Fretting fatigue characteristics of Ti-6Al-4V alloy with a gradient nanostructured surface layer induced by ultrasonic surface rolling process
[Display omitted] •FF strength is effectively improved by USRP with a GNS surface layer.•Compressive residual stress yields more contribution than GNS in raising FF strength.•FF cracks of USRP sample yield a serrated path due to compressive residual stress.•Mechanical surface polishing treatment red...
Saved in:
Published in | International journal of fatigue Vol. 125; pp. 249 - 260 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.08.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0142-1123 1879-3452 |
DOI | 10.1016/j.ijfatigue.2019.03.042 |
Cover
Abstract | [Display omitted]
•FF strength is effectively improved by USRP with a GNS surface layer.•Compressive residual stress yields more contribution than GNS in raising FF strength.•FF cracks of USRP sample yield a serrated path due to compressive residual stress.•Mechanical surface polishing treatment reduces the FF property.
A gradient nanostructured (GNS) surface layer is synthesized on the surface of a Ti-6Al-4V alloy by means of the ultrasonic surface rolling process (USRP). The mean grain sizes on the topmost surface and at depth of 10 μm from the treated surface are approximately 45.8 and 87.5 nm, respectively. Fretting fatigue (FF) testing shows a 113.6% improvement in the fatigue strength after USRP as compared with the untreated condition. The mechanism through which the USRP improves the FF properties can be attributed to the comprehensive effect of the compressive residual stress, GNS surface layer, surface work hardening, and surface roughening. Among these, the compressive residual stress is the main factor in determining the FF behavior, due to the beneficial effect of compressive residual stress on the suppression of FF crack initiation and premature growth. |
---|---|
AbstractList | [Display omitted]
•FF strength is effectively improved by USRP with a GNS surface layer.•Compressive residual stress yields more contribution than GNS in raising FF strength.•FF cracks of USRP sample yield a serrated path due to compressive residual stress.•Mechanical surface polishing treatment reduces the FF property.
A gradient nanostructured (GNS) surface layer is synthesized on the surface of a Ti-6Al-4V alloy by means of the ultrasonic surface rolling process (USRP). The mean grain sizes on the topmost surface and at depth of 10 μm from the treated surface are approximately 45.8 and 87.5 nm, respectively. Fretting fatigue (FF) testing shows a 113.6% improvement in the fatigue strength after USRP as compared with the untreated condition. The mechanism through which the USRP improves the FF properties can be attributed to the comprehensive effect of the compressive residual stress, GNS surface layer, surface work hardening, and surface roughening. Among these, the compressive residual stress is the main factor in determining the FF behavior, due to the beneficial effect of compressive residual stress on the suppression of FF crack initiation and premature growth. A gradient nanostructured (GNS) surface layer is synthesized on the surface of a Ti-6Al-4V alloy by means of the ultrasonic surface rolling process (USRP). The mean grain sizes on the topmost surface and at depth of 10 μm from the treated surface are approximately 45.8 and 87.5 nm, respectively. Fretting fatigue (FF) testing shows a 113.6% improvement in the fatigue strength after USRP as compared with the untreated condition. The mechanism through which the USRP improves the FF properties can be attributed to the comprehensive effect of the compressive residual stress, GNS surface layer, surface work hardening, and surface roughening. Among these, the compressive residual stress is the main factor in determining the FF behavior, due to the beneficial effect of compressive residual stress on the suppression of FF crack initiation and premature growth. |
Author | Liu, Chengsong Xu, Xingchen Ao, Ni Yang, Jing Liu, Daoxin Zhang, Xiaohua Liu, Dan |
Author_xml | – sequence: 1 givenname: Chengsong surname: Liu fullname: Liu, Chengsong – sequence: 2 givenname: Daoxin surname: Liu fullname: Liu, Daoxin email: liudaox@nwpu.edu.cn – sequence: 3 givenname: Xiaohua surname: Zhang fullname: Zhang, Xiaohua – sequence: 4 givenname: Ni surname: Ao fullname: Ao, Ni – sequence: 5 givenname: Xingchen orcidid: 0000-0001-6820-6265 surname: Xu fullname: Xu, Xingchen – sequence: 6 givenname: Dan surname: Liu fullname: Liu, Dan – sequence: 7 givenname: Jing surname: Yang fullname: Yang, Jing |
BookMark | eNqNUclqHDEQFcGGjJdvsCDn7mjp9ZDDYGInYMjFyVXUSNVjNR3JKakT5ifyzdEwxodcklPB4y3UexfsLMSAjN1IUUshu_dz7ecJst-vWCshx1roWjTqDdvIoR8r3bTqjG2EbFQlpdJv2UVKsxBiFH27Yb_vCHP2Yc9fPLh9AgKbkXzK3iYeJ_7oq267VM03DssSD_yXz08c-J7AeQyZBwgxZVptXgkdTytNYJEvcEDiPrjVFnR34OuSCVIM3r5yKC7LMf2ZosWUrtj5BEvC65d7yb7efXy8_VQ9fLn_fLt9qKxudK46DeMgnewcuMaBxp1zqEdQ3dTrDqCdBpQIuwLBqNWubUaQ4FQ_tW5QFvUle3fyLbk_VkzZzHGlUCKNUu2om0G2XWF9OLEsxZQIJ2N9LjXFUP7wi5HCHCcws3mdwBwnMEKbMkHR93_pn8l_Bzr8h3J7UmIp4adHMsmWqkuPntBm46L_p8cfjpys4g |
CitedBy_id | crossref_primary_10_1007_s43452_024_01058_6 crossref_primary_10_1016_j_jmst_2020_12_037 crossref_primary_10_1016_j_matchemphys_2023_128720 crossref_primary_10_1016_j_jmrt_2022_12_019 crossref_primary_10_1016_j_triboint_2023_108422 crossref_primary_10_1016_j_jmapro_2021_09_058 crossref_primary_10_1016_j_ijmecsci_2020_105824 crossref_primary_10_1016_j_jallcom_2023_172549 crossref_primary_10_1002_adem_202401100 crossref_primary_10_1016_j_jmst_2019_08_030 crossref_primary_10_1016_j_matpr_2019_10_174 crossref_primary_10_1016_j_ijfatigue_2022_107397 crossref_primary_10_1016_j_surfcoat_2024_130892 crossref_primary_10_1016_j_jmrt_2021_05_065 crossref_primary_10_1016_j_jmapro_2022_03_026 crossref_primary_10_1088_1361_6528_abe9e6 crossref_primary_10_1116_6_0001801 crossref_primary_10_1016_j_msea_2021_142352 crossref_primary_10_1186_s10033_021_00612_0 crossref_primary_10_1016_j_engfracmech_2022_108831 crossref_primary_10_1016_j_jmrt_2020_08_025 crossref_primary_10_1007_s11665_020_05051_x crossref_primary_10_1016_j_pmatsci_2023_101194 crossref_primary_10_1016_j_wear_2024_205415 crossref_primary_10_1088_2053_1591_abc275 crossref_primary_10_1016_j_triboint_2019_106156 crossref_primary_10_1088_1742_6596_1345_3_032031 crossref_primary_10_1002_pssb_202400454 crossref_primary_10_1016_j_ijfatigue_2023_107567 crossref_primary_10_1016_j_mtcomm_2023_107557 crossref_primary_10_1007_s12598_022_02075_1 crossref_primary_10_3390_ma14102565 crossref_primary_10_3390_aerospace10070621 crossref_primary_10_1007_s00170_024_14365_2 crossref_primary_10_1016_j_ijfatigue_2021_106270 crossref_primary_10_1134_S1029959922030055 crossref_primary_10_1016_j_ijfatigue_2022_107383 crossref_primary_10_1016_j_measurement_2024_115732 crossref_primary_10_1016_j_smmf_2024_100056 crossref_primary_10_1016_j_jmst_2023_06_029 crossref_primary_10_1007_s11661_023_07142_5 crossref_primary_10_1016_j_jallcom_2022_167856 crossref_primary_10_1016_j_jmapro_2024_06_023 crossref_primary_10_1016_j_cja_2024_11_007 crossref_primary_10_1016_j_jmrt_2024_06_091 crossref_primary_10_1016_j_jmrt_2025_01_024 crossref_primary_10_1016_j_ijfatigue_2022_106925 crossref_primary_10_1016_j_msea_2019_138205 crossref_primary_10_1016_j_jmrt_2024_04_166 crossref_primary_10_1016_j_wear_2021_203740 crossref_primary_10_1007_s11665_024_09332_7 crossref_primary_10_1016_j_jmrt_2024_01_020 crossref_primary_10_1039_D0NR07566C crossref_primary_10_3390_ma13030738 crossref_primary_10_1016_j_jmapro_2024_08_041 crossref_primary_10_1007_s00707_023_03725_w crossref_primary_10_1016_j_triboint_2024_109619 crossref_primary_10_1007_s12598_021_01818_w crossref_primary_10_1016_j_ijfatigue_2019_105373 crossref_primary_10_1021_acsabm_1c00059 crossref_primary_10_1080_10402004_2019_1664687 crossref_primary_10_1016_j_triboint_2024_109659 crossref_primary_10_3390_met12091535 crossref_primary_10_1186_s10033_021_00611_1 crossref_primary_10_1016_j_optlastec_2023_109685 crossref_primary_10_3390_app112210986 crossref_primary_10_1016_j_measurement_2024_114872 crossref_primary_10_1007_s00170_021_06967_x crossref_primary_10_1016_j_jmrt_2022_01_077 crossref_primary_10_1016_j_matchemphys_2022_125741 crossref_primary_10_1016_j_engfracmech_2021_108150 crossref_primary_10_1016_j_surfcoat_2023_129609 crossref_primary_10_1016_j_msea_2020_139389 crossref_primary_10_1016_j_ijfatigue_2023_108038 crossref_primary_10_1016_j_matchar_2021_111288 crossref_primary_10_1016_j_mtcomm_2023_107699 crossref_primary_10_1016_j_ijfatigue_2020_105741 crossref_primary_10_1016_j_jmrt_2024_11_008 crossref_primary_10_1016_j_msea_2023_145394 crossref_primary_10_1016_j_surfcoat_2020_126196 crossref_primary_10_1016_j_jmrt_2024_04_216 |
Cites_doi | 10.1016/j.actamat.2014.12.057 10.1016/j.surfcoat.2018.06.092 10.1016/S0142-1123(02)00022-1 10.1126/sciadv.1601942 10.1016/j.triboint.2012.06.016 10.1016/j.surfcoat.2017.04.052 10.1016/j.ijfatigue.2013.06.010 10.1088/0022-3727/25/1A/036 10.1016/j.ijfatigue.2015.03.027 10.1016/j.matdes.2017.01.006 10.1016/j.apsusc.2015.07.038 10.1007/BF00012667 10.1016/j.apsusc.2016.08.146 10.1016/j.ijfatigue.2015.12.013 10.1016/S0043-1648(01)00671-8 10.1046/j.1460-2695.2003.00677.x 10.1016/j.apsusc.2014.06.006 10.1016/j.surfcoat.2017.01.099 10.1126/science.1255940 10.1016/j.surfcoat.2017.08.067 10.1016/j.ijfatigue.2012.01.014 10.1016/j.ijfatigue.2015.08.007 10.1016/j.actamat.2017.01.050 10.1016/j.ijfatigue.2017.08.016 10.1016/S0142-1123(01)00205-5 10.1016/j.jallcom.2016.04.067 10.1016/j.ijfatigue.2011.12.014 10.1016/j.apsusc.2015.09.013 10.1016/j.matchar.2018.09.004 10.1016/j.actamat.2018.07.036 10.1016/j.ijfatigue.2017.11.010 10.1016/j.scriptamat.2006.01.049 10.1016/j.rinp.2017.05.026 10.1016/j.msea.2018.04.033 10.1016/j.triboint.2010.11.006 10.3390/ma10070833 10.1016/j.matdes.2016.07.133 10.1016/j.triboint.2010.06.009 10.1016/j.ijfatigue.2013.08.022 10.1016/j.matdes.2018.04.027 10.1016/S0921-5093(00)00686-9 10.1016/j.msea.2014.06.114 10.1016/j.msea.2003.10.261 10.1016/j.ijfatigue.2018.01.017 10.1016/j.surfcoat.2006.08.094 10.1016/j.wear.2007.06.016 10.1016/j.matdes.2015.10.022 10.3390/ma9040217 10.1016/j.ijfatigue.2008.10.004 10.1016/j.matdes.2008.09.033 10.1016/j.wear.2013.10.010 10.1016/j.ijfatigue.2008.07.007 10.1016/j.matdes.2016.03.162 10.1016/j.msea.2009.03.020 10.1016/j.msea.2017.11.043 10.1016/j.ijhydene.2014.12.129 10.1016/j.msea.2005.02.028 10.1016/j.surfcoat.2012.12.033 10.1016/j.ijfatigue.2013.07.001 10.1016/j.optlaseng.2013.06.011 10.1016/j.ijfatigue.2004.07.007 10.1016/j.ijfatigue.2012.03.008 10.1016/j.matlet.2007.12.025 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Aug 2019 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Aug 2019 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.ijfatigue.2019.03.042 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3452 |
EndPage | 260 |
ExternalDocumentID | 10_1016_j_ijfatigue_2019_03_042 S0142112319301197 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABCJ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K T9H TN5 VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 8BQ 8FD EFKBS JG9 |
ID | FETCH-LOGICAL-c343t-63a981d16dad4da3ebdde39a26f736aa5f8e1eab39aa932b549a1ad27f5d82ce3 |
IEDL.DBID | AIKHN |
ISSN | 0142-1123 |
IngestDate | Fri Jul 25 05:13:13 EDT 2025 Thu Apr 24 22:57:06 EDT 2025 Tue Jul 01 01:54:31 EDT 2025 Fri Feb 23 02:30:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ultrasonic surface rolling process Ti-6Al-4V alloy Gradient nanostructured surface layer Fretting fatigue Compressive residual stress |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-63a981d16dad4da3ebdde39a26f736aa5f8e1eab39aa932b549a1ad27f5d82ce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6820-6265 |
PQID | 2259348156 |
PQPubID | 2045465 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2259348156 crossref_citationtrail_10_1016_j_ijfatigue_2019_03_042 crossref_primary_10_1016_j_ijfatigue_2019_03_042 elsevier_sciencedirect_doi_10_1016_j_ijfatigue_2019_03_042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2019 2019-08-00 20190801 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: August 2019 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | International journal of fatigue |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Montross, Wei, Ye, Clark, Mai (b0200) 2002; 24 Du, Liu, Ye, Zhang, Li, Zhou (b0040) 2014; 313 Wu, Li, Sha, Li, Huang (b0300) 2014; 309 Torres, Voorwald (b0070) 2002; 24 Zhang, Liu (b0060) 2009; 31 Ye, Kure-Chu, Sun, Li, Wang, Tang (b0170) 2018; 149 Zhao, Xue, Liu (b0165) 2017; 7 Cowles (b0025) 1996; 80 Lu (b0190) 2014; 345 Liu, He (b0035) 2001; 37 Naidu, Raman (b0005) 2005; 27 Liu, Liu, Zhang, Yu, Zhao (b0055) 2017; 10 Roland, Retraint, Lu, Lu (b0240) 2006; 54 Waterhouse, Trowsdale (b0245) 1992; 25 Kasarekar, Sadeghi, Tseregounis (b0250) 2008; 264 Zhou, Huang, Zuo, Meng, Sheng, Tian (b0290) 2014; 52 Martinez, Sathish, Blodgett, Mall, Namjoshi (b0280) 2005; 399 Li, Sun, Bowen, Knott (b0285) 2018; 108 Wang, Song, Tang (b0220) 2016; 681 Tang, Liu, Tang, Zhang, Qin, Liu (b0045) 2016; 390 Yu, Liu, Zhang, Du (b0185) 2015; 353 Lu, Wu, Sun, Luo, Zhang, Cai (b0100) 2017; 127 Vazquez, Navarro, Dominguez (b0075) 2012; 40 Wang, Liu, Yan, Dong, Yan (b0230) 2017; 105 Chen, Han, Li, Lu (b0135) 2016; 2 Ao, Liu, Liu, Zhang, Liu (b0145) 2018; 145 Kim, Cheong, Noguchi (b0215) 2013; 56 Bagherifard, Fernandez-Pariente, Ghelichi, Guagliano (b0085) 2014; 65 Komoda, Kubota, Furtado (b0305) 2015; 40 Panin, Kazachenok, Kozelskaya, Balokhonov, Romanova, Perevalova (b0120) 2017; 117 Kattoura, Mannava, Qian, Vasudevan (b0175) 2018; 110 Bagherifard, Slawik, Fernandez-Pariente, Pauly, Mucklich, Guagliano (b0090) 2016; 102 Kumar, Chattopadhyay, Mahobia, Singh (b0110) 2016; 110 Kwon, Jeung, Chung, Yoon, Park (b0015) 2011; 44 Wang, Shen, An, Zhou, Chai (b0095) 2016; 89 Kubiak, Fouvry, Marechal, Vernet (b0065) 2006; 201 Liu, Lu, Lu (b0105) 2000; 286 Zhang, Ren, Zhou, Lu, Zhou (b0295) 2009; 30 Ye, Telang, Gill, Suslov, Idell, Zweiacker (b0150) 2014; 613 Li, Qu, Xie, Li (b0205) 2017; 316 Bertini, Santus (b0310) 2015; 81 Lee, Jin, Mall (b0030) 2003; 26 Majzoobi, Azadikhah, Nemati (b0210) 2009; 516 Altenberger, Nalla, Sano, Wagner, Ritchie (b0115) 2012; 44 Huang, Wang, Lu, Lu (b0125) 2015; 87 Lu, Lu (b0130) 2004; 375 Kattoura, Telang, Mannava, Qian, Vasudevan (b0160) 2018; 711 Kim, Cheong, Noguchi (b0235) 2013; 55 Peng, Liu, Cai, Shen, Song, Zhu (b0270) 2013; 59 Fridrici, Fouvry, Kapsa (b0275) 2001; 250 Zhu, Xuan, Du, Tu (b0260) 2012; 40 Li, Liu, Li, Liu (b0140) 2015; 357 Rajasekaran, Raman (b0010) 2008; 62 Tang, Liu, Zhang, Du, Yu (b0050) 2016; 9 Yang, Zhou, Niu, Zheng, Wang, Fu (b0225) 2018; 349 Li, Fu, Li, Gai, Li, Zhou (b0020) 2016; 85 Majzoobi, Abbasi (b0080) 2017; 328 Zhang, Hu, Su, Zhou, Liu, Yang (b0195) 2017; 321 Zhu, Liu, Xuan (b0255) 2015; 77 Kubota, Kataoka, Kondo (b0315) 2009; 31 Liu, Liu, Zhang, Liu, Ao (b0155) 2018; 726 Zhu, Jin, Xuan (b0265) 2018; 157 Yasuoka, Wang, Zhang, Qiu, Kusaka, Pyoun (b0180) 2013; 218 Meriaux, Boinet, Fouvry, Lenain (b0320) 2010; 43 Lu (10.1016/j.ijfatigue.2019.03.042_b0190) 2014; 345 Roland (10.1016/j.ijfatigue.2019.03.042_b0240) 2006; 54 Bagherifard (10.1016/j.ijfatigue.2019.03.042_b0085) 2014; 65 Ao (10.1016/j.ijfatigue.2019.03.042_b0145) 2018; 145 Zhang (10.1016/j.ijfatigue.2019.03.042_b0295) 2009; 30 Kubota (10.1016/j.ijfatigue.2019.03.042_b0315) 2009; 31 Rajasekaran (10.1016/j.ijfatigue.2019.03.042_b0010) 2008; 62 Kubiak (10.1016/j.ijfatigue.2019.03.042_b0065) 2006; 201 Li (10.1016/j.ijfatigue.2019.03.042_b0140) 2015; 357 Zhu (10.1016/j.ijfatigue.2019.03.042_b0255) 2015; 77 Naidu (10.1016/j.ijfatigue.2019.03.042_b0005) 2005; 27 Bagherifard (10.1016/j.ijfatigue.2019.03.042_b0090) 2016; 102 Waterhouse (10.1016/j.ijfatigue.2019.03.042_b0245) 1992; 25 Komoda (10.1016/j.ijfatigue.2019.03.042_b0305) 2015; 40 Meriaux (10.1016/j.ijfatigue.2019.03.042_b0320) 2010; 43 Bertini (10.1016/j.ijfatigue.2019.03.042_b0310) 2015; 81 Yang (10.1016/j.ijfatigue.2019.03.042_b0225) 2018; 349 Zhu (10.1016/j.ijfatigue.2019.03.042_b0265) 2018; 157 Wu (10.1016/j.ijfatigue.2019.03.042_b0300) 2014; 309 Liu (10.1016/j.ijfatigue.2019.03.042_b0035) 2001; 37 Liu (10.1016/j.ijfatigue.2019.03.042_b0055) 2017; 10 Fridrici (10.1016/j.ijfatigue.2019.03.042_b0275) 2001; 250 Martinez (10.1016/j.ijfatigue.2019.03.042_b0280) 2005; 399 Lu (10.1016/j.ijfatigue.2019.03.042_b0100) 2017; 127 Li (10.1016/j.ijfatigue.2019.03.042_b0205) 2017; 316 Panin (10.1016/j.ijfatigue.2019.03.042_b0120) 2017; 117 Lu (10.1016/j.ijfatigue.2019.03.042_b0130) 2004; 375 Kasarekar (10.1016/j.ijfatigue.2019.03.042_b0250) 2008; 264 Chen (10.1016/j.ijfatigue.2019.03.042_b0135) 2016; 2 Kattoura (10.1016/j.ijfatigue.2019.03.042_b0160) 2018; 711 Zhang (10.1016/j.ijfatigue.2019.03.042_b0195) 2017; 321 Kim (10.1016/j.ijfatigue.2019.03.042_b0215) 2013; 56 Tang (10.1016/j.ijfatigue.2019.03.042_b0050) 2016; 9 Yasuoka (10.1016/j.ijfatigue.2019.03.042_b0180) 2013; 218 Kumar (10.1016/j.ijfatigue.2019.03.042_b0110) 2016; 110 Yu (10.1016/j.ijfatigue.2019.03.042_b0185) 2015; 353 Zhao (10.1016/j.ijfatigue.2019.03.042_b0165) 2017; 7 Altenberger (10.1016/j.ijfatigue.2019.03.042_b0115) 2012; 44 Torres (10.1016/j.ijfatigue.2019.03.042_b0070) 2002; 24 Liu (10.1016/j.ijfatigue.2019.03.042_b0105) 2000; 286 Lee (10.1016/j.ijfatigue.2019.03.042_b0030) 2003; 26 Wang (10.1016/j.ijfatigue.2019.03.042_b0230) 2017; 105 Huang (10.1016/j.ijfatigue.2019.03.042_b0125) 2015; 87 Li (10.1016/j.ijfatigue.2019.03.042_b0285) 2018; 108 Zhou (10.1016/j.ijfatigue.2019.03.042_b0290) 2014; 52 Kwon (10.1016/j.ijfatigue.2019.03.042_b0015) 2011; 44 Du (10.1016/j.ijfatigue.2019.03.042_b0040) 2014; 313 Tang (10.1016/j.ijfatigue.2019.03.042_b0045) 2016; 390 Wang (10.1016/j.ijfatigue.2019.03.042_b0095) 2016; 89 Majzoobi (10.1016/j.ijfatigue.2019.03.042_b0080) 2017; 328 Majzoobi (10.1016/j.ijfatigue.2019.03.042_b0210) 2009; 516 Kim (10.1016/j.ijfatigue.2019.03.042_b0235) 2013; 55 Zhu (10.1016/j.ijfatigue.2019.03.042_b0260) 2012; 40 Ye (10.1016/j.ijfatigue.2019.03.042_b0150) 2014; 613 Kattoura (10.1016/j.ijfatigue.2019.03.042_b0175) 2018; 110 Cowles (10.1016/j.ijfatigue.2019.03.042_b0025) 1996; 80 Zhang (10.1016/j.ijfatigue.2019.03.042_b0060) 2009; 31 Wang (10.1016/j.ijfatigue.2019.03.042_b0220) 2016; 681 Ye (10.1016/j.ijfatigue.2019.03.042_b0170) 2018; 149 Montross (10.1016/j.ijfatigue.2019.03.042_b0200) 2002; 24 Liu (10.1016/j.ijfatigue.2019.03.042_b0155) 2018; 726 Li (10.1016/j.ijfatigue.2019.03.042_b0020) 2016; 85 Vazquez (10.1016/j.ijfatigue.2019.03.042_b0075) 2012; 40 Peng (10.1016/j.ijfatigue.2019.03.042_b0270) 2013; 59 |
References_xml | – volume: 10 start-page: 833 year: 2017 end-page: 844 ident: b0055 article-title: Effect of the ultrasonic surface rolling process on the fretting fatigue behavior of Ti-6Al-4V alloy publication-title: Materials – volume: 55 start-page: 147 year: 2013 end-page: 157 ident: b0235 article-title: Evolution of residual stress redistribution associated with localized surface microcracking in shot-peened medium-carbon steel during fatigue test publication-title: Int J Fatigue – volume: 59 start-page: 38 year: 2013 end-page: 46 ident: b0270 article-title: Study on bending fretting fatigue damages of 7075 aluminum alloy publication-title: Tribol Int – volume: 328 start-page: 292 year: 2017 end-page: 303 ident: b0080 article-title: On the effect of shot-peening on fretting fatigue of A17075–T6 under cyclic normal contact loading publication-title: Surf Coat Tech – volume: 56 start-page: 114 year: 2013 end-page: 122 ident: b0215 article-title: Residual stress relaxation and low- and high-cycle fatigue behavior of shot-peened medium-carbon steel publication-title: Int J Fatigue – volume: 145 start-page: 527 year: 2018 end-page: 533 ident: b0145 article-title: Face-centered titanium induced by ultrasonic surface rolling process in Ti-6Al-4V alloy and its tensile behavior publication-title: Mater Charact – volume: 321 start-page: 64 year: 2017 end-page: 73 ident: b0195 article-title: Microstructure and surface properties of 17–4PH stainless steel by ultrasonic surface rolling technology publication-title: Surf Coat Tech – volume: 316 start-page: 75 year: 2017 end-page: 84 ident: b0205 article-title: Effect of ultrasonic surface rolling at low temperatures on surface layer microstructure and properties of HIP Ti-6Al-4V alloy publication-title: Surf Coat Tech – volume: 27 start-page: 323 year: 2005 end-page: 331 ident: b0005 article-title: Effect of shot blasting on plain fatigue and fretting fatigue behaviour of Al-Mg-Si alloy AA6061 publication-title: Int J Fatigue – volume: 201 start-page: 4323 year: 2006 end-page: 4328 ident: b0065 article-title: Behaviour of shot peening combined with WC-CoHVOF coating under complex fretting wear and fretting fatigue loading conditions publication-title: Surf Coat Tech – volume: 726 start-page: 69 year: 2018 end-page: 81 ident: b0155 article-title: Surface nanocrystallization of 17–4 precipitation-hardening stainless steel subjected to ultrasonic surface rolling process publication-title: Mater Sci Eng A – volume: 44 start-page: 292 year: 2012 end-page: 302 ident: b0115 article-title: On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti–6Al–4V at elevated temperatures up to 550 °C publication-title: Int J Fatigue – volume: 31 start-page: 439 year: 2009 end-page: 446 ident: b0315 article-title: Effect of stress relief groove on fretting fatigue strength and index for the selection of optimal groove shape publication-title: Int J Fatigue – volume: 89 start-page: 582 year: 2016 end-page: 588 ident: b0095 article-title: Effects of laser shock processing on microstructure and mechanical properties of K403 nickel-alloy publication-title: Mater Des – volume: 43 start-page: 2166 year: 2010 end-page: 2174 ident: b0320 article-title: Identification of fretting fatigue crack propagation mechanisms using acoustic emission publication-title: Tribol Int – volume: 26 start-page: 767 year: 2003 end-page: 778 ident: b0030 article-title: Fretting fatigue behaviour of shot-peened Ti-6Al-4V at room and elevated temperatures publication-title: Fatigue Fract Eng M – volume: 516 start-page: 235 year: 2009 end-page: 247 ident: b0210 article-title: The effects of deep rolling and shot peening on fretting fatigue resistance of Aluminum-7075-T6 publication-title: Mater Sci Eng A – volume: 77 start-page: 166 year: 2015 end-page: 173 ident: b0255 article-title: Effect of frequency on very high cycle fatigue behavior of a low strength Cr–Ni–Mo–V steel welded joint publication-title: Int J Fatigue – volume: 250 start-page: 642 year: 2001 end-page: 649 ident: b0275 article-title: Effect of shot peening on the fretting wear of Ti-6Al-4V publication-title: Wear – volume: 127 start-page: 252 year: 2017 end-page: 266 ident: b0100 article-title: Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts publication-title: Acta Mater – volume: 24 start-page: 1021 year: 2002 end-page: 1036 ident: b0200 article-title: Laser shock processing and its effects on microstructure and properties of metal alloys: a review publication-title: Int J Fatigue – volume: 30 start-page: 2769 year: 2009 end-page: 2773 ident: b0295 article-title: Investigation of the stress intensity factor changing on the hole crack subject to laser shock processing publication-title: Mater Des – volume: 375 start-page: 38 year: 2004 end-page: 45 ident: b0130 article-title: Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment publication-title: Mater Sci Eng A – volume: 52 start-page: 189 year: 2014 end-page: 194 ident: b0290 article-title: Effects of laser peening on residual stresses and fatigue crack growth properties of Ti-6Al-4V titanium alloy publication-title: Opt Laser Eng – volume: 40 start-page: 143 year: 2012 end-page: 153 ident: b0075 article-title: Experimental results in fretting fatigue with shot and laser peened Al 7075–T651 specimens publication-title: Int J Fatigue – volume: 149 start-page: 214 year: 2018 end-page: 227 ident: b0170 article-title: Nanocrystallization and enhanced surface mechanical properties of commercial pure titanium by electropulsing-assisted ultrasonic surface rolling publication-title: Mater Des – volume: 110 start-page: 186 year: 2018 end-page: 196 ident: b0175 article-title: Effect of ultrasonic nanocrystal surface modification on elevated temperature residual stress, microstructure, and fatigue behavior of ATI 718Plus alloy publication-title: Int J Fatigue – volume: 9 start-page: 217 year: 2016 end-page: 232 ident: b0050 article-title: Effects of plasma ZrN metallurgy and shot peening duplex treatment on fretting wear and fretting fatigue behavior of Ti6Al4V alloy publication-title: Materials – volume: 157 start-page: 259 year: 2018 end-page: 275 ident: b0265 article-title: Fatigue life and mechanistic modeling of interior micro-defect induced cracking in high cycle and very high cycle regimes publication-title: Acta Mater – volume: 108 start-page: 53 year: 2018 end-page: 61 ident: b0285 article-title: Effects of compressive residual stress on short fatigue crack growth in a nickel-based superalloy publication-title: Int J Fatigue – volume: 62 start-page: 2473 year: 2008 end-page: 2475 ident: b0010 article-title: Plain fatigue and fretting fatigue behaviour of plasma nitrided Ti-6Al-4V publication-title: Mater Lett – volume: 37 start-page: 156 year: 2001 end-page: 160 ident: b0035 article-title: Effect of shot peening factors on fretting fatigue resistance titanium alloy publication-title: Acta Metall Sin – volume: 7 start-page: 1845 year: 2017 end-page: 1851 ident: b0165 article-title: Gradient crystalline structure induced by ultrasonic impacting and rolling and its effect on fatigue behavior of TC11 titanium alloy publication-title: Results Phys – volume: 345 start-page: 1455 year: 2014 end-page: 1456 ident: b0190 article-title: Making strong nanomaterials ductile with gradients publication-title: Science – volume: 102 start-page: 68 year: 2016 end-page: 77 ident: b0090 article-title: Nanoscale surface modification of AISI 316L stainless steel by severe shot peening publication-title: Mater Des – volume: 2 year: 2016 ident: b0135 article-title: Lowering coefficient of friction in Cu alloys with stable gradient nanostructures publication-title: Sci Adv – volume: 286 start-page: 91 year: 2000 end-page: 95 ident: b0105 article-title: Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening publication-title: Mater Sci Eng A – volume: 81 start-page: 179 year: 2015 end-page: 190 ident: b0310 article-title: Fretting fatigue tests on shrink-fit specimens and investigations into the strength enhancement induced by deep rolling publication-title: Int J Fatigue – volume: 65 start-page: 64 year: 2014 end-page: 70 ident: b0085 article-title: Effect of severe shot peening on microstructure and fatigue strength of cast iron publication-title: Int J Fatigue – volume: 40 start-page: 74 year: 2012 end-page: 83 ident: b0260 article-title: Very high cycle fatigue behavior of a low strength welded joint at moderate temperature publication-title: Int J Fatigue – volume: 24 start-page: 877 year: 2002 end-page: 886 ident: b0070 article-title: An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel publication-title: Int J Fatigue – volume: 85 start-page: 65 year: 2016 end-page: 69 ident: b0020 article-title: Fretting fatigue characteristic of Ti-6Al-4V strengthened by wet peening publication-title: Int J Fatigue – volume: 613 start-page: 274 year: 2014 end-page: 288 ident: b0150 article-title: Gradient nanostructure and residual stresses induced by ultrasonic nano-crystal surface modification in 304 austenitic stainless steel for high strength and high ductility publication-title: Mater Sci Eng A – volume: 353 start-page: 995 year: 2015 end-page: 1002 ident: b0185 article-title: Effects of combined plasma chromizing and shot peening on the fatigue properties of a Ti6Al4V alloy publication-title: Appl Surf Sci – volume: 105 start-page: 43 year: 2017 end-page: 59 ident: b0230 article-title: On the mechanism of residual stresses relaxation in welded joints under cyclic loading publication-title: Int J Fatigue – volume: 681 start-page: 146 year: 2016 end-page: 156 ident: b0220 article-title: Evolution of surface mechanical properties and microstructure of Ti-6Al-4V alloy induced by electropulsing-assisted ultrasonic surface rolling process publication-title: J Alloy Compd – volume: 264 start-page: 719 year: 2008 end-page: 730 ident: b0250 article-title: Fretting fatigue of rough surfaces publication-title: Wear – volume: 80 start-page: 147 year: 1996 end-page: 163 ident: b0025 article-title: High cycle fatigue in aircraft gas turbines - an industry perspective publication-title: Int J Fracture – volume: 44 start-page: 1483 year: 2011 end-page: 1487 ident: b0015 article-title: A study on fretting fatigue characteristics of Inconel 690 at high temperature publication-title: Tribol Int – volume: 25 start-page: A236 year: 1992 end-page: A239 ident: b0245 article-title: Residual-stress and surface-roughness in fretting fatigue publication-title: J Phys D Appl Phys – volume: 117 start-page: 371 year: 2017 end-page: 381 ident: b0120 article-title: The effect of ultrasonic impact treatment on the deformation behavior of commercially pure titanium under uniaxial tension publication-title: Mater Des – volume: 313 start-page: 462 year: 2014 end-page: 469 ident: b0040 article-title: Fretting wear and fretting fatigue behaviors of diamond-like carbon and graphite-like carbon films deposited on Ti-6Al-4V alloy publication-title: Appl Surf Sci – volume: 711 start-page: 364 year: 2018 end-page: 377 ident: b0160 article-title: Effect of ultrasonic nanocrystal surface modification on residual stress, microstructure and fatigue behavior of ATI 718Plus alloy publication-title: Mater Sci Eng A – volume: 40 start-page: 16868 year: 2015 end-page: 16877 ident: b0305 article-title: Effect of addition of oxygen and water vapor on fretting fatigue properties of an austenitic stainless steel in hydrogen publication-title: Int J Hydrogen Energ – volume: 110 start-page: 196 year: 2016 end-page: 206 ident: b0110 article-title: Hot corrosion behaviour of Ti-6Al-4V modified by ultrasonic shot peening publication-title: Mater Des – volume: 357 start-page: 197 year: 2015 end-page: 203 ident: b0140 article-title: The gradient crystalline structure and microhardness in the treated layer of TC17 via high energy shot peening publication-title: Appl Surf Sci – volume: 87 start-page: 150 year: 2015 end-page: 160 ident: b0125 article-title: Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer publication-title: Acta Mater – volume: 390 start-page: 946 year: 2016 end-page: 958 ident: b0045 article-title: Influence of plasma molybdenizing and shot-peening on fretting damage behavior of titanium alloy publication-title: Appl Surf Sci – volume: 349 start-page: 1098 year: 2018 end-page: 1106 ident: b0225 article-title: Effect of different surface asperities and surface hardness induced by shot-peening on the fretting wear behavior of Ti-6Al-4V publication-title: Surf Coat Tech – volume: 399 start-page: 58 year: 2005 end-page: 63 ident: b0280 article-title: Effects of fretting fatigue on the residual stress of shot peened Ti-6Al-4V samples publication-title: Mater Sci Eng A – volume: 309 start-page: 74 year: 2014 end-page: 81 ident: b0300 article-title: Effect of fretting on fatigue performance of Ti-1023 titanium alloy publication-title: Wear – volume: 31 start-page: 889 year: 2009 end-page: 893 ident: b0060 article-title: Effect of shot peening on fretting fatigue of Ti811 alloy at elevated temperature publication-title: Int J Fatigue – volume: 54 start-page: 1949 year: 2006 end-page: 1954 ident: b0240 article-title: Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment publication-title: Scripta Mater – volume: 218 start-page: 93 year: 2013 end-page: 98 ident: b0180 article-title: Improvement of the fatigue strength of SUS304 austenite stainless steel using ultrasonic nanocrystal surface modification publication-title: Surf Coat Tech – volume: 87 start-page: 150 year: 2015 ident: 10.1016/j.ijfatigue.2019.03.042_b0125 article-title: Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer publication-title: Acta Mater doi: 10.1016/j.actamat.2014.12.057 – volume: 349 start-page: 1098 year: 2018 ident: 10.1016/j.ijfatigue.2019.03.042_b0225 article-title: Effect of different surface