Isolated ballistic non-abelian interface channel

The topological order of a quantum Hall state is mirrored by the gapless edge modes owing to bulk-edge correspondence. The state at the filling of ν = 5/2, predicted to host non-abelian anyons, supports a variety of edge modes (integer, fractional, neutral). To ensure thermal equilibration between t...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 377; no. 6611; pp. 1198 - 1201
Main Authors Dutta, Bivas, Umansky, Vladimir, Banerjee, Mitali, Heiblum, Moty
Format Journal Article
LanguageEnglish
Published Washington The American Association for the Advancement of Science 09.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The topological order of a quantum Hall state is mirrored by the gapless edge modes owing to bulk-edge correspondence. The state at the filling of ν = 5/2, predicted to host non-abelian anyons, supports a variety of edge modes (integer, fractional, neutral). To ensure thermal equilibration between the edge modes and thus accurately determine the state’s nature, it is advantageous to isolate the fractional channel (1/2 and neutral modes). In this study, we gapped out the integer modes by interfacing the ν = 5/2 state with integer states ν = 2 and ν = 3 and measured the thermal conductance of the isolated-interface channel. Our measured half-quantized thermal conductance confirms the non-abelian nature of the ν = 5/2 state and its particle-hole Pfaffian topological order. Such an isolated channel may be more amenable to braiding experiments. The nature of some fractional quantum Hall (FQH) states can be determined by measuring the thermal conductance of the state’s edge. Such measurements have suggested that the well-known FQH state at 5/2 filling, which is thought to harbor non-Abelian quasiparticles, features the so-called particle-hole Pfaffian topological order. However, the possibility that the edge modes were not thermally equilibrated left room for alternative interpretations. To avoid this ambiguity, Dutta et al . created an isolated edge consisting only of a 1/2 charge mode and a neutral edge mode by interfacing the fractional 5/2 state with integer quantum Hall states. The measurement of the thermal conductance of this isolated state reaffirmed the particle-hole Pfaffian character of the 5/2 state. —JS Thermal conductance of an isolated fractional quantum Hall edge state at 5/2 filling reveals its topological order.
AbstractList Probing an exotic stateThe nature of some fractional quantum Hall (FQH) states can be determined by measuring the thermal conductance of the state’s edge. Such measurements have suggested that the well-known FQH state at 5/2 filling, which is thought to harbor non-Abelian quasiparticles, features the so-called particle-hole Pfaffian topological order. However, the possibility that the edge modes were not thermally equilibrated left room for alternative interpretations. To avoid this ambiguity, Dutta et al. created an isolated edge consisting only of a 1/2 charge mode and a neutral edge mode by interfacing the fractional 5/2 state with integer quantum Hall states. The measurement of the thermal conductance of this isolated state reaffirmed the particle-hole Pfaffian character of the 5/2 state. —JS
The topological order of a quantum Hall state is mirrored by the gapless edge modes owing to bulk-edge correspondence. The state at the filling of ν = 5/2, predicted to host non-abelian anyons, supports a variety of edge modes (integer, fractional, neutral). To ensure thermal equilibration between the edge modes and thus accurately determine the state's nature, it is advantageous to isolate the fractional channel (1/2 and neutral modes). In this study, we gapped out the integer modes by interfacing the ν = 5/2 state with integer states ν = 2 and ν = 3 and measured the thermal conductance of the isolated-interface channel. Our measured half-quantized thermal conductance confirms the non-abelian nature of the ν = 5/2 state and its particle-hole Pfaffian topological order. Such an isolated channel may be more amenable to braiding experiments.The topological order of a quantum Hall state is mirrored by the gapless edge modes owing to bulk-edge correspondence. The state at the filling of ν = 5/2, predicted to host non-abelian anyons, supports a variety of edge modes (integer, fractional, neutral). To ensure thermal equilibration between the edge modes and thus accurately determine the state's nature, it is advantageous to isolate the fractional channel (1/2 and neutral modes). In this study, we gapped out the integer modes by interfacing the ν = 5/2 state with integer states ν = 2 and ν = 3 and measured the thermal conductance of the isolated-interface channel. Our measured half-quantized thermal conductance confirms the non-abelian nature of the ν = 5/2 state and its particle-hole Pfaffian topological order. Such an isolated channel may be more amenable to braiding experiments.
The topological order of a quantum Hall state is mirrored by the gapless edge modes owing to bulk-edge correspondence. The state at the filling of ν = 5/2, predicted to host non-abelian anyons, supports a variety of edge modes (integer, fractional, neutral). To ensure thermal equilibration between the edge modes and thus accurately determine the state’s nature, it is advantageous to isolate the fractional channel (1/2 and neutral modes). In this study, we gapped out the integer modes by interfacing the ν = 5/2 state with integer states ν = 2 and ν = 3 and measured the thermal conductance of the isolated-interface channel. Our measured half-quantized thermal conductance confirms the non-abelian nature of the ν = 5/2 state and its particle-hole Pfaffian topological order. Such an isolated channel may be more amenable to braiding experiments. The nature of some fractional quantum Hall (FQH) states can be determined by measuring the thermal conductance of the state’s edge. Such measurements have suggested that the well-known FQH state at 5/2 filling, which is thought to harbor non-Abelian quasiparticles, features the so-called particle-hole Pfaffian topological order. However, the possibility that the edge modes were not thermally equilibrated left room for alternative interpretations. To avoid this ambiguity, Dutta et al . created an isolated edge consisting only of a 1/2 charge mode and a neutral edge mode by interfacing the fractional 5/2 state with integer quantum Hall states. The measurement of the thermal conductance of this isolated state reaffirmed the particle-hole Pfaffian character of the 5/2 state. —JS Thermal conductance of an isolated fractional quantum Hall edge state at 5/2 filling reveals its topological order.
Author Banerjee, Mitali
Umansky, Vladimir
Heiblum, Moty
Dutta, Bivas
Author_xml – sequence: 1
  givenname: Bivas
  orcidid: 0000-0002-5354-3426
  surname: Dutta
  fullname: Dutta, Bivas
  organization: Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 2
  givenname: Vladimir
  orcidid: 0000-0001-5727-2064
  surname: Umansky
  fullname: Umansky, Vladimir
  organization: Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 3
  givenname: Mitali
  surname: Banerjee
  fullname: Banerjee, Mitali
  organization: Institute of Physics, Faculté of Basic Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
– sequence: 4
  givenname: Moty
  orcidid: 0000-0002-9331-5022
  surname: Heiblum
  fullname: Heiblum, Moty
  organization: Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
BookMark eNp1kE1LAzEQhoMo2FbPXhe8eNk22SSbzVGKH4WCFz0vk3QWU9JsTdKD_95oeyp4GOYwz_syPFNyGcaAhNwxOmesaRfJOgwW52B2rVTsgkwY1bLWDeWXZEIpb-uOKnlNpiltKS03zSeErtLoIeOmMuC9S9nZqhTXYNA7CJULGeMAFiv7CSGgvyFXA_iEt6c9Ix_PT-_L13r99rJaPq5rywXPtRQWBquZarnYmA7KaOyY4dIIHBSVWluhtRk6sIxK5HzQmitBlTGmNRs-Iw_H3n0cvw6Ycr9zyaL3EHA8pL5RrOlkwxkv6P0Zuh0PMZTv_iilOtmKQskjZeOYUsShty5DdmPIEZzvGe1_PfYnj_3JY8ktznL76HYQv_9N_AD9XXoE
CitedBy_id crossref_primary_10_1126_science_abm6571
crossref_primary_10_1103_PhysRevApplied_22_044068
crossref_primary_10_1103_PhysRevB_110_075431
crossref_primary_10_7498_aps_74_20241672
crossref_primary_10_1103_PhysRevLett_132_136502
crossref_primary_10_1103_PhysRevB_107_245405
crossref_primary_10_1103_PhysRevB_110_245140
crossref_primary_10_1103_PhysRevB_107_245301
crossref_primary_10_1103_PhysRevB_110_155404
crossref_primary_10_1103_PhysRevB_107_115137
crossref_primary_10_1038_s41467_023_42986_w
crossref_primary_10_1103_PhysRevLett_132_106501
crossref_primary_10_1038_s41586_023_06858_z
crossref_primary_10_1103_PhysRevLett_131_096302
crossref_primary_10_1103_PhysRevLett_134_096303
crossref_primary_10_1103_PhysRevLett_133_076601
crossref_primary_10_12677_APP_2023_134020
crossref_primary_10_1103_PhysRevLett_132_256601
crossref_primary_10_1063_5_0204207
crossref_primary_10_1103_PhysRevB_108_L241102
crossref_primary_10_1103_PhysRevB_110_035402
crossref_primary_10_1103_PhysRevB_110_165402
crossref_primary_10_1103_PhysRevB_111_035106
Cites_doi 10.1038/s41586-018-0184-1
10.1126/science.abg6116
10.1103/PhysRevB.100.035302
10.1103/PhysRevLett.80.1505
10.1103/PhysRevB.68.241302
10.1142/S0217751X20300094
10.1103/PhysRevLett.99.236807
10.1126/science.1241912
10.1103/PhysRevLett.127.056801
10.1038/nature22052
10.1103/PhysRevLett.117.096802
10.1103/PhysRevB.98.045112
10.1103/PhysRevLett.125.236802
10.1103/PhysRevB.38.9375
10.1103/PhysRevLett.114.016805
10.1103/PhysRevB.55.15832
10.1103/PhysRevLett.121.026801
10.1103/PhysRevLett.124.126801
10.1016/B978-0-12-387839-7.00006-3
10.1103/PhysRevLett.104.076803
10.1103/PhysRevLett.99.236806
10.1103/PhysRevB.97.165124
10.1016/0550-3213(91)90407-O
10.1103/PhysRevB.91.045115
10.1103/PhysRevB.98.167401
10.1126/science.abm6571
10.1103/PhysRevLett.66.802
10.1103/PhysRevLett.119.026801
10.1088/0305-4470/16/10/012
10.1103/PhysRevB.97.121406
10.1103/PhysRevLett.125.016801
ContentType Journal Article
Copyright Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.abm6571
DatabaseName CrossRef
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 1201
ExternalDocumentID 10_1126_science_abm6571
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c343t-54cafc917634db8adb89e81b35b4ef70599c499bf8ac105e33f9937407bbb6bd3
ISSN 0036-8075
1095-9203
IngestDate Mon Jul 21 09:51:11 EDT 2025
Fri Jul 25 10:03:35 EDT 2025
Thu Apr 24 23:02:36 EDT 2025
Tue Jul 01 02:24:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6611
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c343t-54cafc917634db8adb89e81b35b4ef70599c499bf8ac105e33f9937407bbb6bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5727-2064
0000-0002-9331-5022
0000-0002-5354-3426
OpenAccessLink http://infoscience.epfl.ch/record/297709
PQID 2712778564
PQPubID 1256
PageCount 4
ParticipantIDs proquest_miscellaneous_2712852313
proquest_journals_2712778564
crossref_citationtrail_10_1126_science_abm6571
crossref_primary_10_1126_science_abm6571
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-09
20220909
PublicationDateYYYYMMDD 2022-09-09
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-09
  day: 09
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationYear 2022
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_2_2
e_1_3_2_14_2
References_xml – ident: e_1_3_2_5_2
  doi: 10.1038/s41586-018-0184-1
– ident: e_1_3_2_24_2
  doi: 10.1126/science.abg6116
– ident: e_1_3_2_30_2
  doi: 10.1103/PhysRevB.100.035302
– ident: e_1_3_2_8_2
  doi: 10.1103/PhysRevLett.80.1505
– ident: e_1_3_2_31_2
  doi: 10.1103/PhysRevB.68.241302
– ident: e_1_3_2_2_2
  doi: 10.1142/S0217751X20300094
– ident: e_1_3_2_12_2
  doi: 10.1103/PhysRevLett.99.236807
– ident: e_1_3_2_29_2
  doi: 10.1126/science.1241912
– ident: e_1_3_2_26_2
  doi: 10.1103/PhysRevLett.127.056801
– ident: e_1_3_2_28_2
  doi: 10.1038/nature22052
– ident: e_1_3_2_15_2
  doi: 10.1103/PhysRevLett.117.096802
– ident: e_1_3_2_17_2
  doi: 10.1103/PhysRevB.98.045112
– ident: e_1_3_2_18_2
  doi: 10.1103/PhysRevLett.125.236802
– ident: e_1_3_2_33_2
  doi: 10.1103/PhysRevB.38.9375
– ident: e_1_3_2_7_2
  doi: 10.1103/PhysRevLett.114.016805
– ident: e_1_3_2_6_2
  doi: 10.1103/PhysRevB.55.15832
– ident: e_1_3_2_16_2
  doi: 10.1103/PhysRevLett.121.026801
– ident: e_1_3_2_22_2
  doi: 10.1103/PhysRevLett.124.126801
– ident: e_1_3_2_25_2
  doi: 10.1016/B978-0-12-387839-7.00006-3
– ident: e_1_3_2_9_2
  doi: 10.1103/PhysRevLett.104.076803
– ident: e_1_3_2_11_2
  doi: 10.1103/PhysRevLett.99.236806
– ident: e_1_3_2_19_2
  doi: 10.1103/PhysRevB.97.165124
– ident: e_1_3_2_10_2
  doi: 10.1016/0550-3213(91)90407-O
– ident: e_1_3_2_13_2
  doi: 10.1103/PhysRevB.91.045115
– ident: e_1_3_2_21_2
  doi: 10.1103/PhysRevB.98.167401
– ident: e_1_3_2_32_2
  doi: 10.1126/science.abm6571
– ident: e_1_3_2_3_2
  doi: 10.1103/PhysRevLett.66.802
– ident: e_1_3_2_14_2
  doi: 10.1103/PhysRevLett.119.026801
– ident: e_1_3_2_4_2
  doi: 10.1088/0305-4470/16/10/012
– ident: e_1_3_2_20_2
  doi: 10.1103/PhysRevB.97.121406
– ident: e_1_3_2_23_2
  doi: 10.1103/PhysRevLett.125.016801
SSID ssj0009593
Score 2.506246
Snippet The topological order of a quantum Hall state is mirrored by the gapless edge modes owing to bulk-edge correspondence. The state at the filling of ν = 5/2,...
Probing an exotic stateThe nature of some fractional quantum Hall (FQH) states can be determined by measuring the thermal conductance of the state’s edge. Such...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1198
SubjectTerms Conductance
Elementary excitations
Heat transfer
Quantum Hall effect
Thermal conductivity
Title Isolated ballistic non-abelian interface channel
URI https://www.proquest.com/docview/2712778564
https://www.proquest.com/docview/2712852313
Volume 377
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJyReEBsgCmMKEg9DKFUSO5c-trtoIJWnFe0tshNHCmq7qUuR4Ffwk_lcn3gprNLgoVHlxk6V8_ncfC6MvYfQFwBC4FcilMZAiXwJTulHSgkIpBQoM7nD0y_JxUx8voqver1fnaildaOGxc9780r-h6oYA11Nluw_UNYtigF8B31xBYVxfRCNP2F5aVRGJefzTcXlj7Dmfan0xnlhSkGsKomda9J7lxQcT5pou6mhYbpTmw6tXPjh2AYJtDEDNK3jQDhdN1YDndTfpdPQZwvIQOuX_TqXZb2oXRTwRC716psNAJqaniX1nUO2VtR4eXpt65O0HglQ15yvjLpcloocWxljGWtgekJGAe9yXk4dXCzEoCmEHVYahrY9NYnlMLJOj79ZfqdJpR5KtUhi29Rlu7j2H0LPhSJujKAoyWmBnBZ4xPYiGB5Rn-2NJ6eT852FnKlcVCcRq_0P25rOtqDfaC-Xz9hTMju8scXQPuvp5QF7bBuR_jhg-0TWW--Y6pB_eM6CFl6eg5fXgZfn4OURvF6w2fnZ5cmFTw02_IIL3vixKGRVwGBPuChVJvEZadgxPFZCV6kp3VPAIlZVJgvo4ZrzyqizIkiVUokq-UvWx3P1K-bxVJZVBuszDTElK-UIdig3A2GZVUU2YMP2ZeQFVZ83TVDm-Q4CDNixm3BjC6_svvWwfbs57c7bPEpDEDCLEzFg79zP4J3mQAw4v17be7IYFg5__fCnvWFP7kB_yPrNaq3fQjFt1BFh5TcBHZCe
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isolated+ballistic+non-abelian+interface+channel&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Dutta%2C+Bivas&rft.au=Umansky%2C+Vladimir&rft.au=Banerjee%2C+Mitali&rft.au=Heiblum%2C+Moty&rft.date=2022-09-09&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=377&rft.issue=6611&rft.spage=1198&rft.epage=1201&rft_id=info:doi/10.1126%2Fscience.abm6571&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_abm6571
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon