using the ECC layer(s) for retrofitting of masonry specimens subjected to impact loads.•Comparing the performance of ECC-retrofitted masonry specimens under static and impact loads.•Exhibiting the important aspects of specimens including the strain distribution through the ECC layer.
The work described herein sets out to investigate experimentally (via drop-weight testing) the out-of-plane behaviour of beam-like masonry specimens under impact loading when strengthened with a thin layer of engineered cementitious composite (ECC). The subject prismatic specimens essentially consist of a stack of ten bricks connected with mortar joints which are subjected to four-point bending tests. The impact load is applied via a steel mass allowed to fall from a certain height (drop-weight test). Specimens are subjected to consecutive impact tests until their collapse. Each specimen is strengthened by applying a thin ECC layer to the lower face of the prism (acting in tension) or to both, upper and lower, faces (acting in compression and tension respectively). These specimens are considered to provide a simplistic representation of a vertical strip of a masonry infill wall subjected to out-of-plane actions characterised by high loading rates and intensities (associated with impact and blast problems). The drop-weight tests reveal that the proposed strengthening method successfully increases the load-carrying capacity of the subject specimens compared to that observed under equivalent static testing, allowing them to absorb more effectively the energy introduced during impact without the production of debris. Nevertheless, it is important to mention that the behaviour exhibited by the ECC layer during impact testing is characterised by the formation of more localised and wider cracks compared to the fine distribution cracks observed when the same specimens are subjected to equivalent static testing. |
---|---|
AbstractList | •Investigate the behaviour of ECC-retrofitted masonry specimens subjected to impact loads.•Confirmation of effectiveness of using the ECC layer(s) for retrofitting of masonry specimens subjected to impact loads.•Comparing the performance of ECC-retrofitted masonry specimens under static and impact loads.•Exhibiting the important aspects of specimens including the strain distribution through the ECC layer.
The work described herein sets out to investigate experimentally (via drop-weight testing) the out-of-plane behaviour of beam-like masonry specimens under impact loading when strengthened with a thin layer of engineered cementitious composite (ECC). The subject prismatic specimens essentially consist of a stack of ten bricks connected with mortar joints which are subjected to four-point bending tests. The impact load is applied via a steel mass allowed to fall from a certain height (drop-weight test). Specimens are subjected to consecutive impact tests until their collapse. Each specimen is strengthened by applying a thin ECC layer to the lower face of the prism (acting in tension) or to both, upper and lower, faces (acting in compression and tension respectively). These specimens are considered to provide a simplistic representation of a vertical strip of a masonry infill wall subjected to out-of-plane actions characterised by high loading rates and intensities (associated with impact and blast problems). The drop-weight tests reveal that the proposed strengthening method successfully increases the load-carrying capacity of the subject specimens compared to that observed under equivalent static testing, allowing them to absorb more effectively the energy introduced during impact without the production of debris. Nevertheless, it is important to mention that the behaviour exhibited by the ECC layer during impact testing is characterised by the formation of more localised and wider cracks compared to the fine distribution cracks observed when the same specimens are subjected to equivalent static testing. The work described herein sets out to investigate experimentally (via drop-weight testing) the out-of-plane behaviour of beam-like masonry specimens under impact loading when strengthened with a thin layer of engineered cementitious composite (ECC). The subject prismatic specimens essentially consist of a stack of ten bricks connected with mortar joints which are subjected to four-point bending tests. The impact load is applied via a steel mass allowed to fall from a certain height (drop-weight test). Specimens are subjected to consecutive impact tests until their collapse. Each specimen is strengthened by applying a thin ECC layer to the lower face of the prism (acting in tension) or to both, upper and lower, faces (acting in compression and tension respectively). These specimens are considered to provide a simplistic representation of a vertical strip of a masonry infill wall subjected to out-of-plane actions characterised by high loading rates and intensities (associated with impact and blast problems). The drop-weight tests reveal that the proposed strengthening method successfully increases the load-carrying capacity of the subject specimens compared to that observed under equivalent static testing, allowing them to absorb more effectively the energy introduced during impact without the production of debris. Nevertheless, it is important to mention that the behaviour exhibited by the ECC layer during impact testing is characterised by the formation of more localised and wider cracks compared to the fine distribution cracks observed when the same specimens are subjected to equivalent static testing. |
