Investigations on the utilization of konjac glucomannan in the flotation separation of chalcopyrite from pyrite

•Good floatability of chalcopyrite and pyrite were achieved using PBX.•Chalcopyrite and pyrite can be selectively separated with konjac glucomannan.•Konjac glucomannan absorbed more on pyrite surface.•Adsorption of konjac glucomannan on pyrite is physical. To selectively separate chalcopyrite from p...

Full description

Saved in:
Bibliographic Details
Published inMinerals engineering Vol. 145; p. 106098
Main Authors Liu, Dezhi, Zhang, Guofan, Chen, Yanfei, Huang, Ganghong, Gao, Yawen
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2020
Subjects
Online AccessGet full text
ISSN0892-6875
1872-9444
DOI10.1016/j.mineng.2019.106098

Cover

Loading…
Abstract •Good floatability of chalcopyrite and pyrite were achieved using PBX.•Chalcopyrite and pyrite can be selectively separated with konjac glucomannan.•Konjac glucomannan absorbed more on pyrite surface.•Adsorption of konjac glucomannan on pyrite is physical. To selectively separate chalcopyrite from pyrite, the effect of konjac glucomannan on the flotation separation of chalcopyrite from pyrite was investigated in this study. The results of single mineral flotation tests showed that konjac glucomannan had a stronger depression effect on pyrite than traditional organic depressants (Starch, Dextrin, Guar gum) with the pyrite recovery less than 5% at the pH range of 5–11, while it had little influence on chalcopyrite flotation over the whole pH range. Flotation tests of mixed minerals were conducted to further study the selective depression effect of konjac glucomannan, and a copper concentrate with CuFeS2 grade of 83.69% and Cu recovery of 85.64% could be obtained from a feed containing 47.20% CuFeS2. This was due to the greater adsorption of konjac glucomannan on the surface of pyrite than that on chalcopyrite surface, which was also proved by the results of zeta potential measurements, adsorption measurements, and FTIR studies. Furthermore, XPS test results manifest that konjac glucomannan adsorbed on pyrite was via physical adsorption. Hydrogen bonding and Bronsted acid-base interaction were considered as the main driving forces.
AbstractList •Good floatability of chalcopyrite and pyrite were achieved using PBX.•Chalcopyrite and pyrite can be selectively separated with konjac glucomannan.•Konjac glucomannan absorbed more on pyrite surface.•Adsorption of konjac glucomannan on pyrite is physical. To selectively separate chalcopyrite from pyrite, the effect of konjac glucomannan on the flotation separation of chalcopyrite from pyrite was investigated in this study. The results of single mineral flotation tests showed that konjac glucomannan had a stronger depression effect on pyrite than traditional organic depressants (Starch, Dextrin, Guar gum) with the pyrite recovery less than 5% at the pH range of 5–11, while it had little influence on chalcopyrite flotation over the whole pH range. Flotation tests of mixed minerals were conducted to further study the selective depression effect of konjac glucomannan, and a copper concentrate with CuFeS2 grade of 83.69% and Cu recovery of 85.64% could be obtained from a feed containing 47.20% CuFeS2. This was due to the greater adsorption of konjac glucomannan on the surface of pyrite than that on chalcopyrite surface, which was also proved by the results of zeta potential measurements, adsorption measurements, and FTIR studies. Furthermore, XPS test results manifest that konjac glucomannan adsorbed on pyrite was via physical adsorption. Hydrogen bonding and Bronsted acid-base interaction were considered as the main driving forces.
