Hierarchical stability conditions for time-varying delay systems via an extended reciprocally convex quadratic inequality
This paper studies the stability problems of linear systems with time-varying delays. Firstly, an extended reciprocally convex quadratic inequality and an improved quadratic function negative-determination condition are proposed. Based on the method proposed, some less conservative criteria are deri...
Saved in:
Published in | Journal of the Franklin Institute Vol. 357; no. 14; pp. 9930 - 9941 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elmsford
Elsevier Ltd
01.09.2020
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper studies the stability problems of linear systems with time-varying delays. Firstly, an extended reciprocally convex quadratic inequality and an improved quadratic function negative-determination condition are proposed. Based on the method proposed, some less conservative criteria are derived. Finally, a well-known numerical example is carried out to demonstrate the effectiveness and the merits of the proposed method. |
---|---|
AbstractList | This paper studies the stability problems of linear systems with time-varying delays. Firstly, an extended reciprocally convex quadratic inequality and an improved quadratic function negative-determination condition are proposed. Based on the method proposed, some less conservative criteria are derived. Finally, a well-known numerical example is carried out to demonstrate the effectiveness and the merits of the proposed method. |
Author | Lin, Hui-Chao Teo, Kok-Lay Wang, Wei He, Yong Zeng, Hong-Bing |
Author_xml | – sequence: 1 givenname: Hong-Bing surname: Zeng fullname: Zeng, Hong-Bing email: 9804zhb@163.com organization: College of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412007, China – sequence: 2 givenname: Hui-Chao surname: Lin fullname: Lin, Hui-Chao organization: College of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412007, China – sequence: 3 givenname: Yong surname: He fullname: He, Yong email: heyong08@cug.edu.cn organization: School of Automation, China University of Geosciences, Wuhan 430074, China – sequence: 4 givenname: Kok-Lay surname: Teo fullname: Teo, Kok-Lay email: K.L.Teo@curtin.edu.au organization: School of Mathematical Science, Sunway University, Selangor Darul Ehsan 47500, Malaysia – sequence: 5 givenname: Wei surname: Wang fullname: Wang, Wei organization: College of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412007, China |
BookMark | eNqNkUFv1DAQha2qSGwLvwFLnJNO4sReHzhUFdBKlXqBs-XYE5g067S2d9X8-3pZxIELnEZPeu_N6JsLdh6WgIx9aKBuoJFXUz2N0YbHmULdQgs1qBpEd8Y2zVbpqpVanLMNFGsFINq37CKlqUjVAGzYeksYbXQ_ydmZp2wHmimv3C3BU6YlJD4ukWfaYXWwcaXwg3uc7crTmjLuEj-Q5TZwfMkYPHoe0dFTXErd_KvmgC_8eW99tJkcp4BFHFe8Y29GOyd8_3tesu9fPn-7ua3uH77e3VzfV050Ileyxa5VjZIC7WD9Vrhm8L1wMHQCtN36rcTeC9Sdts5br3vtUaqhg1FCr7W4ZB9PveWo5z2mbKZlH0NZadquVwpASlFcn04uF5eUIo7GUbZHADlamk0D5kjbTOYPbXOkbUCZQrvk1V_5p0i7Auw_ktenJBYIh_INkxxhcOipoMzGL_TPjlfEbKUy |
CitedBy_id | crossref_primary_10_1080_00207721_2022_2037782 crossref_primary_10_1007_s40815_023_01566_2 crossref_primary_10_1007_s12555_024_0526_8 crossref_primary_10_1109_TCYB_2024_3418609 crossref_primary_10_1007_s11063_021_10577_9 crossref_primary_10_1016_j_chaos_2022_113059 crossref_primary_10_1016_j_neucom_2021_01_098 crossref_primary_10_1109_TFUZZ_2022_3187180 crossref_primary_10_3390_math12142241 crossref_primary_10_1002_rnc_7283 crossref_primary_10_1109_ACCESS_2023_3277210 crossref_primary_10_1109_ACCESS_2024_3402815 crossref_primary_10_1109_TCSII_2024_3451555 crossref_primary_10_1109_TCYB_2021_3108805 crossref_primary_10_1016_j_automatica_2024_112077 crossref_primary_10_1109_ACCESS_2023_3326715 crossref_primary_10_1016_j_amc_2022_127008 crossref_primary_10_1016_j_isatra_2021_11_027 crossref_primary_10_1109_TCYB_2024_3365709 crossref_primary_10_1016_j_jfranklin_2024_107125 crossref_primary_10_1016_j_jfranklin_2023_10_015 crossref_primary_10_1109_ACCESS_2021_3114001 crossref_primary_10_1080_00207721_2023_2172327 crossref_primary_10_1016_j_jfranklin_2022_09_020 crossref_primary_10_3934_math_2022901 crossref_primary_10_1109_TFUZZ_2024_3375449 crossref_primary_10_1016_j_amc_2023_127918 crossref_primary_10_1080_00207721_2021_2006356 crossref_primary_10_1016_j_automatica_2024_111526 crossref_primary_10_1109_TSMC_2024_3492335 crossref_primary_10_1016_j_jfranklin_2024_106816 crossref_primary_10_1016_j_nahs_2024_101477 crossref_primary_10_1016_j_amc_2021_126222 crossref_primary_10_1016_j_jfranklin_2021_10_007 crossref_primary_10_1109_ACCESS_2021_3138985 crossref_primary_10_3934_math_2021504 crossref_primary_10_1016_j_jfranklin_2023_08_035 crossref_primary_10_1109_TSMC_2022_3204785 crossref_primary_10_1016_j_neunet_2024_106637 crossref_primary_10_3934_era_2023284 crossref_primary_10_1007_s12555_020_0474_x crossref_primary_10_1016_j_jfranklin_2024_106776 crossref_primary_10_1049_cth2_12632 crossref_primary_10_1080_00207721_2022_2035012 crossref_primary_10_1109_TCYB_2022_3140463 crossref_primary_10_1016_j_amc_2022_127163 crossref_primary_10_1016_j_ins_2021_08_055 crossref_primary_10_1109_TNSE_2023_3235303 crossref_primary_10_1016_j_amc_2022_127288 crossref_primary_10_1016_j_jfranklin_2024_106927 crossref_primary_10_1016_j_jfranklin_2021_11_038 crossref_primary_10_1049_cth2_12187 crossref_primary_10_1109_TFUZZ_2023_3316351 crossref_primary_10_1080_00207721_2022_2065705 crossref_primary_10_1016_j_chaos_2023_114055 crossref_primary_10_1109_ACCESS_2023_3290046 crossref_primary_10_1016_j_jfranklin_2022_04_023 crossref_primary_10_1109_TSMC_2023_3247443 crossref_primary_10_1080_00207721_2022_2157198 crossref_primary_10_1109_JAS_2022_106025 crossref_primary_10_1016_j_jfranklin_2022_12_011 crossref_primary_10_1109_TNNLS_2020_3042307 crossref_primary_10_1016_j_jfranklin_2021_11_029 crossref_primary_10_3934_math_2023906 crossref_primary_10_1007_s12346_022_00651_5 crossref_primary_10_1016_j_amc_2023_128303 crossref_primary_10_1109_ACCESS_2022_3206959 crossref_primary_10_1007_s11432_020_3221_6 crossref_primary_10_1109_ACCESS_2020_3020642 crossref_primary_10_1109_TNNLS_2022_3144032 crossref_primary_10_1002_rnc_6151 crossref_primary_10_1016_j_jfranklin_2022_01_015 crossref_primary_10_3390_math10214119 crossref_primary_10_1049_cth2_12778 crossref_primary_10_1109_TFUZZ_2022_3182786 crossref_primary_10_1016_j_jfranklin_2024_106987 crossref_primary_10_1016_j_jfranklin_2023_12_001 crossref_primary_10_1016_j_jfranklin_2022_04_009 crossref_primary_10_1016_j_jfranklin_2024_107157 crossref_primary_10_1109_TFUZZ_2023_3240250 crossref_primary_10_1002_rnc_6666 crossref_primary_10_1016_j_jfranklin_2022_07_032 crossref_primary_10_1109_ACCESS_2024_3354030 crossref_primary_10_1142_S0217979221501770 crossref_primary_10_1016_j_automatica_2023_111192 crossref_primary_10_1109_TPWRS_2024_3382146 crossref_primary_10_12677_PM_2024_142054 crossref_primary_10_3390_math12111638 crossref_primary_10_1016_j_chaos_2021_111212 crossref_primary_10_1080_00207721_2023_2230207 crossref_primary_10_1007_s11432_021_3433_8 crossref_primary_10_1016_j_ijepes_2024_110140 crossref_primary_10_3934_math_2023057 crossref_primary_10_1109_ACCESS_2023_3327190 crossref_primary_10_1016_j_sysconle_2024_105948 crossref_primary_10_1016_j_neucom_2021_08_071 crossref_primary_10_1016_j_jfranklin_2023_11_040 crossref_primary_10_1016_j_isatra_2022_10_007 crossref_primary_10_1109_ACCESS_2024_3519343 crossref_primary_10_1109_TNNLS_2023_3289208 crossref_primary_10_1016_j_jfranklin_2021_04_046 crossref_primary_10_1016_j_jfranklin_2023_11_037 crossref_primary_10_1016_j_aml_2024_109336 crossref_primary_10_1007_s12555_023_0230_0 |
Cites_doi | 10.1080/00207170802635476 10.1109/TCYB.2018.2868136 10.1016/j.automatica.2017.07.056 10.1016/j.jfranklin.2014.09.021 10.1016/j.automatica.2016.11.001 10.1007/s12555-016-0315-0 10.1049/iet-cta.2018.5048 10.1109/JAS.2020.1003111 10.1016/j.automatica.2009.11.002 10.1016/j.jfranklin.2015.01.004 10.1016/j.amc.2019.02.009 10.1016/j.automatica.2018.06.017 10.1016/j.automatica.2017.04.048 10.1109/TAC.2011.2121410 10.1016/j.automatica.2015.07.017 10.1016/j.automatica.2019.108764 10.1016/j.amc.2020.125041 10.1016/j.automatica.2016.08.011 10.1016/j.automatica.2016.04.048 10.1016/j.sysconle.2013.11.005 10.1016/j.automatica.2008.09.010 10.1016/j.automatica.2015.08.025 10.1016/j.sysconle.2016.03.002 10.1049/iet-cta.2018.5188 10.1016/j.automatica.2009.08.002 10.1016/j.automatica.2010.10.014 10.1016/j.jfranklin.2019.03.029 10.1016/j.automatica.2019.108562 10.1016/j.sysconle.2015.03.007 10.1016/j.automatica.2011.05.023 10.1016/j.jfranklin.2020.01.022 10.1109/TAC.2015.2404271 10.1016/j.automatica.2013.05.030 10.1016/j.neunet.2020.02.015 10.1109/TNNLS.2019.2909350 10.1016/j.automatica.2006.08.015 10.1109/TAC.2015.2503047 |
ContentType | Journal Article |
Copyright | 2020 The Franklin Institute Copyright Elsevier Science Ltd. Sep 2020 |
Copyright_xml | – notice: 2020 The Franklin Institute – notice: Copyright Elsevier Science Ltd. Sep 2020 |
DBID | AAYXX CITATION 7TB 8FD FR3 KR7 |
DOI | 10.1016/j.jfranklin.2020.07.034 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1879-2693 0016-0032 |
EndPage | 9941 |
ExternalDocumentID | 10_1016_j_jfranklin_2020_07_034 S0016003220305135 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61741308 funderid: https://doi.org/10.13039/501100001809 – fundername: Natural Science Foundation of Hunan Province grantid: 2020JJ2013; 2018JJ2096 funderid: https://doi.org/10.13039/501100004735 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 41~ 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFRF ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACCUC ACDAQ ACGFO ACGFS ACIWK ACNCT ACNNM ACRLP ACZNC ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AETEA AFDAS AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CS3 D1Z EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HAMUX HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY7 M26 M41 MHUIS MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SES SET SEW SME SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 UHS VOH WH7 WUQ XOL XPP ZCG ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ADNMO ADXHL AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AHPAA AIIUN ANKPU APXCP BNPGV CITATION SSH 7TB 8FD EFKBS FR3 KR7 |
ID | FETCH-LOGICAL-c343t-62e4271763eabad83c1bd53c0b4309a8d86e5d3e949acdad959de67b40f605993 |
IEDL.DBID | .~1 |
ISSN | 0016-0032 |
IngestDate | Fri Jul 25 02:47:07 EDT 2025 Thu Apr 24 22:57:29 EDT 2025 Tue Jul 01 01:38:19 EDT 2025 Fri Feb 23 02:47:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-62e4271763eabad83c1bd53c0b4309a8d86e5d3e949acdad959de67b40f605993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2457700663 |
PQPubID | 2045917 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2457700663 crossref_citationtrail_10_1016_j_jfranklin_2020_07_034 crossref_primary_10_1016_j_jfranklin_2020_07_034 elsevier_sciencedirect_doi_10_1016_j_jfranklin_2020_07_034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 2020-09-00 20200901 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationPlace | Elmsford |
PublicationPlace_xml | – name: Elmsford |
PublicationTitle | Journal of the Franklin Institute |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Chen, Park, Xu (bib0040) 2019; 13 Park, Park (bib0026) 2020; 357 Seuret, Gouaisbaut (bib0029) 2013; 49 Zeng, Liu, Wang (bib0034) 2019; 354 Zhou, Liu, Xia, Wang, Arik (bib0015) 2020; 125 Shao (bib0016) 2009; 45 Lee, Park, Xu (bib0022) 2017; 75 Briat (bib0027) 2011; 56 Zeng, Zhai, He, Teo, Wang (bib0008) 2020; 374 Park, Lee, Lee (bib0030) 2015; 352 Zeng, He, Wu, She (bib0032) 2015; 60 Zhang, Han, Seuret, Gouaisbaut, He (bib0018) 2019; 13 Kim (bib0024) 2011; 47 Zhou, Egorov (bib0005) 2016; 71 Ariba, Gouaisbaut (bib0020) 2009; 82 Zhang, Long, He, Yao, Jiang, Wu (bib0004) 2020; 113 Kwon, Park, Park, Lee, Cha (bib0006) 2014; 351 Park, Ko (bib0011) 2011; 47 Liu, Seuret, Xia, Gouaisbaut, Ariba (bib0014) 2019; 109 Sun, Liu, Chen, Rees (bib0021) 2010; 46 Chen, Park, Xu (bib0013) 2020; 31 Zeng, He, Wu, She (bib0033) 2015; 60 Chen, Park, Xu (bib0019) 2019; 49 A. Seuret, F. Gouaisbaut, Delay-dependent reciprocally convex combination lemma, 2017 Seuret, Gouaisbaut (bib0031) 2015; 81 Zhang, He, Jiang, Wu, Zeng (bib0012) 2016; 61 Liu, Fridman (bib0035) 2014; 64 Xiao, Lian, Zeng, Chen, Zheng (bib0039) 2017; 15 . He, Wang, Xie, Lin (bib0010) 2007; 43 Zhang, He, Jiang, Wu, Wang (bib0036) 2017; 85 Seuret, Liu, Gouaisbaut (bib0041) 2018; 95 Zhang, He, Jiang, Wu, Zeng (bib0003) 2016; 92 Gu (bib0028) 2000 Fridman, Shaked, Liu (bib0009) 2009; 45 Gu, Kharitonov, Chen (bib0001) 2003 Zeng, Liu, Wang, Xiao (bib0038) 2019; 356 X. M. Zhang, Q. L. Han, X. Ge, Novel stability criteria for linear time-delay systems using Lyapunov-Krasovskii functionals with a cubic polynomial on time-varying delay, IEEE/CAA J. Automat. Sin. doi Liu, Seuret, Xia (bib0017) 2017; 76 Z. Yan, H. Huang, J. Cao, Variable-sampling-period dependent global stabilization of delayed memristive neural networks based on refined switching event-triggered control, Sci. China Inf. Sci. Kim (bib0025) 2016; 64 Zhang, Han, Seuret, Gouaisbaut (bib0023) 2017; 84 10.1016/j.jfranklin.2020.07.034_bib0007 Zhang (10.1016/j.jfranklin.2020.07.034_bib0012) 2016; 61 Lee (10.1016/j.jfranklin.2020.07.034_bib0022) 2017; 75 Zhou (10.1016/j.jfranklin.2020.07.034_bib0005) 2016; 71 Chen (10.1016/j.jfranklin.2020.07.034_bib0013) 2020; 31 Liu (10.1016/j.jfranklin.2020.07.034_bib0014) 2019; 109 Gu (10.1016/j.jfranklin.2020.07.034_bib0028) 2000 Kim (10.1016/j.jfranklin.2020.07.034_bib0025) 2016; 64 