asperities and surface hardness induced by shot-peening on the fretting wear behavior of Ti-6Al-4V publication-title: Surf Coat Tech doi: 10.1016/j.surfcoat.2018.06.092 – volume: 24 start-page: 1021 year: 2002 ident: 10.1016/j.ijfatigue.2019.03.042_b0200 article-title: Laser shock processing and its effects on microstructure and properties of metal alloys: a review publication-title: Int J Fatigue doi: 10.1016/S0142-1123(02)00022-1 – volume: 2 year: 2016 ident: 10.1016/j.ijfatigue.2019.03.042_b0135 article-title: Lowering coefficient of friction in Cu alloys with stable gradient nanostructures publication-title: Sci Adv doi: 10.1126/sciadv.1601942 – volume: 59 start-page: 38 year: 2013 ident: 10.1016/j.ijfatigue.2019.03.042_b0270 article-title: Study on bending fretting fatigue damages of 7075 aluminum alloy publication-title: Tribol Int doi: 10.1016/j.triboint.2012.06.016 – volume: 321 start-page: 64 year: 2017 ident: 10.1016/j.ijfatigue.2019.03.042_b0195 article-title: Microstructure and surface properties of 17–4PH stainless steel by ultrasonic surface rolling technology publication-title: Surf Coat Tech doi: 10.1016/j.surfcoat.2017.04.052 – volume: 55 start-page: 147 year: 2013 ident: 10.1016/j.ijfatigue.2019.03.042_b0235 article-title: Evolution of residual stress redistribution associated with localized surface microcracking in shot-peened medium-carbon steel during fatigue test publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2013.06.010 – volume: 25 start-page: A236 year: 1992 ident: 10.1016/j.ijfatigue.2019.03.042_b0245 article-title: Residual-stress and surface-roughness in fretting fatigue publication-title: J Phys D Appl Phys doi: 10.1088/0022-3727/25/1A/036 – volume: 77 start-page: 166 year: 2015 ident: 10.1016/j.ijfatigue.2019.03.042_b0255 article-title: Effect of frequency on very high cycle fatigue behavior of a low strength Cr–Ni–Mo–V steel welded joint publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2015.03.027 – volume: 117 start-page: 371 year: 2017 ident: 10.1016/j.ijfatigue.2019.03.042_b0120 article-title: The effect of ultrasonic impact treatment on the deformation behavior of commercially pure titanium under uniaxial tension publication-title: Mater Des doi: 10.1016/j.matdes.2017.01.006 – volume: 353 start-page: 995 year: 2015 ident: 10.1016/j.ijfatigue.2019.03.042_b0185 article-title: Effects of combined plasma chromizing and shot peening on the fatigue properties of a Ti6Al4V alloy publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2015.07.038 – volume: 80 start-page: 147 year: 1996 ident: 10.1016/j.ijfatigue.2019.03.042_b0025 article-title: High cycle fatigue in aircraft gas turbines - an industry perspective publication-title: Int J Fracture doi: 10.1007/BF00012667 – volume: 390 start-page: 946 year: 2016 ident: 10.1016/j.ijfatigue.2019.03.042_b0045 article-title: Influence of plasma molybdenizing and shot-peening on fretting damage behavior of titanium alloy publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2016.08.146 – volume: 85 start-page: 65 year: 2016 ident: 10.1016/j.ijfatigue.2019.03.042_b0020 article-title: Fretting fatigue characteristic of Ti-6Al-4V strengthened by wet peening publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2015.12.013 – volume: 250 start-page: 642 year: 2001 ident: 10.1016/j.ijfatigue.2019.03.042_b0275 article-title: Effect of shot peening on the fretting wear of Ti-6Al-4V publication-title: Wear doi: 10.1016/S0043-1648(01)00671-8 – volume: 26 start-page: 767 year: 2003 ident: 10.1016/j.ijfatigue.2019.03.042_b0030 article-title: Fretting fatigue behaviour of shot-peened Ti-6Al-4V at room and elevated temperatures publication-title: Fatigue Fract Eng M doi: 10.1046/j.1460-2695.2003.00677.x – volume: 313 start-page: 462 year: 2014 ident: 10.1016/j.ijfatigue.2019.03.042_b0040 article-title: Fretting wear and fretting fatigue behaviors of diamond-like carbon and graphite-like carbon films deposited on Ti-6Al-4V alloy publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2014.06.006 – volume: 316 start-page: 75 year: 2017 ident: 10.1016/j.ijfatigue.2019.03.042_b0205 article-title: Effect of ultrasonic surface rolling at low temperatures on surface layer microstructure and properties of HIP Ti-6Al-4V alloy publication-title: Surf Coat Tech doi: 10.1016/j.surfcoat.2017.01.099 – volume: 345 start-page: 1455 year: 2014 ident: 10.1016/j.ijfatigue.2019.03.042_b0190 article-title: Making strong nanomaterials ductile with gradients publication-title: Science doi: 10.1126/science.1255940 – volume: 328 start-page: 292 year: 2017 ident: 10.1016/j.ijfatigue.2019.03.042_b0080 article-title: On the effect of shot-peening on fretting fatigue of A17075–T6 under cyclic normal contact loading publication-title: Surf Coat Tech doi: 10.1016/j.surfcoat.2017.08.067 – volume: 40 start-page: 74 year: 2012 ident: 10.1016/j.ijfatigue.2019.03.042_b0260 article-title: Very high cycle fatigue behavior of a low strength welded joint at moderate temperature publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2012.01.014 – volume: 81 start-page: 179 year: 2015 ident: 10.1016/j.ijfatigue.2019.03.042_b0310 article-title: Fretting fatigue tests on shrink-fit specimens and investigations into the strength enhancement induced by deep rolling publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2015.08.007 – volume: 127 start-page: 252 year: 2017 ident: 10.1016/j.ijfatigue.2019.03.042_b0100 article-title: Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts publication-title: Acta Mater doi: 10.1016/j.actamat.2017.01.050 – volume: 105 start-page: 43 year: 2017 ident: 10.1016/j.ijfatigue.2019.03.042_b0230 article-title: On the mechanism of residual stresses relaxation in welded joints under cyclic loading publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2017.08.016 – volume: 24 start-page: 877 year: 2002 ident: 10.1016/j.ijfatigue.2019.03.042_b0070 article-title: An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel publication-title: Int J Fatigue doi: 10.1016/S0142-1123(01)00205-5 – volume: 681 start-page: 146 year: 2016 ident: 10.1016/j.ijfatigue.2019.03.042_b0220 article-title: Evolution of surface mechanical properties and microstructure of Ti-6Al-4V alloy induced by electropulsing-assisted ultrasonic surface rolling process publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2016.04.067 – volume: 40 start-page: 143 year: 2012 ident: 10.1016/j.ijfatigue.2019.03.042_b0075 article-title: Experimental results in fretting fatigue with shot and laser peened Al 7075–T651 specimens publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2011.12.014 – volume: 357 start-page: 197 year: 2015 ident: 10.1016/j.ijfatigue.2019.03.042_b0140 article-title: The gradient crystalline structure and microhardness in the treated layer of TC17 via high energy shot peening publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2015.09.013 – volume: 145 start-page: 527 year: 2018 ident: 10.1016/j.ijfatigue.2019.03.042_b0145 article-title: Face-centered titanium induced by ultrasonic surface rolling process in Ti-6Al-4V alloy and its tensile behavior publication-title: Mater Charact doi: 10.1016/j.matchar.2018.09.004 – volume: 157 start-page: 259 year: 2018 ident: 10.1016/j.ijfatigue.2019.03.042_b0265 article-title: Fatigue life and mechanistic modeling of interior micro-defect induced cracking in high cycle and very high cycle regimes publication-title: Acta Mater doi: 10.1016/j.actamat.2018.07.036 – volume: 108 start-page: 53 year: 2018 ident: 10.1016/j.ijfatigue.2019.03.042_b0285 article-title: Effects of compressive residual stress on short fatigue crack growth in a nickel-based superalloy publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2017.11.010 – volume: 54 start-page: 1949 year: 2006 ident: 10.1016/j.ijfatigue.2019.03.042_b0240 article-title: Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2006.01.049 – volume: 7 start-page: 1845 year: 2017 ident: 10.1016/j.ijfatigue.2019.03.042_b0165 article-title: Gradient crystalline structure induced by ultrasonic impacting and rolling and its effect on fatigue behavior of TC11 titanium alloy publication-title: Results Phys doi: 10.1016/j.rinp.2017.05.026 – volume: 726 start-page: 69 year: 2018 ident: 10.1016/j.ijfatigue.2019.03.042_b0155 article-title: Surface nanocrystallization of 17–4 precipitation-hardening stainless steel subjected to ultrasonic surface rolling process publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2018.04.033 – volume: 37 start-page: 156 year: 2001 ident: 10.1016/j.ijfatigue.2019.03.042_b0035 article-title: Effect of shot peening factors on fretting fatigue resistance titanium alloy publication-title: Acta Metall Sin – volume: 44 start-page: 1483 year: 2011 ident: 10.1016/j.ijfatigue.2019.03.042_b0015 article-title: A study on fretting fatigue characteristics of Inconel 690 at high temperature publication-title: Tribol Int doi: 10.1016/j.triboint.2010.11.006 – volume: 10 start-page: 833 year: 2017 ident: 10.1016/j.ijfatigue.2019.03.042_b0055 article-title: Effect of the ultrasonic surface rolling process on the fretting fatigue behavior of Ti-6Al-4V alloy publication-title: Materials doi: 10.3390/ma10070833 – volume: 110 start-page: 196 year: 2016 ident: 10.1016/j.ijfatigue.2019.03.042_b0110 article-title: Hot corrosion behaviour of Ti-6Al-4V modified by ultrasonic shot peening publication-title: Mater Des doi: 10.1016/j.matdes.2016.07.133 – volume: 43 start-page: 2166 year: 2010 ident: 10.1016/j.ijfatigue.2019.03.042_b0320 article-title: Identification of fretting fatigue crack propagation mechanisms using acoustic emission publication-title: Tribol Int doi: 10.1016/j.triboint.2010.06.009 – volume: 65 start-page: 64 year: 2014 ident: 10.1016/j.ijfatigue.2019.03.042_b0085 article-title: Effect of severe shot peening on microstructure and fatigue strength of cast iron publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2013.08.022 – volume: 149 start-page: 214 year: 2018 ident: 10.1016/j.ijfatigue.2019.03.042_b0170 article-title: Nanocrystallization and enhanced surface mechanical properties of commercial pure titanium by electropulsing-assisted ultrasonic surface rolling publication-title: Mater Des doi: 10.1016/j.matdes.2018.04.027 – volume: 286 start-page: 91 year: 2000 ident: 10.1016/j.ijfatigue.2019.03.042_b0105 article-title: Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening publication-title: Mater Sci Eng A doi: 10.1016/S0921-5093(00)00686-9 – volume: 613 start-page: 274 year: 2014 ident: 10.1016/j.ijfatigue.2019.03.042_b0150 article-title: Gradient nanostructure and residual stresses induced by ultrasonic nano-crystal surface modification in 304 austenitic stainless steel for high strength and high ductility publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2014.06.114 – volume: 375 start-page: 38 year: 2004 ident: 10.1016/j.ijfatigue.2019.03.042_b0130 article-title: Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2003.10.261 – volume: 110 start-page: 186 year: 2018 ident: 10.1016/j.ijfatigue.2019.03.042_b0175 article-title: Effect of ultrasonic nanocrystal surface modification on elevated temperature residual stress, microstructure, and fatigue behavior of ATI 718Plus alloy publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2018.01.017 – volume: 201 start-page: 4323 year: 2006 ident: 10.1016/j.ijfatigue.2019.03.042_b0065 article-title: Behaviour of shot peening combined with WC-CoHVOF coating under complex fretting wear and fretting fatigue loading conditions publication-title: Surf Coat Tech doi: 10.1016/j.surfcoat.2006.08.094 – volume: 264 start-page: 719 year: 2008 ident: 10.1016/j.ijfatigue.2019.03.042_b0250 article-title: Fretting fatigue of rough surfaces publication-title: Wear doi: 10.1016/j.wear.2007.06.016 – volume: 89 start-page: 582 year: 2016 ident: 10.1016/j.ijfatigue.2019.03.042_b0095 article-title: Effects of laser shock processing on microstructure and mechanical properties of K403 nickel-alloy publication-title: Mater Des doi: 10.1016/j.matdes.2015.10.022 – volume: 9 start-page: 217 year: 2016 ident: 10.1016/j.ijfatigue.2019.03.042_b0050 article-title: Effects of plasma ZrN metallurgy and shot peening duplex treatment on fretting wear and fretting fatigue behavior of Ti6Al4V alloy publication-title: Materials doi: 10.3390/ma9040217 – volume: 31 start-page: 889 year: 2009 ident: 10.1016/j.ijfatigue.2019.03.042_b0060 article-title: Effect of shot peening on fretting fatigue of Ti811 alloy at elevated temperature publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2008.10.004 – volume: 30 start-page: 2769 year: 2009 ident: 10.1016/j.ijfatigue.2019.03.042_b0295 article-title: Investigation of the stress intensity factor changing on the hole crack subject to laser shock processing publication-title: Mater Des doi: 10.1016/j.matdes.2008.09.033 – volume: 309 start-page: 74 year: 2014 ident: 10.1016/j.ijfatigue.2019.03.042_b0300 article-title: Effect of fretting on fatigue performance of Ti-1023 titanium alloy publication-title: Wear doi: 10.1016/j.wear.2013.10.010 – volume: 31 start-page: 439 year: 2009 ident: 10.1016/j.ijfatigue.2019.03.042_b0315 article-title: Effect of stress relief groove on fretting fatigue strength and index for the selection of optimal groove shape publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2008.07.007 – volume: 102 start-page: 68 year: 2016 ident: 10.1016/j.ijfatigue.2019.03.042_b0090 article-title: Nanoscale surface modification of AISI 316L stainless steel by severe shot peening publication-title: Mater Des doi: 10.1016/j.matdes.2016.03.162 – volume: 516 start-page: 235 year: 2009 ident: 10.1016/j.ijfatigue.2019.03.042_b0210 article-title: The effects of deep rolling and shot peening on fretting fatigue resistance of Aluminum-7075-T6 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2009.03.020 – volume: 711 start-page: 364 year: 2018 ident: 10.1016/j.ijfatigue.2019.03.042_b0160 article-title: Effect of ultrasonic nanocrystal surface modification on residual stress, microstructure and fatigue behavior of ATI 718Plus alloy publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2017.11.043 – volume: 40 start-page: 16868 year: 2015 ident: 10.1016/j.ijfatigue.2019.03.042_b0305 article-title: Effect of addition of oxygen and water vapor on fretting fatigue properties of an austenitic stainless steel in hydrogen publication-title: Int J Hydrogen Energ doi: 10.1016/j.ijhydene.2014.12.129 – volume: 399 start-page: 58 year: 2005 ident: 10.1016/j.ijfatigue.2019.03.042_b0280 article-title: Effects of fretting fatigue on the residual stress of shot peened Ti-6Al-4V samples publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2005.02.028 – volume: 218 start-page: 93 year: 2013 ident: 10.1016/j.ijfatigue.2019.03.042_b0180 article-title: Improvement of the fatigue strength of SUS304 austenite stainless steel using ultrasonic nanocrystal surface modification publication-title: Surf Coat Tech doi: 10.1016/j.surfcoat.2012.12.033 – volume: 56 start-page: 114 year: 2013 ident: 10.1016/j.ijfatigue.2019.03.042_b0215 article-title: Residual stress relaxation and low- and high-cycle fatigue behavior of shot-peened medium-carbon steel publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2013.07.001 – volume: 52 start-page: 189 year: 2014 ident: 10.1016/j.ijfatigue.2019.03.042_b0290 article-title: Effects of laser peening on residual stresses and fatigue crack growth properties of Ti-6Al-4V titanium alloy publication-title: Opt Laser Eng doi: 10.1016/j.optlaseng.2013.06.011 – volume: 27 start-page: 323 year: 2005 ident: 10.1016/j.ijfatigue.2019.03.042_b0005 article-title: Effect of shot blasting on plain fatigue and fretting fatigue behaviour of Al-Mg-Si alloy AA6061 publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2004.07.007 – volume: 44 start-page: 292 year: 2012 ident: 10.1016/j.ijfatigue.2019.03.042_b0115 article-title: On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti–6Al–4V at elevated temperatures up to 550 °C publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2012.03.008 – volume: 62 start-page: 2473 year: 2008 ident: 10.1016/j.ijfatigue.2019.03.042_b0010 article-title: Plain fatigue and fretting fatigue behaviour of plasma nitrided Ti-6Al-4V publication-title: Mater Lett doi: 10.1016/j.matlet.2007.12.025 |
SSID | ssj0009075 |
Score | 2.5501673 |
Snippet | [Display omitted]
•FF strength is effectively improved by USRP with a GNS surface layer.•Compressive residual stress yields more contribution than GNS in... A gradient nanostructured (GNS) surface layer is synthesized on the surface of a Ti-6Al-4V alloy by means of the ultrasonic surface rolling process (USRP). The... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 249 |
SubjectTerms | Compressive properties Compressive residual stress Crack initiation Crack propagation Fatigue failure Fatigue strength Fatigue tests Fracture mechanics Fretting fatigue Gradient nanostructured surface layer Grain size Materials fatigue Metal fatigue Nanostructure Residual stress Roughening Skin pass rolling Surface layers Ti-6Al-4V alloy Titanium base alloys Ultrasonic surface rolling process Work hardening |
Title | Fretting fatigue characteristics of Ti-6Al-4V alloy with a gradient nanostructured surface layer induced by ultrasonic surface rolling process |
URI | https://dx.doi.org/10.1016/j.ijfatigue.2019.03.042 https://www.proquest.com/docview/2259348156 |
Volume | 125 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09b9swECUSZ2mHIukHmiYNbujKOhJFyspmBDGcFs2UFNmIo0gWDgzZkO0hS35Cf3OPIuXWBYoM3SSBJwk86t0d9fjI2CdXSHRO1dz6TPJCGstHxubciBopwRDeuzA18O1GTe-KL_fyfo9d9mthAq0yYX_E9A6t05Vh6s3hcjYbBloSVS-Un1Si2z1rnx3kolJywA7G11-nN7-1d6PebmjPg8EOzWv24KkLwiwJhcIoeFrk_wpSf8F1F4Mmh-xVSh5hHN_viO255jV7-Yek4Bv2cxKYt3QI6YFQ70oyw8LD7Yyr8ZwX3yH8dn-EMBkLCD_ajv-1hgabRRSW3bTOwmrTeqwdzJHyc6AinoaDBfMIm_m6xVUQ1922aaPINyzjAoS37G5ydXs55WnPBV6LQqy5ElhRCpspi7awKJwh_BMV5sqXQiFKP3KZQ0OXkFI_Q-UlZmjz0ks7ymsn3rFBs2jcewbkckOAIURpS6oipSk8qspgaVH5WuIxU30n6zoJkod9Mea6Z5496K13dPCOPheavHPMzreGy6jJ8bzJRe9FvTO8NEWO541Pe7_r9IWvNOFgJTqtnQ__c-8T9iKcRUrhKRuQb91HSnPW5oztf37KztJg_gUCBgMK |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFLYYO7AdJjaYgMH2Dly90vhHmt0QWtVtwKlM3Kzn2EZFVVql7YHL_gT-5j3HSVknTRx2ixw7sfyc977nfP7M2KmXCr3XJXehr7hU1vGBdRm3okQCGCIEH5cGrq716EZ-v1W3W-yi2wsTaZWt708-vfHWbUmvHc3efDLpRVoSZS-ETwrRnJ71gr2USuSR1_f51xPPo0hqu7E2j9U3SF6T-0ADENdIKBAmuVOZ_StE_eWsmwg03GVvWugI56l3b9mWr96x138ICu6xx2Hk3dIltC-EclOQGWYBxhOuz6dc_oT40_0B4lIsINzVDftrCRVWsyQru6q9g8WqDlh6mCKhc6AUniaDA_sAq-myxkWU1l3XqZPEN8zT9oN9djP8Or4Y8fbEBV4KKZZcCywIwPa1QycdCm_J-4kCMx1yoRFVGPi-R0tFSMDPUnKJfXRZHpQbZKUX79l2Nav8AQMyuCV3IUTucsohlZUBdWExd6hDqfCQ6W6QTdnKkcdTMaam453dm7V1TLSOOROGrHPIztYN50mR4_kmXzormo3JZShuPN_4uLO7ab_vhSEvWIhGaefof579ie2MxleX5vLb9Y8P7FW8k8iFx2yb7OxPCPAs7cdmQv8GPhwD1Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fretting+fatigue+characteristics+of+Ti-6Al-4V+alloy+with+a+gradient+nanostructured+surface+layer+induced+by+ultrasonic+surface+rolling+process&rft.jtitle=International+journal+of+fatigue&rft.au=Liu%2C+Chengsong&rft.au=Liu%2C+Daoxin&rft.au=Zhang%2C+Xiaohua&rft.au=Ao%2C+Ni&rft.date=2019-08-01&rft.pub=Elsevier+BV&rft.issn=0142-1123&rft.eissn=1879-3452&rft.volume=125&rft.spage=249&rft_id=info:doi/10.1016%2Fj.ijfatigue.2019.03.042&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-1123&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-1123&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-1123&client=summon |