Statistical laws of a one-dimensional model of turbulent flows subject to an external random force

This paper provides mathematical and numerical analysis of a one-dimensional model of turbulent flow generating the anomalous cascade of the inviscid conserved quantity. The model is based on the generalized Constantin–Lax–Majda–DeGregorio (gCLMG) equation with viscous dissipation under a large-scal...

Full description

Saved in:
Bibliographic Details
Published inNonlinearity Vol. 36; no. 8; pp. 4283 - 4302
Main Authors Tsuji, Yuta, Sakajo, Takashi
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper provides mathematical and numerical analysis of a one-dimensional model of turbulent flow generating the anomalous cascade of the inviscid conserved quantity. The model is based on the generalized Constantin–Lax–Majda–DeGregorio (gCLMG) equation with viscous dissipation under a large-scale forcing. Suppose that the forcing function and the initial data are random variables defined on a certain probability space. Then, the equation is regarded as a random partial differential equation. We prove the global existence of a unique solution to the gCLMG equation, from which a stochastic process is defined. In addition, by approximating the solutions numerically by Galerkin approximation of random variables with generalized polynomial chaos, we confirm the existence of a steady distribution. We find that the steady distribution reproduces qualitatively the same cascades of the energy and the enstrophy spectra as those of a turbulent flow generated by randomly moving pulse (Matsumoto and Sakajo 2016 Phys. Rev. E 93 053101). We also investigate the structure functions, showing intermittency.
AbstractList This paper provides mathematical and numerical analysis of a one-dimensional model of turbulent flow generating the anomalous cascade of the inviscid conserved quantity. The model is based on the generalized Constantin–Lax–Majda–DeGregorio (gCLMG) equation with viscous dissipation under a large-scale forcing. Suppose that the forcing function and the initial data are random variables defined on a certain probability space. Then, the equation is regarded as a random partial differential equation. We prove the global existence of a unique solution to the gCLMG equation, from which a stochastic process is defined. In addition, by approximating the solutions numerically by Galerkin approximation of random variables with generalized polynomial chaos, we confirm the existence of a steady distribution. We find that the steady distribution reproduces qualitatively the same cascades of the energy and the enstrophy spectra as those of a turbulent flow generated by randomly moving pulse (Matsumoto and Sakajo 2016 Phys. Rev. E 93 053101). We also investigate the structure functions, showing intermittency.
Author Sakajo, Takashi
Tsuji, Yuta
Author_xml – sequence: 1
  givenname: Yuta
  surname: Tsuji
  fullname: Tsuji, Yuta
  organization: Kyoto University Department of Mathematics, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
– sequence: 2
  givenname: Takashi
  orcidid: 0000-0002-4290-0942
  surname: Sakajo
  fullname: Sakajo, Takashi
  organization: Kyoto University Department of Mathematics, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
BookMark eNp1kE9LxDAUxIOs4O7q3WM-gNW8pmnSoyz-gwUP6jm8pAl0aZslSVG_vS0r3jw9mPnN8JgNWY1hdIRcA7sFptQd8BqKWlTVHdrWIz8j6z9pRdasEVBICeKCbFI6MAagSr4m5i1j7lLuLPa0x89Eg6dI5-6i7QY3pi6MszOE1vWLladopt6Nmfo-zHSazMHZTHOgOFL3lV1c-IhjGwbqQ7Tukpx77JO7-r1b8vH48L57LvavTy-7-31hecVzUSM2yKAVUAKDWbNOycZKZmxjBONlhZU0pVRSIZS1aVou7MzxWqjGoOdbwk69NoaUovP6GLsB47cGppeN9DKIXgbRp43myM0p0oWjPoRp-T39j_8AqrVrrA
CODEN NONLE5
Cites_doi 10.1002/cpa.3160380605
10.1007/BF01334750
10.1017/S0022112062000518
10.1137/S1064827501387826
10.1088/0951-7715/21/10/013
10.1098/rspa.1991.0075
10.1088/0951-7715/7/6/001
10.1002/(SICI)1099-1476(199610)19:151233::AID-MMA8283.0.CO;2-W
10.1063/1.1762301
10.1063/1.868050
10.1063/1.1691968
10.1088/1361-6544/aba93e
10.1103/PhysRevE.93.053101
ContentType Journal Article
Copyright 2023 IOP Publishing Ltd & London Mathematical Society
Copyright_xml – notice: 2023 IOP Publishing Ltd & London Mathematical Society
