State-of-Charge and Deformation-Rate Dependent Mechanical Behavior of Electrochemical Cells
The state-of-charge and deformation-rate dependent mechanical behavior of cylindrical lithium-ion battery cells was investigated. The research revealed that both state of charge and deformation rates affected the stiffness of the battery cells. Battery mechanical failure load was only weakly depende...
Saved in:
Published in | Experimental mechanics Vol. 58; no. 4; pp. 627 - 632 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2018
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The state-of-charge and deformation-rate dependent mechanical behavior of cylindrical lithium-ion battery cells was investigated. The research revealed that both state of charge and deformation rates affected the stiffness of the battery cells. Battery mechanical failure load was only weakly dependent on the state of charge. For the deformation-rate dependency on the mechanical integrity of battery cells, the battery mechanical failure load was either decreased significantly at high state of charge or decreased slightly at low state of charge as deformation rate increased. For the correlation between mechanical integrity and electrical failure, the displacement at the battery mechanical failure load coincided with a voltage drop. However, at high state of charge, premature and incomplete voltage drops were observed before the definite final voltage drop. No such premature voltage drop was observed in low state-of-charge specimens. The results of this research may be used as a reference for the design of impact and damage tolerant electric vehicle battery systems. |
---|---|
AbstractList | Not provided. The state-of-charge and deformation-rate dependent mechanical behavior of cylindrical lithium-ion battery cells was investigated. The research revealed that both state of charge and deformation rates affected the stiffness of the battery cells. Battery mechanical failure load was only weakly dependent on the state of charge. For the deformation-rate dependency on the mechanical integrity of battery cells, the battery mechanical failure load was either decreased significantly at high state of charge or decreased slightly at low state of charge as deformation rate increased. For the correlation between mechanical integrity and electrical failure, the displacement at the battery mechanical failure load coincided with a voltage drop. However, at high state of charge, premature and incomplete voltage drops were observed before the definite final voltage drop. No such premature voltage drop was observed in low state-of-charge specimens. The results of this research may be used as a reference for the design of impact and damage tolerant electric vehicle battery systems. |
Author | Siegmund, T. Nguyen, T. N. Parab, N. D. Tsutsui, W. Liao, H. Chen, W. |
Author_xml | – sequence: 1 givenname: W. orcidid: 0000-0001-5645-4683 surname: Tsutsui fullname: Tsutsui, W. email: wtsutsui@purdue.edu organization: School of Aeronautics and Astronautics, Purdue University – sequence: 2 givenname: T. surname: Siegmund fullname: Siegmund, T. organization: School of Mechanical Engineering, Purdue University – sequence: 3 givenname: N. D. surname: Parab fullname: Parab, N. D. organization: School of Aeronautics and Astronautics, Purdue University – sequence: 4 givenname: H. surname: Liao fullname: Liao, H. organization: School of Aeronautics and Astronautics, Purdue University – sequence: 5 givenname: T. N. surname: Nguyen fullname: Nguyen, T. N. organization: School of Mechanical Engineering, Purdue University – sequence: 6 givenname: W. surname: Chen fullname: Chen, W. organization: School of Aeronautics and Astronautics, Purdue University, School of Mechanical Engineering, Purdue University, School of Materials Engineering, Purdue University |
BackLink | https://www.osti.gov/biblio/1537802$$D View this record in Osti.gov |
BookMark | eNp9kMFqGzEQhkVwILbbB8htSc5KR1rJ0h4T10kLKYE2OfUgxrIUb1hLrqQE-vaRs4FCoT0JZv5_9PHNyCTE4Ag5ZXDBANSnzFgrgAJTFLjmlB-RKVOCUa4WckKmAExQoSU7IbOcn6B2WsWn5OePgsXR6Olyi-nRNRg2zWfnY9ph6WOg3-u6DvYubFwozTdntxh6i0Nz5bb40sfURN-sBmdLinbrdm-7pRuG_IEcexyy-_j-zsnD9ep--YXe3t18XV7eUtuKtlDZWm1RKr8WHUiQ6Dup0TshvF9shALExUZ33vo1rDlba-ZBWY3YqUWnBbRzcjbejbn0Jtu-VEgbQ6hMhslWaeA1dD6G9in-ena5mKf4nELlMhyY1Krj0NUUG1M2xZyT82af-h2m34aBOYg2o2hTRZuDaHO4rP7qVII3eSVhP_y3ycdmrr-ER5f-MP279AqzO5MT |
CitedBy_id | crossref_primary_10_1115_1_4067954 crossref_primary_10_3390_en12050797 crossref_primary_10_1016_j_est_2022_106476 crossref_primary_10_3390_batteries10070258 crossref_primary_10_1002_eem2_12771 crossref_primary_10_1016_j_energy_2025_135168 crossref_primary_10_1177_0020294020923057 crossref_primary_10_1149_1945_7111_aba936 crossref_primary_10_1016_j_apples_2025_100211 crossref_primary_10_1016_j_cjche_2022_10_017 crossref_primary_10_1016_j_ensm_2021_05_022 crossref_primary_10_1016_j_apenergy_2024_124138 crossref_primary_10_3390_en15030847 crossref_primary_10_1016_j_etran_2024_100359 crossref_primary_10_1016_j_est_2025_115917 crossref_primary_10_3390_batteries9020067 crossref_primary_10_3390_en16052458 crossref_primary_10_1149_1945_7111_ace001 crossref_primary_10_1007_s11340_018_0380_9 crossref_primary_10_1016_j_jpowsour_2021_230337 crossref_primary_10_3390_en11030541 crossref_primary_10_1016_j_ensm_2019_06_036 crossref_primary_10_1149_2_0051809jes crossref_primary_10_1002_er_4433 |
Cites_doi | 10.1016/j.matdes.2016.05.052 10.1016/j.eml.2016.05.004 10.1016/j.jpowsour.2014.05.078 10.1016/j.jpowsour.2011.10.094 10.1177/1099636215591908 10.1016/j.jpowsour.2012.04.055 10.1149/2.0191411jes 10.1016/j.jpowsour.2016.04.005 10.1016/j.actamat.2015.01.074 10.1016/j.jpowsour.2013.06.165 10.1016/j.jpowsour.2013.11.069 10.1016/j.apenergy.2016.03.108 10.1016/j.jpowsour.2014.08.014 10.1021/cm901452z 10.1016/j.jpowsour.2012.07.057 10.1016/j.jpowsour.2013.08.056 10.1016/j.jpowsour.2013.08.066 10.1016/j.engfailanal.2015.03.025 10.1016/j.jpowsour.2015.01.077 10.1016/j.apenergy.2016.08.101 10.1016/j.jpowsour.2013.09.022 10.1016/j.actamat.2013.04.007 10.1557/adv.2016.39 10.1016/j.jpowsour.2016.08.034 10.1038/srep21829 10.1016/j.elecom.2010.09.008 |
ContentType | Journal Article |
Copyright | Society for Experimental Mechanics 2017 Copyright Springer Science & Business Media 2018 |
Copyright_xml | – notice: Society for Experimental Mechanics 2017 – notice: Copyright Springer Science & Business Media 2018 |
CorporateAuthor | Purdue Univ., West Lafayette, IN (United States) |
CorporateAuthor_xml | – name: Purdue Univ., West Lafayette, IN (United States) |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1007/s11340-017-0282-2 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1741-2765 |
EndPage | 632 |
ExternalDocumentID | 1537802 10_1007_s11340_017_0282_2 |
GroupedDBID | -5B -5G -BR -EM -XX -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDEX ABDPE ABDZT ABECU ABFSI ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBEA ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAGR AIAKS AIDUJ AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARCEE ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 E.L EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IAO IEA IGS IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X J-C J0Z JBSCW JZLTJ KDC KOV LAS LLZTM M4V M4Y MA- N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P9P PF0 PT4 PT5 QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SC5 SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TN5 TSG TSK TSV TUC TUS U2A UCJ UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XSW YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR _50 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ AAFGU AAPBV ABFGW ABKAS ABPTK ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ADMDM AEFTE AESTI AEVTX AGGBP AIMYW AJDOV AKQUC OTOTI UMP UNUBA |
ID | FETCH-LOGICAL-c343t-53c8ca57fb490505af958afe44ff6d470aa6d89fcfb0b21b81f07c8aa97698403 |
IEDL.DBID | U2A |
ISSN | 0014-4851 |
IngestDate | Fri May 19 02:13:38 EDT 2023 Fri Jul 25 11:07:18 EDT 2025 Tue Jul 01 04:19:56 EDT 2025 Thu Apr 24 22:55:18 EDT 2025 Fri Feb 21 02:36:45 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Mechanical behavior State of charge Deformation rate Internal short circuit |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-53c8ca57fb490505af958afe44ff6d470aa6d89fcfb0b21b81f07c8aa97698403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 AR0000378 USDOE Advanced Research Projects Agency - Energy (ARPA-E) |
ORCID | 0000-0001-5645-4683 0000000156454683 |
PQID | 2015879209 |
PQPubID | 2044465 |
PageCount | 6 |
ParticipantIDs | osti_scitechconnect_1537802 proquest_journals_2015879209 crossref_primary_10_1007_s11340_017_0282_2 crossref_citationtrail_10_1007_s11340_017_0282_2 springer_journals_10_1007_s11340_017_0282_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-01 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | An International Journal |
PublicationTitle | Experimental mechanics |
PublicationTitleAbbrev | Exp Mech |
PublicationYear | 2018 |
Publisher | Springer US Springer Nature B.V Springer |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer |
References | Greve, Fehrenbach (CR6) 2012; 214 Xu, Liu, Wang, Hu (CR9) 2016; 172 Sahraei, Bosco, Dixon, Lai (CR13) 2016; 319 Cannarella, Liu, Leng, Sinko, Gor, Arnold (CR28) 2014; 161 Zhang, Wierzbicki (CR20) 2015; 280 Tsutsui, Nguyen, Liao, Parab, Kukreja, Siegmund, Chen (CR2) 2016; 1 Nguyen, Siegmund, Tsutsui, Liao, Chen (CR3) 2016; 105 Amanieu, Aramfard, Rosato, Batista, Rabe, Lupascu (CR25) 2015; 89 Sahraei, Hill, Wierzbicki (CR7) 2012; 201 Singh, Cao, Ma, Seo, Bakis, Zhang, Hickner, Rahn (CR1) 2015; 17 Sahraei, Meier, Wierzbicki (CR8) 2014; 247 Sahraei, Campbell, Wierzbicki (CR19) 2012; 220 Reddy, Linden (CR23) 2011 Xu, Liu, Wang, Shang (CR10) 2015; 53 Liu, Yin, Xu (CR17) 2016; 183 CR26 CR24 Xia, Wierzbicki, Sahraei, Zhang (CR18) 2014; 267 Cannarella, Arnold (CR21) 2014; 245 CR22 Kukreja, Nguyen, Siegmund, Chen, Tsutsui, Balakrishnan, Liao, Parab (CR4) 2016; 9 Hatchard, Trussler, Dahn (CR15) 2014; 247 Avdeev, Gilaki (CR11) 2014; 271 Goodenough, Kim (CR5) 2010; 22 Gilaki, Avdeev (CR12) 2016; 328 Chiu, Lin, Yeh, Lin, Chen (CR14) 2014; 251 Huang, Fan, Li, Zhang, Zhu (CR27) 2013; 61 Lamb, Orendorff (CR16) 2014; 247 M Gilaki (282_CR12) 2016; 328 H-Y Amanieu (282_CR25) 2015; 89 E Sahraei (282_CR7) 2012; 201 J Kukreja (282_CR4) 2016; 9 E Sahraei (282_CR8) 2014; 247 JB Goodenough (282_CR5) 2010; 22 K-C Chiu (282_CR14) 2014; 251 L Greve (282_CR6) 2012; 214 J Xu (282_CR9) 2016; 172 J Cannarella (282_CR28) 2014; 161 282_CR24 282_CR26 AK Singh (282_CR1) 2015; 17 W Tsutsui (282_CR2) 2016; 1 J Cannarella (282_CR21) 2014; 245 B Liu (282_CR17) 2016; 183 282_CR22 Y Xia (282_CR18) 2014; 267 J Xu (282_CR10) 2015; 53 TN Nguyen (282_CR3) 2016; 105 J Lamb (282_CR16) 2014; 247 S Huang (282_CR27) 2013; 61 E Sahraei (282_CR13) 2016; 319 TD Hatchard (282_CR15) 2014; 247 X Zhang (282_CR20) 2015; 280 I Avdeev (282_CR11) 2014; 271 E Sahraei (282_CR19) 2012; 220 TB Reddy (282_CR23) 2011 |
References_xml | – ident: CR22 – volume: 105 start-page: 51 year: 2016 end-page: 65 ident: CR3 article-title: Bi-objective optimal design of a damage-tolerant multifunctional battery system publication-title: Mater Des doi: 10.1016/j.matdes.2016.05.052 – volume: 9 start-page: 371 issue: 3 year: 2016 end-page: 378 ident: CR4 article-title: Crash analysis of a conceptual electric vehicle with a damage tolerant battery pack publication-title: Extrem Mech Lett doi: 10.1016/j.eml.2016.05.004 – volume: 267 start-page: 78 year: 2014 end-page: 97 ident: CR18 article-title: Damage of cells and battery packs due to ground impact publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.05.078 – volume: 201 start-page: 307 year: 2012 end-page: 321 ident: CR7 article-title: Calibration and finite element simulation of pouch lithium-ion batteries for mechanical integrity publication-title: J Power Sources doi: 10.1016/j.jpowsour.2011.10.094 – volume: 17 start-page: 666 issue: 6 year: 2015 end-page: 690 ident: CR1 article-title: Design, manufacture and test of a novel structural battery based on sandwich construction publication-title: J Sandw Struct Mater doi: 10.1177/1099636215591908 – volume: 214 start-page: 377 year: 2012 end-page: 385 ident: CR6 article-title: Mechanical testing and macro-mechanical finite element simulation of the deformation, fracture, and short circuit initiation of cylindrical Lithium ion battery cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.04.055 – volume: 161 start-page: F3117 issue: 11 year: 2014 end-page: F3122 ident: CR28 article-title: Mechanical properties of a battery separator under compression and tension publication-title: J Electrochem Soc doi: 10.1149/2.0191411jes – volume: 319 start-page: 56 year: 2016 end-page: 65 ident: CR13 article-title: Microscale failure mechanisms leading to internal short circuit in li-ion batteries under complex loading scenarios publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.04.005 – volume: 89 start-page: 153 year: 2015 end-page: 162 ident: CR25 article-title: Mechanical properties of commercial LixMn2O4 cathode under different states of charge publication-title: Acta Mater doi: 10.1016/j.actamat.2015.01.074 – volume: 245 start-page: 745 year: 2014 end-page: 751 ident: CR21 article-title: Stress evolution and capacity fade in constrained lithium-ion pouch cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.06.165 – volume: 251 start-page: 254 year: 2014 end-page: 263 ident: CR14 article-title: An electrochemical modeling of lithium-ion battery nail penetration publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.11.069 – volume: 172 start-page: 180 year: 2016 end-page: 189 ident: CR9 article-title: Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.03.108 – volume: 271 start-page: 382 year: 2014 end-page: 391 ident: CR11 article-title: Structural analysis and experimental characterization of cylindrical lithium-ion battery cells subject to lateral impact publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.08.014 – volume: 22 start-page: 587 issue: 3 year: 2010 end-page: 603 ident: CR5 article-title: Challenges for rechargeable li batteries publication-title: Chem Mater doi: 10.1021/cm901452z – volume: 220 start-page: 360 year: 2012 end-page: 372 ident: CR19 article-title: Modeling and short circuit detection of 18650 li-ion cells under mechanical abuse conditions publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.07.057 – volume: 247 start-page: 503 year: 2014 end-page: 516 ident: CR8 article-title: Characterizing and modeling mechanical properties and onset of short circuit for three types of lithium-ion pouch cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.08.056 – volume: 247 start-page: 189 year: 2014 end-page: 196 ident: CR16 article-title: Evaluation of mechanical abuse techniques in lithium ion batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.08.066 – volume: 53 start-page: 97 year: 2015 end-page: 110 ident: CR10 article-title: Dynamic mechanical integrity of cylindrical lithium-ion battery cell upon crushing publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2015.03.025 – volume: 280 start-page: 47 year: 2015 end-page: 56 ident: CR20 article-title: Characterization of plasticity and fracture of shell casing of lithium-ion cylindrical battery publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.01.077 – volume: 183 start-page: 278 year: 2016 end-page: 289 ident: CR17 article-title: Integrated computation model of lithium-ion battery subject to nail penetration publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.08.101 – volume: 247 start-page: 821 year: 2014 end-page: 823 ident: CR15 article-title: Building a ‘smart nail’ for penetration tests on li-ion cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.09.022 – volume: 61 start-page: 4354 issue: 12 year: 2013 end-page: 4364 ident: CR27 article-title: Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries publication-title: Acta Mater doi: 10.1016/j.actamat.2013.04.007 – volume: 1 start-page: 381 issue: 6 year: 2016 end-page: 388 ident: CR2 article-title: Mechanical energy dissipation in a multifunctional battery system publication-title: MRS Adv doi: 10.1557/adv.2016.39 – volume: 328 start-page: 443 year: 2016 end-page: 451 ident: CR12 article-title: Impact modeling of cylindrical lithium-ion battery cells: a heterogeneous approach publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.08.034 – year: 2011 ident: CR23 publication-title: Linden’s handbook of batteries – ident: CR26 – ident: CR24 – volume: 267 start-page: 78 year: 2014 ident: 282_CR18 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.05.078 – volume: 1 start-page: 381 issue: 6 year: 2016 ident: 282_CR2 publication-title: MRS Adv doi: 10.1557/adv.2016.39 – volume: 247 start-page: 503 year: 2014 ident: 282_CR8 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.08.056 – volume: 89 start-page: 153 year: 2015 ident: 282_CR25 publication-title: Acta Mater doi: 10.1016/j.actamat.2015.01.074 – volume: 201 start-page: 307 year: 2012 ident: 282_CR7 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2011.10.094 – volume: 17 start-page: 666 issue: 6 year: 2015 ident: 282_CR1 publication-title: J Sandw Struct Mater doi: 10.1177/1099636215591908 – volume: 214 start-page: 377 year: 2012 ident: 282_CR6 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.04.055 – volume: 319 start-page: 56 year: 2016 ident: 282_CR13 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.04.005 – volume-title: Linden’s handbook of batteries year: 2011 ident: 282_CR23 – volume: 251 start-page: 254 year: 2014 ident: 282_CR14 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.11.069 – volume: 280 start-page: 47 year: 2015 ident: 282_CR20 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.01.077 – volume: 245 start-page: 745 year: 2014 ident: 282_CR21 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.06.165 – volume: 22 start-page: 587 issue: 3 year: 2010 ident: 282_CR5 publication-title: Chem Mater doi: 10.1021/cm901452z – ident: 282_CR22 doi: 10.1038/srep21829 – volume: 172 start-page: 180 year: 2016 ident: 282_CR9 publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.03.108 – volume: 220 start-page: 360 year: 2012 ident: 282_CR19 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.07.057 – volume: 161 start-page: F3117 issue: 11 year: 2014 ident: 282_CR28 publication-title: J Electrochem Soc doi: 10.1149/2.0191411jes – ident: 282_CR24 doi: 10.1016/j.elecom.2010.09.008 – volume: 271 start-page: 382 year: 2014 ident: 282_CR11 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.08.014 – volume: 247 start-page: 189 year: 2014 ident: 282_CR16 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.08.066 – volume: 183 start-page: 278 year: 2016 ident: 282_CR17 publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.08.101 – volume: 61 start-page: 4354 issue: 12 year: 2013 ident: 282_CR27 publication-title: Acta Mater doi: 10.1016/j.actamat.2013.04.007 – volume: 9 start-page: 371 issue: 3 year: 2016 ident: 282_CR4 publication-title: Extrem Mech Lett doi: 10.1016/j.eml.2016.05.004 – volume: 247 start-page: 821 year: 2014 ident: 282_CR15 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.09.022 – volume: 53 start-page: 97 year: 2015 ident: 282_CR10 publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2015.03.025 – volume: 105 start-page: 51 year: 2016 ident: 282_CR3 publication-title: Mater Des doi: 10.1016/j.matdes.2016.05.052 – ident: 282_CR26 – volume: 328 start-page: 443 year: 2016 ident: 282_CR12 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.08.034 |
SSID | ssj0007372 |
Score | 2.3111136 |
Snippet | The state-of-charge and deformation-rate dependent mechanical behavior of cylindrical lithium-ion battery cells was investigated. The research revealed that... Not provided. |
SourceID | osti proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 627 |
SubjectTerms | Biomedical Engineering and Bioengineering Characterization and Evaluation of Materials Control Damage tolerance Deformation Dynamical Systems Electric potential Electrochemical cells Engineering Failure load Impact damage Impact strength Integrity Lasers Lithium Lithium-ion batteries Materials Science Mechanical properties Mechanics Optical Devices Optics Photonics Rechargeable batteries Solid Mechanics State of charge Stiffness Vibration Voltage drop |
Title | State-of-Charge and Deformation-Rate Dependent Mechanical Behavior of Electrochemical Cells |
URI | https://link.springer.com/article/10.1007/s11340-017-0282-2 https://www.proquest.com/docview/2015879209 https://www.osti.gov/biblio/1537802 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QdoED4ikGY8qBEyhS2qRtepzYAAHjAEwCcYjSNOEybWgr_x-7jw0QIHGq1KSNZCfOZ9n-TMiJ8CJ2lksWexmCgwInXQUmYbkxSpSdzQUWOI_u4quxvH6Knuo67kWT7d6EJEtLvSp2CwSmIoJVRT-Bgd1tR-C6Yx7XOOwvzS_2XanMr2QS8EQTyvzpF18uo9YMDtUXoPktNlpeORdbZLPGirRfKXebrLnpDtn4xCC4S15KsMhmnmHc_NVRM83pwC1LEtk9DMOLqtNtQUcOK31RMbRmRpzTmafDqhmOrdkD6LmbTBZ7ZHwxfDy_YnW_BGaFFAWLhFXWRInPZIoN6oxPI2W8k9L7OJcJNybOVeqtz3gWBpkKPE-sMgYgSQqOntgnrels6g4IFTJzALWkjKyS0gVpHjnvkfrecBfIpEN4IzhtazJx7Gkx0SsaZJS1BllrlLUOO-R0-clbxaTx1-Qj1IYGGIBcthaTfmyhwTwnisNot1GSro_cQgOSiVSShjztkLNGcavhX5c6_NfsI7IOC6kqd6dLWsX83R0DLCmyHmn3B6PbB3xePt8Me-W2_AAjINlg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yD-pB_IlzU3PwpATSJm3T45gbU7cdZIOBh5CmiZexylb_f1_6Y3OigtembeC95OUL773vQ-iWWRYaTTkJLffhggI7XXgqIqlSghXK5sw1OI_G4WDKn2bBrOrjXtXV7nVKsojUm2Y3j7lSRIiq7p5AIO7uAhYQbilP_c46_DrdlTL8csIBT9SpzJ9-sXUYNTLYVFtA81tutDhy-kfosMKKuFM69xjtmMUJOvjCIHiKXguwSDJLXN78zWC1SPGDWbckkhcYhgel0m2OR8Z1-jrH4IoZcYkzi3ulGI6u2ANw18znqzM07fcm3QGp9BKIZpzlJGBaaBVENuGxE6hTNg6EsoZza8OUR1SpMBWx1Tahie8lwrM00kIpgCQxXPTYOWossoW5QJjxxADU4jzQgnPjxWlgrHXU94oaj0dNRGvDSV2RiTtNi7nc0CA7W0uwtXS2ln4T3a0_eS-ZNP56ueW8IQEGOC5b7Yp-dC4hPEeCwmi7dpKsttxKApIJRBT7NG6i-9pxm-Ffp7r819s3aG8wGQ3l8HH83EL7MKko63jaqJEvP8wVQJQ8uS6W5Cfnrtkr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6yguhBfOL6zMGTEmybaZseRV18I-KC4CGkaeJl6S5u_f_ObNtdFRW8Nm0DM8nkCzPzfYwdSi8TZwMQiYcILyi401VoUlEYo-RE2VxSg_PdfXLZh-vn-LnROR231e5tSrLuaSCWprI6GRX-ZNb4FkoqS8QIS3cGgTF4HqgZGBd0PzqdhmLSYKlDMQhAbNGmNX_6xZeDqTPEDfYFdH7Lk06On94KW25wIz-tHb3K5ly5xpY-sQmus5cJcBRDLyiH_uq4KQt-7qbtieIRh_FBrXpb8TtHXb_kJN6wJL7xoecXtTCObZgE-JkbDMYbrN-7eDq7FI12grASZCViaZU1cepzyEiszvgsVsY7AO-TAtLAmKRQmbc-D_IozFXog9QqYxCeZHjpk5usUw5Lt8W4hNwh7AKIrQJwYVbEznuiwTeBCyHtsqA1nLYNsTjpWwz0jBKZbK3R1ppsraMuO5p-MqpZNf56eYe8oRESEK-tpQIgW2kM1akKcHS3dZJutt9YI6qJVZpFQdZlx63jZsO_TrX9r7cP2MLDeU_fXt3f7LBFnFPVJT27rFO9vbs9RCtVvj9ZkR-a6t1e |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State-of-Charge+and+Deformation-Rate+Dependent+Mechanical+Behavior+of+Electrochemical+Cells&rft.jtitle=Experimental+mechanics&rft.au=Tsutsui%2C+W.&rft.au=Siegmund%2C+T.&rft.au=Parab%2C+N.+D.&rft.au=Liao%2C+H.&rft.date=2018-04-01&rft.issn=0014-4851&rft.eissn=1741-2765&rft.volume=58&rft.issue=4&rft.spage=627&rft.epage=632&rft_id=info:doi/10.1007%2Fs11340-017-0282-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11340_017_0282_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4851&client=summon |