Author | Pourfalah, Saeed Moatamedi, Mojtaba Suryanto, Benny Cotsovos, Demetrios M. |
Author_xml | – sequence: 1 givenname: Saeed orcidid: 0000-0002-1900-8606 surname: Pourfalah fullname: Pourfalah, Saeed email: s.pourfalah@sheffield.ac.uk organization: Department of Civil and Structural Engineering, Sir Frederick Mappin Building, Mappin Street, Sheffield, S1 3JD, UK – sequence: 2 givenname: Demetrios M. surname: Cotsovos fullname: Cotsovos, Demetrios M. organization: Institute of Infrastructure and Environment, Heriot-Watt University, Edinburgh EH14 4AS, UK – sequence: 3 givenname: Benny surname: Suryanto fullname: Suryanto, Benny organization: Institute of Infrastructure and Environment, Heriot-Watt University, Edinburgh EH14 4AS, UK – sequence: 4 givenname: Mojtaba surname: Moatamedi fullname: Moatamedi, Mojtaba organization: Faculty of Engineering Science and Technology, UiT The Arctic University of Norway, Norway |
BookMark | eNqNkDtvFDEUhS0UJDaB34Cl1DNcz4wfW1BEq_CQIqUBWstjX2e92rUntico_x5HiyhooLrN-c65-i7JRUwRCXnPoGfAxIdDj_Gh1Lza2g_AVA-iB6lekQ1TcuzkOIwXZANsYh0MW_GGXJZyAIBBKdiQH_dr7ZLvlqOJSGfcm6eQ1kyTpydTUszPtCxowwljoW2lbdU9RnT0Z6h7ervb0TU6zDScFmMrPSbjQnx4S157cyz47ve9It8_3X7bfenu7j9_3d3cdXacxtoJD35GVDhxPiguHTAvZybcsJWcbblnXMJop9kLxY11HJxglm9nYA68MuMVuT73Ljk9rliqPrTvY5vUA2NT8zFJ0VIfzymbUykZvbahmhpSrNmEo2agX1Tqg_6jUr-o1CB0U9l4-Re_5HAy-fk_yJsziU3CU8Csiw0YLbqQsWVdCv_s-AXfnZbR |
CitedBy_id | crossref_primary_10_1016_j_istruc_2021_12_028 crossref_primary_10_1016_j_engstruct_2024_118383 crossref_primary_10_1016_j_istruc_2023_03_183 crossref_primary_10_1016_j_prostr_2020_04_007 crossref_primary_10_1007_s42452_020_2235_0 crossref_primary_10_1061__ASCE_ST_1943_541X_0003432 crossref_primary_10_1016_j_ijimpeng_2022_104280 crossref_primary_10_3390_geosciences14090226 crossref_primary_10_3390_infrastructures6120178 crossref_primary_10_1007_s40571_023_00629_3 crossref_primary_10_3390_buildings11120607 crossref_primary_10_1016_j_conbuildmat_2020_120520 crossref_primary_10_1007_s11069_020_04036_2 crossref_primary_10_1177_2041419619866457 crossref_primary_10_1016_j_cscm_2024_e03477 crossref_primary_10_1007_s13369_020_04729_7 crossref_primary_10_3390_buildings13082099 crossref_primary_10_1016_j_conbuildmat_2022_129597 crossref_primary_10_1016_j_ijimpeng_2023_104597 crossref_primary_10_1016_j_cemconcomp_2023_105119 crossref_primary_10_1016_j_engstruct_2024_118479 crossref_primary_10_3390_buildings14123711 crossref_primary_10_1016_j_engstruct_2021_112328 crossref_primary_10_1016_j_istruc_2024_107988 crossref_primary_10_1177_1369433219898099 crossref_primary_10_1007_s12205_020_1346_x crossref_primary_10_1016_j_istruc_2021_05_012 crossref_primary_10_1016_j_engstruct_2023_116377 crossref_primary_10_1080_15583058_2022_2091967 crossref_primary_10_1051_epjconf_202125001021 crossref_primary_10_3390_ma12071151 crossref_primary_10_3390_ma12172712 |
Cites_doi | 10.3151/jact.9.51 10.1061/40699(2003)45 10.1061/(ASCE)0733-9445(1992)118:7(1884) 10.1617/s11527-013-0176-4 10.3151/jact.1.215 10.1063/1.1661479 10.1061/(ASCE)0733-9445(2005)131:8(1194) 10.1061/(ASCE)0733-9445(1996)122:3(228) 10.1016/j.compositesb.2017.12.030 10.1016/j.engstruct.2013.08.010 10.1016/j.engstruct.2010.04.017 10.1016/j.engstruct.2017.07.089 10.1061/(ASCE)0899-1561(2005)17:2(143) 10.1061/(ASCE)0899-1561(2007)19:10(855) 10.1016/j.conbuildmat.2017.10.077 10.1061/(ASCE)0733-9445(1994)120:1(230) 10.1061/(ASCE)MT.1943-5533.0000412 10.1016/j.conbuildmat.2005.08.024 10.1176/jnp.2006.18.2.141 10.1016/j.compstruc.2018.02.004 10.1016/j.conbuildmat.2012.09.065 10.1061/(ASCE)0733-9445(2009)135:12(1522) 10.3989/mc.2014.01513 10.2749/222137908796291868 10.1016/j.ijimpeng.2015.12.002 10.1067/mem.2001.114906 10.1002/eqe.654 10.1061/(ASCE)0887-3828(2004)18:2(95) 10.1016/j.compositesb.2006.07.019 10.1007/s10518-013-9500-1 10.1193/1.1585912 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Oct 15, 2018 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Oct 15, 2018 |
DBID | AAYXX CITATION 7SR 7ST 8BQ 8FD C1K FR3 JG9 KR7 SOI |
DOI | 10.1016/j.engstruct.2018.06.078 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Engineering Research Database Environment Abstracts METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7323 |
EndPage | 1018 |
ExternalDocumentID | 10_1016_j_engstruct_2018_06_078 S0141029618300798 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACIWK ACLVX ACRLP ACSBN ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSE SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW SSH VH1 WUQ ZY4 7SR 7ST 8BQ 8FD C1K EFKBS FR3 JG9 KR7 SOI |
ID | FETCH-LOGICAL-c343t-6f0fbee8e4552857d01f7b16d2975195f15703c4bf685acd50d61c59b01d0f8a3 |
IEDL.DBID | .~1 |
ISSN | 0141-0296 |
IngestDate | Wed Aug 13 04:38:05 EDT 2025 Thu Jul 10 08:31:04 EDT 2025 Thu Apr 24 22:56:05 EDT 2025 Fri Feb 23 02:47:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Out-of-plane behaviour Dynamic response Failure mode Drop-weight testing Impact loading Retrofitting Masonry Engineered cementitious composite Loading rate Strain rate |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-6f0fbee8e4552857d01f7b16d2975195f15703c4bf685acd50d61c59b01d0f8a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1900-8606 |
PQID | 2114201476 |
PQPubID | 2045481 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2114201476 crossref_citationtrail_10_1016_j_engstruct_2018_06_078 crossref_primary_10_1016_j_engstruct_2018_06_078 elsevier_sciencedirect_doi_10_1016_j_engstruct_2018_06_078 |
PublicationCentury | 2000 |
PublicationDate | 2018-10-15 |
PublicationDateYYYYMMDD | 2018-10-15 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Engineering structures |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Singh, Patil, Munjal (b0235) 2017; 150 Amiraslanzadeh, Ikemoto, Miyajima, Fallahi (b0140) 2012; 15 Oyarzo-Vera, Griffith (b0045) 2009; 42 Taghdi (b0115) 1998 Ward (b0130) 2004; 18 Kyriakides, Hendriks, Billington (b0150) 2012; 24 Li (b0165) 2003; 1 Track modelling analysis and modelling tool. 4.87-2014. Ahmad, Elahi, Pervaiz, Rahman, Barbhuiya (b0080) 2014; 64 Tiedeman H. A statistical evaluation of the importance of non-structural damage to buildings. In: Proc 7th world conf. on earthquake engrg; 1980. p. 617–24. Silva PF, Myers JJ, Belarbi A, El-Domiaty K, Tumialan JG, Nanni A. Performance of infill URM Wall systems retrofitted with FRP rods and laminates to resist in-plane and out-of-plane loads. In: Proceedings of the 9th international conference on structural faults and repairs, London, UK, 2001, July, p. 4–6. Abrams D, Lynch J. Flexural behavior of retrofitted masonry piers. In: KEERC-MAE joint seminar on risk mitigation for regions of moderate seismicity; 2001. BS EN 197-1. Cement. Composition, specification and conformity criteria for common cements; 2011. Pourfalah S. Out-of-plane retrofitting of masonry walls using engineered cementitious composites. PhD. EGIS, Heriot-Watt University; 2017. Asteris, Cotsovos, Chrysostomou, Mohebkhah, Al-Chaar (b0020) 2013; 56 Dehghani, Fischer, Alahi (b0145) 2015; 48 Maalej, Lin, Nguyen, Quek (b0250) 2010; 32 Wightman, Gladish (b0220) 2001; 37 Cavaleri, Fossetti, Papia (b0035) 2009; 135 Klingner (b0065) 2006; 20 Sheppard P, Tercelj J. The effect of repair and strengthening methods for masonry walls. In: 7th world conference on earthquake engineering; 1980. Abrams, Angel, Uzarski (b0005) 1996; 12 Mehrabi, Benson Shing, Schuller, Noland (b0010) 1996; 122 Kyriakides M, Billington S. Seismic retrofit of masonry-infilled non-ductile reinforced concrete frames using sprayable ductile fiber-reinforced cementitious composites. In: 14 WCEE; 2008. De Luca, Verderame, Gómez-Martínez, Pérez-García (b0060) 2014; 12 Carney P, Myers JJ. Shear and flexural strengthening of masonry infill walls with FRP for extreme out-of-plane loading. In: Proceedings of the architectural engineering institute 2003 annual meeting; 2003. Maalej, Quek, Zhang (b0190) 2005; 17 Pourfalah, Cotsovos, Suryanto (b0230) 2018; 201 Griffith, Vaculik, Lam, Wilson, Lumantarna (b0040) 2007; 36 Karantoni, Fardis (b0095) 1992; 118 Hutchison D, Yong P, McKenzie G. Laboratory testing of a variety of strengthening solutions for brick masonry wall panels. In: 8th WCEE. San Francisco, USA; 1984. p. 575–82. Mosallam (b0135) 2007; 38 Yang E, Li VC. Rate dependence in engineered cementitious composites. In: International RILEM workshop on high performance fiber reinforced cementitious composites in structural applications. RILEM Publications SARL; 2006. Griffith, Vaculik (b0030) 2007; 25 Bangash (b0085) 2006 Freiwald (b0210) 1972; 43 Shi, Xiong, Li, Xu (b0075) 2016; 90 Esmaeeli, Manning, Barros (b0245) 2013; 38 Pourfalah, Suryanto, Cotsovos (b0225) 2018; 140 Bazzurro P, Alexander D, Clemente P, Comerio M, Sortis A, Filippou F, et al. The Mw = 6.3 Abruzzo, Italy, earthquake of April 6, 2009. Learning from earthquakes. EERI special earthquake report; 2009. ElGawady M, Lestuzzi P, Badoux M. A review of conventional seismic retrofitting techniques for URM. In: 13th international brick and block masonry conference, 2004. Citeseer. Hak S, Morandi P, Magenes G. Out-of-plane experimental response of strong masonry infills. In: 2nd European conference on earthquake engineering and seismology; 2014. Pourfalah (b0170) 2018; 158 Taber, Warden, Hurley (b0215) 2006; 18 Zhang, Maalej, Quek (b0185) 2007; 19 Murty C, Jain SK. Beneficial influence of masonry infill walls on seismic performance of RC frame buildings. In: Proceedings of the 12th world conference on earthquake engineering, Auckland, New Zealand; 2000. Mechtcherine, Silva, Butler, Zhu, Mobasher, Gao (b0180) 2011; 9 BS EN 771-1. Specification for masonry units. Clay masonry units; 2011. Bruneau (b0025) 1994; 120 Davidson, Fisher, Hammons, Porter, Dinan (b0160) 2005; 131 Amiraslanzadeh (10.1016/j.engstruct.2018.06.078_b0140) 2012; 15 Zhang (10.1016/j.engstruct.2018.06.078_b0185) 2007; 19 Ward (10.1016/j.engstruct.2018.06.078_b0130) 2004; 18 10.1016/j.engstruct.2018.06.078_b0240 10.1016/j.engstruct.2018.06.078_b0120 10.1016/j.engstruct.2018.06.078_b0200 Pourfalah (10.1016/j.engstruct.2018.06.078_b0230) 2018; 201 10.1016/j.engstruct.2018.06.078_b0125 Singh (10.1016/j.engstruct.2018.06.078_b0235) 2017; 150 Taghdi (10.1016/j.engstruct.2018.06.078_b0115) 1998 Bangash (10.1016/j.engstruct.2018.06.078_b0085) 2006 Mosallam (10.1016/j.engstruct.2018.06.078_b0135) 2007; 38 Mechtcherine (10.1016/j.engstruct.2018.06.078_b0180) 2011; 9 Oyarzo-Vera (10.1016/j.engstruct.2018.06.078_b0045) 2009; 42 Dehghani (10.1016/j.engstruct.2018.06.078_b0145) 2015; 48 Griffith (10.1016/j.engstruct.2018.06.078_b0030) 2007; 25 10.1016/j.engstruct.2018.06.078_b0090 10.1016/j.engstruct.2018.06.078_b0050 10.1016/j.engstruct.2018.06.078_b0175 10.1016/j.engstruct.2018.06.078_b0055 Karantoni (10.1016/j.engstruct.2018.06.078_b0095) 1992; 118 10.1016/j.engstruct.2018.06.078_b0015 10.1016/j.engstruct.2018.06.078_b0205 Abrams (10.1016/j.engstruct.2018.06.078_b0005) 1996; 12 Taber (10.1016/j.engstruct.2018.06.078_b0215) 2006; 18 Ahmad (10.1016/j.engstruct.2018.06.078_b0080) 2014; 64 Esmaeeli (10.1016/j.engstruct.2018.06.078_b0245) 2013; 38 Mehrabi (10.1016/j.engstruct.2018.06.078_b0010) 1996; 122 Maalej (10.1016/j.engstruct.2018.06.078_b0190) 2005; 17 Maalej (10.1016/j.engstruct.2018.06.078_b0250) 2010; 32 Shi (10.1016/j.engstruct.2018.06.078_b0075) 2016; 90 Bruneau (10.1016/j.engstruct.2018.06.078_b0025) 1994; 120 10.1016/j.engstruct.2018.06.078_b0100 Asteris (10.1016/j.engstruct.2018.06.078_b0020) 2013; 56 Kyriakides (10.1016/j.engstruct.2018.06.078_b0150) 2012; 24 Davidson (10.1016/j.engstruct.2018.06.078_b0160) 2005; 131 Wightman (10.1016/j.engstruct.2018.06.078_b0220) 2001; 37 10.1016/j.engstruct.2018.06.078_b0070 Pourfalah (10.1016/j.engstruct.2018.06.078_b0170) 2018; 158 Cavaleri (10.1016/j.engstruct.2018.06.078_b0035) 2009; 135 10.1016/j.engstruct.2018.06.078_b0195 10.1016/j.engstruct.2018.06.078_b0110 10.1016/j.engstruct.2018.06.078_b0155 10.1016/j.engstruct.2018.06.078_b0105 Li (10.1016/j.engstruct.2018.06.078_b0165) 2003; 1 Griffith (10.1016/j.engstruct.2018.06.078_b0040) 2007; 36 Freiwald (10.1016/j.engstruct.2018.06.078_b0210) 1972; 43 Pourfalah (10.1016/j.engstruct.2018.06.078_b0225) 2018; 140 De Luca (10.1016/j.engstruct.2018.06.078_b0060) 2014; 12 Klingner (10.1016/j.engstruct.2018.06.078_b0065) 2006; 20 |
References_xml | – volume: 120 start-page: 230 year: 1994 end-page: 251 ident: b0025 article-title: State-of-the-art report on seismic performance of unreinforced masonry buildings publication-title: J Struct Eng – year: 2006 ident: b0085 article-title: Explosion-resistant buildings: design, analysis, and case studies – volume: 24 start-page: 506 year: 2012 end-page: 515 ident: b0150 article-title: Simulation of unreinforced masonry beams retrofitted with engineered cementitious composites in flexure publication-title: J Mater Civ Eng – volume: 118 start-page: 1884 year: 1992 end-page: 1902 ident: b0095 article-title: Effectiveness of seismic strengthening techniques for masonry buildings publication-title: J Struct Eng – volume: 131 start-page: 1194 year: 2005 end-page: 1205 ident: b0160 article-title: Failure mechanisms of polymer-reinforced concrete masonry walls subjected to blast publication-title: J Struct Eng – volume: 48 start-page: 185 year: 2015 end-page: 204 ident: b0145 article-title: Strengthening masonry infill panels using engineered cementitious composites publication-title: Mater Struct – volume: 12 start-page: 825 year: 1996 end-page: 844 ident: b0005 article-title: Out-of-plane strength of unreinforced masonry infill panels publication-title: Earthq Spectra – volume: 25 start-page: 53 year: 2007 end-page: 68 ident: b0030 article-title: Out-of-plane flexural strength of unreinforced clay brick masonry walls publication-title: TMS J – reference: Tiedeman H. A statistical evaluation of the importance of non-structural damage to buildings. In: Proc 7th world conf. on earthquake engrg; 1980. p. 617–24. – reference: Carney P, Myers JJ. Shear and flexural strengthening of masonry infill walls with FRP for extreme out-of-plane loading. In: Proceedings of the architectural engineering institute 2003 annual meeting; 2003. – volume: 56 start-page: 1905 year: 2013 end-page: 1921 ident: b0020 article-title: Mathematical micromodeling of infilled frames: state of the art publication-title: Eng Struct – volume: 158 start-page: 921 year: 2018 end-page: 937 ident: b0170 article-title: Behaviour of engineered cementitious composites and hybrid engineered cementitious composites at high temperatures publication-title: Constr Build Mater – reference: Murty C, Jain SK. Beneficial influence of masonry infill walls on seismic performance of RC frame buildings. In: Proceedings of the 12th world conference on earthquake engineering, Auckland, New Zealand; 2000. – volume: 201 start-page: 58 year: 2018 end-page: 79 ident: b0230 article-title: Modelling the out-of-plane behaviour of masonry walls retrofitted with engineered cementitious composites publication-title: Comput Struct – volume: 135 start-page: 1522 year: 2009 end-page: 1532 ident: b0035 article-title: Modeling of out-of-plane behavior of masonry walls publication-title: J Struct Eng – volume: 19 start-page: 855 year: 2007 end-page: 863 ident: b0185 article-title: Performance of hybrid-fiber ECC blast/shelter panels subjected to drop weight impact publication-title: J Mater Civ Eng – year: 1998 ident: b0115 article-title: Seismic retrofit of low-rise masonry and concrete walls by steel strips – volume: 18 start-page: 95 year: 2004 end-page: 99 ident: b0130 article-title: Retrofitting existing masonry buildings to resist explosions publication-title: J Perform Constr Facilities – volume: 20 start-page: 209 year: 2006 end-page: 219 ident: b0065 article-title: Behavior of masonry in the Northridge (US) and Tecomán-Colima (Mexico) earthquakes: lessons learned, and changes in US design provisions publication-title: Constr Build Mater – reference: BS EN 197-1. Cement. Composition, specification and conformity criteria for common cements; 2011. – reference: Bazzurro P, Alexander D, Clemente P, Comerio M, Sortis A, Filippou F, et al. The Mw = 6.3 Abruzzo, Italy, earthquake of April 6, 2009. Learning from earthquakes. EERI special earthquake report; 2009. – reference: Kyriakides M, Billington S. Seismic retrofit of masonry-infilled non-ductile reinforced concrete frames using sprayable ductile fiber-reinforced cementitious composites. In: 14 WCEE; 2008. – volume: 42 start-page: 302 year: 2009 ident: b0045 article-title: The Mw 6.3 Abruzzo (Italy) earthquake of April 6th 2009: on site observations publication-title: Bull N Z Soc Earthq Eng – volume: 90 start-page: 122 year: 2016 end-page: 131 ident: b0075 article-title: Experimental studies on the local damage and fragments of unreinforced masonry walls under close-in explosions publication-title: Int J Impact Eng – volume: 36 start-page: 801 year: 2007 end-page: 821 ident: b0040 article-title: Cyclic testing of unreinforced masonry walls in two-way bending publication-title: Earthq Eng Struct Dynam – volume: 64 start-page: 007 year: 2014 ident: b0080 article-title: Experimental study of masonry wall exposed to blast loading publication-title: Materiales de Construcción – reference: Yang E, Li VC. Rate dependence in engineered cementitious composites. In: International RILEM workshop on high performance fiber reinforced cementitious composites in structural applications. RILEM Publications SARL; 2006. – volume: 9 start-page: 51 year: 2011 end-page: 62 ident: b0180 article-title: Behaviour of strain-hardening cement-based composites under high strain rates publication-title: J Adv Concr Technol – reference: Silva PF, Myers JJ, Belarbi A, El-Domiaty K, Tumialan JG, Nanni A. Performance of infill URM Wall systems retrofitted with FRP rods and laminates to resist in-plane and out-of-plane loads. In: Proceedings of the 9th international conference on structural faults and repairs, London, UK, 2001, July, p. 4–6. – reference: Hak S, Morandi P, Magenes G. Out-of-plane experimental response of strong masonry infills. In: 2nd European conference on earthquake engineering and seismology; 2014. – reference: Track modelling analysis and modelling tool. 4.87-2014. – volume: 150 start-page: 786 year: 2017 end-page: 802 ident: b0235 article-title: Study of flexural response of engineered cementitious composite faced masonry structures publication-title: Eng Struct – volume: 1 start-page: 215 year: 2003 end-page: 230 ident: b0165 article-title: On engineered cementitious composites (ECC) publication-title: J Adv Concr Technol – volume: 37 start-page: 664 year: 2001 end-page: 678 ident: b0220 article-title: Explosions and blast injuries publication-title: Ann Emerg Med – volume: 15 start-page: WCEE year: 2012 ident: b0140 article-title: A comparative study on seismic retrofitting methods for unreinforced masonry publication-title: Brick Walls – volume: 12 start-page: 1999 year: 2014 end-page: 2026 ident: b0060 article-title: The structural role played by masonry infills on RC building performances after the 2011 Lorca, Spain, earthquake publication-title: Bull Earthq Eng – reference: Hutchison D, Yong P, McKenzie G. Laboratory testing of a variety of strengthening solutions for brick masonry wall panels. In: 8th WCEE. San Francisco, USA; 1984. p. 575–82. – volume: 17 start-page: 143 year: 2005 end-page: 152 ident: b0190 article-title: Behavior of hybrid-fiber engineered cementitious composites subjected to dynamic tensile loading and projectile impact publication-title: J Mater Civ Eng – volume: 122 start-page: 228 year: 1996 end-page: 237 ident: b0010 article-title: Experimental evaluation of masonry-infilled RC frames publication-title: J Struct Eng – reference: Sheppard P, Tercelj J. The effect of repair and strengthening methods for masonry walls. In: 7th world conference on earthquake engineering; 1980. – volume: 38 start-page: 559 year: 2007 end-page: 574 ident: b0135 article-title: Out-of-plane flexural behavior of unreinforced red brick walls strengthened with FRP composites publication-title: Compos Part B: Eng – volume: 140 start-page: 108 year: 2018 end-page: 122 ident: b0225 article-title: Enhancing the out-of-plane performance of masonry walls using engineered cementitious composite publication-title: Compos B Eng – volume: 32 start-page: 2432 year: 2010 end-page: 2439 ident: b0250 article-title: Engineered cementitious composites for effective strengthening of unreinforced masonry walls publication-title: Eng Struct – reference: Pourfalah S. Out-of-plane retrofitting of masonry walls using engineered cementitious composites. PhD. EGIS, Heriot-Watt University; 2017. – volume: 38 start-page: 1010 year: 2013 end-page: 1021 ident: b0245 article-title: Strain hardening fibre reinforced cement composites for the flexural strengthening of masonry elements of ancient structures publication-title: Constr Build Mater – volume: 18 start-page: 141 year: 2006 end-page: 145 ident: b0215 article-title: Blast-related traumatic brain injury: what is known? publication-title: J Neuropsy Clin Neurosci – reference: Abrams D, Lynch J. Flexural behavior of retrofitted masonry piers. In: KEERC-MAE joint seminar on risk mitigation for regions of moderate seismicity; 2001. – reference: BS EN 771-1. Specification for masonry units. Clay masonry units; 2011. – volume: 43 start-page: 2224 year: 1972 end-page: 2226 ident: b0210 article-title: Approximate blast wave theory and experimental data for shock trajectories in linear explosive-driven shock tubes publication-title: J Appl Phys – reference: ElGawady M, Lestuzzi P, Badoux M. A review of conventional seismic retrofitting techniques for URM. In: 13th international brick and block masonry conference, 2004. Citeseer. – volume: 9 start-page: 51 issue: 1 year: 2011 ident: 10.1016/j.engstruct.2018.06.078_b0180 article-title: Behaviour of strain-hardening cement-based composites under high strain rates publication-title: J Adv Concr Technol doi: 10.3151/jact.9.51 – ident: 10.1016/j.engstruct.2018.06.078_b0120 doi: 10.1061/40699(2003)45 – ident: 10.1016/j.engstruct.2018.06.078_b0125 – ident: 10.1016/j.engstruct.2018.06.078_b0205 – ident: 10.1016/j.engstruct.2018.06.078_b0070 – volume: 118 start-page: 1884 issue: 7 year: 1992 ident: 10.1016/j.engstruct.2018.06.078_b0095 article-title: Effectiveness of seismic strengthening techniques for masonry buildings publication-title: J Struct Eng doi: 10.1061/(ASCE)0733-9445(1992)118:7(1884) – volume: 48 start-page: 185 issue: 1–2 year: 2015 ident: 10.1016/j.engstruct.2018.06.078_b0145 article-title: Strengthening masonry infill panels using engineered cementitious composites publication-title: Mater Struct doi: 10.1617/s11527-013-0176-4 – volume: 1 start-page: 215 issue: 3 year: 2003 ident: 10.1016/j.engstruct.2018.06.078_b0165 article-title: On engineered cementitious composites (ECC) publication-title: J Adv Concr Technol doi: 10.3151/jact.1.215 – volume: 43 start-page: 2224 year: 1972 ident: 10.1016/j.engstruct.2018.06.078_b0210 article-title: Approximate blast wave theory and experimental data for shock trajectories in linear explosive-driven shock tubes publication-title: J Appl Phys doi: 10.1063/1.1661479 – volume: 131 start-page: 1194 issue: 8 year: 2005 ident: 10.1016/j.engstruct.2018.06.078_b0160 article-title: Failure mechanisms of polymer-reinforced concrete masonry walls subjected to blast publication-title: J Struct Eng doi: 10.1061/(ASCE)0733-9445(2005)131:8(1194) – volume: 122 start-page: 228 year: 1996 ident: 10.1016/j.engstruct.2018.06.078_b0010 article-title: Experimental evaluation of masonry-infilled RC frames publication-title: J Struct Eng doi: 10.1061/(ASCE)0733-9445(1996)122:3(228) – ident: 10.1016/j.engstruct.2018.06.078_b0105 – ident: 10.1016/j.engstruct.2018.06.078_b0155 doi: 10.1016/j.compositesb.2017.12.030 – ident: 10.1016/j.engstruct.2018.06.078_b0195 – volume: 56 start-page: 1905 year: 2013 ident: 10.1016/j.engstruct.2018.06.078_b0020 article-title: Mathematical micromodeling of infilled frames: state of the art publication-title: Eng Struct doi: 10.1016/j.engstruct.2013.08.010 – volume: 32 start-page: 2432 year: 2010 ident: 10.1016/j.engstruct.2018.06.078_b0250 article-title: Engineered cementitious composites for effective strengthening of unreinforced masonry walls publication-title: Eng Struct doi: 10.1016/j.engstruct.2010.04.017 – ident: 10.1016/j.engstruct.2018.06.078_b0015 – year: 1998 ident: 10.1016/j.engstruct.2018.06.078_b0115 – volume: 25 start-page: 53 issue: 1 year: 2007 ident: 10.1016/j.engstruct.2018.06.078_b0030 article-title: Out-of-plane flexural strength of unreinforced clay brick masonry walls publication-title: TMS J – ident: 10.1016/j.engstruct.2018.06.078_b0050 – volume: 150 start-page: 786 year: 2017 ident: 10.1016/j.engstruct.2018.06.078_b0235 article-title: Study of flexural response of engineered cementitious composite faced masonry structures publication-title: Eng Struct doi: 10.1016/j.engstruct.2017.07.089 – ident: 10.1016/j.engstruct.2018.06.078_b0110 – volume: 17 start-page: 143 year: 2005 ident: 10.1016/j.engstruct.2018.06.078_b0190 article-title: Behavior of hybrid-fiber engineered cementitious composites subjected to dynamic tensile loading and projectile impact publication-title: J Mater Civ Eng doi: 10.1061/(ASCE)0899-1561(2005)17:2(143) – volume: 42 start-page: 302 year: 2009 ident: 10.1016/j.engstruct.2018.06.078_b0045 article-title: The Mw 6.3 Abruzzo (Italy) earthquake of April 6th 2009: on site observations publication-title: Bull N Z Soc Earthq Eng – volume: 140 start-page: 108 year: 2018 ident: 10.1016/j.engstruct.2018.06.078_b0225 article-title: Enhancing the out-of-plane performance of masonry walls using engineered cementitious composite publication-title: Compos B Eng doi: 10.1016/j.compositesb.2017.12.030 – ident: 10.1016/j.engstruct.2018.06.078_b0100 – volume: 19 start-page: 855 issue: 10 year: 2007 ident: 10.1016/j.engstruct.2018.06.078_b0185 article-title: Performance of hybrid-fiber ECC blast/shelter panels subjected to drop weight impact publication-title: J Mater Civ Eng doi: 10.1061/(ASCE)0899-1561(2007)19:10(855) – volume: 158 start-page: 921 year: 2018 ident: 10.1016/j.engstruct.2018.06.078_b0170 article-title: Behaviour of engineered cementitious composites and hybrid engineered cementitious composites at high temperatures publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2017.10.077 – year: 2006 ident: 10.1016/j.engstruct.2018.06.078_b0085 – volume: 120 start-page: 230 issue: 1 year: 1994 ident: 10.1016/j.engstruct.2018.06.078_b0025 article-title: State-of-the-art report on seismic performance of unreinforced masonry buildings publication-title: J Struct Eng doi: 10.1061/(ASCE)0733-9445(1994)120:1(230) – volume: 24 start-page: 506 issue: 5 year: 2012 ident: 10.1016/j.engstruct.2018.06.078_b0150 article-title: Simulation of unreinforced masonry beams retrofitted with engineered cementitious composites in flexure publication-title: J Mater Civ Eng doi: 10.1061/(ASCE)MT.1943-5533.0000412 – volume: 20 start-page: 209 issue: 4 year: 2006 ident: 10.1016/j.engstruct.2018.06.078_b0065 article-title: Behavior of masonry in the Northridge (US) and Tecomán-Colima (Mexico) earthquakes: lessons learned, and changes in US design provisions publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2005.08.024 – volume: 15 start-page: WCEE year: 2012 ident: 10.1016/j.engstruct.2018.06.078_b0140 article-title: A comparative study on seismic retrofitting methods for unreinforced masonry publication-title: Brick Walls – volume: 18 start-page: 141 year: 2006 ident: 10.1016/j.engstruct.2018.06.078_b0215 article-title: Blast-related traumatic brain injury: what is known? publication-title: J Neuropsy Clin Neurosci doi: 10.1176/jnp.2006.18.2.141 – volume: 201 start-page: 58 year: 2018 ident: 10.1016/j.engstruct.2018.06.078_b0230 article-title: Modelling the out-of-plane behaviour of masonry walls retrofitted with engineered cementitious composites publication-title: Comput Struct doi: 10.1016/j.compstruc.2018.02.004 – volume: 38 start-page: 1010 year: 2013 ident: 10.1016/j.engstruct.2018.06.078_b0245 article-title: Strain hardening fibre reinforced cement composites for the flexural strengthening of masonry elements of ancient structures publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2012.09.065 – volume: 135 start-page: 1522 year: 2009 ident: 10.1016/j.engstruct.2018.06.078_b0035 article-title: Modeling of out-of-plane behavior of masonry walls publication-title: J Struct Eng doi: 10.1061/(ASCE)0733-9445(2009)135:12(1522) – volume: 64 start-page: 007 issue: 313 year: 2014 ident: 10.1016/j.engstruct.2018.06.078_b0080 article-title: Experimental study of masonry wall exposed to blast loading publication-title: Materiales de Construcción doi: 10.3989/mc.2014.01513 – ident: 10.1016/j.engstruct.2018.06.078_b0240 doi: 10.2749/222137908796291868 – volume: 90 start-page: 122 year: 2016 ident: 10.1016/j.engstruct.2018.06.078_b0075 article-title: Experimental studies on the local damage and fragments of unreinforced masonry walls under close-in explosions publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2015.12.002 – volume: 37 start-page: 664 year: 2001 ident: 10.1016/j.engstruct.2018.06.078_b0220 article-title: Explosions and blast injuries publication-title: Ann Emerg Med doi: 10.1067/mem.2001.114906 – volume: 36 start-page: 801 year: 2007 ident: 10.1016/j.engstruct.2018.06.078_b0040 article-title: Cyclic testing of unreinforced masonry walls in two-way bending publication-title: Earthq Eng Struct Dynam doi: 10.1002/eqe.654 – volume: 18 start-page: 95 issue: 2 year: 2004 ident: 10.1016/j.engstruct.2018.06.078_b0130 article-title: Retrofitting existing masonry buildings to resist explosions publication-title: J Perform Constr Facilities doi: 10.1061/(ASCE)0887-3828(2004)18:2(95) – volume: 38 start-page: 559 issue: 5 year: 2007 ident: 10.1016/j.engstruct.2018.06.078_b0135 article-title: Out-of-plane flexural behavior of unreinforced red brick walls strengthened with FRP composites publication-title: Compos Part B: Eng doi: 10.1016/j.compositesb.2006.07.019 – ident: 10.1016/j.engstruct.2018.06.078_b0055 – ident: 10.1016/j.engstruct.2018.06.078_b0090 – ident: 10.1016/j.engstruct.2018.06.078_b0200 – volume: 12 start-page: 1999 issue: 5 year: 2014 ident: 10.1016/j.engstruct.2018.06.078_b0060 article-title: The structural role played by masonry infills on RC building performances after the 2011 Lorca, Spain, earthquake publication-title: Bull Earthq Eng doi: 10.1007/s10518-013-9500-1 – ident: 10.1016/j.engstruct.2018.06.078_b0175 – volume: 12 start-page: 825 year: 1996 ident: 10.1016/j.engstruct.2018.06.078_b0005 article-title: Out-of-plane strength of unreinforced masonry infill panels publication-title: Earthq Spectra doi: 10.1193/1.1585912 |
SSID | ssj0002880 |
Score | 2.3959022 |
Snippet | •Investigate the behaviour of ECC-retrofitted masonry specimens subjected to impact loads.•Confirmation of effectiveness of using the ECC layer(s) for... The work described herein sets out to investigate experimentally (via drop-weight testing) the out-of-plane behaviour of beam-like masonry specimens under... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1002 |
SubjectTerms | Bearing strength Bend tests Bending Carrying capacity Compression Drop tests Drop-weight testing Dynamic response Engineered cementitious composite Equivalence Failure mode Impact loading Impact loads Load carrying capacity Loading rate Masonry Mortars (material) Out-of-plane behaviour Retrofitting Strain rate Weight |
Title | Out-of-plane behaviour of masonry specimens strengthened with ECC under impact loading |
URI | https://dx.doi.org/10.1016/j.engstruct.2018.06.078 https://www.proquest.com/docview/2114201476 |
Volume | 173 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqWGBAPEWhIA-sps7DjsNWRaACAgYoYrPi2EagklZ9DCz8dnyJUygSYmBM5LOi8_nuFH3fdwidJAnXttCGiFTkJFaKElFwTjSnRgnXgvBqaN_NLe8P4qsn9tRCWcOFAVilz_11Tq-ytX_T9d7sjl9euvcVRDGEiSWRK3QpEH7jOIEoP_34gnmEopqeBosJrF7CeJnyuZZpBYyXF_IUv1WoH7m6KkAXm2jDd464V3_cFmqZchutf9MT3EGPd_MZGVkyBgQr9gz8-QSPLH7LXWM9ecfArARB_ykGlkj5DOIHRmP4HYvPswwDp2yCa-4kHo4qhP0uGlycP2R94gcnkCKKoxnhllpljDAxY6FgiaaBTVTANdBog5TZAHS3ilhZLlheaEY1DwqWKhpoakUe7aGVclSafYS5cLde84Jb7XKqjnKqdKBibUwYGpMmbcQbZ8nCq4rDcIuhbOBjr3LhZQlelgCkS0Qb0YXhuBbW-NvkrDkNuRQj0qX_v407zflJf02nMgQmsQuNhB_8Z-9DtAZPUNIC1kErboE5cr3KTB1XwXiMVnuX1_3bT3TY64g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGYAB8RRvPLBadR52HDZUgcqrDDzEZsWxjUCQVqUM_Ht8iVMBEmJgTXxWdD7fnaLv-w7gMMuEcaWxVOayoKnWjMpSCGoEs1r6FkTUQ_uuBqJ_l54_8IcZ6LVcGIRVhtzf5PQ6W4cn3eDN7ujpqXtTQxRjnFiS-EKXy1mYQ3Uq3oG547OL_mCakGNZD1DD9RQNvsG8bPXYKLUizCtoecrfitSPdF3XoNNlWArNIzluvm8FZmy1CotfJAXX4P76fUKHjo4QxEoCCf99TIaOvBa-tx5_ECRXoqb_G0GiSPWI-gfWEPwjS056PYK0sjFp6JPkZViD7Nfh7vTkttenYXYCLZM0mVDhmNPWSptyHkueGRa5TEfCIJM2yrmLUHqrTLUTkhel4cyIqOS5ZpFhThbJBnSqYWU3gQjpL74RpXDGp1WTFEybSKfG2ji2Ns-2QLTOUmUQFsf5Fi-qRZA9q6mXFXpZIZYuk1vApoajRlvjb5Oj9jTUtzBRvgL8bbzbnp8KN_VNxUgm9qGRie3_7H0A8_3bq0t1eTa42IEFfIMVLuK70PGL7Z5vXSZ6P4TmJ4Ua7jk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Out-of-plane+behaviour+of+masonry+specimens+strengthened+with+ECC+under+impact+loading&rft.jtitle=Engineering+structures&rft.au=Pourfalah%2C+Saeed&rft.au=Cotsovos%2C+Demetrios+M.&rft.au=Suryanto%2C+Benny&rft.au=Moatamedi%2C+Mojtaba&rft.date=2018-10-15&rft.issn=0141-0296&rft.volume=173&rft.spage=1002&rft.epage=1018&rft_id=info:doi/10.1016%2Fj.engstruct.2018.06.078&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engstruct_2018_06_078 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon |