An SHM approach using machine learning and statistical indicators extracted from raw dynamic measurements
Structural Health Monitoring using raw dynamic measurements is the subject of several studies aimed at identifying structural modifications or, more specifically, focused on damage assessment. Traditional damage detection methods associate structural modal deviations to damage. Nevertheless, the pro...
Saved in:
Published in | Latin American Journal of Solids and Structures Vol. 16; no. 2 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Latin American Journal of Solids and Structures
01.01.2019
Associação Brasileira de Ciências Mecânicas |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Structural Health Monitoring using raw dynamic measurements is the subject of several studies aimed at identifying structural modifications or, more specifically, focused on damage assessment. Traditional damage detection methods associate structural modal deviations to damage. Nevertheless, the process used to determine modal characteristics can influence the results of such methods, which could lead to additional uncertainties. Thus, techniques combining machine learning and statistical analysis applied directly to raw measurements are being discussed in recent researches. The purpose of this paper is to investigate statistical indicators, little explored in damage identification methods, to characterize acceleration measurements directly in the time domain. Hence, the present work compares two machine learning algorithms to identify structural changes using statistics obtained from raw dynamic data. The algorithms are based on Artificial Neural Networks and Support Vector Machines. They are initially evaluated through numerical simulations using a simply supported beam model. Then, they are assessed through experimental tests performed on a laboratory beam structure and an actual railway bridge, in France. For all cases, different damage scenarios were considered. The obtained results encourage the development of computational tools using statistical indicators of acceleration measurements for structural alteration assessment. |
---|---|
AbstractList | Abstract Structural Health Monitoring using raw dynamic measurements is the subject of several studies aimed at identifying structural modifications or, more specifically, focused on damage assessment. Traditional damage detection methods associate structural modal deviations to damage. Nevertheless, the process used to determine modal characteristics can influence the results of such methods, which could lead to additional uncertainties. Thus, techniques combining machine learning and statistical analysis applied directly to raw measurements are being discussed in recent researches. The purpose of this paper is to investigate statistical indicators, little explored in damage identification methods, to characterize acceleration measurements directly in the time domain. Hence, the present work compares two machine learning algorithms to identify structural changes using statistics obtained from raw dynamic data. The algorithms are based on Artificial Neural Networks and Support Vector Machines. They are initially evaluated through numerical simulations using a simply supported beam model. Then, they are assessed through experimental tests performed on a laboratory beam structure and an actual railway bridge, in France. For all cases, different damage scenarios were considered. The obtained results encourage the development of computational tools using statistical indicators of acceleration measurements for structural alteration assessment. Structural Health Monitoring using raw dynamic measurements is the subject of several studies aimed at identifying structural modifications or, more specifically, focused on damage assessment. Traditional damage detection methods associate structural modal deviations to damage. Nevertheless, the process used to determine modal characteristics can influence the results of such methods, which could lead to additional uncertainties. Thus, techniques combining machine learning and statistical analysis applied directly to raw measurements are being discussed in recent researches. The purpose of this paper is to investigate statistical indicators, little explored in damage identification methods, to characterize acceleration measurements directly in the time domain. Hence, the present work compares two machine learning algorithms to identify structural changes using statistics obtained from raw dynamic data. The algorithms are based on Artificial Neural Networks and Support Vector Machines. They are initially evaluated through numerical simulations using a simply supported beam model. Then, they are assessed through experimental tests performed on a laboratory beam structure and an actual railway bridge, in France. For all cases, different damage scenarios were considered. The obtained results encourage the development of computational tools using statistical indicators of acceleration measurements for structural alteration assessment. |
Audience | Academic |
Author | Finotti, Rafaelle Piazzaroli Cury, Alexandre Abrahão Barbosa, Flávio de Souza |
AuthorAffiliation | Universidade Federal de Juiz de Fora |
AuthorAffiliation_xml | – name: Universidade Federal de Juiz de Fora |
Author_xml | – sequence: 1 givenname: Rafaelle Piazzaroli orcidid: 0000-0002-8569-0041 surname: Finotti fullname: Finotti, Rafaelle Piazzaroli organization: Universidade Federal de Juiz de Fora, Brazil – sequence: 2 givenname: Alexandre Abrahão orcidid: 0000-0002-8860-1286 surname: Cury fullname: Cury, Alexandre Abrahão organization: Universidade Federal de Juiz de Fora, Brazil – sequence: 3 givenname: Flávio de Souza orcidid: 0000-0002-7991-8425 surname: Barbosa fullname: Barbosa, Flávio de Souza organization: Universidade Federal de Juiz de Fora, Brazil; Universidade Federal de Juiz de Fora, Brazil |
BookMark | eNp1UclKBDEQDaLgevQe8NyarbfjMKgjKB7Uc0hXVzTSnQxJDzp_b5qROQjWpRbeq0e9OiWHPngk5JKza1627IZXdVvUjShVq8QBOdn3h_ua18fkIqVPlkNyVZb1CXELT19WT9Ss1zEY-KCb5Pw7HXPpPNIBTfTzwPiepslMLk0OzECd73OeQkwUv6doYMKe2hhGGs0X7bfejA7oiCZtIo7op3ROjqwZEl785jPydnf7ulwVj8_3D8vFYwFSyamQvRUgQXVge6bKGvtOISpADoxDg7ZqrJVgBHAwlsuOG-hkryqObadEI8_I9W5vAodD0J9hE30W1C-zDXq2RDDeZg8EYyWrM-FqR3g3A2rnbZjvGV0CvSgbXgnBKpVRcoeCGFKKaDW42Y_gM9oNmjM9_0HvReY_ZFbxh7WObjRx-w_-B8O-ihk |
CitedBy_id | crossref_primary_10_1590_s1983_41952021000200013 crossref_primary_10_1016_j_ifacol_2022_09_200 crossref_primary_10_1177_00219983211037048 crossref_primary_10_1177_13694332221073983 crossref_primary_10_1007_s13369_022_06732_6 crossref_primary_10_1007_s40430_025_05452_w crossref_primary_10_1016_j_engstruct_2023_115829 crossref_primary_10_2478_sjce_2021_0001 crossref_primary_10_1142_S0219455421501273 crossref_primary_10_3390_s24041190 crossref_primary_10_1016_j_istruc_2023_105657 crossref_primary_10_1016_j_engfailanal_2020_104845 crossref_primary_10_1631_jzus_A2000408 crossref_primary_10_3390_app132111837 crossref_primary_10_1007_s00773_023_00984_z crossref_primary_10_1016_j_ymssp_2023_110145 crossref_primary_10_1016_j_conbuildmat_2022_127896 crossref_primary_10_1177_13694332241260132 crossref_primary_10_1177_13694332241260133 crossref_primary_10_3390_app10072400 crossref_primary_10_1016_j_advengsoft_2024_103795 crossref_primary_10_3390_infrastructures8010014 crossref_primary_10_1002_stc_2748 crossref_primary_10_1098_rspa_2021_0526 crossref_primary_10_1177_1729881420910836 crossref_primary_10_1590_1679_78257591 crossref_primary_10_1016_j_istruc_2021_06_086 crossref_primary_10_1016_j_istruc_2023_05_024 crossref_primary_10_1016_j_compstruct_2023_116731 crossref_primary_10_1051_e3sconf_202022001096 crossref_primary_10_1177_1475921720966943 crossref_primary_10_1016_j_istruc_2023_06_123 crossref_primary_10_1002_we_2854 crossref_primary_10_3390_app122110754 crossref_primary_10_3390_app112411965 crossref_primary_10_1080_15732479_2023_2165118 |
Cites_doi | 10.1061/(ASCE)BE.1943-5592.0000321 10.1088/0964-1726/10/3/317 10.1006/jsvi.1994.1002 10.1016/j.engstruct.2009.12.004 10.1016/j.jsv.2015.11.008 10.2749/101686615X14355644770776 10.1016/j.ymssp.2017.03.021 10.1109/72.329697 10.1016/j.engstruct.2015.05.003 10.1002/stc.1854 10.1177/1475921710379513 10.1007/s11831-014-9135-7 10.1006/mssp.1999.1249 10.1177/1475921704041876 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2019 Latin American Journal of Solids and Structures This work is licensed under a Creative Commons Attribution 4.0 International License. |
Copyright_xml | – notice: COPYRIGHT 2019 Latin American Journal of Solids and Structures – notice: This work is licensed under a Creative Commons Attribution 4.0 International License. |
DBID | AAYXX CITATION INF GPN |
DOI | 10.1590/1679-78254942 |
DatabaseName | CrossRef Gale OneFile: Informe Academico SciELO |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1679-7825 |
ExternalDocumentID | S1679_78252019000200507 A581622064 10_1590_1679_78254942 |
GroupedDBID | 29L 2WC 5GY 5VS AAYXX ABDBF ABXHO ACUHS ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS APOWU AZFZN BCNDV C1A CITATION EAD EAP ESX GROUPED_DOAJ INF IPNFZ ITC KQ8 MK~ OK1 OVT RIG RSC SCD TR2 TUS ~8M M~E GPN |
ID | FETCH-LOGICAL-c343t-3df2c3c4bcfd0457edb4ee4ce1c01c8ef68ff3ca2c1caf13b1acb3d461e9b4283 |
ISSN | 1679-7817 1679-7825 |
IngestDate | Tue Aug 19 14:05:55 EDT 2025 Wed Mar 19 00:40:40 EDT 2025 Tue Jul 01 00:27:11 EDT 2025 Thu Apr 24 22:54:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Structural Health Monitoring Computational Intelligence Dynamic Measurement Damage Identification Vibration Monitoring Structural Dynamic |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 This work is licensed under a Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c343t-3df2c3c4bcfd0457edb4ee4ce1c01c8ef68ff3ca2c1caf13b1acb3d461e9b4283 |
ORCID | 0000-0002-7991-8425 0000-0002-8569-0041 0000-0002-8860-1286 |
OpenAccessLink | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252019000200507&lng=en&tlng=en |
ParticipantIDs | scielo_journals_S1679_78252019000200507 gale_infotracmisc_A581622064 crossref_citationtrail_10_1590_1679_78254942 crossref_primary_10_1590_1679_78254942 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Latin American Journal of Solids and Structures |
PublicationTitleAlternate | Lat. Am. j. solids struct |
PublicationYear | 2019 |
Publisher | Latin American Journal of Solids and Structures Associação Brasileira de Ciências Mecânicas |
Publisher_xml | – name: Latin American Journal of Solids and Structures – name: Associação Brasileira de Ciências Mecânicas |
References | Kohavi R. (ref14) 1995 Bishop C. M. (ref5) 2006 Cardoso R. (ref8) 2017; 95 Doebling S. W. (ref11) 1998; 30 Ni Y. Q. (ref15) 2011; 17 Peeters B. (ref17) 1999; 13 Vapnik V. (ref21) 1995 Worden K. (ref22) 2001; 10 Allemang R. J. (ref1) 2003; 37 Cury A. A. (ref9) 2011; 10 Pandey A. K. (ref16) 1994; 169 Santos A. (ref20) 2016; 363 Cachot E. (ref7) 2015; 25 Cury A. (ref10) 2010; 32 Farrar C. R. (ref12) 2012 Battista R. C. (ref4) 2002 Cabboi A. (ref6) 2017; 24 Zang C. (ref23) 2004; 3 Hagan M. T. (ref13) 1994; 5 Alves V. (ref2) 2015; 99 Principe J. C. (ref18) 2000 Amezquita-Sanchez J. P. (ref3) 2016; 23 Rytter A. (ref19) 1993 Doebling, S. W.; Farrar, C.R.; Prime, M. B.; Shevitz, D. 1998; 30 Ni, Y. Q.; Xia, H. W.; Wong, K. Y.; Ko, J. M. 2011; 17 Pandey, A. K.; Biswas, M. 1994; 169 Kohavi, R. 1995 Cardoso, R.; Cury, A.; Barbosa, F. 2017; 95 Cachot, E.; Vayssade, T.; Virlogeux, M.; Lancon, H.; Hajar, Z.; Servant, C. 2015; 25 Farrar, C. R.; Worden, K. 2012 Cabboi, A.; Magalhães, F.; Gentile, C.; Cunha, Á. 2017; 24 Santos, A.; Figueiredo, E.; Silva, M. F. M.; Sales, C. S.; Costa, J. C. W. A. 2016; 363 Vapnik, V. 1995 Bishop, C. M. 2006 Principe, J. C.; Euliano, N. R.; Lefebvre, W. C. 2000 Hagan, M. T.; Menhaj, M. B. 1994; 5 Peeters, B.; De Roeck, G. 1999; 13 Cury, A. A.; Borges, C. C.; Barbosa, F. S. 2011; 10 Zang, C.; Friswell, M. I.; Imregun, M. 2004; 3 Rytter, A. 1993 Battista, R. C.; Pfeil, M. S. 2002 Allemang, R. J. 2003; 37 Amezquita-Sanchez, J. P.; Adeli, H. 2016; 23 Alves, V.; Cury, A.; Roitman, N.; Magluta, C.; Cremona, C. 2015; 99 Cury, A.; Crémona, C.; Diday, E. 2010; 32 Worden, K.; Lane, A. J. 2001; 10 |
References_xml | – volume: 17 start-page: 876 issue: 6 year: 2011 ident: ref15 article-title: In-service condition assessment of bridge deck using long-term monitoring data of strain response publication-title: Journal of Bridge Engineering doi: 10.1061/(ASCE)BE.1943-5592.0000321 – year: 1993 ident: ref19 – volume: 10 start-page: 540 issue: 3 year: 2001 ident: ref22 article-title: Damage identification using support vector machines publication-title: Smart Materials and Structures doi: 10.1088/0964-1726/10/3/317 – volume: 169 start-page: 3 issue: 1 year: 1994 ident: ref16 article-title: Damage detection in structures using changes in flexibility publication-title: Journal of Sound and Vibration doi: 10.1006/jsvi.1994.1002 – volume: 37 start-page: 14 issue: 8 year: 2003 ident: ref1 article-title: The modal assurance criterion - twenty years of use and abuse publication-title: Sound and Vibration – start-page: 925 year: 2002 ident: ref4 – volume: 32 start-page: 762 issue: 3 year: 2010 ident: ref10 article-title: Application of symbolic data analysis for structural modification assessment publication-title: Engineering Structures doi: 10.1016/j.engstruct.2009.12.004 – year: 2012 ident: ref12 – volume: 363 start-page: 584 year: 2016 ident: ref20 article-title: Machine learning algorithms for damage detection: Kernel-based approaches publication-title: Journal of Sound and Vibration doi: 10.1016/j.jsv.2015.11.008 – volume: 25 start-page: 375 issue: 4 year: 2015 ident: ref7 article-title: The Millau viaduct: ten years of structural monitoring publication-title: Structural Engineering International doi: 10.2749/101686615X14355644770776 – year: 2000 ident: ref18 – volume: 95 start-page: 24 year: 2017 ident: ref8 article-title: A robust methodology for modal parameters estimation applied to SHM publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2017.03.021 – volume: 5 start-page: 989 issue: 6 year: 1994 ident: ref13 article-title: Training feedforward networks with the Marquardt algorithm publication-title: IEEE transactions on Neural Networks doi: 10.1109/72.329697 – volume: 99 start-page: 439 year: 2015 ident: ref2 article-title: Structural modification assessment using supervised learning methods applied to vibration data publication-title: Engineering Structures doi: 10.1016/j.engstruct.2015.05.003 – volume: 24 issue: 1 year: 2017 ident: ref6 article-title: Automated modal identification and tracking: Application to an iron arch bridge publication-title: Structural Control and Health Monitoring doi: 10.1002/stc.1854 – volume: 10 start-page: 417 issue: 4 year: 2011 ident: ref9 article-title: A two-step technique for damage assessment using numerical and experimental vibration data publication-title: Structural Health Monitoring doi: 10.1177/1475921710379513 – year: 2006 ident: ref5 – volume: 30 start-page: 91 issue: 2 year: 1998 ident: ref11 article-title: A review of damage identification methods that examine changes in dynamic properties publication-title: Shock and Vibration Digest – volume: 23 start-page: 1 issue: 1 year: 2016 ident: ref3 article-title: Signal processing techniques for vibration-based health monitoring of smart structures publication-title: Archives of Computational Methods in Engineering doi: 10.1007/s11831-014-9135-7 – volume: 13 start-page: 855 issue: 6 year: 1999 ident: ref17 article-title: Reference-based stochastic subspace identification for output-only modal analysis publication-title: Mechanical Systems and Signal Processing doi: 10.1006/mssp.1999.1249 – volume: 3 start-page: 69 issue: 1 year: 2004 ident: ref23 article-title: Structural damage detection using independent component analysis publication-title: Structural Health Monitoring doi: 10.1177/1475921704041876 – start-page: 1137 year: 1995 ident: ref14 – year: 1995 ident: ref21 – volume: 24 issue: 1 year: 2017 article-title: Automated modal identification and tracking: Application to an iron arch bridge publication-title: Structural Control and Health Monitoring – year: 1995 publication-title: The nature of statistical learning theory – start-page: 1137 year: 1995 end-page: 1145 publication-title: A study of cross-validation and bootstrap for accuracy estimation and model selection – volume: 25 start-page: 375 issue: 4 year: 2015 end-page: 380 article-title: The Millau viaduct: ten years of structural monitoring publication-title: Structural Engineering International – volume: 17 start-page: 876 issue: 6 year: 2011 end-page: 885 article-title: In-service condition assessment of bridge deck using long-term monitoring data of strain response publication-title: Journal of Bridge Engineering – volume: 10 start-page: 417 issue: 4 year: 2011 end-page: 428 article-title: A two-step technique for damage assessment using numerical and experimental vibration data publication-title: Structural Health Monitoring – volume: 3 start-page: 69 issue: 1 year: 2004 end-page: 83 article-title: Structural damage detection using independent component analysis publication-title: Structural Health Monitoring – volume: 23 start-page: 1 issue: 1 year: 2016 end-page: 15 article-title: Signal processing techniques for vibration-based health monitoring of smart structures publication-title: Archives of Computational Methods in Engineering – volume: 13 start-page: 855 issue: 6 year: 1999 end-page: 878 article-title: Reference-based stochastic subspace identification for output-only modal analysis publication-title: Mechanical Systems and Signal Processing – volume: 37 start-page: 14 issue: 8 year: 2003 end-page: 23 article-title: The modal assurance criterion - twenty years of use and abuse publication-title: Sound and Vibration – year: 1993 publication-title: Vibrational based inspection of civil engineering structures – volume: 30 start-page: 91 issue: 2 year: 1998 end-page: 105 article-title: A review of damage identification methods that examine changes in dynamic properties publication-title: Shock and Vibration Digest – volume: 363 start-page: 584 year: 2016 end-page: 599 article-title: Machine learning algorithms for damage detection: Kernel-based approaches publication-title: Journal of Sound and Vibration – year: 2006 publication-title: Pattern recognition and machine learning – volume: 32 start-page: 762 issue: 3 year: 2010 end-page: 775 article-title: Application of symbolic data analysis for structural modification assessment publication-title: Engineering Structures – volume: 5 start-page: 989 issue: 6 year: 1994 end-page: 993 article-title: Training feedforward networks with the Marquardt algorithm publication-title: IEEE transactions on Neural Networks – start-page: 925 year: 2002 end-page: 930 publication-title: Monitoring and control of wind-induced oscillations of a steel bridge – volume: 10 start-page: 540 issue: 3 year: 2001 end-page: 540 article-title: Damage identification using support vector machines publication-title: Smart Materials and Structures – volume: 99 start-page: 439 year: 2015 end-page: 448 article-title: Structural modification assessment using supervised learning methods applied to vibration data publication-title: Engineering Structures – volume: 169 start-page: 3 issue: 1 year: 1994 end-page: 17 article-title: Damage detection in structures using changes in flexibility publication-title: Journal of Sound and Vibration – year: 2000 publication-title: Neural and adaptive systems: fundamentals through simulations – volume: 95 start-page: 24 year: 2017 end-page: 41 article-title: A robust methodology for modal parameters estimation applied to SHM publication-title: Mechanical Systems and Signal Processing – year: 2012 publication-title: Structural health monitoring: a machine learning perspective |
SSID | ssj0000314557 ssib044751249 |
Score | 2.3821783 |
Snippet | Structural Health Monitoring using raw dynamic measurements is the subject of several studies aimed at identifying structural modifications or, more... Abstract Structural Health Monitoring using raw dynamic measurements is the subject of several studies aimed at identifying structural modifications or, more... |
SourceID | scielo gale crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
SubjectTerms | ENGINEERING, CIVIL ENGINEERING, MECHANICAL Failure mode and effects analysis Machine learning Measurement MECHANICS Methods Statistical methods Structural analysis (Engineering) Structural dynamics Technology application |
Title | An SHM approach using machine learning and statistical indicators extracted from raw dynamic measurements |
URI | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252019000200507&lng=en&tlng=en |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKxwEOiE9RGJMPCA4h0CROlhyzsWpCFCG2SbtF_hSRumZqWpB64L_k_-E9x01S1EmDS9Q6jq34_ey85-f3e4S8jmUYCZWBdZIY4bNgPPZTHSk_ZsJkXKdxZuxpiy_J6QX7dBlfDga_e6eWVkvxXq53xpX8j1ShDOSKUbL_INm2USiA3yBfuIKE4XorGecwN0-nLS-4t7KG_5U9H6k3CSGaGEQMHLKczJZkA50zNs0OLM2Wr1k1cSYL_tNTTY5676rbPaz7KuxnaGjeeXp61BPwsqWqXXdISwuPd-El5bxaNmcHvnHD0V_gfS35em3zBrWuEOfWd3E3C-3lYM5_t-78qOq2XReiqq3aO5nZe8GPsvKU9s6q1Zr3dzIweGprJ8Ph0T516NoFhPMalsdywbGR49KW58hEUntTLe3fEMNoelub6FnyQfNpvOV6R9lm5U96CA93flDiDE9gtk-zrOEC-4uj-wwrFFgB38u6d8cxchzshWC9hEOylx99PJq0m3-YMyC2LLRty47_Ffr7sNXblr7ktIa7qB3N-orQ-UPywFkwNG_g-IgMrpePyf0er-UTUuZzCsCkG2BSC0zqgEk3wKQgYdoDJu2ASVtgUgQmBWBSB0zaB-ZTcjE5OT8-9V1OD19GLFr6kTKhjCQT0iiwJg61EkxrJnUgx4FMtUlSYyLJQxlIboJIBFyKSLEk0JlAcsBnZDiv5vo5oYExyKEBtw0DMyAR8F2XGumX0jRhUo3Iu83IFdIR3mPelVmBhi8MdNFKDQd6RN601a8bppebKu6jGArECQ4FrMeyyOM0SMIQFPwReduIp3ATsC5ugMeLW9d8Se51E2afDGEO61egDC_FgYPWAbkz_XXyB2Zasgs |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+SHM+approach+using+machine+learning+and+statistical+indicators+extracted+from+raw+dynamic+measurements&rft.jtitle=Latin+American+journal+of+solids+and+structures&rft.au=Finotti%2C+Rafaelle+Piazzaroli&rft.au=Cury%2C+Alexandre+Abrah%C3%A3o&rft.au=Barbosa%2C+Fl%C3%A1vio+de+Souza&rft.date=2019-01-01&rft.pub=Associa%C3%A7%C3%A3o+Brasileira+de+Ci%C3%AAncias+Mec%C3%A2nicas&rft.issn=1679-7825&rft.eissn=1679-7825&rft.volume=16&rft.issue=2&rft_id=info:doi/10.1590%2F1679-78254942&rft.externalDocID=S1679_78252019000200507 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1679-7817&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1679-7817&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1679-7817&client=summon |