ArticleNumber 106098
Author Zhang, Guofan
Chen, Yanfei
Huang, Ganghong
Liu, Dezhi
Gao, Yawen
Author_xml – sequence: 1
  givenname: Dezhi
  surname: Liu
  fullname: Liu, Dezhi
  organization: School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
– sequence: 2
  givenname: Guofan
  surname: Zhang
  fullname: Zhang, Guofan
  email: 155611069@csu.edu.cn
  organization: School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
– sequence: 3
  givenname: Yanfei
  surname: Chen
  fullname: Chen, Yanfei
  organization: School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
– sequence: 4
  givenname: Ganghong
  surname: Huang
  fullname: Huang, Ganghong
  organization: School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
– sequence: 5
  givenname: Yawen
  surname: Gao
  fullname: Gao, Yawen
  organization: Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
BookMark eNqFkM1KAzEUhYNUsK2-gYu8wNRkfjITF4IUfwoFN7oOaXKnzThNSpIW6tM7NeLCha7u5d7zHThngkbWWUDompIZJZTddLOtsWDXs5xQPpwY4c0ZGtOmzjNeluUIjUnD84w1dXWBJiF0hJCqbvgYuYU9QIhmLaNxNmBncdwA3kfTm4-vG3Ytfne2kwqv-71yW2mttNgkYdu7mGQBdtL_EGoje-V2R2_iIPJui9N-ic5b2Qe4-p5T9Pb48Dp_zpYvT4v5_TJTRVnErOKsqBnjwKu6aghrVpqTYiV1q1nNoClVzvXwLFSrJa1KCmwQQp3rlSI5qYopKpOv8i4ED63YebOV_igoEafSRCdSaeJUmkilDdjtL0yZlC96afr_4LsEwxDsYMCLoAxYBdp4UFFoZ_42-AQzF4-O
CitedBy_id crossref_primary_10_1016_j_powtec_2020_12_038
crossref_primary_10_1016_j_colsurfa_2023_132404
crossref_primary_10_1016_j_jece_2025_115486
crossref_primary_10_1134_S0040579524700258
crossref_primary_10_1016_j_colsurfa_2021_126764
crossref_primary_10_1016_j_mineng_2021_106886
crossref_primary_10_1016_j_mineng_2024_109047
crossref_primary_10_1016_j_molliq_2025_127122
crossref_primary_10_1016_j_apt_2024_104649
crossref_primary_10_1016_j_seppur_2021_118670
crossref_primary_10_1016_j_ijmst_2022_06_007
crossref_primary_10_1016_j_powtec_2025_120876
crossref_primary_10_1016_j_seppur_2025_132088
crossref_primary_10_3390_met11040651
crossref_primary_10_1016_j_colsurfa_2022_129926
crossref_primary_10_1016_j_seppur_2020_118138
crossref_primary_10_1016_j_mineng_2021_107044
crossref_primary_10_1016_j_mineng_2023_108259
crossref_primary_10_1016_j_mineng_2022_107584
crossref_primary_10_1016_j_colsurfa_2023_132280
crossref_primary_10_1016_j_ijmst_2023_09_002
crossref_primary_10_3390_polym16233335
crossref_primary_10_1016_j_mineng_2024_108758
crossref_primary_10_1016_j_mineng_2024_108912
crossref_primary_10_1016_j_mineng_2024_108839
crossref_primary_10_3390_polym14051064
crossref_primary_10_1016_j_seppur_2024_127325
crossref_primary_10_1016_j_cej_2024_149276
crossref_primary_10_1016_j_seppur_2024_127725
crossref_primary_10_1007_s40789_022_00526_9
crossref_primary_10_1016_j_seppur_2022_121013
crossref_primary_10_1016_j_mineng_2022_107916
crossref_primary_10_1021_acsomega_3c07539
crossref_primary_10_1016_j_mineng_2022_107677
crossref_primary_10_3390_min12121558
crossref_primary_10_1016_j_mineng_2021_106981
crossref_primary_10_1016_j_mineng_2024_108844
crossref_primary_10_1016_j_mineng_2023_108292
crossref_primary_10_1016_j_seppur_2023_123155
crossref_primary_10_1007_s11771_023_5333_5
crossref_primary_10_1016_j_jmrt_2020_09_021
crossref_primary_10_1016_j_molliq_2021_116997
crossref_primary_10_1016_j_foodhyd_2022_108404
crossref_primary_10_1016_j_carbpol_2024_122571
crossref_primary_10_1021_acs_langmuir_0c00795
crossref_primary_10_1021_acsomega_4c02464
crossref_primary_10_1016_j_apsusc_2024_160528
crossref_primary_10_1016_j_colsurfa_2021_126892
