Statistical laws of a one-dimensional model of turbulent flows subject to an external random force
This paper provides mathematical and numerical analysis of a one-dimensional model of turbulent flow generating the anomalous cascade of the inviscid conserved quantity. The model is based on the generalized Constantin–Lax–Majda–DeGregorio (gCLMG) equation with viscous dissipation under a large-scal...
Saved in:
Published in | Nonlinearity Vol. 36; no. 8; pp. 4283 - 4302 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper provides mathematical and numerical analysis of a one-dimensional model of turbulent flow generating the anomalous cascade of the inviscid conserved quantity. The model is based on the generalized Constantin–Lax–Majda–DeGregorio (gCLMG) equation with viscous dissipation under a large-scale forcing. Suppose that the forcing function and the initial data are random variables defined on a certain probability space. Then, the equation is regarded as a random partial differential equation. We prove the global existence of a unique solution to the gCLMG equation, from which a stochastic process is defined. In addition, by approximating the solutions numerically by Galerkin approximation of random variables with generalized polynomial chaos, we confirm the existence of a steady distribution. We find that the steady distribution reproduces qualitatively the same cascades of the energy and the enstrophy spectra as those of a turbulent flow generated by randomly moving pulse (Matsumoto and Sakajo 2016
Phys. Rev.
E
93
053101). We also investigate the structure functions, showing intermittency. |
---|---|
AbstractList | This paper provides mathematical and numerical analysis of a one-dimensional model of turbulent flow generating the anomalous cascade of the inviscid conserved quantity. The model is based on the generalized Constantin–Lax–Majda–DeGregorio (gCLMG) equation with viscous dissipation under a large-scale forcing. Suppose that the forcing function and the initial data are random variables defined on a certain probability space. Then, the equation is regarded as a random partial differential equation. We prove the global existence of a unique solution to the gCLMG equation, from which a stochastic process is defined. In addition, by approximating the solutions numerically by Galerkin approximation of random variables with generalized polynomial chaos, we confirm the existence of a steady distribution. We find that the steady distribution reproduces qualitatively the same cascades of the energy and the enstrophy spectra as those of a turbulent flow generated by randomly moving pulse (Matsumoto and Sakajo 2016
Phys. Rev.
E
93
053101). We also investigate the structure functions, showing intermittency. |
Author | Sakajo, Takashi Tsuji, Yuta |
Author_xml | – sequence: 1 givenname: Yuta surname: Tsuji fullname: Tsuji, Yuta organization: Kyoto University Department of Mathematics, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan – sequence: 2 givenname: Takashi orcidid: 0000-0002-4290-0942 surname: Sakajo fullname: Sakajo, Takashi organization: Kyoto University Department of Mathematics, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan |
BookMark | eNp1kE9LxDAUxIOs4O7q3WM-gNW8pmnSoyz-gwUP6jm8pAl0aZslSVG_vS0r3jw9mPnN8JgNWY1hdIRcA7sFptQd8BqKWlTVHdrWIz8j6z9pRdasEVBICeKCbFI6MAagSr4m5i1j7lLuLPa0x89Eg6dI5-6i7QY3pi6MszOE1vWLladopt6Nmfo-zHSazMHZTHOgOFL3lV1c-IhjGwbqQ7Tukpx77JO7-r1b8vH48L57LvavTy-7-31hecVzUSM2yKAVUAKDWbNOycZKZmxjBONlhZU0pVRSIZS1aVou7MzxWqjGoOdbwk69NoaUovP6GLsB47cGppeN9DKIXgbRp43myM0p0oWjPoRp-T39j_8AqrVrrA |
CODEN | NONLE5 |
Cites_doi | 10.1002/cpa.3160380605 10.1007/BF01334750 10.1017/S0022112062000518 10.1137/S1064827501387826 10.1088/0951-7715/21/10/013 10.1098/rspa.1991.0075 10.1088/0951-7715/7/6/001 10.1002/(SICI)1099-1476(199610)19:151233::AID-MMA8283.0.CO;2-W 10.1063/1.1762301 10.1063/1.868050 10.1063/1.1691968 10.1088/1361-6544/aba93e 10.1103/PhysRevE.93.053101 |
ContentType | Journal Article |
Copyright | 2023 IOP Publishing Ltd & London Mathematical Society |
Copyright_xml | – notice: 2023 IOP Publishing Ltd & London Mathematical Society |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-6544/acdfa3 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Physics |
EISSN | 1361-6544 |
EndPage | 4302 |
ExternalDocumentID | 10_1088_1361_6544_acdfa3 nonacdfa3 |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: Kakanhi(B) #23H00086; Kakenhi(A) #19H00641 funderid: http://dx.doi.org/10.13039/501100001691 |
GroupedDBID | -~X .DC 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP YQT ZMT AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c343t-6aa9a01d512101c34ce879c70bc9b50324a47b27878a126b9d35c1c336589baf3 |
IEDL.DBID | IOP |
ISSN | 0951-7715 |
IngestDate | Tue Jul 01 02:47:35 EDT 2025 Wed Aug 21 03:34:21 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-6aa9a01d512101c34ce879c70bc9b50324a47b27878a126b9d35c1c336589baf3 |
Notes | NON-106990.R1 |
ORCID | 0000-0002-4290-0942 |
OpenAccessLink | http://hdl.handle.net/2433/284721 |
PageCount | 20 |
ParticipantIDs | crossref_primary_10_1088_1361_6544_acdfa3 iop_journals_10_1088_1361_6544_acdfa3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Nonlinearity |
PublicationTitleAbbrev | Non |
PublicationTitleAlternate | Nonlinearity |
PublicationYear | 2023 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | De Gregorio (nonacdfa3bib7) 1990; 59 Constantin (nonacdfa3bib4) 1994; 7 Kolmogorov (nonacdfa3bib10) 1941; 30 Constantin (nonacdfa3bib3) 1985; 38 Da Prato (nonacdfa3bib17) 1992 Matsumoto (nonacdfa3bib15) 2023 Okamoto (nonacdfa3bib16) 2008; 21 Xiu (nonacdfa3bib20) 2002; 24 Xiu (nonacdfa3bib19) 2009; 5 Constantin (nonacdfa3bib5) 1994; 6 Sullivan (nonacdfa3bib18) 2015 Leith (nonacdfa3bib13) 1968; 11 De Gregorio (nonacdfa3bib8) 1996; 19 Matsumoto (nonacdfa3bib14) 2016; 93 Komogorov (nonacdfa3bib11) 1962; 13 Boritchev (nonacdfa3bib2) 2021 Kraichnan (nonacdfa3bib12) 1967; 10 Frisch (nonacdfa3bib6) 1996 Bogachev (nonacdfa3bib1) 2007 Jeong (nonacdfa3bib9) 2020; 33 |
References_xml | – volume: 38 start-page: 715 year: 1985 ident: nonacdfa3bib3 article-title: A simple one-dimensional model for the three-dimensional vorticity equation publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160380605 – volume: 59 start-page: 1251 year: 1990 ident: nonacdfa3bib7 article-title: On a one-dimensional model for the three-dimensional vorticity equation publication-title: J. Stat. Phys. doi: 10.1007/BF01334750 – year: 2007 ident: nonacdfa3bib1 – volume: 13 start-page: 82 year: 1962 ident: nonacdfa3bib11 article-title: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number publication-title: J. Fluid Mech. doi: 10.1017/S0022112062000518 – year: 2015 ident: nonacdfa3bib18 – year: 2023 ident: nonacdfa3bib15 article-title: Turbulence, cascade and singularity in a generalization of the Constantin–Lax–Majda equation – volume: 24 start-page: 619 year: 2002 ident: nonacdfa3bib20 article-title: The Wiener-Askey polynomial chaos for stochastic differential equations publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827501387826 – volume: 21 start-page: 2447 year: 2008 ident: nonacdfa3bib16 article-title: On a generalization of the Constantin–Lax–Majda equation publication-title: Nonlinearity doi: 10.1088/0951-7715/21/10/013 – volume: 30 start-page: 301 year: 1941 ident: nonacdfa3bib10 article-title: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers publication-title: Dokl. Akad. Nauk SSSR doi: 10.1098/rspa.1991.0075 – volume: 7 start-page: 1495 year: 1994 ident: nonacdfa3bib4 article-title: Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar publication-title: Nonlinearity doi: 10.1088/0951-7715/7/6/001 – year: 1992 ident: nonacdfa3bib17 – volume: 19 start-page: 1233 year: 1996 ident: nonacdfa3bib8 article-title: A partial differential equation arising in a 1D model for the 3D vorticity equation publication-title: Math. Methods Appl. Sci. doi: 10.1002/(SICI)1099-1476(199610)19:151233::AID-MMA8283.0.CO;2-W – volume: 10 start-page: 1417 year: 1967 ident: nonacdfa3bib12 article-title: Inertial ranges in two-dimensional turbulence publication-title: Phys. Fluids doi: 10.1063/1.1762301 – volume: 5 start-page: 242 year: 2009 ident: nonacdfa3bib19 article-title: Fast numerical methods for stochastic computations: a review publication-title: Commun. Comput. Phys. – year: 2021 ident: nonacdfa3bib2 – volume: 6 start-page: 9 year: 1994 ident: nonacdfa3bib5 article-title: Singular front formation in a model for quasigeostrophic flow publication-title: Phys. Fluids doi: 10.1063/1.868050 – volume: 11 start-page: 671 year: 1968 ident: nonacdfa3bib13 article-title: Diffusion approximation for two-dimensional turbulence publication-title: Phys. Fluids doi: 10.1063/1.1691968 – year: 1996 ident: nonacdfa3bib6 – volume: 33 start-page: 6662 year: 2020 ident: nonacdfa3bib9 article-title: On stationary solutions and inviscid limits for generalized Constantin–Lax–Majda equation with O(1) forcing publication-title: Nonlinearity doi: 10.1088/1361-6544/aba93e – volume: 93 year: 2016 ident: nonacdfa3bib14 article-title: One-dimensional hydrodynamic model generating a turbulent cascade publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.93.053101 |
SSID | ssj0011823 |
Score | 2.3541427 |
Snippet | This paper provides mathematical and numerical analysis of a one-dimensional model of turbulent flow generating the anomalous cascade of the inviscid conserved... |
SourceID | crossref iop |
SourceType | Index Database Publisher |
StartPage | 4283 |
SubjectTerms | 35R60 37L55 5C30 76F20 76M35 energy cascade hydrodynamic equation inertial range random partial differential equations structure function the generalized polynomial chaos turbulence |
Title | Statistical laws of a one-dimensional model of turbulent flows subject to an external random force |
URI | https://iopscience.iop.org/article/10.1088/1361-6544/acdfa3 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH9sE0EPfkzF-UUOevDQrVmTNsWTiGMIUw8OdhBKkqYX5zpsi-Bf70vbjSkK4q0fjzS8NO_3I3n5PYBzjHCCGZzfMuChw4RKHMQd7VDfDRNBaazLZMzRvT8cs7sJnzTgankWJp3Xob-Ll5VQcOXCOiFO9KjnU8fnjPWkjhPpNWHNEwic9vTew-NyCwGJ87KOfBBQXu9R_tTCF0xq4ndXIGawDc-LzlWZJS_dIldd_fFNt_Gfvd-BrZp6kuvKdBcaZtaGzRVBQrwbLVVcszasl-mhOtsDZTlpKemMDUzle0bShEiSzowT2_IAlbQHKcvq2FeIY6qweEaSaYrWWaHseg_JUyJnZKE8TRAn4_SVIG_WZh_Gg9unm6FTV2dwtMe83PGlDKVLY24lyCg-00YEoQ5cpUPFXSRqkgWqjwFBSNr3VRh7XKOdh5wnVDLxDqA1w34eAsEYi3YIopwFzDUJjqbhlmrFbmjivuzA5WJ8onklwhGVm-dCRNafkfVnVPmzAxfo-qieidmvdkd_tDuGDVthvsr5O4FW_laYU-QhuTor_7dP7B3WGw |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xCAQHdsSOD3DgkDZu7MQ5IqBipwcq9Ra85QI0FUmFxNczTtKqIJCQuGUZOc4knvdkj98AHGGEE8zi-JYRjz0mVOoh7miPhn6cCkqNLpMx7-7Dyy677vFeXee03AuTDerQ38DDSii4cmGdECeaNAipF3LGmlKbVAbNgUmnYZYHiJ1uB99DZ7yMgOR5XEs-iiiv1yl_auULLk3jsydgpr0MT6MOVtklz41hoRr645t24z_eYAWWagpKTivzVZiy_TVYnBAmxLO7sZprvgZzZZqoztdBOW5aSjtjAy_yPSdZSiTJ-tYzrkxAJfFByvI67hbimRo6XCPpS4bW-VC5eR9SZET2yUiBmiBemuyVIH_WdgO67YvHs0uvrtLg6YAFhRdKGUufGu6kyChe01ZEsY58pWPFfSRskkWqhYFBSNoKVWwCrtEuQO4TK5kGmzDTx35uAcFYi3YIppxFzLepCEPLHeUyfmxNS27DyegbJYNKjCMpF9GFSJxPE-fTpPLpNhyj-5N6ROa_2u380e4Q5jvn7eT26v5mFxZc0fkqDXAPZoq3od1HalKog_L3-wQk99t_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+laws+of+a+one-dimensional+model+of+turbulent+flows+subject+to+an+external+random+force&rft.jtitle=Nonlinearity&rft.au=Tsuji%2C+Yuta&rft.au=Sakajo%2C+Takashi&rft.date=2023-08-01&rft.issn=0951-7715&rft.eissn=1361-6544&rft.volume=36&rft.issue=8&rft.spage=4283&rft.epage=4302&rft_id=info:doi/10.1088%2F1361-6544%2Facdfa3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6544_acdfa3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-7715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-7715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-7715&client=summon |