An SHM approach using machine learning and statistical indicators extracted from raw dynamic measurements

Structural Health Monitoring using raw dynamic measurements is the subject of several studies aimed at identifying structural modifications or, more specifically, focused on damage assessment. Traditional damage detection methods associate structural modal deviations to damage. Nevertheless, the pro...

Full description

Saved in:
Bibliographic Details
Published inLatin American Journal of Solids and Structures Vol. 16; no. 2
Main Authors Finotti, Rafaelle Piazzaroli, Cury, Alexandre Abrahão, Barbosa, Flávio de Souza
Format Journal Article
LanguageEnglish
Published Latin American Journal of Solids and Structures 01.01.2019
Associação Brasileira de Ciências Mecânicas
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Structural Health Monitoring using raw dynamic measurements is the subject of several studies aimed at identifying structural modifications or, more specifically, focused on damage assessment. Traditional damage detection methods associate structural modal deviations to damage. Nevertheless, the process used to determine modal characteristics can influence the results of such methods, which could lead to additional uncertainties. Thus, techniques combining machine learning and statistical analysis applied directly to raw measurements are being discussed in recent researches. The purpose of this paper is to investigate statistical indicators, little explored in damage identification methods, to characterize acceleration measurements directly in the time domain. Hence, the present work compares two machine learning algorithms to identify structural changes using statistics obtained from raw dynamic data. The algorithms are based on Artificial Neural Networks and Support Vector Machines. They are initially evaluated through numerical simulations using a simply supported beam model. Then, they are assessed through experimental tests performed on a laboratory beam structure and an actual railway bridge, in France. For all cases, different damage scenarios were considered. The obtained results encourage the development of computational tools using statistical indicators of acceleration measurements for structural alteration assessment.
AbstractList Abstract Structural Health Monitoring using raw dynamic measurements is the subject of several studies aimed at identifying structural modifications or, more specifically, focused on damage assessment. Traditional damage detection methods associate structural modal deviations to damage. Nevertheless, the process used to determine modal characteristics can influence the results of such methods, which could lead to additional uncertainties. Thus, techniques combining machine learning and statistical analysis applied directly to raw measurements are being discussed in recent researches. The purpose of this paper is to investigate statistical indicators, little explored in damage identification methods, to characterize acceleration measurements directly in the time domain. Hence, the present work compares two machine learning algorithms to identify structural changes using statistics obtained from raw dynamic data. The algorithms are based on Artificial Neural Networks and Support Vector Machines. They are initially evaluated through numerical simulations using a simply supported beam model. Then, they are assessed through experimental tests performed on a laboratory beam structure and an actual railway bridge, in France. For all cases, different damage scenarios were considered. The obtained results encourage the development of computational tools using statistical indicators of acceleration measurements for structural alteration assessment.
Structural Health Monitoring using raw dynamic measurements is the subject of several studies aimed at identifying structural modifications or, more specifically, focused on damage assessment. Traditional damage detection methods associate structural modal deviations to damage. Nevertheless, the process used to determine modal characteristics can influence the results of such methods, which could lead to additional uncertainties. Thus, techniques combining machine learning and statistical analysis applied directly to raw measurements are being discussed in recent researches. The purpose of this paper is to investigate statistical indicators, little explored in damage identification methods, to characterize acceleration measurements directly in the time domain. Hence, the present work compares two machine learning algorithms to identify structural changes using statistics obtained from raw dynamic data. The algorithms are based on Artificial Neural Networks and Support Vector Machines. They are initially evaluated through numerical simulations using a simply supported beam model. Then, they are assessed through experimental tests performed on a laboratory beam structure and an actual railway bridge, in France. For all cases, different damage scenarios were considered. The obtained results encourage the development of computational tools using statistical indicators of acceleration measurements for structural alteration assessment.