crossref_primary_10_1016_j_colsurfa_2021_126574
crossref_primary_10_1016_j_seppur_2021_120173
crossref_primary_10_1016_j_mineng_2021_106779
crossref_primary_10_1007_s12613_023_2709_3
crossref_primary_10_1080_08827508_2023_2243010
crossref_primary_10_1016_j_colsurfa_2023_132772
crossref_primary_10_3390_ma15196536
crossref_primary_10_1080_08827508_2020_1864363
crossref_primary_10_1021_acs_langmuir_3c00678
crossref_primary_10_3390_min14100981
crossref_primary_10_1016_j_colsurfa_2024_134576
crossref_primary_10_1016_S1003_6326_24_66681_1
crossref_primary_10_3390_molecules29174194
crossref_primary_10_1016_j_colsurfa_2020_125274
Cites_doi 10.1016/j.apt.2018.08.015
10.1179/cmq.2001.40.1.1
10.1016/j.mineng.2015.02.014
10.1016/S0301-7516(03)00003-6
10.1006/jcis.2002.8681
10.1016/j.mineng.2007.03.002
10.1016/j.mineng.2013.05.004
10.3390/min7030040
10.1016/j.mineng.2018.03.044
10.1016/j.mineng.2014.11.019
10.3390/min8020041
10.1038/nnano.2012.72
10.1016/S1003-6326(18)64762-4
10.1016/j.mineng.2018.01.029
10.1016/j.mineng.2011.01.009
10.1016/j.mineng.2018.11.003
10.1007/s11771-009-0125-0
10.1179/cmq.2008.47.2.111
10.1016/0301-7516(93)90076-M
10.1016/0301-7516(91)90055-N
10.1016/j.colsurfb.2004.06.011
10.1016/S0268-005X(03)00044-4
10.1179/cmq.2007.46.3.301
10.1016/j.mineng.2004.04.003
10.1016/0021-9797(89)90081-7
10.3390/min8040122
10.1016/S0144-8617(03)00039-0
10.1016/j.mineng.2016.06.018
10.1002/1097-0282(200107)59:1<38::AID-BIP1004>3.0.CO;2-A
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.mineng.2019.106098
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-9444
ExternalDocumentID 10_1016_j_mineng_2019_106098
S0892687519305096
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNUV
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSE
SSG
SSZ
T5K
~02
~G-
29M
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
R2-
RIG
SEP
SET
SEW
SSH
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c343t-59637669e95758068bd903badfd676e84c29de953cfda1541e6575e72dbc02053
IEDL.DBID .~1
ISSN 0892-6875
IngestDate Thu Apr 24 23:08:23 EDT 2025
Tue Jul 01 01:13:26 EDT 2025
Fri Feb 23 02:38:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Konjac glucomannan
Chalcopyrite
Pyrite
Hydrogen bonding
Flotation separation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-59637669e95758068bd903badfd676e84c29de953cfda1541e6575e72dbc02053
ParticipantIDs crossref_primary_10_1016_j_mineng_2019_106098
crossref_citationtrail_10_1016_j_mineng_2019_106098
elsevier_sciencedirect_doi_10_1016_j_mineng_2019_106098
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
2020-01-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Minerals engineering
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Rath, Subramanian, Sivanandam, Pradeep (b0130) 2001; 40
Bicak, Ekmekci, Bradshaw, Harris (b0015) 2007; 20
Kar, Sahoo, Rath, Das (b0090) 2013; 49
Ahmadi, Gharabaghi, Abdollahi (b0010) 2018; 29
Wei, Bo, Jinxiu, Wenpu, Xianwen (b0155) 2018
Chen, Gu, Li, Song, Wang (b0040) 2018; 8
Liu, Laskowski (b0110) 1989; 130
Feng, Peng, Zhang, Ning, Guo, Zhang (b0075) 2018; 122
Chandraprabha, Natarajan, Modak (b0035) 2004; 37
Fang, Wu (b0070) 2004; 18
Valdivieso, Cervantes, Song, Cabrera, Laskowski (b0145) 2004; 17
Gül, Yüce, Sirkeci, Özer (b0085) 2008; 47
Deng, Xu, Tian, Hu, Han (b0055) 2017; 7
Wang, L., 2013. University of Alberta the Use of Polyacrylamide as a Selective Depressant in the Separation of Chalcopyrite and Galena. Master of Science.