DBID AAYXX
CITATION
DOI 10.1088/1361-6544/acdfa3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Physics
EISSN 1361-6544
EndPage 4302
ExternalDocumentID 10_1088_1361_6544_acdfa3
nonacdfa3
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: Kakanhi(B) #23H00086; Kakenhi(A) #19H00641
  funderid: http://dx.doi.org/10.13039/501100001691
GroupedDBID -~X
.DC
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
YQT
ZMT
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c343t-6aa9a01d512101c34ce879c70bc9b50324a47b27878a126b9d35c1c336589baf3
IEDL.DBID IOP
ISSN 0951-7715
IngestDate Tue Jul 01 02:47:35 EDT 2025
Wed Aug 21 03:34:21 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-6aa9a01d512101c34ce879c70bc9b50324a47b27878a126b9d35c1c336589baf3
Notes NON-106990.R1
ORCID 0000-0002-4290-0942
OpenAccessLink http://hdl.handle.net/2433/284721
PageCount 20
ParticipantIDs crossref_primary_10_1088_1361_6544_acdfa3
iop_journals_10_1088_1361_6544_acdfa3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Nonlinearity
PublicationTitleAbbrev Non
PublicationTitleAlternate Nonlinearity
PublicationYear 2023
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References De Gregorio (nonacdfa3bib7) 1990; 59
Constantin (nonacdfa3bib4) 1994; 7
Kolmogorov (nonacdfa3bib10) 1941; 30
Constantin (nonacdfa3bib3) 1985; 38
Da Prato (nonacdfa3bib17) 1992
Matsumoto (nonacdfa3bib15) 2023
Okamoto (nonacdfa3bib16) 2008; 21
Xiu (nonacdfa3bib20) 2002; 24
Xiu (nonacdfa3bib19) 2009; 5
Constantin (nonacdfa3bib5) 1994; 6
Sullivan (nonacdfa3bib18) 2015
Leith (nonacdfa3bib13) 1968; 11
De Gregorio (nonacdfa3bib8) 1996; 19
Matsumoto (nonacdfa3bib14) 2016; 93
Komogorov (nonacdfa3bib11) 1962; 13
Boritchev (nonacdfa3bib2) 2021
Kraichnan (nonacdfa3bib12) 1967; 10
Frisch (nonacdfa3bib6) 1996
Bogachev (nonacdfa3bib1) 2007
Jeong (nonacdfa3bib9) 2020; 33
References_xml – volume: 38
  start-page: 715
  year: 1985
  ident: nonacdfa3bib3
  article-title: A simple one-dimensional model for the three-dimensional vorticity equation
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160380605
– volume: 59
  start-page: 1251
  year: 1990
  ident: nonacdfa3bib7
  article-title: On a one-dimensional model for the three-dimensional vorticity equation
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01334750
– year: 2007
  ident: nonacdfa3bib1
– volume: 13
  start-page: 82
  year: 1962
  ident: nonacdfa3bib11
  article-title: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112062000518
– year: 2015
  ident: nonacdfa3bib18
– year: 2023
  ident: nonacdfa3bib15
  article-title: Turbulence, cascade and singularity in a generalization of the Constantin–Lax–Majda equation
– volume: 24
  start-page: 619
  year: 2002
  ident: nonacdfa3bib20
  article-title: The Wiener-Askey polynomial chaos for stochastic differential equations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827501387826
– volume: 21
  start-page: 2447
  year: 2008
  ident: nonacdfa3bib16
  article-title: On a generalization of the Constantin–Lax–Majda equation
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/21/10/013
– volume: 30
  start-page: 301
  year: 1941
  ident: nonacdfa3bib10
  article-title: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers
  publication-title: Dokl. Akad. Nauk SSSR
  doi: 10.1098/rspa.1991.0075
– volume: 7
  start-page: 1495
  year: 1994
  ident: nonacdfa3bib4
  article-title: Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/7/6/001
– year: 1992
  ident: nonacdfa3bib17
– volume: 19
  start-page: 1233
  year: 1996
  ident: nonacdfa3bib8
  article-title: A partial differential equation arising in a 1D model for the 3D vorticity equation
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/(SICI)1099-1476(199610)19:151233::AID-MMA8283.0.CO;2-W
– volume: 10
  start-page: 1417
  year: 1967
  ident: nonacdfa3bib12
  article-title: Inertial ranges in two-dimensional turbulence
  publication-title: Phys. Fluids
  doi: 10.1063/1.1762301
– volume: 5
  start-page: 242
  year: 2009
  ident: nonacdfa3bib19
  article-title: Fast numerical methods for stochastic computations: a review
  publication-title: Commun. Comput. Phys.
– year: 2021
  ident: nonacdfa3bib2
– volume: 6
  start-page: 9
  year: 1994
  ident: nonacdfa3bib5
  article-title: Singular front formation in a model for quasigeostrophic flow
  publication-title: Phys. Fluids
  doi: 10.1063/1.868050
– volume: 11
  start-page: 671
  year: 1968
  ident: nonacdfa3bib13
  article-title: Diffusion approximation for two-dimensional turbulence
  publication-title: Phys. Fluids
  doi: 10.1063/1.1691968
– year: 1996
  ident: nonacdfa3bib6
– volume: 33
  start-page: 6662
  year: 2020
  ident: nonacdfa3bib9
  article-title: On stationary solutions and inviscid limits for generalized Constantin–Lax–Majda equation with O(1) forcing
  publication-title: Nonlinearity
  doi: 10.1088/1361-6544/aba93e
– volume: 93
  year: 2016
  ident: nonacdfa3bib14
  article-title: One-dimensional hydrodynamic model generating a turbulent cascade
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.93.053101
SSID ssj0011823
Score 2.3541427
Snippet This paper provides mathematical and numerical analysis of a one-dimensional model of turbulent flow generating the anomalous cascade of the inviscid conserved...
SourceID crossref
iop
SourceType Index Database
Publisher
StartPage 4283
SubjectTerms 35R60
37L55
5C30
76F20
76M35
energy cascade
hydrodynamic equation
inertial range
random partial differential equations
structure function
the generalized polynomial chaos
turbulence
Title Statistical laws of a one-dimensional model of turbulent flows subject to an external random force
URI https://iopscience.iop.org/article/10.1088/1361-6544/acdfa3
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH9sE0EPfkzF-UUOevDQrVmTNsWTiGMIUw8OdhBKkqYX5zpsi-Bf70vbjSkK4q0fjzS8NO_3I3n5PYBzjHCCGZzfMuChw4RKHMQd7VDfDRNBaazLZMzRvT8cs7sJnzTgankWJp3Xob-Ll5VQcOXCOiFO9KjnU8fnjPWkjhPpNWHNEwic9vTew-NyCwGJ87KOfBBQXu9R_tTCF0xq4ndXIGawDc-LzlWZJS_dIldd_fFNt_Gfvd-BrZp6kuvKdBcaZtaGzRVBQrwbLVVcszasl-mhOtsDZTlpKemMDUzle0bShEiSzowT2_IAlbQHKcvq2FeIY6qweEaSaYrWWaHseg_JUyJnZKE8TRAn4_SVIG_WZh_Gg9unm6FTV2dwtMe83PGlDKVLY24lyCg-00YEoQ5cpUPFXSRqkgWqjwFBSNr3VRh7XKOdh5wnVDLxDqA1w34eAsEYi3YIopwFzDUJjqbhlmrFbmjivuzA5WJ8onklwhGVm-dCRNafkfVnVPmzAxfo-qieidmvdkd_tDuGDVthvsr5O4FW_laYU-QhuTor_7dP7B3WGw
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xCAQHdsSOD3DgkDZu7MQ5IqBipwcq9Ra85QI0FUmFxNczTtKqIJCQuGUZOc4knvdkj98AHGGEE8zi-JYRjz0mVOoh7miPhn6cCkqNLpMx7-7Dyy677vFeXee03AuTDerQ38DDSii4cmGdECeaNAipF3LGmlKbVAbNgUmnYZYHiJ1uB99DZ7yMgOR5XEs-iiiv1yl_auULLk3jsydgpr0MT6MOVtklz41hoRr645t24z_eYAWWagpKTivzVZiy_TVYnBAmxLO7sZprvgZzZZqoztdBOW5aSjtjAy_yPSdZSiTJ-tYzrkxAJfFByvI67hbimRo6XCPpS4bW-VC5eR9SZET2yUiBmiBemuyVIH_WdgO67YvHs0uvrtLg6YAFhRdKGUufGu6kyChe01ZEsY58pWPFfSRskkWqhYFBSNoKVWwCrtEuQO4TK5kGmzDTx35uAcFYi3YIppxFzLepCEPLHeUyfmxNS27DyegbJYNKjCMpF9GFSJxPE-fTpPLpNhyj-5N6ROa_2u380e4Q5jvn7eT26v5mFxZc0fkqDXAPZoq3od1HalKog_L3-wQk99t_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+laws+of+a+one-dimensional+model+of+turbulent+flows+subject+to+an+external+random+force&rft.jtitle=Nonlinearity&rft.au=Tsuji%2C+Yuta&rft.au=Sakajo%2C+Takashi&rft.date=2023-08-01&rft.issn=0951-7715&rft.eissn=1361-6544&rft.volume=36&rft.issue=8&rft.spage=4283&rft.epage=4302&rft_id=info:doi/10.1088%2F1361-6544%2Facdfa3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6544_acdfa3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-7715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-7715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-7715&client=summon