10.1016/j.jfranklin.2020.07.034_bib0002 Seuret (10.1016/j.jfranklin.2020.07.034_bib0031) 2015; 81 Kwon (10.1016/j.jfranklin.2020.07.034_bib0006) 2014; 351 Park (10.1016/j.jfranklin.2020.07.034_bib0026) 2020; 357 Zeng (10.1016/j.jfranklin.2020.07.034_bib0033) 2015; 60 Gu (10.1016/j.jfranklin.2020.07.034_bib0001) 2003 Zhang (10.1016/j.jfranklin.2020.07.034_bib0003) 2016; 92 Chen (10.1016/j.jfranklin.2020.07.034_bib0019) 2019; 49 Seuret (10.1016/j.jfranklin.2020.07.034_bib0029) 2013; 49 Liu (10.1016/j.jfranklin.2020.07.034_bib0035) 2014; 64 Chen (10.1016/j.jfranklin.2020.07.034_bib0040) 2019; 13 Fridman (10.1016/j.jfranklin.2020.07.034_bib0009) 2009; 45 Zeng (10.1016/j.jfranklin.2020.07.034_bib0034) 2019; 354 Zeng (10.1016/j.jfranklin.2020.07.034_bib0038) 2019; 356 Park (10.1016/j.jfranklin.2020.07.034_bib0011) 2011; 47 Xiao (10.1016/j.jfranklin.2020.07.034_bib0039) 2017; 15 Sun (10.1016/j.jfranklin.2020.07.034_bib0021) 2010; 46 Zhang (10.1016/j.jfranklin.2020.07.034_bib0018) 2019; 13 10.1016/j.jfranklin.2020.07.034_bib0037 Briat (10.1016/j.jfranklin.2020.07.034_bib0027) 2011; 56 Liu (10.1016/j.jfranklin.2020.07.034_bib0017) 2017; 76 Seuret (10.1016/j.jfranklin.2020.07.034_bib0041) 2018; 95 Zhang (10.1016/j.jfranklin.2020.07.034_bib0004) 2020; 113 He (10.1016/j.jfranklin.2020.07.034_bib0010) 2007; 43 Ariba (10.1016/j.jfranklin.2020.07.034_bib0020) 2009; 82 Zeng (10.1016/j.jfranklin.2020.07.034_bib0008) 2020; 374 Park (10.1016/j.jfranklin.2020.07.034_bib0030) 2015; 352 Zeng (10.1016/j.jfranklin.2020.07.034_bib0032) 2015; 60 Zhou (10.1016/j.jfranklin.2020.07.034_bib0015) 2020; 125 Shao (10.1016/j.jfranklin.2020.07.034_bib0016) 2009; 45 Zhang (10.1016/j.jfranklin.2020.07.034_bib0023) 2017; 84 Kim (10.1016/j.jfranklin.2020.07.034_bib0024) 2011; 47 Zhang (10.1016/j.jfranklin.2020.07.034_bib0036) 2017; 85 |
References_xml | – volume: 71 start-page: 281 year: 2016 end-page: 291 ident: bib0005 article-title: Razumikhin and krasovskii stability theorems for time-varying time-delay systems publication-title: Automatica – volume: 75 start-page: 11 year: 2017 end-page: 15 ident: bib0022 article-title: Relaxed conditions for stability of time-varying delay systems publication-title: Automatica – volume: 354 start-page: 1 year: 2019 end-page: 8 ident: bib0034 article-title: A generalized free-matrix-based integral inequality for stability analysis of time-varying delay systems publication-title: Appl. Math. Comput. – volume: 43 start-page: 371 year: 2007 end-page: 376 ident: bib0010 article-title: Delay-range-dependent stability for systems with time-varying delay publication-title: Automatica – volume: 95 start-page: 488 year: 2018 end-page: 493 ident: bib0041 article-title: Generalized reciprocally convex combination lemmas and its application to time-delay systems publication-title: Automatica – volume: 61 start-page: 2663 year: 2016 end-page: 2669 ident: bib0012 article-title: Delay-variation-dependent stability of delayed discrete-time systems publication-title: IEEE Trans. Autom. Control – volume: 82 start-page: 1616 year: 2009 end-page: 1626 ident: bib0020 article-title: An augmented model for robust stability analysis of time-varying delay systems publication-title: Int. J. Control – volume: 374 start-page: 125041 year: 2020 ident: bib0008 article-title: New insights on stability of sampled-data systems with time-delay publication-title: Appl. Math. Comput. – volume: 60 start-page: 2768 year: 2015 end-page: 2772 ident: bib0032 article-title: Free-matrix-based integral inequality for stability analysis of systems with time-varying delay publication-title: IEEE Trans. Autom. Control – volume: 47 start-page: 235 year: 2011 end-page: 238 ident: bib0011 article-title: Reciprocally convex approach to stability of systems with time-varying delays publication-title: Automatica – volume: 15 start-page: 2385 year: 2017 end-page: 2394 ident: bib0039 article-title: Analysis on robust passivity of uncertain neural networks with time-varying delays via free-matrix-based integral inequality, international journal of control publication-title: Autom. Syst. – volume: 92 start-page: 52 year: 2016 end-page: 61 ident: bib0003 article-title: Stability analysis of systems with time-varying delay via relaxed integral inequalities publication-title: Syst. Control Lett. – volume: 49 start-page: 4495 year: 2019 end-page: 4500 ident: bib0019 article-title: Stability analysis for neural networks with time-varying delay via improved techniques publication-title: IEEE Trans. Cybern. – volume: 47 start-page: 