Sensitivity analysis in discrete Bayesian networks
This paper presents an efficient computational method for performing sensitivity analysis in discrete Bayesian networks. The method exploits the structure of conditional probabilities of a target node given the evidence. First, the set of parameters which is relevant to the calculation of the condit...
Saved in:
Published in | IEEE transactions on systems, man and cybernetics. Part A, Systems and humans Vol. 27; no. 4; pp. 412 - 423 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.07.1997
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents an efficient computational method for performing sensitivity analysis in discrete Bayesian networks. The method exploits the structure of conditional probabilities of a target node given the evidence. First, the set of parameters which is relevant to the calculation of the conditional probabilities of the target node is identified. Next, this set is reduced by removing those combinations of the parameters which either contradict the available evidence or are incompatible. Finally, using the canonical components associated with the resulting subset of parameters, the desired conditional probabilities are obtained. In this way, an important saving in the calculations is achieved. The proposed method can also be used to compute exact upper and lower bounds for the conditional probabilities, hence a sensitivity analysis can be easily performed. Examples are used to illustrate the proposed methodology. |
---|---|
AbstractList | This paper presents an efficient computational method for performing sensitivity analysis in discrete Bayesian networks. The method exploits the structure of conditional probabilities of a target node given the evidence. First, the set of parameters which is relevant to the calculation of the conditional probabilities of the target node is identified. Next, this set is reduced by removing those combinations of the parameters which either contradict the available evidence or are incompatible. Finally, using the canonical components associated with the resulting subset of parameters, the desired conditional probabilities are obtained. In this way, an important saving in the calculations is achieved. The proposed method can also be used to compute exact upper and lower bounds for the conditional probabilities, hence a sensitivity analysis can be easily performed. Examples are used to illustrate the proposed methodology. This paper presents an efficient computational method for performing sensitivity analysis in discrete Bayesian networks. The method exploits the structure of conditional probabilities of a target node given the evidence. First, the set of parameters which is relevant to the calculation of the conditional probabilities of the target node is identified. Next, this set is reduced by removing those combinations of the parameters which either contradict the available evidence or are incompatible. Finally, using the canonical components associated with the resulting subset of parameters, the desired conditional probabilities are obtained. In this way, an important saving in the calculations is achieved. The proposed method can also be used to compute exact upper and lower bounds for the conditional probabilities, hence a sensitivity analysis can be easily performed. Examples are used to illustrate the proposed methodology |
Author | Castillo, E. Gutierrez, J.M. Hadi, A.S. |
Author_xml | – sequence: 1 givenname: E. surname: Castillo fullname: Castillo, E. organization: Dept. of Appl. Math. & Comput. Sci., Cantabria Univ., Santander, Spain – sequence: 2 givenname: J.M. surname: Gutierrez fullname: Gutierrez, J.M. – sequence: 3 givenname: A.S. surname: Hadi fullname: Hadi, A.S. |
BookMark | eNqF0D1PwzAQBmAPRaItTGxMmVhQii_-iD1CRQGpEgMwR65zkQypU2wXlH9Pq1QMSKi33HDPnU7vhIx855GQC6AzAKpvGJdqJjTXVI_IGKhiOedFeUomMb5TCpxrPibFC_rokvtyqc-MN20fXcycz2oXbcCE2Z3pMTrjM4_puwsf8YycNKaNeH7oU_K2uH-dP-bL54en-e0yt4yzlDNrGyiQK6tWJSsVrQFKUAXosgGuZQECldhVTcuGcaWVBJT1StVCgpE1m5Kr4e4mdJ9bjKla737CtjUeu22sCk2ZYlQch0oKJqQ8DksmqNR7CAO0oYsxYFNZl0xynU_BuLYCWu0zrvYZV0PGu53rPzub4NYm9P_oy0E7RPyVh-EPLMGGkQ |
CODEN | ITSHFX |
CitedBy_id | crossref_primary_10_1016_j_jrtpm_2019_100148 crossref_primary_10_1061_JTEPBS_TEENG_7805 crossref_primary_10_1109_TSMCA_2003_811116 crossref_primary_10_1111_mice_12195 crossref_primary_10_1016_j_jsr_2012_10_005 crossref_primary_10_1007_s10115_024_02222_3 crossref_primary_10_3390_su13031026 crossref_primary_10_1016_j_ssci_2021_105187 crossref_primary_10_1155_2012_359429 crossref_primary_10_3390_ijerph17010096 crossref_primary_10_3390_jmse11010084 crossref_primary_10_1785_0220230159 crossref_primary_10_1080_13588265_2024_2406607 crossref_primary_10_3390_su13116439 crossref_primary_10_1007_s42001_020_00067_8 crossref_primary_10_1080_10803548_2024_2428569 crossref_primary_10_1109_TITS_2011_2173933 crossref_primary_10_1016_j_ijar_2008_02_008 crossref_primary_10_1111_risa_13125 crossref_primary_10_1016_j_jhydrol_2022_128134 crossref_primary_10_1016_j_asoc_2013_02_018 crossref_primary_10_1186_s12544_020_0401_5 crossref_primary_10_7763_IJCTE_2015_V7_996 crossref_primary_10_1016_j_still_2018_01_002 crossref_primary_10_1162_neco_2007_19_1_231 crossref_primary_10_1016_j_trd_2024_104237 crossref_primary_10_1111_j_1539_6924_2011_01667_x crossref_primary_10_1007_s10472_017_9553_y crossref_primary_10_1080_17499518_2011_650147 crossref_primary_10_1177_1071181320641403 crossref_primary_10_1016_j_jestch_2020_10_002 crossref_primary_10_1016_j_jclepro_2023_137372 crossref_primary_10_1016_j_aap_2013_04_009 crossref_primary_10_1016_j_ijar_2022_09_006 crossref_primary_10_1109_ACCESS_2023_3347553 crossref_primary_10_1016_j_ins_2017_05_010 crossref_primary_10_1016_j_aap_2023_107278 crossref_primary_10_1016_j_automatica_2010_07_004 crossref_primary_10_1016_j_ijar_2012_06_003 crossref_primary_10_1109_TKDE_2013_72 crossref_primary_10_1061__ASCE_0899_1561_2008_20_11_707 crossref_primary_10_1007_s42113_019_00032_3 crossref_primary_10_1002_nav_22019 crossref_primary_10_1002_sec_58 crossref_primary_10_1080_00949655_2011_583247 crossref_primary_10_1016_j_ijar_2004_07_001 crossref_primary_10_1080_02664763_2014_934664 crossref_primary_10_1016_j_ejor_2014_06_033 crossref_primary_10_1016_j_ijdrr_2025_105297 crossref_primary_10_35784_iapgos_2968 crossref_primary_10_1016_j_scib_2023_11_012 crossref_primary_10_1109_TSMCB_2007_896018 crossref_primary_10_1016_j_esr_2021_100789 crossref_primary_10_1016_j_ssci_2012_09_004 crossref_primary_10_1016_S0951_8320_02_00225_9 crossref_primary_10_1155_2022_1923734 crossref_primary_10_1016_j_ijepes_2014_07_034 crossref_primary_10_3389_fbuil_2018_00067 crossref_primary_10_3390_rs13224709 crossref_primary_10_1007_s13202_015_0224_4 crossref_primary_10_1111_mice_12153 crossref_primary_10_1061_AJRUA6_0001117 crossref_primary_10_1007_s12571_024_01502_8 crossref_primary_10_1007_s10614_025_10866_8 crossref_primary_10_1016_j_ress_2024_110201 crossref_primary_10_1016_j_ssci_2016_03_002 crossref_primary_10_1096_fj_03_0475fje crossref_primary_10_4236_jilsa_2013_53018 crossref_primary_10_1016_j_ejor_2004_06_028 crossref_primary_10_1109_TPWRS_2022_3152801 crossref_primary_10_1016_j_jlp_2022_104906 crossref_primary_10_1016_j_trb_2007_10_003 crossref_primary_10_1061_AJRUA6_0001088 crossref_primary_10_1016_j_ejor_2015_06_032 crossref_primary_10_1016_j_neucom_2015_01_027 crossref_primary_10_1061_AJRUA6_0001108 crossref_primary_10_1016_j_advengsoft_2017_09_003 crossref_primary_10_1016_j_engappai_2010_10_007 crossref_primary_10_1016_j_ijar_2015_03_005 crossref_primary_10_1016_j_jnc_2024_126570 crossref_primary_10_1111_risa_15072 crossref_primary_10_1148_ryai_210187 crossref_primary_10_5194_hess_25_901_2021 crossref_primary_10_1016_j_artint_2007_09_004 crossref_primary_10_1137_140953848 crossref_primary_10_1002_qre_2186 crossref_primary_10_1016_j_ejor_2014_05_015 crossref_primary_10_1109_TPWRS_2005_857918 crossref_primary_10_1061_JTEPBS_0000680 crossref_primary_10_1145_3468269 crossref_primary_10_1145_765568_765570 crossref_primary_10_1016_j_eswa_2019_113130 crossref_primary_10_1111_j_1468_0394_2004_00266_x crossref_primary_10_1016_j_jlp_2023_105027 crossref_primary_10_1016_j_jpse_2021_08_003 crossref_primary_10_1016_j_artmed_2024_102937 crossref_primary_10_1016_j_eswa_2007_09_030 crossref_primary_10_1016_j_ijar_2017_05_011 crossref_primary_10_1016_j_ress_2020_107320 crossref_primary_10_1016_j_apenergy_2022_120050 crossref_primary_10_1016_j_engappai_2019_103384 crossref_primary_10_1057_jors_2013_49 crossref_primary_10_1007_s10639_023_12334_y crossref_primary_10_1016_j_ijar_2023_108929 crossref_primary_10_1016_j_ress_2022_108573 crossref_primary_10_1111_risa_70003 crossref_primary_10_1016_j_ijar_2019_06_007 crossref_primary_10_1016_j_ijar_2013_07_004 crossref_primary_10_1007_s12063_021_00236_6 crossref_primary_10_1080_13669877_2024_2423196 crossref_primary_10_1016_j_jfranklin_2011_07_015 crossref_primary_10_3390_app112210866 crossref_primary_10_1016_j_ijar_2025_109368 crossref_primary_10_1016_j_ijar_2020_07_008 crossref_primary_10_1016_j_ijar_2017_07_002 crossref_primary_10_3390_su152416657 crossref_primary_10_3390_app14146221 crossref_primary_10_1016_j_ress_2008_10_004 crossref_primary_10_1016_j_trc_2021_103180 crossref_primary_10_1109_ACCESS_2025_3550572 crossref_primary_10_2139_ssrn_3867894 crossref_primary_10_1108_JEDT_04_2021_0222 crossref_primary_10_1080_17509653_2016_1255857 crossref_primary_10_1109_TKDE_2000_868901 crossref_primary_10_3390_su13137046 crossref_primary_10_1016_j_heliyon_2024_e35048 crossref_primary_10_1016_j_petrol_2021_109560 crossref_primary_10_1111_risa_14120 crossref_primary_10_1016_j_eswa_2023_121069 crossref_primary_10_1016_j_eswa_2017_03_056 crossref_primary_10_1016_j_ress_2025_110856 |
