Isolated ballistic non-abelian interface channel
The topological order of a quantum Hall state is mirrored by the gapless edge modes owing to bulk-edge correspondence. The state at the filling of ν = 5/2, predicted to host non-abelian anyons, supports a variety of edge modes (integer, fractional, neutral). To ensure thermal equilibration between t...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 377; no. 6611; pp. 1198 - 1201 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington
The American Association for the Advancement of Science
09.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The topological order of a quantum Hall state is mirrored by the gapless edge modes owing to bulk-edge correspondence. The state at the filling of ν = 5/2, predicted to host non-abelian anyons, supports a variety of edge modes (integer, fractional, neutral). To ensure thermal equilibration between the edge modes and thus accurately determine the state’s nature, it is advantageous to isolate the fractional channel (1/2 and neutral modes). In this study, we gapped out the integer modes by interfacing the ν = 5/2 state with integer states ν = 2 and ν = 3 and measured the thermal conductance of the isolated-interface channel. Our measured half-quantized thermal conductance confirms the non-abelian nature of the ν = 5/2 state and its particle-hole Pfaffian topological order. Such an isolated channel may be more amenable to braiding experiments.
The nature of some fractional quantum Hall (FQH) states can be determined by measuring the thermal conductance of the state’s edge. Such measurements have suggested that the well-known FQH state at 5/2 filling, which is thought to harbor non-Abelian quasiparticles, features the so-called particle-hole Pfaffian topological order. However, the possibility that the edge modes were not thermally equilibrated left room for alternative interpretations. To avoid this ambiguity, Dutta
et al
. created an isolated edge consisting only of a 1/2 charge mode and a neutral edge mode by interfacing the fractional 5/2 state with integer quantum Hall states. The measurement of the thermal conductance of this isolated state reaffirmed the particle-hole Pfaffian character of the 5/2 state. —JS
Thermal conductance of an isolated fractional quantum Hall edge state at 5/2 filling reveals its topological order. |
---|---|
AbstractList | Probing an exotic stateThe nature of some fractional quantum Hall (FQH) states can be determined by measuring the thermal conductance of the state’s edge. Such measurements have suggested that the well-known FQH state at 5/2 filling, which is thought to harbor non-Abelian quasiparticles, features the so-called particle-hole Pfaffian topological order. However, the possibility that the edge modes were not thermally equilibrated left room for alternative interpretations. To avoid this ambiguity, Dutta et al. created an isolated edge consisting only of a 1/2 charge mode and a neutral edge mode by interfacing the fractional 5/2 state with integer quantum Hall states. The measurement of the thermal conductance of this isolated state reaffirmed the particle-hole Pfaffian character of the 5/2 state. —JS The topological order of a quantum Hall state is mirrored by the gapless edge modes owing to bulk-edge correspondence. The state at the filling of ν = 5/2, predicted to host non-abelian anyons, supports a variety of edge modes (integer, fractional, neutral). To ensure thermal equilibration between the edge modes and thus accurately determine the state's nature, it is advantageous to isolate the fractional channel (1/2 and neutral modes). In this study, we gapped out the integer modes by interfacing the ν = 5/2 state with integer states ν = 2 and ν = 3 and measured the thermal conductance of the isolated-interface channel. Our measured half-quantized thermal conductance confirms the non-abelian nature of the ν = 5/2 state and its particle-hole Pfaffian topological order. Such an isolated channel may be more amenable to braiding experiments.The topological order of a quantum Hall state is mirrored by the gapless edge modes owing to bulk-edge correspondence. The state at the filling of ν = 5/2, predicted to host non-abelian anyons, supports a variety of edge modes (integer, fractional, neutral). To ensure thermal equilibration between the edge modes and thus accurately determine the state's nature, it is advantageous to isolate the fractional channel (1/2 and neutral modes). In this study, we gapped out the integer modes by interfacing the ν = 5/2 state with integer states ν = 2 and ν = 3 and measured the thermal conductance of the isolated-interface channel. Our measured half-quantized thermal conductance confirms the non-abelian nature of the ν = 5/2 state and its particle-hole Pfaffian topological order. Such an isolated channel may be more amenable to braiding experiments. The topological order of a quantum Hall state is mirrored by the gapless edge modes owing to bulk-edge correspondence. The state at the filling of ν = 5/2, predicted to host non-abelian anyons, supports a variety of edge modes (integer, fractional, neutral). To ensure thermal equilibration between the edge modes and thus accurately determine the state’s nature, it is advantageous to isolate the fractional channel (1/2 and neutral modes). In this study, we gapped out the integer modes by interfacing the ν = 5/2 state with integer states ν = 2 and ν = 3 and measured the thermal conductance of the isolated-interface channel. Our measured half-quantized thermal conductance confirms the non-abelian nature of the ν = 5/2 state and its particle-hole Pfaffian topological order. Such an isolated channel may be more amenable to braiding experiments. The nature of some fractional quantum Hall (FQH) states can be determined by measuring the thermal conductance of the state’s edge. Such measurements have suggested that the well-known FQH state at 5/2 filling, which is thought to harbor non-Abelian quasiparticles, features the so-called particle-hole Pfaffian topological order. However, the possibility that the edge modes were not thermally equilibrated left room for alternative interpretations. To avoid this ambiguity, Dutta et al . created an isolated edge consisting only of a 1/2 charge mode and a neutral edge mode by interfacing the fractional 5/2 state with integer quantum Hall states. The measurement of the thermal conductance of this isolated state reaffirmed the particle-hole Pfaffian character of the 5/2 state. —JS Thermal conductance of an isolated fractional quantum Hall edge state at 5/2 filling reveals its topological order. |
Author | Banerjee, Mitali Umansky, Vladimir Heiblum, Moty Dutta, Bivas |
Author_xml | – sequence: 1 givenname: Bivas orcidid: 0000-0002-5354-3426 surname: Dutta fullname: Dutta, Bivas organization: Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel – sequence: 2 givenname: Vladimir orcidid: 0000-0001-5727-2064 surname: Umansky fullname: Umansky, Vladimir organization: Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel – sequence: 3 givenname: Mitali surname: Banerjee fullname: Banerjee, Mitali organization: Institute of Physics, Faculté of Basic Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland – sequence: 4 givenname: Moty orcidid: 0000-0002-9331-5022 surname: Heiblum fullname: Heiblum, Moty organization: Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel |
BookMark | eNp1kE1LAzEQhoMo2FbPXhe8eNk22SSbzVGKH4WCFz0vk3QWU9JsTdKD_95oeyp4GOYwz_syPFNyGcaAhNwxOmesaRfJOgwW52B2rVTsgkwY1bLWDeWXZEIpb-uOKnlNpiltKS03zSeErtLoIeOmMuC9S9nZqhTXYNA7CJULGeMAFiv7CSGgvyFXA_iEt6c9Ix_PT-_L13r99rJaPq5rywXPtRQWBquZarnYmA7KaOyY4dIIHBSVWluhtRk6sIxK5HzQmitBlTGmNRs-Iw_H3n0cvw6Ycr9zyaL3EHA8pL5RrOlkwxkv6P0Zuh0PMZTv_iilOtmKQskjZeOYUsShty5DdmPIEZzvGe1_PfYnj_3JY8ktznL76HYQv_9N_AD9XXoE |
CitedBy_id | crossref_primary_10_1126_science_abm6571 crossref_primary_10_1103_PhysRevApplied_22_044068 crossref_primary_10_1103_PhysRevB_110_075431 crossref_primary_10_7498_aps_74_20241672 crossref_primary_10_1103_PhysRevLett_132_136502 crossref_primary_10_1103_PhysRevB_107_245405 crossref_primary_10_1103_PhysRevB_110_245140 crossref_primary_10_1103_PhysRevB_107_245301 crossref_primary_10_1103_PhysRevB_110_155404 crossref_primary_10_1103_PhysRevB_107_115137 crossref_primary_10_1038_s41467_023_42986_w crossref_primary_10_1103_PhysRevLett_132_106501 crossref_primary_10_1038_s41586_023_06858_z crossref_primary_10_1103_PhysRevLett_131_096302 crossref_primary_10_1103_PhysRevLett_134_096303 crossref_primary_10_1103_PhysRevLett_133_076601 crossref_primary_10_12677_APP_2023_134020 crossref_primary_10_1103_PhysRevLett_132_256601 crossref_primary_10_1063_5_0204207 crossref_primary_10_1103_PhysRevB_108_L241102 crossref_primary_10_1103_PhysRevB_110_035402 crossref_primary_10_1103_PhysRevB_110_165402 crossref_primary_10_1103_PhysRevB_111_035106 |
Cites_doi | 10.1038/s41586-018-0184-1 10.1126/science.abg6116 10.1103/PhysRevB.100.035302 10.1103/PhysRevLett.80.1505 10.1103/PhysRevB.68.241302 10.1142/S0217751X20300094 10.1103/PhysRevLett.99.236807 10.1126/science.1241912 10.1103/PhysRevLett.127.056801 10.1038/nature22052 10.1103/PhysRevLett.117.096802 10.1103/PhysRevB.98.045112 10.1103/PhysRevLett.125.236802 10.1103/PhysRevB.38.9375 10.1103/PhysRevLett.114.016805 10.1103/PhysRevB.55.15832 10.1103/PhysRevLett.121.026801 10.1103/PhysRevLett.124.126801 10.1016/B978-0-12-387839-7.00006-3 10.1103/PhysRevLett.104.076803 10.1103/PhysRevLett.99.236806 10.1103/PhysRevB.97.165124 10.1016/0550-3213(91)90407-O 10.1103/PhysRevB.91.045115 10.1103/PhysRevB.98.167401 10.1126/science.abm6571 10.1103/PhysRevLett.66.802 10.1103/PhysRevLett.119.026801 10.1088/0305-4470/16/10/012 10.1103/PhysRevB.97.121406 10.1103/PhysRevLett.125.016801 |
ContentType | Journal Article |
Copyright | Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.abm6571 |
DatabaseName | CrossRef Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 1201 |
ExternalDocumentID | 10_1126_science_abm6571 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c343t-54cafc917634db8adb89e81b35b4ef70599c499bf8ac105e33f9937407bbb6bd3 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Mon Jul 21 09:51:11 EDT 2025 Fri Jul 25 10:03:35 EDT 2025 Thu Apr 24 23:02:36 EDT 2025 Tue Jul 01 02:24:13 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6611 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c343t-54cafc917634db8adb89e81b35b4ef70599c499bf8ac105e33f9937407bbb6bd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5727-2064 0000-0002-9331-5022 0000-0002-5354-3426 |
OpenAccessLink | http://infoscience.epfl.ch/record/297709 |
PQID | 2712778564 |
PQPubID | 1256 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_2712852313 proquest_journals_2712778564 crossref_citationtrail_10_1126_science_abm6571 crossref_primary_10_1126_science_abm6571 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-09 20220909 |
PublicationDateYYYYMMDD | 2022-09-09 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationYear | 2022 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_2_2 e_1_3_2_14_2 |
References_xml | – ident: e_1_3_2_5_2 doi: 10.1038/s41586-018-0184-1 – ident: e_1_3_2_24_2 doi: 10.1126/science.abg6116 – ident: e_1_3_2_30_2 doi: 10.1103/PhysRevB.100.035302 – ident: e_1_3_2_8_2 doi: 10.1103/PhysRevLett.80.1505 – ident: e_1_3_2_31_2 doi: 10.1103/PhysRevB.68.241302 – ident: e_1_3_2_2_2 doi: 10.1142/S0217751X20300094 – ident: e_1_3_2_12_2 doi: 10.1103/PhysRevLett.99.236807 – ident: e_1_3_2_29_2 doi: 10.1126/science.1241912 – ident: e_1_3_2_26_2 doi: 10.1103/PhysRevLett.127.056801 – ident: e_1_3_2_28_2 doi: 10.1038/nature22052 – ident: e_1_3_2_15_2 doi: 10.1103/PhysRevLett.117.096802 – ident: e_1_3_2_17_2 doi: 10.1103/PhysRevB.98.045112 – ident: e_1_3_2_18_2 doi: 10.1103/PhysRevLett.125.236802 – ident: e_1_3_2_33_2 doi: 10.1103/PhysRevB.38.9375 – ident: e_1_3_2_7_2 doi: 10.1103/PhysRevLett.114.016805 – ident: e_1_3_2_6_2 doi: 10.1103/PhysRevB.55.15832 – ident: e_1_3_2_16_2 doi: 10.1103/PhysRevLett.121.026801 – ident: e_1_3_2_22_2 doi: 10.1103/PhysRevLett.124.126801 – ident: e_1_3_2_25_2 doi: 10.1016/B978-0-12-387839-7.00006-3 – ident: e_1_3_2_9_2 doi: 10.1103/PhysRevLett.104.076803 – ident: e_1_3_2_11_2 doi: 10.1103/PhysRevLett.99.236806 – ident: e_1_3_2_19_2 doi: 10.1103/PhysRevB.97.165124 – ident: e_1_3_2_10_2 doi: 10.1016/0550-3213(91)90407-O – ident: e_1_3_2_13_2 doi: 10.1103/PhysRevB.91.045115 – ident: e_1_3_2_21_2 doi: 10.1103/PhysRevB.98.167401 – ident: e_1_3_2_32_2 doi: 10.1126/science.abm6571 – ident: e_1_3_2_3_2 doi: 10.1103/PhysRevLett.66.802 – ident: e_1_3_2_14_2 doi: 10.1103/PhysRevLett.119.026801 – ident: e_1_3_2_4_2 doi: 10.1088/0305-4470/16/10/012 – ident: e_1_3_2_20_2 doi: 10.1103/PhysRevB.97.121406 – ident: e_1_3_2_23_2 doi: 10.1103/PhysRevLett.125.016801 |
SSID | ssj0009593 |
Score | 2.506246 |
Snippet | The topological order of a quantum Hall state is mirrored by the gapless edge modes owing to bulk-edge correspondence. The state at the filling of ν = 5/2,... Probing an exotic stateThe nature of some fractional quantum Hall (FQH) states can be determined by measuring the thermal conductance of the state’s edge. Such... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1198 |
SubjectTerms | Conductance Elementary excitations Heat transfer Quantum Hall effect Thermal conductivity |
Title | Isolated ballistic non-abelian interface channel |
URI | https://www.proquest.com/docview/2712778564 https://www.proquest.com/docview/2712852313 |
Volume | 377 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJyReEBsgCmMKEg9DKFUSO5c-trtoIJWnFe0tshNHCmq7qUuR4Ffwk_lcn3gprNLgoVHlxk6V8_ncfC6MvYfQFwBC4FcilMZAiXwJTulHSgkIpBQoM7nD0y_JxUx8voqver1fnaildaOGxc9780r-h6oYA11Nluw_UNYtigF8B31xBYVxfRCNP2F5aVRGJefzTcXlj7Dmfan0xnlhSkGsKomda9J7lxQcT5pou6mhYbpTmw6tXPjh2AYJtDEDNK3jQDhdN1YDndTfpdPQZwvIQOuX_TqXZb2oXRTwRC716psNAJqaniX1nUO2VtR4eXpt65O0HglQ15yvjLpcloocWxljGWtgekJGAe9yXk4dXCzEoCmEHVYahrY9NYnlMLJOj79ZfqdJpR5KtUhi29Rlu7j2H0LPhSJujKAoyWmBnBZ4xPYiGB5Rn-2NJ6eT852FnKlcVCcRq_0P25rOtqDfaC-Xz9hTMju8scXQPuvp5QF7bBuR_jhg-0TWW--Y6pB_eM6CFl6eg5fXgZfn4OURvF6w2fnZ5cmFTw02_IIL3vixKGRVwGBPuChVJvEZadgxPFZCV6kp3VPAIlZVJgvo4ZrzyqizIkiVUokq-UvWx3P1K-bxVJZVBuszDTElK-UIdig3A2GZVUU2YMP2ZeQFVZ83TVDm-Q4CDNixm3BjC6_svvWwfbs57c7bPEpDEDCLEzFg79zP4J3mQAw4v17be7IYFg5__fCnvWFP7kB_yPrNaq3fQjFt1BFh5TcBHZCe |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isolated+ballistic+non-abelian+interface+channel&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Dutta%2C+Bivas&rft.au=Umansky%2C+Vladimir&rft.au=Banerjee%2C+Mitali&rft.au=Heiblum%2C+Moty&rft.date=2022-09-09&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=377&rft.issue=6611&rft.spage=1198&rft.epage=1201&rft_id=info:doi/10.1126%2Fscience.abm6571&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_abm6571 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |