Effect of plastic accumulation on the nucleation of cracks in railroad rails due to bidirectional loaded traffic

•Reversing the direction of traffic in heavy-haul railroads can cause additional plastic deformation in already plastically deformed rails.•Additional plastic accumulation in rails does not cause significant alteration in the life of rails to shelling.•Shakedown limit is reached after a few loading...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of fatigue Vol. 117; pp. 196 - 205
Main Authors Reis, Thairon, de Abreu Lima, Eduardo, Bertelli, Felipe, Antunes dos Santos Junior, Auteliano
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.12.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Reversing the direction of traffic in heavy-haul railroads can cause additional plastic deformation in already plastically deformed rails.•Additional plastic accumulation in rails does not cause significant alteration in the life of rails to shelling.•Shakedown limit is reached after a few loading cycles on rails for heavy-haul traffic.•Life estimation for rails using the multiaxial fatigue approach is consistent with service data for heavy-haul railroads. Bidirectional loaded traffic effect was investigated for heavy haul railway lines, using a coupled analytical and numerical method. A tridimensional elastoplastic finite element model of a rail was developed to obtain the stress and strain distributions. Hertz and Kalker theories were used to estimate the contact pressure and tangential forces on the wheel/rail surface. The resulting critical stress tensor was used to investigate the crack nucleation with Dang Van and Findley’s criteria. The results reveal that the plastic strains stabilize early, the resulting stress range is similar, and that the bidirectional loading affects the life to crack nucleation.
AbstractList •Reversing the direction of traffic in heavy-haul railroads can cause additional plastic deformation in already plastically deformed rails.•Additional plastic accumulation in rails does not cause significant alteration in the life of rails to shelling.•Shakedown limit is reached after a few loading cycles on rails for heavy-haul traffic.•Life estimation for rails using the multiaxial fatigue approach is consistent with service data for heavy-haul railroads. Bidirectional loaded traffic effect was investigated for heavy haul railway lines, using a coupled analytical and numerical method. A tridimensional elastoplastic finite element model of a rail was developed to obtain the stress and strain distributions. Hertz and Kalker theories were used to estimate the contact pressure and tangential forces on the wheel/rail surface. The resulting critical stress tensor was used to investigate the crack nucleation with Dang Van and Findley’s criteria. The results reveal that the plastic strains stabilize early, the resulting stress range is similar, and that the bidirectional loading affects the life to crack nucleation.
Bidirectional loaded traffic effect was investigated for heavy haul railway lines, using a coupled analytical and numerical method. A tridimensional elastoplastic finite element model of a rail was developed to obtain the stress and strain distributions. Hertz and Kalker theories were used to estimate the contact pressure and tangential forces on the wheel/rail surface. The resulting critical stress tensor was used to investigate the crack nucleation with Dang Van and Findley’s criteria. The results reveal that the plastic strains stabilize early, the resulting stress range is similar, and that the bidirectional loading affects the life to crack nucleation.
Author Bertelli, Felipe
de Abreu Lima, Eduardo
Reis, Thairon
Antunes dos Santos Junior, Auteliano
Author_xml – sequence: 1
  givenname: Thairon
  surname: Reis
  fullname: Reis, Thairon
  organization: School of Mechanical Engineering, University of Campinas, Campinas, São Paulo, Brazil
– sequence: 2
  givenname: Eduardo
  surname: de Abreu Lima
  fullname: de Abreu Lima, Eduardo
  organization: School of Mechanical Engineering, University of Campinas, Campinas, São Paulo, Brazil
– sequence: 3
  givenname: Felipe
  orcidid: 0000-0002-9372-167X
  surname: Bertelli
  fullname: Bertelli, Felipe
  email: felipe.berteli@gmail.com
  organization: Mechanical Engineering, Santa Cecilia University, Santos, São Paulo, Brazil
– sequence: 4
  givenname: Auteliano
  surname: Antunes dos Santos Junior
  fullname: Antunes dos Santos Junior, Auteliano
  organization: School of Mechanical Engineering, University of Campinas, Campinas, São Paulo, Brazil
BookMark eNqNkEtLxDAUhYMoOD5-gwHXHXOTZjpduBDxBYIbXYdMcqOpnWZMUsF_b-qICzcKBxKScz7uPQdkdwgDEnICbA4MFmfd3HdOZ_884pwzWM5ZEcgdMoNl01ailnyXzBjUvALgYp8cpNQxxlrWyBnZXDmHJtPg6KbXKXtDtTHjeuwLMgy0KL8gHUbT4_eLoyZq85qoH2jUvo9B269LonZEmgNdeetjoRa77mlf_tHSHLVz3hyRPaf7hMff5yF5ur56vLyt7h9u7i4v7isjapGr2llYibbh1kDTwERw1jZM19JyjosWbYtLQIY1tLy1Uku9XKGQ0orWIROH5HTL3cTwNmLKqgtjLPMkxUFwzhvBJtf51mViSCmiU8bnrz3ztJECpqaSVad-SlZTyYoVgSz55ld-E_1ax49_JC-2SSwlvHuMKhmPg8FtdcoG_yfjE0p0oKk
CitedBy_id crossref_primary_10_1016_j_wear_2024_205277
crossref_primary_10_1016_j_ijsolstr_2022_111516
Cites_doi 10.1016/j.wear.2009.08.014
10.1007/978-94-015-7889-9
10.1007/978-94-015-8151-6_19
10.1016/j.wear.2009.09.015
10.1016/0020-7403(92)90073-P
10.1016/0043-1648(88)90014-2
10.1046/j.1460-2695.2003.00698.x
10.1016/0043-1648(91)90010-R
10.1016/S0043-1648(02)00107-2
10.1016/S0142-1123(99)00125-5
10.1016/j.triboint.2008.01.004
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Dec 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 2018
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.ijfatigue.2018.08.015
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3452
EndPage 205
ExternalDocumentID 10_1016_j_ijfatigue_2018_08_015
S0142112318303864
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABCJ
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
TN5
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
8BQ
8FD
EFKBS
JG9
ID FETCH-LOGICAL-c343t-4fd1b3972dc1771adedfdd70a45d22e69ed9e81e0e41929d5a5a8be355d39fe03
IEDL.DBID .~1
ISSN 0142-1123
IngestDate Fri Jul 25 05:42:45 EDT 2025
Tue Jul 01 01:54:29 EDT 2025
Thu Apr 24 22:57:17 EDT 2025
Fri Feb 23 02:47:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Finite element method
Railway rail
Wheel-rail interaction
Plastic accumulation
Kalker theory
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-4fd1b3972dc1771adedfdd70a45d22e69ed9e81e0e41929d5a5a8be355d39fe03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9372-167X
PQID 2132227300
PQPubID 2045465
PageCount 10
ParticipantIDs proquest_journals_2132227300
crossref_citationtrail_10_1016_j_ijfatigue_2018_08_015
crossref_primary_10_1016_j_ijfatigue_2018_08_015
elsevier_sciencedirect_doi_10_1016_j_ijfatigue_2018_08_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2018
2018-12-00
20181201
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 2018
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle International journal of fatigue
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Findley (b0015) 1958
Dang Van, Maitouram (b0080) 2003; 26
Kalker JJ. Three-dimensional elastic bodies in rolling contact. Solidmechanics and its applications. Dordrecht: Kluwer Academic Publishers; 1990.
Daves, Fischer (b0025) 2002; 253
Iwnicki (b0070) 2006
Spiryagin, Lee, Yoo, Kashura, Popov (b0040) 2010; 268
Systèmes (b0065) 2010
Marquis, Socie (b0095) 2000
Ringsberg, Loo-Morrey, Josefson, Kapoor, Beynon (b0045) 2000; 22
Vollebregt EAH, Wilders P. Fastsim2: a second-order accurate frictional rolling contact algorithm. Springer 2010;47(1):105–16.
Dang Van, Le Douaron, Lieurade (b0075) 1984; 84
Dang Van, Griveau, Message (b0010) 1989
Kapoor, Johnson (b0050) 1992; 34
Alonso, Gimenez (b0030) 2008; 41
Arias-Cuevasa, Li, Lewis, Gallardo-Hernández (b0035) 2010; 268
Moyar, Stone (b0085) 1991
EFVM, VALE S. A., private communication; 2018.
Bhargava, Hahn, Rubin (b0005) 1988; 122
Bower AF, Johnson KL. Shakedown, residual stress and plastic flow in repeated wheel-rail contact. International conference on rail quality and maintenance for modern railway operation, Delft; 1993. p. 239–49.
Ringsberg (10.1016/j.ijfatigue.2018.08.015_b0045) 2000; 22
Iwnicki (10.1016/j.ijfatigue.2018.08.015_b0070) 2006
Kapoor (10.1016/j.ijfatigue.2018.08.015_b0050) 1992; 34
10.1016/j.ijfatigue.2018.08.015_b0060
Bhargava (10.1016/j.ijfatigue.2018.08.015_b0005) 1988; 122
Systèmes (10.1016/j.ijfatigue.2018.08.015_b0065) 2010
Dang Van (10.1016/j.ijfatigue.2018.08.015_b0080) 2003; 26
Dang Van (10.1016/j.ijfatigue.2018.08.015_b0010) 1989
Arias-Cuevasa (10.1016/j.ijfatigue.2018.08.015_b0035) 2010; 268
Spiryagin (10.1016/j.ijfatigue.2018.08.015_b0040) 2010; 268
Moyar (10.1016/j.ijfatigue.2018.08.015_b0085) 1991
10.1016/j.ijfatigue.2018.08.015_b0055
Marquis (10.1016/j.ijfatigue.2018.08.015_b0095) 2000
10.1016/j.ijfatigue.2018.08.015_b0100
Findley (10.1016/j.ijfatigue.2018.08.015_b0015) 1958
10.1016/j.ijfatigue.2018.08.015_b0020
Dang Van (10.1016/j.ijfatigue.2018.08.015_b0075) 1984; 84
Daves (10.1016/j.ijfatigue.2018.08.015_b0025) 2002; 253
Alonso (10.1016/j.ijfatigue.2018.08.015_b0030) 2008; 41
References_xml – volume: 22
  start-page: 205
  year: 2000
  end-page: 215
  ident: b0045
  article-title: Prediction of fatigue crack initiation for rolling contact fatigue
  publication-title: Int J Fatigue
– volume: 122
  start-page: 267
  year: 1988
  end-page: 283
  ident: b0005
  article-title: Analysis of rolling contact with kinematic hardening for rail steel properties
  publication-title: Wear
– reference: Bower AF, Johnson KL. Shakedown, residual stress and plastic flow in repeated wheel-rail contact. International conference on rail quality and maintenance for modern railway operation, Delft; 1993. p. 239–49.
– volume: 268
  start-page: 543
  year: 2010
  end-page: 551
  ident: b0035
  article-title: Rolling–sliding laboratory tests of friction modifiers in dry and wet wheel–rail contacts
  publication-title: Wear
– start-page: 117
  year: 1991
  end-page: 138
  ident: b0085
  article-title: An analysis of the thermal contributions to railway wheel sheeling
  publication-title: Wear
– reference: Kalker JJ. Three-dimensional elastic bodies in rolling contact. Solidmechanics and its applications. Dordrecht: Kluwer Academic Publishers; 1990.
– start-page: 479
  year: 1989
  end-page: 496
  ident: b0010
  article-title: On a new multiaxial fatigue limit criterion: theory and application
– volume: 253
  start-page: 241
  year: 2002
  end-page: 246
  ident: b0025
  article-title: Modelling of the plastification near the rough surface of rail by the wheel-rail contact
  publication-title: Wear
– volume: 268
  start-page: 287
  year: 2010
  end-page: 293
  ident: b0040
  article-title: Numerical calculation of temperature in the wheel–rail flange contact and implications for lubricant choice
  publication-title: Wear
– reference: EFVM, VALE S. A., private communication; 2018.
– year: 2000
  ident: b0095
  article-title: Multiaxial Fatigue
– volume: 34
  start-page: 223
  year: 1992
  end-page: 239
  ident: b0050
  article-title: Effect of changes in contact geometry on Shakedown of surfaces in rolling/sliding contact
  publication-title: Int J Mech Sci
– volume: 84
  start-page: 1879
  year: 1984
  end-page: 1885
  ident: b0075
  article-title: Multiaxial fatigue limit: a new approach
  publication-title: Adv Fract Res
– year: 2006
  ident: b0070
  article-title: Handbook of railway vehicle dynamics
– volume: 26
  start-page: 939
  year: 2003
  end-page: 948
  ident: b0080
  article-title: Rolling contact in railways: modeling, simulation and damage prediction
  publication-title: Fatigue Fract Eng Mater Struct
– reference: Vollebregt EAH, Wilders P. Fastsim2: a second-order accurate frictional rolling contact algorithm. Springer 2010;47(1):105–16.
– year: 1958
  ident: b0015
  article-title: A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending
– volume: 41
  start-page: 755
  year: 2008
  end-page: 768
  ident: b0030
  article-title: Wheel–rail contact: Roughness, heat generation and conforming contact influence
  publication-title: Tribol Int
– year: 2010
  ident: b0065
  article-title: ABAQUS Analysis user's manual
– volume: 268
  start-page: 287
  issue: 1–2
  year: 2010
  ident: 10.1016/j.ijfatigue.2018.08.015_b0040
  article-title: Numerical calculation of temperature in the wheel–rail flange contact and implications for lubricant choice
  publication-title: Wear
  doi: 10.1016/j.wear.2009.08.014
– ident: 10.1016/j.ijfatigue.2018.08.015_b0055
  doi: 10.1007/978-94-015-7889-9
– year: 2010
  ident: 10.1016/j.ijfatigue.2018.08.015_b0065
– year: 2006
  ident: 10.1016/j.ijfatigue.2018.08.015_b0070
– year: 2000
  ident: 10.1016/j.ijfatigue.2018.08.015_b0095
– ident: 10.1016/j.ijfatigue.2018.08.015_b0020
  doi: 10.1007/978-94-015-8151-6_19
– year: 1958
  ident: 10.1016/j.ijfatigue.2018.08.015_b0015
– volume: 84
  start-page: 1879
  year: 1984
  ident: 10.1016/j.ijfatigue.2018.08.015_b0075
  article-title: Multiaxial fatigue limit: a new approach
  publication-title: Adv Fract Res
– volume: 268
  start-page: 543
  issue: 3–4
  year: 2010
  ident: 10.1016/j.ijfatigue.2018.08.015_b0035
  article-title: Rolling–sliding laboratory tests of friction modifiers in dry and wet wheel–rail contacts
  publication-title: Wear
  doi: 10.1016/j.wear.2009.09.015
– volume: 34
  start-page: 223
  issue: 3
  year: 1992
  ident: 10.1016/j.ijfatigue.2018.08.015_b0050
  article-title: Effect of changes in contact geometry on Shakedown of surfaces in rolling/sliding contact
  publication-title: Int J Mech Sci
  doi: 10.1016/0020-7403(92)90073-P
– ident: 10.1016/j.ijfatigue.2018.08.015_b0100
– start-page: 479
  year: 1989
  ident: 10.1016/j.ijfatigue.2018.08.015_b0010
– volume: 122
  start-page: 267
  issue: 3
  year: 1988
  ident: 10.1016/j.ijfatigue.2018.08.015_b0005
  article-title: Analysis of rolling contact with kinematic hardening for rail steel properties
  publication-title: Wear
  doi: 10.1016/0043-1648(88)90014-2
– ident: 10.1016/j.ijfatigue.2018.08.015_b0060
– volume: 26
  start-page: 939
  issue: 10
  year: 2003
  ident: 10.1016/j.ijfatigue.2018.08.015_b0080
  article-title: Rolling contact in railways: modeling, simulation and damage prediction
  publication-title: Fatigue Fract Eng Mater Struct
  doi: 10.1046/j.1460-2695.2003.00698.x
– start-page: 117
  year: 1991
  ident: 10.1016/j.ijfatigue.2018.08.015_b0085
  article-title: An analysis of the thermal contributions to railway wheel sheeling
  publication-title: Wear
  doi: 10.1016/0043-1648(91)90010-R
– volume: 253
  start-page: 241
  issue: 1–2
  year: 2002
  ident: 10.1016/j.ijfatigue.2018.08.015_b0025
  article-title: Modelling of the plastification near the rough surface of rail by the wheel-rail contact
  publication-title: Wear
  doi: 10.1016/S0043-1648(02)00107-2
– volume: 22
  start-page: 205
  issue: 3
  year: 2000
  ident: 10.1016/j.ijfatigue.2018.08.015_b0045
  article-title: Prediction of fatigue crack initiation for rolling contact fatigue
  publication-title: Int J Fatigue
  doi: 10.1016/S0142-1123(99)00125-5
– volume: 41
  start-page: 755
  year: 2008
  ident: 10.1016/j.ijfatigue.2018.08.015_b0030
  article-title: Wheel–rail contact: Roughness, heat generation and conforming contact influence
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2008.01.004
SSID ssj0009075
Score 2.24901
Snippet •Reversing the direction of traffic in heavy-haul railroads can cause additional plastic deformation in already plastically deformed rails.•Additional plastic...
Bidirectional loaded traffic effect was investigated for heavy haul railway lines, using a coupled analytical and numerical method. A tridimensional...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 196
SubjectTerms Contact pressure
Crack initiation
Cracks
Elastoplasticity
Finite element analysis
Finite element method
Fracture mechanics
Kalker theory
Materials fatigue
Mathematical analysis
Mathematical models
Nucleation
Numerical methods
Plastic accumulation
Railroads
Railway rail
Stresses
Tensors
Wheel-rail interaction
Title Effect of plastic accumulation on the nucleation of cracks in railroad rails due to bidirectional loaded traffic
URI https://dx.doi.org/10.1016/j.ijfatigue.2018.08.015
https://www.proquest.com/docview/2132227300
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqWGBAPMWjVB5YQ_Oyk7BVFVUBqROVullOfJFSlbRK05Xfjs9xCkVIHZAyJI7Pcs6Xu7N9_o6QB8nANZFqWexxJ5SA2QAT7gQsYCoGHgIYtM8JH0_D1xmbdciwPQuDYZVW9zc63WhrW9K33OyviqKPYUl69uKjULpBzBETNAwjlPLHz-8wj6QB28XKDtbeifEq5rn-flwi0XYwNliemB_3bwv1S1cbAzQ6JSfWc6SDpnNnpAPlOTn-gSd4QVYNFjFd5nSlvWJdkcos23zYFF1UX9rfoyViGNuSnGYVHrOnRUkrWSyqpVTmZk3VBmi9pGnRsMisGdKFfg-K1pVE7IlLMh09vw_Hjk2p4GRBGNROmCsv1S6IrzIvijykyJWKXBky5fvAE1AJxB64gLvDiWKSyTgF7ZSoIMnBDa7IQbks4ZrQDFKXA1cRAuQnqZ73sTiNdcu-ZNrssxvCWzaKzOKNY9qLhWgDy-Ziy3-B_BeYENPThO6WcNVAbuwneWrHSexIj9CGYT9xtx1ZYX_gtfDNFhSC-d_-p-07coRPTfxLlxzU1QbutRdTpz0jpj1yOHh5G0--ACM885w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYoHFoOCGgroFB8oMewedmbIHGoCmh5nkDiZpx4IgUtySqbFeqlf6p_kBnH4VFV4oCQcoiSjGXNODNj-_M3jO1oAb5FquVJIL1YA1UDTKUXiUiYBGQMYNk-L-ToKj65Ftdz7G9_FoZglc73dz7demv3ZOC0OZiU5YBgSTh7CWlQ-lEiY4esPIXf9zhvm-4fH6CRf4Th0eHlr5HnSgt4eRRHrRcXJsgwFIcmD4bDQBswhTFDX8fChCHIFEwKSQA-0C5paoQWOskAg7OJ0gL8CNv9wBZidBdUNmH3zxOuJO3Yfal3HnXvBaisvC1Q4bQmg4E3seShVJD3_yHxn-BgI97RMltyqSr_2Wljhc1BtcoWnxEYfmaTjvyY1wWfYBqOH3Kd57M7VxOM44UJJq-INNk9KXje0Ll-Xla80eW4qbWxN1NuZsDbmmdlZxO7SMnHNamNt40msosv7OpdFP2VzVd1BWuM55D5EqQZEiN_muFEUyRZgi2HWmCeIdaZ7NWockdwTnU2xqpHst2qR_0r0r-iCpwBCvqPgpOO4-N1kb3eTurFcFUYiV4X3uwtq5zHmKrQ7nlR9YCNt7S9zT6OLs_P1Nnxxek39onedOCbTTbfNjPYwhSqzb7bIcvZzXv_Iw-a7TCj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+plastic+accumulation+on+the+nucleation+of+cracks+in+railroad+rails+due+to+bidirectional+loaded+traffic&rft.jtitle=International+journal+of+fatigue&rft.au=Reis%2C+Thairon&rft.au=Lima%2C+Eduardo+de+Abreu&rft.au=Bertelli%2C+Felipe&rft.au=dos+Santos%2C+Auteliano+Antunes&rft.date=2018-12-01&rft.pub=Elsevier+BV&rft.issn=0142-1123&rft.eissn=1879-3452&rft.volume=117&rft.spage=196&rft_id=info:doi/10.1016%2Fj.ijfatigue.2018.08.015&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-1123&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-1123&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-1123&client=summon