2118 year: 2011 end-page: 2121 ident: bib0024 article-title: Note on stability of linear systems with time-varying delay publication-title: Automatica – volume: 31 start-page: 675 year: 2020 end-page: 684 ident: bib0013 article-title: Stability analysis for delayed neural networks with an improved general free-matrix-based integral inequality publication-title: IEEE Trans. Neural Netw. Learn. Syst. – year: 2003 ident: bib0001 article-title: Stability of Time Delay Systems – volume: 352 start-page: 1378 year: 2015 end-page: 1396 ident: bib0030 article-title: Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems publication-title: J. Frankl. Inst. – volume: 84 start-page: 221 year: 2017 end-page: 226 ident: bib0023 article-title: An improved reciprocally convex inequality and an augmented Lyapunov-Krasovskii functional for stability of linear systems with time-varying delay publication-title: Automatica – volume: 64 start-page: 57 year: 2014 end-page: 63 ident: bib0035 article-title: Delay-dependent methods and the first delay interval publication-title: Syst. Control Lett. – volume: 357 start-page: 4316 year: 2020 end-page: 4327 ident: bib0026 article-title: Finite-interval quadratic polynomial inequalities and their application to time-delay systems publication-title: J. Frankl. Inst. – reference: X. M. Zhang, Q. L. Han, X. Ge, Novel stability criteria for linear time-delay systems using Lyapunov-Krasovskii functionals with a cubic polynomial on time-varying delay, IEEE/CAA J. Automat. Sin. doi: – volume: 109 start-page: 108562 year: 2019 ident: bib0014 article-title: Bessel-laguerre inequality and its application to systems with infinite distributed delays publication-title: Automatica – volume: 56 start-page: 1660 year: 2011 end-page: 1665 ident: bib0027 article-title: Convergence and equivalence results for the jensens inequality: application to time-delay and sampled-data systems publication-title: IEEE Trans. Autom. Control – start-page: 2805 year: 2000 end-page: 2810 ident: bib0028 article-title: An integral inequality in the stability problem of time-delay systems publication-title: Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia – volume: 13 start-page: 1 year: 2019 end-page: 16 ident: bib0018 article-title: An overview of recent advances in stability of linear systems with time-varying delays publication-title: IET Control Theory Appl. – volume: 60 start-page: 189 year: 2015 end-page: 192 ident: bib0033 article-title: New results on stability analysis for systems with discrete distributed delay publication-title: Automatica – volume: 46 start-page: 466 year: 2010 end-page: 470 ident: bib0021 article-title: Improved delay-range-dependent stability criteria for linear systems with time-varying delays publication-title: Automatica – volume: 45 start-page: 2723 year: 2009 end-page: 2727 ident: bib0009 article-title: New conditions for delay-derivative-dependent stability publication-title: Automatica – reference: A. Seuret, F. Gouaisbaut, Delay-dependent reciprocally convex combination lemma, 2017, – volume: 356 start-page: 7312 year: 2019 end-page: 7321 ident: bib0038 article-title: New results on stability analysis of systems with time-varying delays using a generalized free-matrix-based inequality publication-title: J. Frankl. Inst. – volume: 64 start-page: 121 year: 2016 end-page: 125 ident: bib0025 article-title: Further improvement of Jensen inequality and application to stability of time-delayed systems publication-title: Automatica – reference: . – volume: 49 start-page: 2860 year: 2013 end-page: 2866 ident: bib0029 article-title: Wirtinger-based integral inequality: application to time-delay systems publication-title: Automatica – volume: 13 start-page: 3184 year: 2019 end-page: 3189 ident: bib0040 article-title: Stability analysis of systems with timevarying delay: a quadratic-partitioning method publication-title: IET Control Theory Appl. – reference: Z. Yan, H. Huang, J. Cao, Variable-sampling-period dependent global stabilization of delayed memristive neural networks based on refined switching event-triggered control, Sci. China Inf. Sci. – volume: 85 start-page: 481 year: 2017 end-page: 485 ident: bib0036 article-title: An extended reciprocally convex matrix inequality for stability analysis of systems with time-varying delay publication-title: Automatica – volume: 125 start-page: 194 year: 2020 end-page: 204 ident: bib0015 article-title: Resilient fault-tolerant anti-synchronization for stochastic delayed reaction-diffusion neural networks with semi-Markov jump parameters publication-title: Neural Netw. – volume: 76 start-page: 138 year: 2017 end-page: 142 ident: bib0017 article-title: Stability analysis of systems with time-varying delays via the second-order bessel-Legendre inequality publication-title: Automatica – volume: 81 start-page: 1 year: 2015 end-page: 7 ident: bib0031 article-title: Hierarchy of LMI conditions for the stability analysis of time-delay systems publication-title: Syst. Control Lett. – volume: 45 start-page: 744 year: 2009 end-page: 749 ident: bib0016 article-title: New delay-dependent stability criteria for systems with interval delay publication-title: Automatica – volume: 113 start-page: 108764 year: 2020 ident: bib0004 article-title: A relaxed quadratic function negative-determination lemma and its application to time-delay systems publication-title: Automatica – volume: 351 start-page: 5386 year: 2014 end-page: 5398 ident: bib0006 article-title: Improved results on stability of linear systems with time-varying delays via wirtinger-based integral inequality publication-title: J. Frankl. Inst. – volume: 82 start-page: 1616 issue: 9 year: 2009 ident: 10.1016/j.jfranklin.2020.07.034_bib0020 article-title: An augmented model for robust stability analysis of time-varying delay systems publication-title: Int. J. Control doi: 10.1080/00207170802635476 – volume: 49 start-page: 4495 issue: 12 year: 2019 ident: 10.1016/j.jfranklin.2020.07.034_bib0019 article-title: Stability analysis for neural networks with time-varying delay via improved techniques publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2868136 – volume: 85 start-page: 481 year: 2017 ident: 10.1016/j.jfranklin.2020.07.034_bib0036 article-title: An extended reciprocally convex matrix inequality for stability analysis of systems with time-varying delay publication-title: Automatica doi: 10.1016/j.automatica.2017.07.056 – volume: 351 start-page: 5386 year: 2014 ident: 10.1016/j.jfranklin.2020.07.034_bib0006 article-title: Improved results on stability of linear systems with time-varying delays via wirtinger-based integral inequality publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2014.09.021 – volume: 76 start-page: 138 year: 2017 ident: 10.1016/j.jfranklin.2020.07.034_bib0017 article-title: Stability analysis of systems with time-varying delays via the second-order bessel-Legendre inequality publication-title: Automatica doi: 10.1016/j.automatica.2016.11.001 – volume: 15 start-page: 2385 issue: 5 year: 2017 ident: 10.1016/j.jfranklin.2020.07.034_bib0039 article-title: Analysis on robust passivity of uncertain neural networks with time-varying delays via free-matrix-based integral inequality, international journal of control publication-title: Autom. Syst. doi: 10.1007/s12555-016-0315-0 – volume: 13 start-page: 3184 issue: 18 year: 2019 ident: 10.1016/j.jfranklin.2020.07.034_bib0040 article-title: Stability analysis of systems with timevarying delay: a quadratic-partitioning method publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2018.5048 – ident: 10.1016/j.jfranklin.2020.07.034_bib0002 doi: 10.1109/JAS.2020.1003111 – volume: 46 start-page: 466 year: 2010 ident: 10.1016/j.jfranklin.2020.07.034_bib0021 article-title: Improved delay-range-dependent stability criteria for linear systems with time-varying delays publication-title: Automatica doi: 10.1016/j.automatica.2009.11.002 – volume: 352 start-page: 1378 issue: 4 year: 2015 ident: 10.1016/j.jfranklin.2020.07.034_bib0030 article-title: Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2015.01.004 – volume: 354 start-page: 1 year: 2019 ident: 10.1016/j.jfranklin.2020.07.034_bib0034 article-title: A generalized free-matrix-based integral inequality for stability analysis of time-varying delay systems publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2019.02.009 – volume: 95 start-page: 488 year: 2018 ident: 10.1016/j.jfranklin.2020.07.034_bib0041 article-title: Generalized reciprocally convex combination lemmas and its application to time-delay systems publication-title: Automatica doi: 10.1016/j.automatica.2018.06.017 – volume: 84 start-page: 221 year: 2017 ident: 10.1016/j.jfranklin.2020.07.034_bib0023 article-title: An improved reciprocally convex inequality and an augmented Lyapunov-Krasovskii functional for stability of linear systems with time-varying delay publication-title: Automatica doi: 10.1016/j.automatica.2017.04.048 – volume: 56 start-page: 1660 year: 2011 ident: 10.1016/j.jfranklin.2020.07.034_bib0027 article-title: Convergence and equivalence results for the jensens inequality: application to time-delay and sampled-data systems publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2011.2121410 – volume: 60 start-page: 189 year: 2015 ident: 10.1016/j.jfranklin.2020.07.034_bib0033 article-title: New results on stability analysis for systems with discrete distributed delay publication-title: Automatica doi: 10.1016/j.automatica.2015.07.017 – volume: 113 start-page: 108764 year: 2020 ident: 10.1016/j.jfranklin.2020.07.034_bib0004 article-title: A relaxed quadratic function negative-determination lemma and its application to time-delay systems publication-title: Automatica doi: 10.1016/j.automatica.2019.108764 – volume: 374 start-page: 125041 year: 2020 ident: 10.1016/j.jfranklin.2020.07.034_bib0008 article-title: New insights on stability of sampled-data systems with time-delay publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2020.125041 – volume: 75 start-page: 11 year: 2017 ident: 10.1016/j.jfranklin.2020.07.034_bib0022 article-title: Relaxed conditions for stability of time-varying delay systems publication-title: Automatica doi: 10.1016/j.automatica.2016.08.011 – volume: 71 start-page: 281 year: 2016 ident: 10.1016/j.jfranklin.2020.07.034_bib0005 article-title: Razumikhin and krasovskii stability theorems for time-varying time-delay systems publication-title: Automatica doi: 10.1016/j.automatica.2016.04.048 – volume: 64 start-page: 57 issue: 1 year: 2014 ident: 10.1016/j.jfranklin.2020.07.034_bib0035 article-title: Delay-dependent methods and the first delay interval publication-title: Syst. Control Lett. doi: 10.1016/j.sysconle.2013.11.005 – volume: 45 start-page: 744 issue: 3 year: 2009 ident: 10.1016/j.jfranklin.2020.07.034_bib0016 article-title: New delay-dependent stability criteria for systems with interval delay publication-title: Automatica doi: 10.1016/j.automatica.2008.09.010 – start-page: 2805 year: 2000 ident: 10.1016/j.jfranklin.2020.07.034_bib0028 article-title: An integral inequality in the stability problem of time-delay systems – ident: 10.1016/j.jfranklin.2020.07.034_bib0007 – year: 2003 ident: 10.1016/j.jfranklin.2020.07.034_bib0001 – volume: 64 start-page: 121 year: 2016 ident: 10.1016/j.jfranklin.2020.07.034_bib0025 article-title: Further improvement of Jensen inequality and application to stability of time-delayed systems publication-title: Automatica doi: 10.1016/j.automatica.2015.08.025 – volume: 92 start-page: 52 year: 2016 ident: 10.1016/j.jfranklin.2020.07.034_bib0003 article-title: Stability analysis of systems with time-varying delay via relaxed integral inequalities publication-title: Syst. Control Lett. doi: 10.1016/j.sysconle.2016.03.002 – volume: 13 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.jfranklin.2020.07.034_bib0018 article-title: An overview of recent advances in stability of linear systems with time-varying delays publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2018.5188 – volume: 45 start-page: 2723 year: 2009 ident: 10.1016/j.jfranklin.2020.07.034_bib0009 article-title: New conditions for delay-derivative-dependent stability publication-title: Automatica doi: 10.1016/j.automatica.2009.08.002 – volume: 47 start-page: 235 year: 2011 ident: 10.1016/j.jfranklin.2020.07.034_bib0011 article-title: Reciprocally convex approach to stability of systems with time-varying delays publication-title: Automatica doi: 10.1016/j.automatica.2010.10.014 – volume: 356 start-page: 7312 issue: 13 year: 2019 ident: 10.1016/j.jfranklin.2020.07.034_bib0038 article-title: New results on stability analysis of systems with time-varying delays using a generalized free-matrix-based inequality publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2019.03.029 – volume: 109 start-page: 108562 year: 2019 ident: 10.1016/j.jfranklin.2020.07.034_bib0014 article-title: Bessel-laguerre inequality and its application to systems with infinite distributed delays publication-title: Automatica doi: 10.1016/j.automatica.2019.108562 – volume: 81 start-page: 1 year: 2015 ident: 10.1016/j.jfranklin.2020.07.034_bib0031 article-title: Hierarchy of LMI conditions for the stability analysis of time-delay systems publication-title: Syst. Control Lett. doi: 10.1016/j.sysconle.2015.03.007 – volume: 47 start-page: 2118 issue: 9 year: 2011 ident: 10.1016/j.jfranklin.2020.07.034_bib0024 article-title: Note on stability of linear systems with time-varying delay publication-title: Automatica doi: 10.1016/j.automatica.2011.05.023 – volume: 357 start-page: 4316 issue: 7 year: 2020 ident: 10.1016/j.jfranklin.2020.07.034_bib0026 article-title: Finite-interval quadratic polynomial inequalities and their application to time-delay systems publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2020.01.022 – volume: 60 start-page: 2768 issue: 10 year: 2015 ident: 10.1016/j.jfranklin.2020.07.034_bib0032 article-title: Free-matrix-based integral inequality for stability analysis of systems with time-varying delay publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2015.2404271 – volume: 49 start-page: 2860 issue: 9 year: 2013 ident: 10.1016/j.jfranklin.2020.07.034_bib0029 article-title: Wirtinger-based integral inequality: application to time-delay systems publication-title: Automatica doi: 10.1016/j.automatica.2013.05.030 – ident: 10.1016/j.jfranklin.2020.07.034_bib0037 – volume: 125 start-page: 194 year: 2020 ident: 10.1016/j.jfranklin.2020.07.034_bib0015 article-title: Resilient fault-tolerant anti-synchronization for stochastic delayed reaction-diffusion neural networks with semi-Markov jump parameters publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.02.015 – volume: 31 start-page: 675 issue: 2 year: 2020 ident: 10.1016/j.jfranklin.2020.07.034_bib0013 article-title: Stability analysis for delayed neural networks with an improved general free-matrix-based integral inequality publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2019.2909350 – volume: 43 start-page: 371 issue: 2 year: 2007 ident: 10.1016/j.jfranklin.2020.07.034_bib0010 article-title: Delay-range-dependent stability for systems with time-varying delay publication-title: Automatica doi: 10.1016/j.automatica.2006.08.015 – volume: 61 start-page: 2663 issue: 9 year: 2016 ident: 10.1016/j.jfranklin.2020.07.034_bib0012 article-title: Delay-variation-dependent stability of delayed discrete-time systems publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2015.2503047 |
SSID | ssj0017100 |
Score | 2.5667806 |
Snippet | This paper studies the stability problems of linear systems with time-varying delays. Firstly, an extended reciprocally convex quadratic inequality and an... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 9930 |
SubjectTerms | Inequality Linear systems Mathematical functions Mathematics Quadratic equations Stability Time |
Title | Hierarchical stability conditions for time-varying delay systems via an extended reciprocally convex quadratic inequality |
URI | https://dx.doi.org/10.1016/j.jfranklin.2020.07.034 https://www.proquest.com/docview/2457700663 |
Volume | 357 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGK1lj14jU2ym03WWymWqtCThd6Wze4WWkqtfWEu_nZn8ihWEA8eEzKbZWcyj_DNN4TcGRlh2IdKNRlDgZJIjhyQ3BM6kglPY6TRQrTFQPSH_HkUjWqkW_XCIKyy9P2FT8-9dXmnXZ5mezGZYI9vANEaDBJtNmDYaM55jFZ-_7mDeQTIXlN4Y9gPPL2H8ZqOy8noUCiGfs7iyfhvEeqHr84DUO-EHJeZI-0UmzslNTc_I0ff-ATPSdafYD9xPt5kRiHvy5GvGYWa1xbQLAo5KsV58t5WL7HDiSJLZEYLQucV3U401XNa_RqnyH2BMU7PZvkyW_dB3zfaot0YCm8umjKzCzLsPb52-145W8EzjLO1J0LHQyjlBHM61TZhJkhtxIyfcuZLndhEuMgyJ7nUxmorI2mdiFPujwVSurBLUp-_zd0VoVBjShu7QDMH6R8XGgSYhtTNxKGxgWwQUZ2nMiXxOM6_mKkKYTZVO0UoVITyYwWKaBB_J7gouDf-FnmoFKb2zEhBhPhbuFmpWJVf8kqFPIrjPDG7_s_aN-QQrwp0WpPU18uNu4V0Zp22cnttkYPO00t_8AUOoPfI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6x7WGXA4J9iEcBH7hGJPEjMTeEFoVXTyBxsxzblYqqLtuWavvvdyZxqmUlxIFronEsz2QeyTffAJw4LSnsY6VajrBAKbUgDkiRKCt1KeqCaLQIbTFU1YO4fpSPG3DR9cIQrDL6_tanN946XjmNp3n6PB5Tj2-G0RoNkmw24_IT9ImdSvagf351Uw3XPxOIwKZ1yLglFHgF83oaxeHoWCvmaUPkycVbQeo_d93EoMtt2IrJIztv97cDG2H6FTb_oRT8BqtqTC3FzYSTCcPUrwG_rhiWvb5FZzFMUxmNlE-WdkZNToyIIles5XSes-XYMjtl3ddxRvQXFObsZNIsswx_2O8X68l0HMMnt32Zq-_wcPnz_qJK4niFxHHBF4nKg8ixmlM82Nr6krus9pK7tBY81bb0pQrS86CFts5br6X2QRW1SEeKWF34D-hNf03DLjAsM7UvQmZ5wAxQKIsC3GL25orc-UzvgerO07jIPU4jMCamA5k9mbUiDCnCpIVBRexBuhZ8buk33hc56xRmXlmSwSDxvvCgU7GJL_Pc5EIWRZOb7X9k7WP4XN3f3Zrbq-HNAXyhOy1YbQC9xewlHGJ2s6iPovX-BX7v-nk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+stability+conditions+for+time-varying+delay+systems+via+an+extended+reciprocally+convex+quadratic+inequality&rft.jtitle=Journal+of+the+Franklin+Institute&rft.au=Zeng%2C+Hong-Bing&rft.au=Lin%2C+Hui-Chao&rft.au=He%2C+Yong&rft.au=Teo%2C+Kok-Lay&rft.date=2020-09-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0016-0032&rft.eissn=0016-0032&rft.volume=357&rft.issue=14&rft.spage=9930&rft_id=info:doi/10.1016%2Fj.jfranklin.2020.07.034&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-0032&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-0032&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-0032&client=summon |