Davé, McCarthy (b0050) 1997; 5
Li, Zhou, Wang (b0105) 2012; 7
Mu, Peng, Lauten (b0120) 2016; 96–97
Chen, Gu, Li, Wang, Zhu (b0045) 2018; 8
Li, Zhu, Li, Zhu (b0065) 2019; 139
Katsuraya, Okuyama, Hatanaka, Oshima, Sato, Matsuzaki (b0095) 2003; 53
Li, Gu, Qiu, Chen (b0100) 2018; 28
Liu, Zhang, Song (b0060) 2019; 131
Liu, Sun, Hu, Wang (b0140) 2009; 16
Boulton, Fornasiero, Ralston (b0025) 2003; 70
Guang-Yi, Hong, Liu-Yin, Shuai, Zheng-He (b0080) 2011; 24
Santhiya, Subramanian, Natarajan (b0135) 2002; 248
Zhang, Yoshimura, Nishinari, Williams, Foster, Norton (b0160) 2001; 59
Agorhom, Skinner, Zanin (b0005) 2015; 72
Prestidge, Ralston, Smart (b0125) 1993; 38
Lopez Valdivieso, Sánchez López, Song, García Martínez, Licón Almada (b0115) 2007; 46
Cao, Chen, Peng (b0030) 2018; 119
Bolin, Laskowski (b0020) 1991; 33
Zhao, Gu, Wang, Rao, Wang, Xiong (b0165) 2015; 77
Chandraprabha (10.1016/j.mineng.2019.106098_b0035) 2004; 37
Ahmadi (10.1016/j.mineng.2019.106098_b0010) 2018; 29
Zhang (10.1016/j.mineng.2019.106098_b0160) 2001; 59
Wei (10.1016/j.mineng.2019.106098_b0155) 2018
Li (10.1016/j.mineng.2019.106098_b0105) 2012; 7
Chen (10.1016/j.mineng.2019.106098_b0040) 2018; 8
Lopez Valdivieso (10.1016/j.mineng.2019.106098_b0115) 2007; 46
Valdivieso (10.1016/j.mineng.2019.106098_b0145) 2004; 17
10.1016/j.mineng.2019.106098_b0150
Fang (10.1016/j.mineng.2019.106098_b0070) 2004; 18
Boulton (10.1016/j.mineng.2019.106098_b0025) 2003; 70
Deng (10.1016/j.mineng.2019.106098_b0055) 2017; 7
Cao (10.1016/j.mineng.2019.106098_b0030) 2018; 119
Gül (10.1016/j.mineng.2019.106098_b0085) 2008; 47
Katsuraya (10.1016/j.mineng.2019.106098_b0095) 2003; 53
Agorhom (10.1016/j.mineng.2019.106098_b0005) 2015; 72
Kar (10.1016/j.mineng.2019.106098_b0090) 2013; 49
Santhiya (10.1016/j.mineng.2019.106098_b0135) 2002; 248
Zhao (10.1016/j.mineng.2019.106098_b0165) 2015; 77
Chen (10.1016/j.mineng.2019.106098_b0045) 2018; 8
Li (10.1016/j.mineng.2019.106098_b0100) 2018; 28
Liu (10.1016/j.mineng.2019.106098_b0140) 2009; 16
Mu (10.1016/j.mineng.2019.106098_b0120) 2016; 96–97
Feng (10.1016/j.mineng.2019.106098_b0075) 2018; 122
Rath (10.1016/j.mineng.2019.106098_b0130) 2001; 40
Liu (10.1016/j.mineng.2019.106098_b0060) 2019; 131
Prestidge (10.1016/j.mineng.2019.106098_b0125) 1993; 38
Li (10.1016/j.mineng.2019.106098_b0065) 2019; 139
Bolin (10.1016/j.mineng.2019.106098_b0020) 1991; 33
Guang-Yi (10.1016/j.mineng.2019.106098_b0080) 2011; 24
Liu (10.1016/j.mineng.2019.106098_b0110) 1989; 130
Bicak (10.1016/j.mineng.2019.106098_b0015) 2007; 20
Davé (10.1016/j.mineng.2019.106098_b0050) 1997; 5
References_xml – volume: 77
  start-page: 100
  year: 2015
  end-page: 106
  ident: b0165
  article-title: The effect of a new polysaccharide on the depression of talc and the flotation of a nickel-copper sulfide ore
  publication-title: Miner. Eng.
– volume: 8
  start-page: 41
  year: 2018
  ident: b0045
  article-title: The effect of seaweed glue in the separation of copper-molybdenum sulphide ore by flotation
  publication-title: Minerals
– volume: 70
  start-page: 205
  year: 2003
  end-page: 219
  ident: b0025
  article-title: Characterisation of sphalerite and pyrite flotation samples by XPS and ToF-SIMS
  publication-title: Int. J. Miner. Process.
– volume: 53
  start-page: 183
  year: 2003
  end-page: 189
  ident: b0095
  article-title: Constitution of konjac glucomannan: Chemical analysis and
  publication-title: Carbohydr. Polym.
– volume: 248
  start-page: 237
  year: 2002
  end-page: 248
  ident: b0135
  article-title: Surface chemical studies on sphalerite and galena using extracellular polysaccharides isolated from Bacillus polymyxa
  publication-title: J. Colloid. Interf. Sci.
– volume: 122
  start-page: 79
  year: 2018
  end-page: 83
  ident: b0075
  article-title: Use of locust bean gum in flotation separation of chalcopyrite and talc
  publication-title: Miner. Eng.
– volume: 38
  start-page: 205
  year: 1993
  end-page: 233
  ident: b0125
  article-title: The competitive adsorption of cyanide and ethyl xanthate on pyrite and pyrrhotite surfaces
  publication-title: Int. J. Miner. Process.
– volume: 130
  start-page: 101
  year: 1989
  end-page: 111
  ident: b0110
  article-title: The interactions between dextrin and metal hydroxides in aqueous solutions
  publication-title: J. Colloid. Interface. Sci.
– volume: 8
  start-page: 9
  year: 2018
  end-page: 15
  ident: b0040
  article-title: Influence of particle size in talc suppression by a galactomannan depressant
  publication-title: Minerals
– volume: 28
  start-page: 1241
  year: 2018
  end-page: 1247
  ident: b0100
  article-title: Flotation and electrochemical behaviors of chalcopyrite and pyrite in the presence of N-propyl-N′-ethoxycarbonyl thiourea
  publication-title: Trans. Nonferrous Met. Soc. China (English Ed.)
– volume: 139
  start-page: 105862
  year: 2019
  ident: b0065
  publication-title: A fundamental study of chalcopyrite flotation in sea water using sodium silicate.Miner
– volume: 18
  start-page: 167
  year: 2004
  end-page: 170
  ident: b0070
  article-title: Variations of Konjac glucomannan (KGM) from Amorphophallus konjac and its refined powder in China
  publication-title: Food Hydrocoll.
– volume: 17
  start-page: 1001
  year: 2004
  end-page: 1006
  ident: b0145
  article-title: Dextrin as a non-toxic depressant for pyrite in flotation with xanthates as collector
  publication-title: Miner. Eng.
– reference: Wang, L., 2013. University of Alberta the Use of Polyacrylamide as a Selective Depressant in the Separation of Chalcopyrite and Galena. Master of Science.
– volume: 24
  start-page: 817
  year: 2011
  end-page: 824
  ident: b0080
  article-title: Improving copper flotation recovery from a refractory copper porphyry ore by using ethoxycarbonyl thiourea as a collector
  publication-title: Miner. Eng.
– start-page: 6
  year: 2018
  end-page: 11
  ident: b0155
  article-title: Depressant behavior of tragacanth gum and its role in the flotation separation of chalcopyrite from talc
  publication-title: J. Mater. Res. Technol.
– volume: 29
  start-page: 3155
  year: 2018
  end-page: 3162
  ident: b0010
  article-title: Effects of type and dosages of organic depressants on pyrite floatability in microflotation system
  publication-title: Adv. Powder Technol.
– volume: 5
  start-page: 237
  year: 1997
  end-page: 241
  ident: b0050
  article-title: Review of konjac glucomannan
  publication-title: J. Polym. Environ.
– volume: 72
  start-page: 36
  year: 2015
  end-page: 46
  ident: b0005
  article-title: Post-regrind selective depression of pyrite in pyritic copper-gold flotation using aeration and diethylenetriamine
  publication-title: Miner. Eng.
– volume: 46
  start-page: 301
  year: 2007
  end-page: 309
  ident: b0115
  article-title: Dextrin as a Regulator for the Selective Flotation of Chalcopyrite, Galena and Pyrite
  publication-title: Can. Metall. Q.
– volume: 40
  start-page: 1
  year: 2001
  end-page: 11
  ident: b0130
  article-title: Studies on the interaction of guar gum with chalcopyrite
  publication-title: Can. Metall. Q.
– volume: 37
  start-page: 93
  year: 2004
  end-page: 100
  ident: b0035
  article-title: Selective separation of pyrite and chalcopyrite by biomodulation
  publication-title: Colloids Surfaces B Biointerfaces
– volume: 20
  start-page: 996
  year: 2007
  end-page: 1002
  ident: b0015
  article-title: Adsorption of guar gum and CMC on pyrite
  publication-title: Miner. Eng.
– volume: 7
  start-page: 40
  year: 2017
  ident: b0055
  article-title: Flotation and adsorption of a new polysaccharide depressant on pyrite and talc in the presence of a pre-adsorbed xanthate collector
  publication-title: Minerals
– volume: 119
  start-page: 93
  year: 2018
  end-page: 98
  ident: b0030
  article-title: The role of sodium sulfide in the flotation of pyrite depressed in chalcopyrite flotation
  publication-title: Miner. Eng.
– volume: 49
  start-page: 1
  year: 2013
  end-page: 6
  ident: b0090
  article-title: Investigations on different starches as depressants for iron ore flotation
  publication-title: Miner. Eng.
– volume: 59
  start-page: 38
  year: 2001
  end-page: 50
  ident: b0160
  article-title: Gelation behaviour of konjac glucomannan with different molecular weights
  publication-title: Biopolymers
– volume: 131
  start-page: 23
  year: 2019
  end-page: 27
  ident: b0060
  article-title: A novel method to improve carboxymethyl cellulose performance in the flotation of talc
  publication-title: Miner. Eng.
– volume: 33
  start-page: 235
  year: 1991
  end-page: 241
  ident: b0020
  article-title: Polysaccharides in flotation of sulphides. Part II. Copper/lead separation with dextrin and sodium hydroxide
  publication-title: Int. J. Miner. Process.
– volume: 7
  start-page: 394
  year: 2012
  end-page: 400
  ident: b0105
  article-title: An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes
  publication-title: Nat. Nanotechnol.
– volume: 16
  year: 2009
  ident: b0140
  article-title: Effect of organic depressant lignosulfonate calcium on separation of chalcopyrite and pyrite
  publication-title: J. Cent. South Univ. Technol.
– volume: 47
  start-page: 111
  year: 2008
  end-page: 118
  ident: b0085
  article-title: Use of non-toxic depressants in the selective flotation of copper-lead-zinc ores
  publication-title: Can. Metall. Q.
– volume: 96–97
  start-page: 143
  year: 2016
  end-page: 156
  ident: b0120
  article-title: The depression of pyrite in selective flotation by different reagent systems – A Literature review
  publication-title: Miner. Eng.
– start-page: 6
  year: 2018
  ident: 10.1016/j.mineng.2019.106098_b0155
  article-title: Depressant behavior of tragacanth gum and its role in the flotation separation of chalcopyrite from talc
  publication-title: J. Mater. Res. Technol.
– volume: 29
  start-page: 3155
  year: 2018
  ident: 10.1016/j.mineng.2019.106098_b0010
  article-title: Effects of type and dosages of organic depressants on pyrite floatability in microflotation system
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2018.08.015
– volume: 5
  start-page: 237
  year: 1997
  ident: 10.1016/j.mineng.2019.106098_b0050
  article-title: Review of konjac glucomannan
  publication-title: J. Polym. Environ.
– volume: 40
  start-page: 1
  year: 2001
  ident: 10.1016/j.mineng.2019.106098_b0130
  article-title: Studies on the interaction of guar gum with chalcopyrite
  publication-title: Can. Metall. Q.
  doi: 10.1179/cmq.2001.40.1.1
– volume: 77
  start-page: 100
  year: 2015
  ident: 10.1016/j.mineng.2019.106098_b0165
  article-title: The effect of a new polysaccharide on the depression of talc and the flotation of a nickel-copper sulfide ore
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2015.02.014
– volume: 70
  start-page: 205
  year: 2003
  ident: 10.1016/j.mineng.2019.106098_b0025
  article-title: Characterisation of sphalerite and pyrite flotation samples by XPS and ToF-SIMS
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/S0301-7516(03)00003-6
– volume: 248
  start-page: 237
  year: 2002
  ident: 10.1016/j.mineng.2019.106098_b0135
  article-title: Surface chemical studies on sphalerite and galena using extracellular polysaccharides isolated from Bacillus polymyxa
  publication-title: J. Colloid. Interf. Sci.
  doi: 10.1006/jcis.2002.8681
– volume: 20
  start-page: 996
  year: 2007
  ident: 10.1016/j.mineng.2019.106098_b0015
  article-title: Adsorption of guar gum and CMC on pyrite
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2007.03.002
– volume: 49
  start-page: 1
  year: 2013
  ident: 10.1016/j.mineng.2019.106098_b0090
  article-title: Investigations on different starches as depressants for iron ore flotation
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2013.05.004
– volume: 7
  start-page: 40
  year: 2017
  ident: 10.1016/j.mineng.2019.106098_b0055
  article-title: Flotation and adsorption of a new polysaccharide depressant on pyrite and talc in the presence of a pre-adsorbed xanthate collector
  publication-title: Minerals
  doi: 10.3390/min7030040
– volume: 122
  start-page: 79
  year: 2018
  ident: 10.1016/j.mineng.2019.106098_b0075
  article-title: Use of locust bean gum in flotation separation of chalcopyrite and talc
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2018.03.044
– volume: 72
  start-page: 36
  year: 2015
  ident: 10.1016/j.mineng.2019.106098_b0005
  article-title: Post-regrind selective depression of pyrite in pyritic copper-gold flotation using aeration and diethylenetriamine
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2014.11.019
– volume: 8
  start-page: 41
  year: 2018
  ident: 10.1016/j.mineng.2019.106098_b0045
  article-title: The effect of seaweed glue in the separation of copper-molybdenum sulphide ore by flotation
  publication-title: Minerals
  doi: 10.3390/min8020041
– volume: 7
  start-page: 394
  issue: 6
  year: 2012
  ident: 10.1016/j.mineng.2019.106098_b0105
  article-title: An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.72
– volume: 28
  start-page: 1241
  year: 2018
  ident: 10.1016/j.mineng.2019.106098_b0100
  article-title: Flotation and electrochemical behaviors of chalcopyrite and pyrite in the presence of N-propyl-N′-ethoxycarbonyl thiourea
  publication-title: Trans. Nonferrous Met. Soc. China (English Ed.)
  doi: 10.1016/S1003-6326(18)64762-4
– volume: 119
  start-page: 93
  year: 2018
  ident: 10.1016/j.mineng.2019.106098_b0030
  article-title: The role of sodium sulfide in the flotation of pyrite depressed in chalcopyrite flotation
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2018.01.029
– volume: 139
  start-page: 105862
  year: 2019
  ident: 10.1016/j.mineng.2019.106098_b0065
  publication-title: A fundamental study of chalcopyrite flotation in sea water using sodium silicate.Miner
– volume: 24
  start-page: 817
  year: 2011
  ident: 10.1016/j.mineng.2019.106098_b0080
  article-title: Improving copper flotation recovery from a refractory copper porphyry ore by using ethoxycarbonyl thiourea as a collector
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2011.01.009
– volume: 131
  start-page: 23
  year: 2019
  ident: 10.1016/j.mineng.2019.106098_b0060
  article-title: A novel method to improve carboxymethyl cellulose performance in the flotation of talc
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2018.11.003
– volume: 16
  year: 2009
  ident: 10.1016/j.mineng.2019.106098_b0140
  article-title: Effect of organic depressant lignosulfonate calcium on separation of chalcopyrite and pyrite
  publication-title: J. Cent. South Univ. Technol.
  doi: 10.1007/s11771-009-0125-0
– ident: 10.1016/j.mineng.2019.106098_b0150
– volume: 47
  start-page: 111
  year: 2008
  ident: 10.1016/j.mineng.2019.106098_b0085
  article-title: Use of non-toxic depressants in the selective flotation of copper-lead-zinc ores
  publication-title: Can. Metall. Q.
  doi: 10.1179/cmq.2008.47.2.111
– volume: 38
  start-page: 205
  year: 1993
  ident: 10.1016/j.mineng.2019.106098_b0125
  article-title: The competitive adsorption of cyanide and ethyl xanthate on pyrite and pyrrhotite surfaces
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/0301-7516(93)90076-M
– volume: 33
  start-page: 235
  year: 1991
  ident: 10.1016/j.mineng.2019.106098_b0020
  article-title: Polysaccharides in flotation of sulphides. Part II. Copper/lead separation with dextrin and sodium hydroxide
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/0301-7516(91)90055-N
– volume: 37
  start-page: 93
  year: 2004
  ident: 10.1016/j.mineng.2019.106098_b0035
  article-title: Selective separation of pyrite and chalcopyrite by biomodulation
  publication-title: Colloids Surfaces B Biointerfaces
  doi: 10.1016/j.colsurfb.2004.06.011
– volume: 18
  start-page: 167
  year: 2004
  ident: 10.1016/j.mineng.2019.106098_b0070
  article-title: Variations of Konjac glucomannan (KGM) from Amorphophallus konjac and its refined powder in China
  publication-title: Food Hydrocoll.
  doi: 10.1016/S0268-005X(03)00044-4
– volume: 46
  start-page: 301
  year: 2007
  ident: 10.1016/j.mineng.2019.106098_b0115
  article-title: Dextrin as a Regulator for the Selective Flotation of Chalcopyrite, Galena and Pyrite
  publication-title: Can. Metall. Q.
  doi: 10.1179/cmq.2007.46.3.301
– volume: 17
  start-page: 1001
  year: 2004
  ident: 10.1016/j.mineng.2019.106098_b0145
  article-title: Dextrin as a non-toxic depressant for pyrite in flotation with xanthates as collector
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2004.04.003
– volume: 130
  start-page: 101
  year: 1989
  ident: 10.1016/j.mineng.2019.106098_b0110
  article-title: The interactions between dextrin and metal hydroxides in aqueous solutions
  publication-title: J. Colloid. Interface. Sci.
  doi: 10.1016/0021-9797(89)90081-7
– volume: 8
  start-page: 9
  year: 2018
  ident: 10.1016/j.mineng.2019.106098_b0040
  article-title: Influence of particle size in talc suppression by a galactomannan depressant
  publication-title: Minerals
  doi: 10.3390/min8040122
– volume: 53
  start-page: 183
  year: 2003
  ident: 10.1016/j.mineng.2019.106098_b0095
  article-title: Constitution of konjac glucomannan: Chemical analysis and 13C NMR spectroscopy
  publication-title: Carbohydr. Polym.
