An Artificial Neural Network-Based Snow Cover Predictive Modeling in the Higher Himalayas
With trends indicating increase in temperature and decrease in winter precipitation, a significant negative trend in snow-covered areas has been identified in the last decade in the Himalayas. This requires a quantitative analysis of the snow cover in the higher Himalayas. In this study, a nonlinear...
Saved in:
Published in | Journal of mountain science Vol. 11; no. 4; pp. 825 - 837 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Science Press
01.07.2014
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With trends indicating increase in temperature and decrease in winter precipitation, a significant negative trend in snow-covered areas has been identified in the last decade in the Himalayas. This requires a quantitative analysis of the snow cover in the higher Himalayas. In this study, a nonlinear autoregressive exogenous model, an artificial neural network (ANN), was deployed to predict the snow cover in the Kaligandaki river basin for the next 30 years. Observed climatic data, and snow covered area was used to train and test the model that captures the gross features of snow under the current climate scenario. The range of the likely effects of climate change on seasonal snow was assessed in the Himalayas using downscaled temperature and precipitation change projection from - HadCM3, a global circulation model to project future climate scenario, under the AIB emission scenario, which describes a future world of very rapid economic growth with balance use between fossil and non-fossil energy sources. The results show that there is a reduction of 9% to 46% of snow cover in different elevation zones during the considered time period, i.e., 2Oll to 2040. The 4700 m to 52oo m elevation zone is the most affected area and the area higher than 5200 m is the least affected. Overall, however, it is clear from the analysis that seasonal snow in the Kaligandaki basin is likely to be subject to substantialchanges due to the impact of climate change. |
---|---|
AbstractList | With trends indicating increase in temperature and decrease in winter precipitation, a significant negative trend in snow-covered areas has been identified in the last decade in the Himalayas. This requires a quantitative analysis of the snow cover in the higher Himalayas. In this study, a nonlinear autoregressive exogenous model, an artificial neural network (ANN), was deployed to predict the snow cover in the Kaligandaki river basin for the next 30 years. Observed climatic data, and snow covered area was used to train and test the model that captures the gross features of snow under the current climate scenario. The range of the likely effects of climate change on seasonal snow was assessed in the Himalayas using downscaled temperature and precipitation change projection from -- HadCM3, a global circulation model to project future climate scenario, under the A1B emission scenario, which describes a future world of very rapid economic growth with balance use between fossil and non-fossil energy sources. The results show that there is a reduction of 9% to 46% of snow cover in different elevation zones during the considered time period, i.e., 2011 to 2040. The 4700 m to 5200 m elevation zone is the most affected area and the area higher than 5200 m is the least affected. Overall, however, it is clear from the analysis that seasonal snow in the Kaligandaki basin is likely to be subject to substantial changes due to the impact of climate change.[PUBLICATION ABSTRACT] With trends indicating increase in temperature and decrease in winter precipitation, a significant negative trend in snow-covered areas has been identified in the last decade in the Himalayas. This requires a quantitative analysis of the snow cover in the higher Himalayas. In this study, a nonlinear autoregressive exogenous model, an artificial neural network (ANN), was deployed to predict the snow cover in the Kaligandaki river basin for the next 30 years. Observed climatic data, and snow covered area was used to train and test the model that captures the gross features of snow under the current climate scenario. The range of the likely effects of climate change on seasonal snow was assessed in the Himalayas using downscaled temperature and precipitation change projection from - HadCM3, a global circulation model to project future climate scenario, under the AIB emission scenario, which describes a future world of very rapid economic growth with balance use between fossil and non-fossil energy sources. The results show that there is a reduction of 9% to 46% of snow cover in different elevation zones during the considered time period, i.e., 2Oll to 2040. The 4700 m to 52oo m elevation zone is the most affected area and the area higher than 5200 m is the least affected. Overall, however, it is clear from the analysis that seasonal snow in the Kaligandaki basin is likely to be subject to substantialchanges due to the impact of climate change. With trends indicating increase in temperature and decrease in winter precipitation, a significant negative trend in snow-covered areas has been identified in the last decade in the Himalayas. This requires a quantitative analysis of the snow cover in the higher Himalayas. In this study, a nonlinear autoregressive exogenous model, an artificial neural network (ANN), was deployed to predict the snow cover in the Kaligandaki river basin for the next 30 years. Observed climatic data, and snow covered area was used to train and test the model that captures the gross features of snow under the current climate scenario. The range of the likely effects of climate change on seasonal snow was assessed in the Himalayas using downscaled temperature and precipitation change projection from — HadCM3, a global circulation model to project future climate scenario, under the A1B emission scenario, which describes a future world of very rapid economic growth with balance use between fossil and non-fossil energy sources. The results show that there is a reduction of 9% to 46% of snow cover in different elevation zones during the considered time period, i.e., 2011 to 2040. The 4700 m to 5200 m elevation zone is the most affected area and the area higher than 5200 m is the least affected. Overall, however, it is clear from the analysis that seasonal snow in the Kaligandaki basin is likely to be subject to substantial changes due to the impact of climate change. |
Author | Bhogendra MISHRA Nitin K. TRIPATHI Mukand S. BABEL |
AuthorAffiliation | Remote Sensing and Geographical Information Systems, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani 1212o, Thailand Water Engineering and Management, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani 12120, Thailand |
Author_xml | – sequence: 1 givenname: Bhogendra surname: Mishra fullname: Mishra, Bhogendra email: bhogendra@gmail.com organization: Remote Sensing and Geographical Information Systems, Asian Institute of Technology – sequence: 2 givenname: Nitin K. surname: Tripathi fullname: Tripathi, Nitin K. organization: Remote Sensing and Geographical Information Systems, Asian Institute of Technology – sequence: 3 givenname: Mukand S. surname: Babel fullname: Babel, Mukand S. organization: Water Engineering and Management, Asian Institute of Technology |
BookMark | eNp9kEtPHDEQhK0IpPDID-BmwdmJe_yY8XFZkWwkAkhJDpws47F3DYMNthfEv4_JIoQ4cOo61NfVXbtoK6boEDoA-hUo7b8VANkpQoGTTg2CiE9oB5RihLIOtpqWfUckA_kZ7ZZyTans1QA76HIW8SzX4IMNZsJnbp3_j_qY8g05NsWN-HdMj3ieHlzGF9mNwdbw4PCvNLopxCUOEdeVw4uwXDXHItyayTyZso-2vZmK-_Iy99Df7yd_5gtyev7j53x2SizjrBLmBQzWXglhBBWWid5547nrOJODsr67Ykw4OxjTS-5HB6xJRkdvwHvoFdtDR5u9dzndr12p-jqtc2yRGgRnigPtobn6jcvmVEp2XttQTQ0p1mzCpIHq5x71pkfdetTPPWrRSHhH3uX2Y376kOk2TGneuHT5zU0fQIcvQasUl_eNe02SElRHOVfsHzOwkl4 |
CitedBy_id | crossref_primary_10_1155_2022_3280928 crossref_primary_10_3390_w11040761 crossref_primary_10_3390_hydrology8020085 crossref_primary_10_1016_j_jhydrol_2017_04_058 crossref_primary_10_1016_j_scitotenv_2021_147776 crossref_primary_10_3390_w10020220 crossref_primary_10_1007_s11629_023_8388_8 crossref_primary_10_1002_hyp_11165 crossref_primary_10_1016_j_advwatres_2018_12_010 crossref_primary_10_1111_nrm_12229 crossref_primary_10_1016_j_srs_2024_100152 crossref_primary_10_1017_jog_2021_19 crossref_primary_10_1007_s11600_020_00491_4 crossref_primary_10_1007_s13201_024_02297_x |
Cites_doi | 10.1016/j.jhydrol.2010.02.019 10.1109/3477.558801 10.1007/s00704-013-0966-1 10.1002/hyp.5784 10.1016/j.envsoft.2010.02.003 10.1002/(SICI)1099-1085(199808/09)12:10/11<1723::AID-HYP691>3.0.CO;2-2 10.1016/0305-0483(86)90013-7 10.1002/hyp.6209 10.1016/j.jhydrol.2009.01.009 10.1002/joc.2043 10.1002/hyp.7210 10.4236/acs.2013.34058 10.1016/j.jhydrol.2014.01.005 10.1111/j.1523-1739.2009.01237.x 10.1109/72.279188 10.1371/journal.pone.0076440 10.5194/hess-17-1265-2013 10.1016/j.jhydrol.2010.02.037 10.1002/(SICI)1097-0088(200005)20:6<615::AID-JOC489>3.0.CO;2-0 10.1023/A:1014415503476 10.1016/j.neunet.2003.08.007 10.1080/17538947.2011.594099 10.1080/01431160600702665 10.1061/(ASCE)1084-0699(2000)5:2(115) 10.5194/hess-13-1413-2009 10.1016/0034-4257(95)00137-P 10.1007/s11269-010-9766-x 10.1175/JHM560.1 10.1371/journal.pone.0011122 10.5194/acp-10-4583-2010 10.5194/hess-17-935-2013 10.1016/j.rse.2007.05.024 10.1016/j.desal.2010.04.053 10.1111/j.1574-6941.2010.00951.x 10.1007/s00704-012-0713-z 10.1016/j.envsoft.2007.05.014 10.1126/science.1215828 10.1007/s10584-011-0181-y 10.1007/s003820050009 |
ContentType | Journal Article |
Copyright | Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2014 |
Copyright_xml | – notice: Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2014 |
DBID | 2RA 92L CQIGP W94 ~WA AAYXX CITATION 3V. 7ST 7UA 7XB 88I 8FK ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ L.G M2P PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI Q9U SOI |
DOI | 10.1007/s11629-014-2985-5 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-自然科学 中文科技期刊数据库- 镜像站点 CrossRef ProQuest Central (Corporate) Environment Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (New) Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Environment Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Ecology |
DocumentTitleAlternate | An Artificial Neural Network-Based Snow Cover Predictive Modeling in the Higher Himalayas |
EISSN | 1993-0321 1008-2786 |
EndPage | 837 |
ExternalDocumentID | 3367577791 10_1007_s11629_014_2985_5 661920449 |
Genre | Feature |
GeographicLocations | Himalaya Mountains |
GeographicLocations_xml | – name: Himalaya Mountains |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 29L 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 3V. 4.4 406 408 40E 5VR 5VS 67M 6NX 88I 8FE 8FH 8TC 92E 92I 92L 92Q 93N 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABDZT ABECU ABFGW ABFTV ABHQN ABJOX ABKAS ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AZQEC B-. BA0 BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ CAG CCEZO CCPQU CCVFK CHBEP COF CQIGP CS3 CSCUP CW9 DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EDH EIOEI EJD ESBYG FA0 FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KOV L8X LK5 LLZTM M2P M4Y M7R MA- NPVJJ NQJWS NU0 O9- O9J PCBAR PF0 PQQKQ PROAC PT4 Q2X QOS R89 R9I ROL RPX RSV S.. S16 S1Z S27 S3B SAP SCL SDH SEV SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TCJ TGP TSG TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W48 W94 WK8 YLTOR ZMTXR ~02 ~A9 ~WA -SA -S~ AACDK AAJBT AASML AAXDM AAYZH ABAKF ABJNI ACDTI ACPIV AEFQL AEMSY AEUYN AFBBN AGQEE AGRTI AIGIU CAJEA H13 Q-- SJYHP U1G U5K AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7ST 7UA 7XB 8FK ABRTQ C1K F1W H96 L.G PKEHL PQEST PQUKI PUEGO Q9U SOI |
ID | FETCH-LOGICAL-c343t-3f518ccb55a505c357efaf4e243689cf2b335ec8aa764fde138aa30dfa1ff1793 |
IEDL.DBID | BENPR |
ISSN | 1672-6316 |
IngestDate | Sat Aug 23 14:44:56 EDT 2025 Thu Apr 24 23:08:56 EDT 2025 Tue Jul 01 03:19:19 EDT 2025 Fri Feb 21 02:36:48 EST 2025 Wed Feb 14 10:36:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Climate change Global warming Snow cover Kaligandai river Artificial neural network Himalayas |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-3f518ccb55a505c357efaf4e243689cf2b335ec8aa764fde138aa30dfa1ff1793 |
Notes | 51-1668/P Snow cover; Kaligandai river; Himalayas;Artificial neural network; Global warming; Climatechange With trends indicating increase in temperature and decrease in winter precipitation, a significant negative trend in snow-covered areas has been identified in the last decade in the Himalayas. This requires a quantitative analysis of the snow cover in the higher Himalayas. In this study, a nonlinear autoregressive exogenous model, an artificial neural network (ANN), was deployed to predict the snow cover in the Kaligandaki river basin for the next 30 years. Observed climatic data, and snow covered area was used to train and test the model that captures the gross features of snow under the current climate scenario. The range of the likely effects of climate change on seasonal snow was assessed in the Himalayas using downscaled temperature and precipitation change projection from - HadCM3, a global circulation model to project future climate scenario, under the AIB emission scenario, which describes a future world of very rapid economic growth with balance use between fossil and non-fossil energy sources. The results show that there is a reduction of 9% to 46% of snow cover in different elevation zones during the considered time period, i.e., 2Oll to 2040. The 4700 m to 52oo m elevation zone is the most affected area and the area higher than 5200 m is the least affected. Overall, however, it is clear from the analysis that seasonal snow in the Kaligandaki basin is likely to be subject to substantialchanges due to the impact of climate change. SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
PQID | 1543941071 |
PQPubID | 54491 |
PageCount | 13 |
ParticipantIDs | proquest_journals_1543941071 crossref_citationtrail_10_1007_s11629_014_2985_5 crossref_primary_10_1007_s11629_014_2985_5 springer_journals_10_1007_s11629_014_2985_5 chongqing_primary_661920449 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-07-01 |
PublicationDateYYYYMMDD | 2014-07-01 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg – name: Dordrecht |
PublicationTitle | Journal of mountain science |
PublicationTitleAbbrev | J. Mt. Sci |
PublicationTitleAlternate | Journal of Mountain Science |
PublicationYear | 2014 |
Publisher | Science Press Springer Nature B.V |
Publisher_xml | – name: Science Press – name: Springer Nature B.V |
References | Flores (CR15) 1986; 14 Huffman, Adler, Bolvin (CR20) 2007; 8 Mallapaty (CR30) 2014 Maskey, Uhlenbrook, Ojha (CR31) 2011; 108 Babel, Shinde (CR2) 2010; 25 Nourani, Hosseini, Daneshvar (CR35) 2012; 2 Kulkarni, Bahuguna, Rathore (CR27) 2007; 92 Hall, Riggs, Salomonson (CR16) 1995; 54 Hantel, Hirtl-Wielke (CR18) 2007; 20 (CR22) 2007 Cao, Wang (CR5) 2004; 17 Khadka, Babel, Shrestha, Tripathi (CR25) 2014; 511 Cooke (CR10) 2014 Jain, Varshney, Joshi (CR23) 2001; 22 Rees, Collins (CR38) 2006; 20 Bolch, Kulkarni, Kääb (CR4) 2012; 336 Wang, Liang, Meyers (CR49) 2008; 112 Chatterjee, Adak, Singh (CR6) 2010; 5 Mishra, Babel, Tripathi (CR32) 2014; 116 (CR1) 2005; 5 Dery, Salomonson, Stieglitz (CR12) 2005; 19 Wang, Wan, Wang (CR48) 2007; 28 Decesari, Facchini, Carbone (CR13) 2010; 10 Hung, Babel, Weeskul (CR21) 2009; 13 Noori, Sabahi, Karbassi (CR34) 2010; 260 Kronenberg, Barfus, Franke (CR42) 2013; 3 Li, Xing, Liu (CR28) 2012; 5 Stres, Philippot, Faganeli (CR44) 2010; 74 Sauter, Schneider, Kilian (CR40) 2009; 23 Hall, Salomonson, Riggs (CR17) 2006 Xu, Grumbine, Shrestha (CR50) 2009; 23 Quiroga, Mano, Asaoka (CR37) 2013; 17 Sauter, Weitzenkamp, Schneider (CR41) 2010; 30 Diaconescu (CR14) 2008; 3 Dahal, Ojha (CR11) 2009 Chen, Chang (CR8) 2009; 367 Welsh (CR47) 2008; 23 Maier, Jain, Dandy (CR29) 2010; 25 Klein, Hall, Riggs (CR26) 1998; 12 Shen, Chang (CR43) 2013; 17 Pope, Gallani, Rowntree (CR36) 2000; 16 Riggs, Hall, Salomonson (CR39) 2006 Karmacharya, Shrestha, Shrestha (CR24) 2007 Siegelmann, Horne, Giles (CR46) 1997; 27 Chen, Chen, Chou (CR7) 2010; 385 Mishra, Ghimire, Baral (CR33) 2013; 4 Stres, Sul, Murovec (CR45) 2013; 8 Hendrikx, Hreinsoon (CR19) 2012; 110 Connor, Martin, Atlas (CR9) 1994; 5 Besaw, Rizzo, Bierman (CR3) 2010; 386 A Chatterjee (2985_CR6) 2010; 5 GJ Huffman (2985_CR20) 2007; 8 D Khadka (2985_CR25) 2014; 511 VD Pope (2985_CR36) 2000; 16 GA Riggs (2985_CR39) 2006 Z Li (2985_CR28) 2012; 5 W Welsh (2985_CR47) 2008; 23 T Sauter (2985_CR41) 2010; 30 S Decesari (2985_CR13) 2010; 10 S Maskey (2985_CR31) 2011; 108 SJ Dery (2985_CR12) 2005; 19 AG Klein (2985_CR26) 1998; 12 BE Flores (2985_CR15) 1986; 14 J Karmacharya (2985_CR24) 2007 B Mishra (2985_CR33) 2013; 4 V Nourani (2985_CR35) 2012; 2 AV Kulkarni (2985_CR27) 2007; 92 W Wang (2985_CR49) 2008; 112 E Diaconescu (2985_CR14) 2008; 3 HG Rees (2985_CR38) 2006; 20 J Xu (2985_CR50) 2009; 23 JT Connor (2985_CR9) 1994; 5 J Cao (2985_CR5) 2004; 17 A Jain (2985_CR23) 2001; 22 HT Siegelmann (2985_CR46) 1997; 27 K Cooke (2985_CR10) 2014 S Mallapaty (2985_CR30) 2014 IPCC (2985_CR22) 2007 C Chen (2985_CR7) 2010; 385 K Wang (2985_CR48) 2007; 28 R Kronenberg (2985_CR42) 2013; 3 N Dahal (2985_CR11) 2009 M Hantel (2985_CR18) 2007; 20 ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2985_CR1) 2005; 5 B Mishra (2985_CR32) 2014; 116 B Stres (2985_CR45) 2013; 8 Y Chen (2985_CR8) 2009; 367 HR Maier (2985_CR29) 2010; 25 MS Babel (2985_CR2) 2010; 25 LE Besaw (2985_CR3) 2010; 386 B Stres (2985_CR44) 2010; 74 VM Quiroga (2985_CR37) 2013; 17 T Bolch (2985_CR4) 2012; 336 J Hendrikx (2985_CR19) 2012; 110 R Noori (2985_CR34) 2010; 260 NQ Hung (2985_CR21) 2009; 13 DK Hall (2985_CR16) 1995; 54 T Sauter (2985_CR40) 2009; 23 D K Hall (2985_CR17) 2006 HY Shen (2985_CR43) 2013; 17 |
References_xml | – volume: 385 start-page: 173 year: 2010 end-page: 182 ident: CR7 article-title: Development and application of a decision group back propagation neural network for flood forecasting publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2010.02.019 – volume: 27 start-page: 208 issue: 2 year: 1997 end-page: 215 ident: CR46 article-title: Computational capabilities of recurrent NARX neural networks publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/3477.558801 – year: 2014 ident: CR10 publication-title: Himalaya Glacial Melt Set to Peak by 2080 – volume: 116 start-page: 681 year: 2014 end-page: 694 ident: CR32 article-title: Analysis of climatic variability and snow cover in the Kaligandaki River Basin, Himalaya, Nepal publication-title: Theoretical and Applied Climatology doi: 10.1007/s00704-013-0966-1 – volume: 19 start-page: 2755 year: 2005 end-page: 2774 ident: CR12 article-title: Ann approach to using snow areal depletion curves inferred from MODIS and its application to land surface modelling in Alaska publication-title: Hydrological Process doi: 10.1002/hyp.5784 – volume: 25 start-page: 891 year: 2010 end-page: 909 ident: CR29 article-title: Methods used for the development of neural networks for prediction of water resource variables in river systems: Current status and future directions publication-title: Environmental Modelling and Software doi: 10.1016/j.envsoft.2010.02.003 – volume: 12 start-page: 1723 year: 1998 end-page: 1744 ident: CR26 article-title: Improving snow-cover mapping in forests through the use of a canopy reflectance model publication-title: Hydrological Processes doi: 10.1002/(SICI)1099-1085(199808/09)12:10/11<1723::AID-HYP691>3.0.CO;2-2 – volume: 14 start-page: 93 issue: 2 year: 1986 end-page: 98 ident: CR15 article-title: A pragmatic view of accuracy measurement in forecasting publication-title: Omega doi: 10.1016/0305-0483(86)90013-7 – volume: 20 start-page: 2157 year: 2006 end-page: 2169 ident: CR38 article-title: Regional differences in response of flow in glacierfid Himalayan rivers to climatic warming publication-title: Hydrological Process doi: 10.1002/hyp.6209 – volume: 367 start-page: 125 year: 2009 end-page: 137 ident: CR8 article-title: Evolutionary artificial neural networks for hydrological systems forecasting publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2009.01.009 – volume: 3 start-page: 182 issue: 3 year: 2008 end-page: 191 ident: CR14 article-title: The use of NARX neural networks to predict chaotic time series publication-title: Wseas Transactions on Computer Research – volume: 92 start-page: 69 issue: 1 year: 2007 end-page: 74 ident: CR27 article-title: Glacial retreat in Himalaya using Indian remote sensing satellite data publication-title: Current Science – volume: 30 start-page: 2330 year: 2010 end-page: 2341 ident: CR41 article-title: Spatio-temporal prediction of snow cover in the black forest mountain range using remote sensing and a recurrent neural network publication-title: International Journal of Climatology doi: 10.1002/joc.2043 – volume: 23 start-page: 1019 year: 2009 end-page: 1030 ident: CR40 article-title: Simulation and analysis of Runoff from a partly glaciated meso-scale catchment area in Patagonia using an artificial neural network publication-title: Hydrological Processes doi: 10.1002/hyp.7210 – volume: 3 start-page: 552 issue: 4 year: 2013 end-page: 561 ident: CR42 article-title: On the downscaling of meteorological fields using recurrent networks for modelling the water balance in a meso-scale catchment area of Saxony, Germany publication-title: Atmospheric and Climate Sciences doi: 10.4236/acs.2013.34058 – volume: 511 start-page: 49 year: 2014 end-page: 60 ident: CR25 article-title: Climate change impact on glacier and snow melt and runoff in Tamakoshi basin in the Hindu Kush Himalayan (HKH) region publication-title: Jornal of Hydrology doi: 10.1016/j.jhydrol.2014.01.005 – volume: 23 start-page: 520 issue: 3 year: 2009 end-page: 530 ident: CR50 article-title: The melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods publication-title: Conservation Biology doi: 10.1111/j.1523-1739.2009.01237.x – year: 2006 ident: CR17 publication-title: MODIS/Terra Snow Cover 8-Day L3 Global 500 m Grid. Version 5. [indicate subset used] – volume: 5 start-page: 240 issue: 2 year: 1994 end-page: 254 ident: CR9 article-title: Recurrent neural networks and robust time series prediction publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.279188 – year: 2006 ident: CR39 publication-title: MODIS snow products user guide to collection 5 – volume: 8 start-page: e76440 issue: 9 year: 2013 ident: CR45 article-title: Recently deglaciated high-altitude Soils of the Himalaya: diverse environments, heterogenous bacterial communities and long-range dust inputs from the upper troposphere publication-title: PLoS ONE doi: 10.1371/journal.pone.0076440 – volume: 17 start-page: 1265 year: 2013 end-page: 1280 ident: CR37 article-title: Snow glacier melt estimation in tropical and an glaciers using artificial neutral network publication-title: Hydrology and Earth System Sciences doi: 10.5194/hess-17-1265-2013 – volume: 386 start-page: 27 year: 2010 end-page: 37 ident: CR3 article-title: Advances in ungauged stream flow prediction using artificial neural networks publication-title: Journal of Hydrology. doi: 10.1016/j.jhydrol.2010.02.037 – volume: 20 start-page: 615 year: 2007 end-page: 640 ident: CR18 article-title: Sensitivity of Alpine snow cover to European temperature publication-title: International Journal of Climatology doi: 10.1002/(SICI)1097-0088(200005)20:6<615::AID-JOC489>3.0.CO;2-0 – volume: 22 start-page: 299 issue: 6 year: 2001 end-page: 321 ident: CR23 article-title: Short term water demand forecast modelling at IIT Kanpur using artificial neural networks publication-title: Water Resources Management doi: 10.1023/A:1014415503476 – volume: 17 start-page: 379 year: 2004 end-page: 390 ident: CR5 article-title: Absolute exponential stability of recurrent neural networks with Lipschitz-continuous activation functions and time delays publication-title: Neural Networks doi: 10.1016/j.neunet.2003.08.007 – volume: 5 start-page: 516 issue: 6 year: 2012 end-page: 532 ident: CR28 article-title: Monitoring thickness and volume changes of the Dongkemadi Ice Field on the Qinghai-Tibetan Plateau (1969–2000) using Shuttle Radar Topography Mission and map data publication-title: International Journal of Digital Earth doi: 10.1080/17538947.2011.594099 – volume: 28 start-page: 2549 year: 2007 end-page: 2565 ident: CR48 article-title: Evaluation and improvement of the MODIS land surface temperature/emissivity products using ground-based measurements at a semi-desert site on the western Tibetan Plateau publication-title: International Journal of Remote Sensing doi: 10.1080/01431160600702665 – volume: 5 start-page: 115 year: 2005 end-page: 123 ident: CR1 article-title: Artificial neural networks in hydrology: preliminary concepts publication-title: Journal of Hydrologic Engineering doi: 10.1061/(ASCE)1084-0699(2000)5:2(115) – year: 2007 ident: CR24 publication-title: Climate change scenarios for South Asia and Central Himalayan region Based on GCM Ensemble – volume: 13 start-page: 1413 year: 2009 end-page: 1425 ident: CR21 article-title: An artificial neural network model for forecasting in bangkok, Thiland publication-title: Hydrology and Earth System Science doi: 10.5194/hess-13-1413-2009 – year: 2014 ident: CR30 publication-title: Himalayan Glaciers Debate: Melting or Growing – volume: 2 start-page: 464 issue: 1 year: 2012 end-page: 469 ident: CR35 article-title: Classification of groundwater level data using SOM to develop ANN-based forecasting model publication-title: International Journal of Soft Computing and Engineering – volume: 54 start-page: 127 issue: 6 year: 1995 end-page: 140 ident: CR16 article-title: Development of methods for mapping global snow cover using moderate resolution image spectro-radiometer data publication-title: Remote Sensing of Environment doi: 10.1016/0034-4257(95)00137-P – volume: 25 start-page: 1653 year: 2010 end-page: 1676 ident: CR2 article-title: Identifying prominent explanatory variables for water demand prediction using artificial neural networks: A case study of Bangkok publication-title: Water Resources Management doi: 10.1007/s11269-010-9766-x – volume: 8 start-page: 38 year: 2007 end-page: 55 ident: CR20 article-title: The TRMM multisatellite precipitation analysis (TMP): Quasi-global, multiyear, combined sensor precipitation estimates at fine scales publication-title: Journal of Hydrometeorology doi: 10.1175/JHM560.1 – volume: 5 start-page: e11122 issue: 6 year: 2010 ident: CR6 article-title: Aerosol chemistry over a high altitude station at Northeastern Himalayas, India publication-title: PLoS ONE doi: 10.1371/journal.pone.0011122 – volume: 10 start-page: 4583 year: 2010 end-page: 4596 ident: CR13 article-title: Chemical composition of PM10 and PM1 at the high-altitude Himalayan station Nepal Climate Observatory-Pyramid (NCO-P) (5079 m a.s.l.) publication-title: Atmospheric Chemistry and Physics doi: 10.5194/acp-10-4583-2010 – volume: 4 start-page: 47 year: 2013 end-page: 55 ident: CR33 article-title: Japanese Encephalitis risk zone mapping using remote sensing data: a case study of Mid and Far-Western part of Nepal publication-title: Journal of Remote Sensing – volume: 17 start-page: 935 year: 2013 end-page: 945 ident: CR43 article-title: Online multistep-ahead inundation depth forecasts by recurrent NARX networks publication-title: Hydrology and Earth System Sciences doi: 10.5194/hess-17-935-2013 – volume: 112 start-page: 623 year: 2008 end-page: 635 ident: CR49 article-title: Validating MODIS land surface temperature products using long-term night time ground measurements publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2007.05.024 – year: 2007 ident: CR22 publication-title: Climate change 2007: Impacts, Adaptation and Vulnerability – volume: 260 start-page: 129 year: 2010 end-page: 136 ident: CR34 article-title: Multivariate statistical analysis of surface water quality based on correlationsand variations in the data set publication-title: Desalination doi: 10.1016/j.desal.2010.04.053 – start-page: 17 year: 2009 end-page: 25 ident: CR11 article-title: Impact of climate change on forests livelihoods: issues and options for Nepal publication-title: Livelihoods and Forestry Programme – volume: 74 start-page: 323 issue: 2 year: 2010 end-page: 35 ident: CR44 article-title: Frequent freezethaw cycles yield diminished yet resistant and responsive microbial communities in two temperate soils: a laboratory experiment publication-title: FEMS Microbiology Ecology doi: 10.1111/j.1574-6941.2010.00951.x – volume: 110 start-page: 619 year: 2012 end-page: 630 ident: CR19 article-title: The potential impact of climate change on seasonal snow in New Zealand: part II-industry vulnerability and future snow making potential publication-title: Theoretical and Applied Climatology doi: 10.1007/s00704-012-0713-z – volume: 23 start-page: 195 year: 2008 end-page: 205 ident: CR47 article-title: Water balance modeling in brown, Queensland, and the ten iterative steps in model developmentand evaluation publication-title: Environmental Modelling and Software doi: 10.1016/j.envsoft.2007.05.014 – volume: 336 start-page: 310 year: 2012 end-page: 314 ident: CR4 article-title: The state and fate of Himalayan Glaciers publication-title: Science doi: 10.1126/science.1215828 – volume: 108 start-page: 391 year: 2011 end-page: 400 ident: CR31 article-title: An analysis of snow cover changes in the Himalayan region using MODIS snow products and in-situ temperature data publication-title: Climate Change doi: 10.1007/s10584-011-0181-y – volume: 16 start-page: 123 issue: 2–3 year: 2000 end-page: 146 ident: CR36 article-title: The impact of new physical parameterizations in the Hadley Centre climate model — HadAM3 publication-title: Climate Dynamics doi: 10.1007/s003820050009 – volume: 17 start-page: 379 year: 2004 ident: 2985_CR5 publication-title: Neural Networks doi: 10.1016/j.neunet.2003.08.007 – volume: 5 start-page: 516 issue: 6 year: 2012 ident: 2985_CR28 publication-title: International Journal of Digital Earth doi: 10.1080/17538947.2011.594099 – volume: 14 start-page: 93 issue: 2 year: 1986 ident: 2985_CR15 publication-title: Omega doi: 10.1016/0305-0483(86)90013-7 – volume: 10 start-page: 4583 year: 2010 ident: 2985_CR13 publication-title: Atmospheric Chemistry and Physics doi: 10.5194/acp-10-4583-2010 – volume: 116 start-page: 681 year: 2014 ident: 2985_CR32 publication-title: Theoretical and Applied Climatology doi: 10.1007/s00704-013-0966-1 – volume: 3 start-page: 182 issue: 3 year: 2008 ident: 2985_CR14 publication-title: Wseas Transactions on Computer Research – volume: 260 start-page: 129 year: 2010 ident: 2985_CR34 publication-title: Desalination doi: 10.1016/j.desal.2010.04.053 – volume: 108 start-page: 391 year: 2011 ident: 2985_CR31 publication-title: Climate Change doi: 10.1007/s10584-011-0181-y – volume: 74 start-page: 323 issue: 2 year: 2010 ident: 2985_CR44 publication-title: FEMS Microbiology Ecology doi: 10.1111/j.1574-6941.2010.00951.x – volume: 22 start-page: 299 issue: 6 year: 2001 ident: 2985_CR23 publication-title: Water Resources Management doi: 10.1023/A:1014415503476 – volume: 92 start-page: 69 issue: 1 year: 2007 ident: 2985_CR27 publication-title: Current Science – volume: 112 start-page: 623 year: 2008 ident: 2985_CR49 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2007.05.024 – volume: 12 start-page: 1723 year: 1998 ident: 2985_CR26 publication-title: Hydrological Processes doi: 10.1002/(SICI)1099-1085(199808/09)12:10/11<1723::AID-HYP691>3.0.CO;2-2 – volume: 5 start-page: 115 year: 2005 ident: 2985_CR1 publication-title: Journal of Hydrologic Engineering doi: 10.1061/(ASCE)1084-0699(2000)5:2(115) – volume: 19 start-page: 2755 year: 2005 ident: 2985_CR12 publication-title: Hydrological Process doi: 10.1002/hyp.5784 – volume: 511 start-page: 49 year: 2014 ident: 2985_CR25 publication-title: Jornal of Hydrology doi: 10.1016/j.jhydrol.2014.01.005 – volume: 27 start-page: 208 issue: 2 year: 1997 ident: 2985_CR46 publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/3477.558801 – volume: 23 start-page: 1019 year: 2009 ident: 2985_CR40 publication-title: Hydrological Processes doi: 10.1002/hyp.7210 – volume: 16 start-page: 123 issue: 2–3 year: 2000 ident: 2985_CR36 publication-title: Climate Dynamics doi: 10.1007/s003820050009 – volume: 25 start-page: 891 year: 2010 ident: 2985_CR29 publication-title: Environmental Modelling and Software doi: 10.1016/j.envsoft.2010.02.003 – volume-title: Himalayan Glaciers Debate: Melting or Growing year: 2014 ident: 2985_CR30 – volume-title: Himalaya Glacial Melt Set to Peak by 2080 year: 2014 ident: 2985_CR10 – volume-title: MODIS snow products user guide to collection 5 year: 2006 ident: 2985_CR39 – volume: 5 start-page: 240 issue: 2 year: 1994 ident: 2985_CR9 publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.279188 – volume: 25 start-page: 1653 year: 2010 ident: 2985_CR2 publication-title: Water Resources Management doi: 10.1007/s11269-010-9766-x – volume: 8 start-page: 38 year: 2007 ident: 2985_CR20 publication-title: Journal of Hydrometeorology doi: 10.1175/JHM560.1 – volume: 336 start-page: 310 year: 2012 ident: 2985_CR4 publication-title: Science doi: 10.1126/science.1215828 – volume: 20 start-page: 615 year: 2007 ident: 2985_CR18 publication-title: International Journal of Climatology doi: 10.1002/(SICI)1097-0088(200005)20:6<615::AID-JOC489>3.0.CO;2-0 – volume: 367 start-page: 125 year: 2009 ident: 2985_CR8 publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2009.01.009 – volume: 17 start-page: 935 year: 2013 ident: 2985_CR43 publication-title: Hydrology and Earth System Sciences doi: 10.5194/hess-17-935-2013 – volume: 110 start-page: 619 year: 2012 ident: 2985_CR19 publication-title: Theoretical and Applied Climatology doi: 10.1007/s00704-012-0713-z – volume: 17 start-page: 1265 year: 2013 ident: 2985_CR37 publication-title: Hydrology and Earth System Sciences doi: 10.5194/hess-17-1265-2013 – volume-title: Climate change 2007: Impacts, Adaptation and Vulnerability year: 2007 ident: 2985_CR22 – volume: 2 start-page: 464 issue: 1 year: 2012 ident: 2985_CR35 publication-title: International Journal of Soft Computing and Engineering – start-page: 17 volume-title: Livelihoods and Forestry Programme year: 2009 ident: 2985_CR11 – volume: 3 start-page: 552 issue: 4 year: 2013 ident: 2985_CR42 publication-title: Atmospheric and Climate Sciences doi: 10.4236/acs.2013.34058 – volume: 28 start-page: 2549 year: 2007 ident: 2985_CR48 publication-title: International Journal of Remote Sensing doi: 10.1080/01431160600702665 – volume: 386 start-page: 27 year: 2010 ident: 2985_CR3 publication-title: Journal of Hydrology. doi: 10.1016/j.jhydrol.2010.02.037 – volume: 4 start-page: 47 year: 2013 ident: 2985_CR33 publication-title: Journal of Remote Sensing – volume: 23 start-page: 195 year: 2008 ident: 2985_CR47 publication-title: Environmental Modelling and Software doi: 10.1016/j.envsoft.2007.05.014 – volume-title: MODIS/Terra Snow Cover 8-Day L3 Global 500 m Grid. Version 5. [indicate subset used] year: 2006 ident: 2985_CR17 – volume: 385 start-page: 173 year: 2010 ident: 2985_CR7 publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2010.02.019 – volume-title: Climate change scenarios for South Asia and Central Himalayan region Based on GCM Ensemble year: 2007 ident: 2985_CR24 – volume: 54 start-page: 127 issue: 6 year: 1995 ident: 2985_CR16 publication-title: Remote Sensing of Environment doi: 10.1016/0034-4257(95)00137-P – volume: 13 start-page: 1413 year: 2009 ident: 2985_CR21 publication-title: Hydrology and Earth System Science doi: 10.5194/hess-13-1413-2009 – volume: 30 start-page: 2330 year: 2010 ident: 2985_CR41 publication-title: International Journal of Climatology doi: 10.1002/joc.2043 – volume: 20 start-page: 2157 year: 2006 ident: 2985_CR38 publication-title: Hydrological Process doi: 10.1002/hyp.6209 – volume: 8 start-page: e76440 issue: 9 year: 2013 ident: 2985_CR45 publication-title: PLoS ONE doi: 10.1371/journal.pone.0076440 – volume: 23 start-page: 520 issue: 3 year: 2009 ident: 2985_CR50 publication-title: Conservation Biology doi: 10.1111/j.1523-1739.2009.01237.x – volume: 5 start-page: e11122 issue: 6 year: 2010 ident: 2985_CR6 publication-title: PLoS ONE doi: 10.1371/journal.pone.0011122 |
SSID | ssj0067981 ssib051371794 ssib006568172 ssib000862251 ssib036356720 ssib000969690 ssib041262273 |
Score | 2.0374773 |
Snippet | With trends indicating increase in temperature and decrease in winter precipitation, a significant negative trend in snow-covered areas has been identified in... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 825 |
SubjectTerms | Climate change Climate effects Climatic data Earth and Environmental Science Earth Sciences Ecology Economic growth Energy sources Environment Environmental impact Geography Global warming Mountains Neural networks River basins Snow Snow cover 人工神经网络 全球大气环流 喜马拉雅山 基础 积雪 覆盖面积 非线性自回归模型 预测模型 |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED50IvoiOhXnpuTBJyXQNknXPg5Rhg8-OZhPIc0PJ2in20T235vL2k1FBZ9aaJpA7nL3HXf5DuCMK-9zjcioTZ2inDtLcy4K6pAVOzfM5C6wfd6m_QG_GYphdY97Wle71ynJYKlXl93iNMHaHk6TPBNUrMOGwNDdK_Eg6dXmF7MKIcpKuwlNWZzWqcyfpkBChdG4fHj1y311TCu0-S1BGvzO9S7sVICR9BYS3oM1WzZh8yqQTc-bsFV1MR_N9-G-VxLUhAUpBEGqyvAIhd4U_ZUh03L8TjTWbZKXCSZp0NyR0A_HL08eS-IRIRmF6g_Sf3xWT2qupgcwuL66u-zTqnUC1YyzGWVOxJnWhRDKQxzNRNc65bhNkHA-1y4pGBNWZ0p1U-6MjZl_ZZFxKnYOz-whNMpxaY-A5B6U-CDaau68FGPtca4x2vg4IyqySPEWtJd7KF8WFBkyxbgs4jxvQVTvqtQV6zg2v3iSK75kFIr0QpEoFClacL78pZ7vj8GdWlSyOn1T6WEhy7kPbOMWXNTi-_T5t8mO_zW6DdsJqlKo3e1AYzZ5syceocyK06CRH1D82-U priority: 102 providerName: Springer Nature |
Title | An Artificial Neural Network-Based Snow Cover Predictive Modeling in the Higher Himalayas |
URI | http://lib.cqvip.com/qk/87799X/201404/661920449.html https://link.springer.com/article/10.1007/s11629-014-2985-5 https://www.proquest.com/docview/1543941071 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdr87C9jH2yrG3Qw542xCxLcuynkpW0oYMyxgLtk5D1sRRaJ20yRv_73slynQ7WJxtsyaA73_1Od_odIZ-kAZ_rVMl8EQyTMnhWSVWzgKzYlROuCpHt86yYzeXpuTpPG27rVFbZ2cRoqN3S4h75V3D1opIQrPDD1Q3DrlGYXU0tNHbIAExwCcHX4Nv07MfPR4A93857IRnMVl6oQP6t_uSoQLa2cQ-gJM9hfO_gFRfjVoNbW48pjBjSwSBWCF50edN4OI8XOdYiSZZXpWIK2RsWy-b3Dfikx16wh7b_ZGOjkzt-RV4mdEonrTq9Js9884Y8T43SF3dvycWkoahsLe8ERTbMeIm15AxdoqPrZvmXWiwNpatbzAOhRaWx5Q58lF42FEAnXcQCEzq7vDZX5s6s35H58fTX0Yyl7gzMCik2TATFS2trpQygKCvU2AcTpM-R076yIa-FUN6WxowLGZznAm5F5oLhIaBZeE92m2XjPxBaAe6BON1bGUBRuAUo7Zx1EMpkdZkZOSR7DyunVy0Lhy4w9MukrIYk69ZS20Rsjv01rnRPyYyi0CAKjaLQakg-Pwzp5nvi5f1OQDr94Gvdq-OQfOmEtvX4f5N9fHqyPfIiR42J9cD7ZHdz-8cfAOrZ1CMymJxcfJ-OkoqPyM48n9wDCSD1qQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lAuiKdYWsAHuIAsktjObg4VKtBqS8sKoVYqJ-P40a1UstvuVtX-KX4jM07SbJHoradEiu1Ini_zyIy_AXgjDdpcpwbc58FwKYPnhVQlD8SKXTjhihDZPkf58Eh-PVbHK_CnPQtDZZWtToyK2k0s_SP_gKZeFBKDlfTj9JxT1yjKrrYtNGpY7PvFFYZss629Lyjft1m2u3P4ecibrgLcCinmXASVDqwtlTJo_a1QfR9MkD4jLvbChqwUQnk7MKafy-B8KvBWJC6YNASCM657D9ZwdIKKYO3Tzuj7jxsBQracZyPymaU8VE58X91JVUHscP3OYZNphvM7h0Klol9_MbVtoZRJDCFxEs9Fmrd52ngYMM0zqn2SPCsGiitiixhPqpNztIE3rW7nSv-T_Y1GdfchPGi8YbZdw_cRrPjqMaw3jdnHiyfwc7tiBO6a54IR-2a8xNp1TibYsVk1uWKWSlHZ9ILyTqTBWWzxgy9lpxVDJ5eNY0ELG57-NmdmYWZP4ehO5PYMVqtJ5Z8DK9DPSmTurQwIzNSi6-6cdRg6JeUgMbIHG9c7p6c164fOKdRMpCx6kLR7qW1DpE79PM50RwFNotAoCk2i0KoH766ntOvdMnizFZBuFMpMd_DvwftWaEuP_7fYi9sXew3rw8NvB_pgb7S_AfczQk-sRd6E1fnFpX-JHte8fNXAnMGvu_6y_gLeaDFa |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-NTsBe0PiY6NoNP_AEskhiO00eK6DqNlTxQCV4shx_0EosLbRo6n8_n5tQQGMST4kUx5Z857vf6c6_AzjkyvtcIzJqU6co587SnIuCOmTFzg0zuQtsn4O0P-Q_r8V11ed0Vle71ynJ5Z0GZGkq5ydT405WF9_iNME6H06TPBNUrMFHb41jVOth0q1NMWYYQsSVdhKasjit05r_mgLJFUaT8vbeL_3SSa2Q56tkafBBvc-wVYFH0l1Kexs-2HIH1s8D8fRiBzarjuajxS7cdEuCWrEkiCBIWxkeoeibou8yZFZO_hCNNZxk-oAJGzR9JPTG8cuTcUk8OiSjUAlC-uPf6k4t1GwPhr3zq9M-rdooUM04m1PmRJxpXQihPNzRTHSsU47bBMnnc-2SgjFhdaZUJ-XO2Jj5VxYZp2Ln8Px-gUY5Ke0-kNwDFB9QW82dl2isPeY1Rhsfc0RFFinehNbTHsrpki5DphijRZznTYjqXZW6YiDHRhh3csWdjEKRXigShSJFE46efqnn-8_gdi0qWZ3EmfQQkeXcB7lxE45r8T37_NZkX981-gA2Ls968uLH4FcLPiWoVaGktw2N-cOj_eaBy7z4HpTzL9pP4xQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+artificial+neural+network-based+snow+cover+predictive+modeling+in+the+higher+Himalayas&rft.jtitle=Journal+of+mountain+science&rft.au=Mishra%2C+Bhogendra&rft.au=Tripathi%2C+Nitin+K&rft.au=Babel%2C+Mukand+S&rft.date=2014-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1672-6316&rft.eissn=1008-2786&rft.volume=11&rft.issue=4&rft.spage=825&rft_id=info:doi/10.1007%2Fs11629-014-2985-5&rft.externalDocID=3367577791 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F87799X%2F87799X.jpg |