Audience Academic
Author Finotti, Rafaelle Piazzaroli
Cury, Alexandre Abrahão
Barbosa, Flávio de Souza
AuthorAffiliation Universidade Federal de Juiz de Fora
AuthorAffiliation_xml – name: Universidade Federal de Juiz de Fora
Author_xml – sequence: 1
  givenname: Rafaelle Piazzaroli
  orcidid: 0000-0002-8569-0041
  surname: Finotti
  fullname: Finotti, Rafaelle Piazzaroli
  organization: Universidade Federal de Juiz de Fora, Brazil
– sequence: 2
  givenname: Alexandre Abrahão
  orcidid: 0000-0002-8860-1286
  surname: Cury
  fullname: Cury, Alexandre Abrahão
  organization: Universidade Federal de Juiz de Fora, Brazil
– sequence: 3
  givenname: Flávio de Souza
  orcidid: 0000-0002-7991-8425
  surname: Barbosa
  fullname: Barbosa, Flávio de Souza
  organization: Universidade Federal de Juiz de Fora, Brazil; Universidade Federal de Juiz de Fora, Brazil
BookMark eNp1UclKBDEQDaLgevQe8NyarbfjMKgjKB7Uc0hXVzTSnQxJDzp_b5qROQjWpRbeq0e9OiWHPngk5JKza1627IZXdVvUjShVq8QBOdn3h_ua18fkIqVPlkNyVZb1CXELT19WT9Ss1zEY-KCb5Pw7HXPpPNIBTfTzwPiepslMLk0OzECd73OeQkwUv6doYMKe2hhGGs0X7bfejA7oiCZtIo7op3ROjqwZEl785jPydnf7ulwVj8_3D8vFYwFSyamQvRUgQXVge6bKGvtOISpADoxDg7ZqrJVgBHAwlsuOG-hkryqObadEI8_I9W5vAodD0J9hE30W1C-zDXq2RDDeZg8EYyWrM-FqR3g3A2rnbZjvGV0CvSgbXgnBKpVRcoeCGFKKaDW42Y_gM9oNmjM9_0HvReY_ZFbxh7WObjRx-w_-B8O-ihk
CitedBy_id crossref_primary_10_1590_s1983_41952021000200013
crossref_primary_10_1016_j_ifacol_2022_09_200
crossref_primary_10_1177_00219983211037048
crossref_primary_10_1177_13694332221073983
crossref_primary_10_1007_s13369_022_06732_6
crossref_primary_10_1007_s40430_025_05452_w
crossref_primary_10_1016_j_engstruct_2023_115829
crossref_primary_10_2478_sjce_2021_0001
crossref_primary_10_1142_S0219455421501273
crossref_primary_10_3390_s24041190
crossref_primary_10_1016_j_istruc_2023_105657
crossref_primary_10_1016_j_engfailanal_2020_104845
crossref_primary_10_1631_jzus_A2000408
crossref_primary_10_3390_app132111837
crossref_primary_10_1007_s00773_023_00984_z
crossref_primary_10_1016_j_ymssp_2023_110145
crossref_primary_10_1016_j_conbuildmat_2022_127896
crossref_primary_10_1177_13694332241260132
crossref_primary_10_1177_13694332241260133
crossref_primary_10_3390_app10072400
crossref_primary_10_1016_j_advengsoft_2024_103795
crossref_primary_10_3390_infrastructures8010014
crossref_primary_10_1002_stc_2748
crossref_primary_10_1098_rspa_2021_0526
crossref_primary_10_1177_1729881420910836
crossref_primary_10_1590_1679_78257591
crossref_primary_10_1016_j_istruc_2021_06_086
crossref_primary_10_1016_j_istruc_2023_05_024
crossref_primary_10_1016_j_compstruct_2023_116731
crossref_primary_10_1051_e3sconf_202022001096
crossref_primary_10_1177_1475921720966943
crossref_primary_10_1016_j_istruc_2023_06_123
crossref_primary_10_1002_we_2854
crossref_primary_10_3390_app122110754
crossref_primary_10_3390_app112411965
crossref_primary_10_1080_15732479_2023_2165118
Cites_doi 10.1061/(ASCE)BE.1943-5592.0000321
10.1088/0964-1726/10/3/317
10.1006/jsvi.1994.1002
10.1016/j.engstruct.2009.12.004
10.1016/j.jsv.2015.11.008
10.2749/101686615X14355644770776
10.1016/j.ymssp.2017.03.021
10.1109/72.329697
10.1016/j.engstruct.2015.05.003
10.1002/stc.1854
10.1177/1475921710379513
10.1007/s11831-014-9135-7
10.1006/mssp.1999.1249
10.1177/1475921704041876
ContentType Journal Article
Copyright COPYRIGHT 2019 Latin American Journal of Solids and Structures
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright_xml – notice: COPYRIGHT 2019 Latin American Journal of Solids and Structures
– notice: This work is licensed under a Creative Commons Attribution 4.0 International License.
DBID AAYXX
CITATION
INF
GPN
DOI 10.1590/1679-78254942
DatabaseName CrossRef
Gale OneFile: Informe Academico
SciELO
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1679-7825
ExternalDocumentID S1679_78252019000200507
A581622064
10_1590_1679_78254942
GroupedDBID 29L
2WC
5GY
5VS
AAYXX
ABDBF
ABXHO
ACUHS
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
APOWU
AZFZN
BCNDV
C1A
CITATION
EAD
EAP
ESX
GROUPED_DOAJ
INF
IPNFZ
ITC
KQ8
MK~
OK1
OVT
RIG
RSC
SCD
TR2
TUS
~8M
M~E
GPN
ID FETCH-LOGICAL-c343t-3df2c3c4bcfd0457edb4ee4ce1c01c8ef68ff3ca2c1caf13b1acb3d461e9b4283
ISSN 1679-7817
1679-7825
IngestDate Tue Aug 19 14:05:55 EDT 2025
Wed Mar 19 00:40:40 EDT 2025
Tue Jul 01 00:27:11 EDT 2025
Thu Apr 24 22:54:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Structural Health Monitoring
Computational Intelligence
Dynamic Measurement
Damage Identification
Vibration Monitoring
Structural Dynamic
Language English
License http://creativecommons.org/licenses/by/4.0
This work is licensed under a Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c343t-3df2c3c4bcfd0457edb4ee4ce1c01c8ef68ff3ca2c1caf13b1acb3d461e9b4283
ORCID 0000-0002-7991-8425
0000-0002-8569-0041
0000-0002-8860-1286
OpenAccessLink http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252019000200507&lng=en&tlng=en
ParticipantIDs scielo_journals_S1679_78252019000200507
gale_infotracmisc_A581622064
crossref_citationtrail_10_1590_1679_78254942
crossref_primary_10_1590_1679_78254942
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Latin American Journal of Solids and Structures
PublicationTitleAlternate Lat. Am. j. solids struct
PublicationYear 2019
Publisher Latin American Journal of Solids and Structures
Associação Brasileira de Ciências Mecânicas
Publisher_xml – name: Latin American Journal of Solids and Structures
– name: Associação Brasileira de Ciências Mecânicas
References Kohavi R. (ref14) 1995
Bishop C. M. (ref5) 2006
Cardoso R. (ref8) 2017; 95
Doebling S. W. (ref11) 1998; 30
Ni Y. Q. (ref15) 2011; 17
Peeters B. (ref17) 1999; 13
Vapnik V. (ref21) 1995
Worden K. (ref22) 2001; 10
Allemang R. J. (ref1) 2003; 37
Cury A. A. (ref9) 2011; 10
Pandey A. K. (ref16) 1994; 169
Santos A. (ref20) 2016; 363
Cachot E. (ref7) 2015; 25
Cury A. (ref10) 2010; 32
Farrar C. R. (ref12) 2012
Battista R. C. (ref4) 2002
Cabboi A. (ref6) 2017; 24
Zang C. (ref23) 2004; 3
Hagan M. T. (ref13) 1994; 5
Alves V. (ref2) 2015; 99
Principe J. C. (ref18) 2000
Amezquita-Sanchez J. P. (ref3) 2016; 23
Rytter A. (ref19) 1993
Doebling, S. W.; Farrar, C.R.; Prime, M. B.; Shevitz, D. 1998; 30
Ni, Y. Q.; Xia, H. W.; Wong, K. Y.; Ko, J. M. 2011; 17
Pandey, A. K.; Biswas, M. 1994; 169
Kohavi, R. 1995
Cardoso, R.; Cury, A.; Barbosa, F. 2017; 95
Cachot, E.; Vayssade, T.; Virlogeux, M.; Lancon, H.; Hajar, Z.; Servant, C. 2015; 25
Farrar, C. R.; Worden, K. 2012
Cabboi, A.; Magalhães, F.; Gentile, C.; Cunha, Á. 2017; 24
Santos, A.; Figueiredo, E.; Silva, M. F. M.; Sales, C. S.; Costa, J. C. W. A. 2016; 363
Vapnik, V. 1995
Bishop, C. M. 2006
Principe, J. C.; Euliano, N. R.; Lefebvre, W. C. 2000
Hagan, M. T.; Menhaj, M. B. 1994; 5
Peeters, B.; De Roeck, G. 1999; 13
Cury, A. A.; Borges, C. C.; Barbosa, F. S. 2011; 10
Zang, C.; Friswell, M. I.; Imregun, M. 2004; 3
Rytter, A. 1993
Battista, R. C.; Pfeil, M. S. 2002
Allemang, R. J. 2003; 37
Amezquita-Sanchez, J. P.; Adeli, H. 2016; 23
Alves, V.; Cury, A.; Roitman, N.; Magluta, C.; Cremona, C. 2015; 99
Cury, A.; Crémona, C.; Diday, E. 2010; 32
Worden, K.; Lane, A. J. 2001; 10
References_xml – volume: 17
  start-page: 876
  issue: 6
  year: 2011
  ident: ref15
  article-title: In-service condition assessment of bridge deck using long-term monitoring data of strain response
  publication-title: Journal of Bridge Engineering
  doi: 10.1061/(ASCE)BE.1943-5592.0000321
– year: 1993
  ident: ref19
– volume: 10
  start-page: 540
  issue: 3
  year: 2001
  ident: ref22
  article-title: Damage identification using support vector machines
  publication-title: Smart Materials and Structures
  doi: 10.1088/0964-1726/10/3/317
– volume: 169
  start-page: 3
  issue: 1
  year: 1994
  ident: ref16
  article-title: Damage detection in structures using changes in flexibility
  publication-title: Journal of Sound and Vibration
  doi: 10.1006/jsvi.1994.1002
– volume: 37
  start-page: 14
  issue: 8
  year: 2003
  ident: ref1
  article-title: The modal assurance criterion - twenty years of use and abuse
  publication-title: Sound and Vibration
– start-page: 925
  year: 2002
  ident: ref4
– volume: 32
  start-page: 762
  issue: 3
  year: 2010
  ident: ref10
  article-title: Application of symbolic data analysis for structural modification assessment
  publication-title: Engineering Structures
  doi: 10.1016/j.engstruct.2009.12.004
– year: 2012
  ident: ref12
– volume: 363
  start-page: 584
  year: 2016
  ident: ref20
  article-title: Machine learning algorithms for damage detection: Kernel-based approaches
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/j.jsv.2015.11.008
– volume: 25
  start-page: 375
  issue: 4
  year: 2015
  ident: ref7
  article-title: The Millau viaduct: ten years of structural monitoring
  publication-title: Structural Engineering International
  doi: 10.2749/101686615X14355644770776
– year: 2000
  ident: ref18
– volume: 95
  start-page: 24
  year: 2017
  ident: ref8
  article-title: A robust methodology for modal parameters estimation applied to SHM
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2017.03.021
– volume: 5
  start-page: 989
  issue: 6
  year: 1994
  ident: ref13
  article-title: Training feedforward networks with the Marquardt algorithm
  publication-title: IEEE transactions on Neural Networks
  doi: 10.1109/72.329697
– volume: 99
  start-page: 439
  year: 2015
  ident: ref2
  article-title: Structural modification assessment using supervised learning methods applied to vibration data
  publication-title: Engineering Structures
  doi: 10.1016/j.engstruct.2015.05.003
– volume: 24
  issue: 1
  year: 2017
  ident: ref6
  article-title: Automated modal identification and tracking: Application to an iron arch bridge
  publication-title: Structural Control and Health Monitoring
  doi: 10.1002/stc.1854
– volume: 10
  start-page: 417
  issue: 4
  year: 2011
  ident: ref9
  article-title: A two-step technique for damage assessment using numerical and experimental vibration data
  publication-title: Structural Health Monitoring
  doi: 10.1177/1475921710379513
– year: 2006
  ident: ref5
– volume: 30
  start-page: 91
  issue: 2
  year: 1998
  ident: ref11
  article-title: A review of damage identification methods that examine changes in dynamic properties
  publication-title: Shock and Vibration Digest
– volume: 23
  start-page: 1
  issue: 1
  year: 2016
  ident: ref3
  article-title: Signal processing techniques for vibration-based health monitoring of smart structures
  publication-title: Archives of Computational Methods in Engineering
  doi: 10.1007/s11831-014-9135-7
– volume: 13
  start-page: 855
  issue: 6
  year: 1999
  ident: ref17
  article-title: Reference-based stochastic subspace identification for output-only modal analysis
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1006/mssp.1999.1249
– volume: 3
  start-page: 69
  issue: 1
  year: 2004
  ident: ref23
  article-title: Structural damage detection using independent component analysis
  publication-title: Structural Health Monitoring
  doi: 10.1177/1475921704041876
– start-page: 1137
  year: 1995
  ident: ref14
– year: 1995
  ident: ref21
– volume: 24
  issue: 1
  year: 2017
  article-title: Automated modal identification and tracking: Application to an iron arch bridge
  publication-title: Structural Control and Health Monitoring
– year: 1995
  publication-title: The nature of statistical learning theory
– start-page: 1137
  year: 1995
  end-page: 1145
  publication-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
– volume: 25
  start-page: 375
  issue: 4
  year: 2015
  end-page: 380
  article-title: The Millau viaduct: ten years of structural monitoring
  publication-title: Structural Engineering International
– volume: 17
  start-page: 876
  issue: 6
  year: 2011
  end-page: 885
  article-title: In-service condition assessment of bridge deck using long-term monitoring data of strain response
  publication-title: Journal of Bridge Engineering
– volume: 10
  start-page: 417
  issue: 4
  year: 2011
  end-page: 428
  article-title: A two-step technique for damage assessment using numerical and experimental vibration data
  publication-title: Structural Health Monitoring
– volume: 3
  start-page: 69
  issue: 1
  year: 2004
  end-page: 83
  article-title: Structural damage detection using independent component analysis
  publication-title: Structural Health Monitoring
– volume: 23
  start-page: 1
  issue: 1
  year: 2016
  end-page: 15
  article-title: Signal processing techniques for vibration-based health monitoring of smart structures
  publication-title: Archives of Computational Methods in Engineering
– volume: 13
  start-page: 855
  issue: 6
  year: 1999
  end-page: 878
  article-title: Reference-based stochastic subspace identification for output-only modal analysis
  publication-title: Mechanical Systems and Signal Processing
– volume: 37
  start-page: 14
  issue: 8
  year: 2003
  end-page: 23
  article-title: The modal assurance criterion - twenty years of use and abuse
  publication-title: Sound and Vibration
– year: 1993
  publication-title: Vibrational based inspection of civil engineering structures
– volume: 30
  start-page: 91
  issue: 2
  year: 1998
  end-page: 105
  article-title: A review of damage identification methods that examine changes in dynamic properties
  publication-title: Shock and Vibration Digest
– volume: 363
  start-page: 584
  year: 2016
  end-page: 599
  article-title: Machine learning algorithms for damage detection: Kernel-based approaches
  publication-title: Journal of Sound and Vibration
– year: 2006
  publication-title: Pattern recognition and machine learning
– volume: 32
  start-page: 762
  issue: 3
  year: 2010
  end-page: 775
  article-title: Application of symbolic data analysis for structural modification assessment
  publication-title: Engineering Structures
– volume: 5
  start-page: 989
  issue: 6
  year: 1994
  end-page: 993
  article-title: Training feedforward networks with the Marquardt algorithm
  publication-title: IEEE transactions on Neural Networks
– start-page: 925
  year: 2002
  end-page: 930
  publication-title: Monitoring and control of wind-induced oscillations of a steel bridge
– volume: 10
  start-page: 540
  issue: 3
  year: 2001
  end-page: 540
  article-title: Damage identification using support vector machines
  publication-title: Smart Materials and Structures
– volume: 99
  start-page: 439
  year: 2015
  end-page: 448
  article-title: Structural modification assessment using supervised learning methods applied to vibration data
  publication-title: Engineering Structures
– volume: 169
  start-page: 3
  issue: 1
  year: 1994
  end-page: 17
  article-title: Damage detection in structures using changes in flexibility
  publication-title: Journal of Sound and Vibration
– year: 2000
  publication-title: Neural and adaptive systems: fundamentals through simulations
– volume: 95
  start-page: 24
  year: 2017
  end-page: 41
  article-title: A robust methodology for modal parameters estimation applied to SHM
  publication-title: Mechanical Systems and Signal Processing
– year: 2012
  publication-title: Structural health monitoring: a machine learning perspective
SSID ssj0000314557
ssib044751249
Score 2.3821783
Snippet Structural Health Monitoring using raw dynamic measurements is the subject of several studies aimed at identifying structural modifications or, more...
Abstract Structural Health Monitoring using raw dynamic measurements is the subject of several studies aimed at identifying structural modifications or, more...
SourceID scielo
gale
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
SubjectTerms ENGINEERING, CIVIL
ENGINEERING, MECHANICAL
Failure mode and effects analysis
Machine learning
Measurement
MECHANICS
Methods
Statistical methods
Structural analysis (Engineering)
Structural dynamics
Technology application
Title An SHM approach using machine learning and statistical indicators extracted from raw dynamic measurements
URI http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252019000200507&lng=en&tlng=en
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKxwEOiE9RGJMPCA4h0CROlhyzsWpCFCG2SbtF_hSRumZqWpB64L_k_-E9x01S1EmDS9Q6jq34_ey85-f3e4S8jmUYCZWBdZIY4bNgPPZTHSk_ZsJkXKdxZuxpiy_J6QX7dBlfDga_e6eWVkvxXq53xpX8j1ShDOSKUbL_INm2USiA3yBfuIKE4XorGecwN0-nLS-4t7KG_5U9H6k3CSGaGEQMHLKczJZkA50zNs0OLM2Wr1k1cSYL_tNTTY5676rbPaz7KuxnaGjeeXp61BPwsqWqXXdISwuPd-El5bxaNmcHvnHD0V_gfS35em3zBrWuEOfWd3E3C-3lYM5_t-78qOq2XReiqq3aO5nZe8GPsvKU9s6q1Zr3dzIweGprJ8Ph0T516NoFhPMalsdywbGR49KW58hEUntTLe3fEMNoelub6FnyQfNpvOV6R9lm5U96CA93flDiDE9gtk-zrOEC-4uj-wwrFFgB38u6d8cxchzshWC9hEOylx99PJq0m3-YMyC2LLRty47_Ffr7sNXblr7ktIa7qB3N-orQ-UPywFkwNG_g-IgMrpePyf0er-UTUuZzCsCkG2BSC0zqgEk3wKQgYdoDJu2ASVtgUgQmBWBSB0zaB-ZTcjE5OT8-9V1OD19GLFr6kTKhjCQT0iiwJg61EkxrJnUgx4FMtUlSYyLJQxlIboJIBFyKSLEk0JlAcsBnZDiv5vo5oYExyKEBtw0DMyAR8F2XGumX0jRhUo3Iu83IFdIR3mPelVmBhi8MdNFKDQd6RN601a8bppebKu6jGArECQ4FrMeyyOM0SMIQFPwReduIp3ATsC5ugMeLW9d8Se51E2afDGEO61egDC_FgYPWAbkz_XXyB2Zasgs
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+SHM+approach+using+machine+learning+and+statistical+indicators+extracted+from+raw+dynamic+measurements&rft.jtitle=Latin+American+journal+of+solids+and+structures&rft.au=Finotti%2C+Rafaelle+Piazzaroli&rft.au=Cury%2C+Alexandre+Abrah%C3%A3o&rft.au=Barbosa%2C+Fl%C3%A1vio+de+Souza&rft.date=2019-01-01&rft.pub=Associa%C3%A7%C3%A3o+Brasileira+de+Ci%C3%AAncias+Mec%C3%A2nicas&rft.issn=1679-7825&rft.eissn=1679-7825&rft.volume=16&rft.issue=2&rft_id=info:doi/10.1590%2F1679-78254942&rft.externalDocID=S1679_78252019000200507
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1679-7817&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1679-7817&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1679-7817&client=summon