  doi: 10.1016/S0144-8617(03)00039-0
– volume: 96–97
  start-page: 143
  year: 2016
  ident: 10.1016/j.mineng.2019.106098_b0120
  article-title: The depression of pyrite in selective flotation by different reagent systems – A Literature review
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2016.06.018
– volume: 59
  start-page: 38
  year: 2001
  ident: 10.1016/j.mineng.2019.106098_b0160
  article-title: Gelation behaviour of konjac glucomannan with different molecular weights
  publication-title: Biopolymers
  doi: 10.1002/1097-0282(200107)59:1<38::AID-BIP1004>3.0.CO;2-A
SSID ssj0005789
Score 2.5082364
Snippet •Good floatability of chalcopyrite and pyrite were achieved using PBX.•Chalcopyrite and pyrite can be selectively separated with konjac glucomannan.•Konjac...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106098
SubjectTerms Chalcopyrite
Flotation separation
Hydrogen bonding
Konjac glucomannan
Pyrite
Title Investigations on the utilization of konjac glucomannan in the flotation separation of chalcopyrite from pyrite
URI https://dx.doi.org/10.1016/j.mineng.2019.106098
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpn5YE1NI1TP8aqoiogukClbpHt2NAqTapSBhZ-O-c4QUFCILElzp0Unc_2Z_vuO4SuepqHOmYmIBaGWyxlFEhmwyCGV2VTyVW5UXyY0PE0vpv1Zy00rHNhXFhlNff7Ob2crauWbmXN7mo-7z6GXEQU4DZAkJLExGWwx8zx519_NMI8WFkGzwkHTrpOnytjvJaA5PJnF-AloImGgv-8PDWWnNEe2q2wIh7439lHLZMfoJ0Gg-AhKho8GeA_uMgxIDoM3pRVCZa4sBhA4EJqXIanL2WeyxzPvaDNCn8Xj1-NZwH3GvpFZrpYva8BkWKXgoL98xGajm6ehuOgqqEQaBKTTdCHAcYoFUYALuMh5SoVIVEytSll1PBYRyKFj0RDxwCc6hl3E2NYlCoNSLJPjlE7L3JzgrBQNkpDqxl31dQjIhWYk5MeYZZyQ-0pIrXpEl0RjLs6F1lSR5ItEm_wxBk88QY_RcGX1soTbPwhz-peSb45SgJrwK-aZ__WPEfbkdtmlycvF6i9Wb-ZS8AiG9Upna2Dtga39-PJJzED4HY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKOwAD4inK0wNr1DRObWesKqqUPhZaqVvkODYUpUlVysC_5xwnUCQEElvi3EnR-Wx_tu--Q-iuLbkrfaYcomG4-UJ4jmDadXx4jXUieFxsFMcTGs78h3lnXkO9KhfGhFWWc7-d04vZumxpldZsrRaL1qPLA48C3AYIUpCY7KCGYacCZ290B8Nw8hXpwYpKeEbeMQpVBl0R5rUEMJc9mRivAJqoG_CfV6itVad_iA5KuIi79o-OUE1lx2h_i0TwBOVbVBngQjjPMIA6DA6VljmWONcYcOCLkLiIUF-KLBMZXlhBneb2Oh6_KksEbjXks0hlvnpfAyjFJgsF2-dTNOvfT3uhU5ZRcCTxycbpwBhjlAYqAGjGXcrjJHBJLBKdUEYV96UXJPCRSOgbQFRtZS5jFPOSWAKY7JAzVM_yTJ0jHMTaS1wtGTcF1T0iYjAnJ23CNOWK6iYilekiWXKMm1IXaVQFk71E1uCRMXhkDd5EzqfWynJs_CHPql6JvvlKBMvAr5oX_9a8RbvhdDyKRoPJ8BLteWbXXRzEXKH6Zv2mrgGabOKb0vU-AOeX4yc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigations+on+the+utilization+of+konjac+glucomannan+in+the+flotation+separation+of+chalcopyrite+from+pyrite&rft.jtitle=Minerals+engineering&rft.au=Liu%2C+Dezhi&rft.au=Zhang%2C+Guofan&rft.au=Chen%2C+Yanfei&rft.au=Huang%2C+Ganghong&rft.date=2020-01-01&rft.pub=Elsevier+Ltd&rft.issn=0892-6875&rft.eissn=1872-9444&rft.volume=145&rft_id=info:doi/10.1016%2Fj.mineng.2019.106098&rft.externalDocID=S0892687519305096
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon