Thermal Conductivity of Grade UPV-1 Pyrolytic Graphite at 1900–2950 K

The need to account for a misalignment between the heat flux density and temperature gradient vectors when studying thermal conductivity of anisotropic materials was analyzed. A method for measuring thermal conductivity of pyrolytic graphite (grade UPV-1) in the direction parallel to the precipitati...

Full description

Saved in:
Bibliographic Details
Published inMeasurement techniques Vol. 63; no. 9; pp. 736 - 740
Main Authors Kostanovskiy, А. V., Kostanovskaya, M. E., Zeodinov, M. G., Pronkin, A. A.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2020
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The need to account for a misalignment between the heat flux density and temperature gradient vectors when studying thermal conductivity of anisotropic materials was analyzed. A method for measuring thermal conductivity of pyrolytic graphite (grade UPV-1) in the direction parallel to the precipitation plane was proposed. The advantage of the proposed method is the possibility to determine thermal conductivity of pyrolytic graphite in the direction parallel to the precipitation plane while accounting for a misalignment between the heat flux density and temperature gradient vectors. The test samples were shaped as hollow cylinders with the pyrolytic graphite precipitation plane located along the radius of the cylinder. The heat flux density was determined based on the radiation heat flux emitted from the outer surface of the sample, and the temperature gradient was calculated along the radius, which made it possible to maintain the alignment between the heat flux density and temperature gradient vectors. A comparative analysis of the thermal conductivity values obtained in this study (parallel to the precipitation plane) and those reported in the reference sources was performed. The studied temperature range was extended into the higher temperature region by 450 K and constitutes 1900–2950 K.
AbstractList The need to account for a misalignment between the heat flux density and temperature gradient vectors when studying thermal conductivity of anisotropic materials was analyzed. A method for measuring thermal conductivity of pyrolytic graphite (grade UPV-1) in the direction parallel to the precipitation plane was proposed. The advantage of the proposed method is the possibility to determine thermal conductivity of pyrolytic graphite in the direction parallel to the precipitation plane while accounting for a misalignment between the heat flux density and temperature gradient vectors. The test samples were shaped as hollow cylinders with the pyrolytic graphite precipitation plane located along the radius of the cylinder. The heat flux density was determined based on the radiation heat flux emitted from the outer surface of the sample, and the temperature gradient was calculated along the radius, which made it possible to maintain the alignment between the heat flux density and temperature gradient vectors. A comparative analysis of the thermal conductivity values obtained in this study (parallel to the precipitation plane) and those reported in the reference sources was performed. The studied temperature range was extended into the higher temperature region by 450 K and constitutes 1900-2950 K.
Audience Academic
Author Kostanovskiy, А. V.
Pronkin, A. A.
Zeodinov, M. G.
Kostanovskaya, M. E.
Author_xml – sequence: 1
  givenname: А. V.
  surname: Kostanovskiy
  fullname: Kostanovskiy, А. V.
  email: Kostanovskiy@gmail.com, laimfam@gmail.com
  organization: Joint Institute of High Temperatures, Russian Academy of Sciences (JIHT RAS)
– sequence: 2
  givenname: M. E.
  surname: Kostanovskaya
  fullname: Kostanovskaya, M. E.
  organization: Joint Institute of High Temperatures, Russian Academy of Sciences (JIHT RAS)
– sequence: 3
  givenname: M. G.
  surname: Zeodinov
  fullname: Zeodinov, M. G.
  organization: Joint Institute of High Temperatures, Russian Academy of Sciences (JIHT RAS)
– sequence: 4
  givenname: A. A.
  surname: Pronkin
  fullname: Pronkin, A. A.
  organization: Joint Institute of High Temperatures, Russian Academy of Sciences (JIHT RAS)
BookMark eNp9kc1KxDAQx4MouH68gKeCJw9ZJ03zdZRFV1FQdPUa0jZZK7vtmmTF3nwH39AnMVpBvEgOA8PvNxnmv4M22661CB0QGBMAcRwIASIx5ASnWgjcb6ARYYJiqYBvohGwgmKiRL6NdkJ4AgAquBqh6ezR-qVZZJOurddVbF6a2Gedy6be1Da7v3nAJLvpfbfoY1N9dVePTbSZiRlRAB9v77likF3uoS1nFsHu_9RdNDs7nU3O8dX19GJycoUrWtCIOZWCgOG2LhWvbGkVF5QTbvKK17Q2AKq0pXOlVI4xYTirJSMlt1IVhWN0Fx0OY1e-e17bEPVTt_Zt-lHnhZA5Y0rQRI0Ham4WVjet66I3VXq1XTZVupxrUv-EM5DpblIk4eiPkJhoX-PcrEPQF3e3f9l8YCvfheCt0yvfLI3vNQH9FYYewtApDP0dhu6TRAcpJLidW_-79z_WJ58bi8M
Cites_doi 10.1016/j.applthermaleng.2010.04.014
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2021
COPYRIGHT 2020 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: COPYRIGHT 2020 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
ISR
7U5
8FD
JQ2
L7M
DOI 10.1007/s11018-021-01847-y
DatabaseName CrossRef
Gale in Context: Science
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
DatabaseTitleList
Solid State and Superconductivity Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1573-8906
EndPage 740
ExternalDocumentID A650811087
10_1007_s11018_021_01847_y
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
28-
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
6TJ
7WY
88I
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADJSZ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYGD
AFEXP
AFFNX
AFGCZ
AFGFF
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GPTSA
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IHE
IJ-
IKXTQ
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9T
PF0
PQBIZ
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~A9
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
PQBZA
7U5
8FD
JQ2
L7M
ID FETCH-LOGICAL-c343t-638710a6edb96cebe9673616a2c6d3da009bebffb89f557a65d851b6e8944f53
IEDL.DBID U2A
ISSN 0543-1972
IngestDate Fri Sep 13 01:06:03 EDT 2024
Fri Feb 02 04:28:40 EST 2024
Thu Aug 01 19:41:13 EDT 2024
Thu Sep 12 19:37:35 EDT 2024
Sat Dec 16 12:01:51 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords temperature gradient vector
pyrolytic graphite
thermal conductivity
heat flux density vector
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-638710a6edb96cebe9673616a2c6d3da009bebffb89f557a65d851b6e8944f53
PQID 2478255973
PQPubID 54071
PageCount 5
ParticipantIDs proquest_journals_2478255973
gale_infotracacademiconefile_A650811087
gale_incontextgauss_ISR_A650811087
crossref_primary_10_1007_s11018_021_01847_y
springer_journals_10_1007_s11018_021_01847_y
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Measurement techniques
PublicationTitleAbbrev Meas Tech
PublicationYear 2020
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References WangLWTamainot-TeltoZMetcalfSJAppl. Therm. Eng.201030131805181110.1016/j.applthermaleng.2010.04.014
SosedovVPProperties of Carbon-based Construction Materials1975MoscowMetallurgiya
KostanovskiiAVZeodinovMGKostanovskayaMEThermal conductivity and emissivity of DE-24 graphite at 2300–3000 KIzmer. Tekhn.2010123841
A. V. Kostanovskii, M. G. Zeodinov, M. E. Kostanovskaya, and A. A. Pronkin, “Thermal conductivity of silicified silicon carbide at 1400–2200 K,” Teplofi z. Vys. Temp., 57, No. 1, 137–139 (2019), https://doi.org/101134S0040364419010150.
L. N. Latyev, V. A. Petrov, V. Ya. Chekhovskoi, and E. N. Shestakov, Radiation Properties of Solid Materials. Reference Book, A. E. Sheindlin (ed.), Energiya, Moscow (1974).
MiszczakMŚwiderskiWInt. J. Mod. Manuf. Technol.2012425560
ChekhovskoiVYPetrovVAPetrovaIILukshinENTeplofi z. Vys. Temp.1971918084
KostanovskiiAVKostanovskayaMEZeodinovMGOn phonon mechanism of thermal conductivity of graphite at high temperaturesTeplofi z. Vys. Temp.2013513477480
С. Y. Ho, R. W. Powell, and P. E. Liley, Thermal Conductivity of Selected Materials. Pt. 2, SupDocs GPO, Washington (1968).
PrigozhinIKondepudiDThermodynamicsMFrom Heat Engines to Dissipative Structures [Russian translation]2002MoscowMir
1847_CR8
AV Kostanovskii (1847_CR9) 2010; 12
LW Wang (1847_CR1) 2010; 30
AV Kostanovskii (1847_CR3) 2013; 51
1847_CR5
M Miszczak (1847_CR2) 2012; 4
1847_CR10
VY Chekhovskoi (1847_CR6) 1971; 9
VP Sosedov (1847_CR4) 1975
I Prigozhin (1847_CR7) 2002
References_xml – ident: 1847_CR10
– ident: 1847_CR8
– volume: 51
  start-page: 477
  issue: 3
  year: 2013
  ident: 1847_CR3
  publication-title: Teplofi z. Vys. Temp.
  contributor:
    fullname: AV Kostanovskii
– ident: 1847_CR5
– volume: 4
  start-page: 55
  issue: 2
  year: 2012
  ident: 1847_CR2
  publication-title: Int. J. Mod. Manuf. Technol.
  contributor:
    fullname: M Miszczak
– volume: 30
  start-page: 1805
  issue: 13
  year: 2010
  ident: 1847_CR1
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2010.04.014
  contributor:
    fullname: LW Wang
– volume: 9
  start-page: 80
  issue: 1
  year: 1971
  ident: 1847_CR6
  publication-title: Teplofi z. Vys. Temp.
  contributor:
    fullname: VY Chekhovskoi
– volume-title: Properties of Carbon-based Construction Materials
  year: 1975
  ident: 1847_CR4
  contributor:
    fullname: VP Sosedov
– volume-title: From Heat Engines to Dissipative Structures [Russian translation]
  year: 2002
  ident: 1847_CR7
  contributor:
    fullname: I Prigozhin
– volume: 12
  start-page: 38
  year: 2010
  ident: 1847_CR9
  publication-title: Izmer. Tekhn.
  contributor:
    fullname: AV Kostanovskii
SSID ssj0003769
Score 2.1991303
Snippet The need to account for a misalignment between the heat flux density and temperature gradient vectors when studying thermal conductivity of anisotropic...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 736
SubjectTerms Analytical Chemistry
Anisotropy
Characterization and Evaluation of Materials
Flux density
Graphite
Heat conductivity
Heat flux
Heat transfer
Herbivores
Measurement methods
Measurement Science and Instrumentation
Misalignment
Physical Chemistry
Physics
Physics and Astronomy
Pyrolytic graphite
Thermal conductivity
Thermophysical Measurements
Title Thermal Conductivity of Grade UPV-1 Pyrolytic Graphite at 1900–2950 K
URI https://link.springer.com/article/10.1007/s11018-021-01847-y
https://www.proquest.com/docview/2478255973/abstract/
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fSxwxEB-sUqgPpdoWr7USSsEHG7jNv908nuKdrVREvWKfQnaT-CK7crc-3Fu_g9_QT2Im7nlq24c-BXZDCDOZyW-YmV8AvoRcyazKOS1sZqlgLqMl6zuae545xXyhUqL9x5E6GIvv5_J80cedit3nGcnkqBe9bsgtRbGiII4ip7MXsILgAY_ymA0e3G-0mIR5JXJv6px1nTJ_X-PJbfTcJ_-RHE13zvANvO7AIhnca3cNlny9DquPKATX4WUq4aymb2EUNR697CXZa2okcU2vQpAmkNHEOk_Gxz9pRo5nk-ZyFpfDr1eYQiC2JfG67t_-vmFa9snhOzgb7p_tHdDumQRaccFbGi0owgSrvCu1qqJSNNZqZcqySjnubERRpS9DKAsdpMytki7CrFL5QgsRJH8Py3VT-w0gqi-4Z167qnJCB1UUMX6NAVLQktvShx7szKVlru7JMMyC9hhla6JsTZKtmfXgMwrUIMtEjWUsF_Z6OjXfTk_MAHEhNiDkPdjuJoWmndjKdl0BcUNITPVk5uZcMaazs6lhIiIcDIp4D77OlbX4_e_Nffi_6R_hFcNAO9WxbMJyO7n2nyIaacstWBkMd3ePcBz9OtzfSqfxDthH1f8
link.rule.ids 315,786,790,27957,27958,41116,41558,42185,42627,52146,52269
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BEQIOCAoV2wdYCIkDWNr4lfi4qmi39KEKdlFvlhPbXKqk2qSHvfEf-g_5JfW4CdvyOHCKlFiWNZOZ-UYz8xngXciVzKqc08JmlgrmMlqysaO555lTzBcqFdqPT9R0Lj6fybN-KKwdut2HkmTy1KthNySXothSEJ8ip8v78AD51DHlmrPJL_8bTSaBXonkmzpn_ajM3_e4E45-d8p_VEdT0Nl7Bk97tEgmN-p9Dvd8vQ5PbnEIrsPD1MNZtS9gP6o8utlzstvUyOKaroUgTSD7C-s8mZ9-oxk5XS6a82XcDt9eYA2B2I7EeD3--eOKaTkmhy9htvdptjul_T0JtOKCdzSaUMQJVnlXalVFrWhs1sqUZZVy3NkIo0pfhlAWOkiZWyVdxFml8oUWIki-AWt1U_tXQNRYcM-8dlXlhA6qKGICGzOkoCW3pQ8j-DBIy1zcsGGYFe8xytZE2ZokW7McwVsUqEGaiRr7WL7by7Y1B1-_mAkCQ5xAyEfwvl8Umm5hK9uPBcQDITPVnZXbg2JMb2itYSJCHMyK-Ag-Dspaff734Tb_b_kbeDSdHR-Zo4OTwy14zDDrTk0t27DWLS79ToQmXfk6_YnX3YPWSg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VViA4oFKoulCKhZA4gNWNvxIfV4VtS6FaQRf1Zjmx3UuVrHbTw974D_xDfgkeb5ZtKT1wipRYljUTe95o3jwDvAm5klmVc1rYzFLBXEZL1nc09zxzivlCpUL7l1N1NBafzuX5tS7-xHZfliQXPQ2o0lS3-xMX9leNbyg0RZFeEJ8ip_N7sIGhEUldYzb4cxbH7ZMAsEQhTp2zrm3m33PcCE1_H9C3KqUpAA034XGHHMlg4eonsObrLXh0TU9wC-4nPmc1ewqH0f3xyL0kB02Niq7pigjSBHI4tc6T8eg7zchoPm0u53E6fDvBegKxLYmxu__rx0-mZZ-cPIOz4cezgyPa3ZlAKy54S-N2ipjBKu9KraroIY3ErUxZVinHnY2QqvRlCGWhg5S5VdJFzFUqX2ghguTbsF43td8BovqCe-a1qyondFBFEZPZmC0FLbktfejBu6W1zGShjGFWGshoWxNta5JtzbwHr9GgBiUnauS0XNir2cwcf_tqBggSsRsh78HbblBo2qmtbNciEBeEKlU3Ru4uHWO6TTczTES4gxkS78H7pbNWn-9e3PP_G_4KHow-DM3n49OTF_CQYQKe-C27sN5Or_zLiFLaci_9iL8BoGPajw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+Conductivity+of+Grade+UPV-1+Pyrolytic+Graphite+at+1900-2950+K&rft.jtitle=Measurement+techniques&rft.au=Kostanovskiy%2C+%C3%90.+V&rft.au=Kostanovskaya%2C+M.+E&rft.au=Zeodinov%2C+M.+G&rft.au=Pronkin%2C+A.+A&rft.date=2020-12-01&rft.pub=Springer&rft.issn=0543-1972&rft.eissn=1573-8906&rft.volume=63&rft.issue=9&rft.spage=736&rft_id=info:doi/10.1007%2Fs11018-021-01847-y&rft.externalDBID=ISR&rft.externalDocID=A650811087
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0543-1972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0543-1972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0543-1972&client=summon