Cites_doi | 10.1109/21.384253 10.1002/net.3230200504 10.1002/net.3230200505 10.1016/B978-1-55860-332-5.50070-5 10.1002/nav.3800110204 10.1016/0888-613X(94)90019-1 10.1109/21.384252 10.1002/net.3230200503 10.1007/3-540-60112-0_11 10.1002/net.3230200507 10.1016/0888-613X(92)90006-L 10.1016/0004-3702(86)90072-X |
ContentType | Journal Article |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 7SP 7TB FR3 H8D |
DOI | 10.1109/3468.594909 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Engineering Research Database Aerospace Database |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Aerospace Database |
DatabaseTitleList | Computer and Information Systems Abstracts Technology Research Database Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) Mathematics |
EndPage | 423 |
ExternalDocumentID | 10_1109_3468_594909 594909 |
GroupedDBID | -~X 0R~ 29I 4.4 5VS 6IK 85S 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AETIX AGQYO AGSQL AHBIQ AI. AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD F5P HZ~ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL PZZ RIA RIE RNS VH1 VJK AAYOK AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 7SP 7TB FR3 H8D |
ID | FETCH-LOGICAL-c343t-3ccf12e48c8b73780d117182197f1496215e85555d07f3489861e6db8d561a6d3 |
IEDL.DBID | RIE |
ISSN | 1083-4427 |
IngestDate | Fri Jul 11 14:24:38 EDT 2025 Sun Aug 24 04:08:07 EDT 2025 Mon Jul 21 11:31:38 EDT 2025 Tue Jul 01 04:13:38 EDT 2025 Thu Apr 24 22:53:46 EDT 2025 Tue Aug 26 21:00:16 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-3ccf12e48c8b73780d117182197f1496215e85555d07f3489861e6db8d561a6d3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 27350696 |
PQPubID | 23500 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_29038305 ieee_primary_594909 crossref_citationtrail_10_1109_3468_594909 proquest_miscellaneous_28653566 proquest_miscellaneous_27350696 crossref_primary_10_1109_3468_594909 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1997-07-01 |
PublicationDateYYYYMMDD | 1997-07-01 |
PublicationDate_xml | – month: 07 year: 1997 text: 1997-07-01 day: 01 |
PublicationDecade | 1990 |
PublicationTitle | IEEE transactions on systems, man and cybernetics. Part A, Systems and humans |
PublicationTitleAbbrev | TSMCA |
PublicationYear | 1997 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref15 ref14 ref11 ref10 lauritzen (ref9) 1988; 50 ref1 ref16 ref8 ref7 ref3 ref6 ref5 pearl (ref12) 1988 fertig (ref4) 1990 castillo (ref2) 1996 |
References_xml | – ident: ref3 doi: 10.1109/21.384253 – ident: ref6 doi: 10.1002/net.3230200504 – ident: ref13 doi: 10.1002/net.3230200505 – volume: 50 start-page: 157 year: 1988 ident: ref9 article-title: local computations with probabilities on graphical structures and their application to expert systems publication-title: J Royal Stat Soc B – ident: ref14 doi: 10.1016/B978-1-55860-332-5.50070-5 – ident: ref10 doi: 10.1002/nav.3800110204 – ident: ref5 doi: 10.1016/0888-613X(94)90019-1 – ident: ref7 doi: 10.1109/21.384252 – ident: ref8 doi: 10.1002/net.3230200503 – year: 1988 ident: ref12 publication-title: Probabilistic Reasoning in Intelligent Systems Networks of Plausible Inference – ident: ref1 doi: 10.1007/3-540-60112-0_11 – ident: ref15 doi: 10.1002/net.3230200507 – year: 1990 ident: ref4 publication-title: Intervals Over Influence Diagrams – ident: ref16 doi: 10.1016/0888-613X(92)90006-L – ident: ref11 doi: 10.1016/0004-3702(86)90072-X – year: 1996 ident: ref2 publication-title: Expert Systems and Probabilistic Network Models |
SSID | ssj0014494 |
Score | 1.5737225 |
Snippet | This paper presents an efficient computational method for performing sensitivity analysis in discrete Bayesian networks. The method exploits the structure of... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 412 |
SubjectTerms | Bayesian methods Computer networks Condition monitoring Intelligent networks Mathematics Polynomials Probability Sensitivity analysis Uncertainty Uniform resource locators |
Title | Sensitivity analysis in discrete Bayesian networks |
URI | https://ieeexplore.ieee.org/document/594909 https://www.proquest.com/docview/27350696 https://www.proquest.com/docview/28653566 https://www.proquest.com/docview/29038305 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEN5oT3pQWzXWJ4ce1AQK7IPdoxqbxqRetElvBJYlMRpqChz01zu7S4mPppEDATJkyT6_Yef7BqEBTqjIaSJcqQLpEpljN01zAidwn1WU4izU3OHJIxtPycOMzhqdbcOFUUqZ4DPl6Uuzl5_NZa1_lQ2pIEKT9TbBb7NUrXbDgBCT8zAAROESEkYNFS_wxRATxj376o_Fx2RT-TMFm3VltGsJ26WRI9ThJK9eXaWe_Pwl1vjPT95DOw2-dG5sh-iiDVX00PY31UG4m7RSrWUPdZvRXTqXjQT11T4Kn3Rcu00s4SSNbonzUjiaxLsAnO3cJh9K8y-dwsaRlwdoOrp_vhu7TXYFV2KCKxdLmQehIlzyNMIR97MggIUKZrAoB7eJARZQnMKR-VGOCRecBYplKc8AciUsw4eoU8wLdYQcTDLJwyiRvtBzAE4TRsMoF6GUguZh0EfXy2qPZSM9rjNgvMXGBfFFrNsotnXVR4PW-N0qbqw26-nabk2WTy-WzRnDONGbH0mh5nUZA0yjPhNsjQVnFAO6XWMhfHDofXq8suwTtGW1bXUs7ynqVItanQFiqdJz01e_AHI759Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB5ROFAOLSxUQHn4ABJFypL4FfvQA08theVSkLiFxHGkCpRFZFcV_Sv9K_1xjONsRAFxQyKHKIlGeXjG84hnvgHYYKnQhUh1YGxkAm4KFmRZwXGH4bONM5ZTVzvcP5O9C_7jUlxOwN-2FsZaWyef2a47rNfy84EZuV9lO0JzHeomg_LE3v_G-Kz6fnyAzNyk9OjwfL8XNC0EAsM4GwbMmCKiliujspjFKsyjCLUxTtO4wNhAosGzSuCWh3HBuNJKRlbmmcrRr0hlzvC-H2AK3QxBfXFYu0TBed1lMUIfJuCcxk3xXxTqHcal6vqX_c_c1f1bnin92pIdfYZ_4zHwCSzX3dEw65o_T-Ah3-kgzcKnxoMmu17k52DClh2YeYSriGf9Foy26sBco78qstWAbH-bB_rTZe771hkkbZBZyK-SuDLlO4wkyF56b12FKSl9pny1ABdv8l1fYLIclHYRCOO5UTROTaidlmNZKgWNC02N0aKg0RJsj9mcmAZc3fX4uEnqICvUiZOJxPNmCTZa4luPKfIyWcdxtyUZX10fi0-CmsAt76SlHYyqBB1REUotX6FQUjD031-h0CFTaAKWX3z2Okz3zvunyenx2clX-OiRfF3m8gpMDu9GdhX9s2G2Vs8TAldvLXMP_oFBbA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+analysis+in+discrete+Bayesian+networks&rft.jtitle=IEEE+transactions+on+systems%2C+man+and+cybernetics.+Part+A%2C+Systems+and+humans&rft.au=Castillo%2C+E&rft.au=Gutierrez%2C+J+M&rft.au=Hadi%2C+A+S&rft.date=1997-07-01&rft.issn=1083-4427&rft.volume=27&rft.issue=4&rft.spage=412&rft.epage=423&rft_id=info:doi/10.1109%2F3468.594909&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4427&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4427&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4427&client=summon |