Sensitivity analysis in discrete Bayesian networks

This paper presents an efficient computational method for performing sensitivity analysis in discrete Bayesian networks. The method exploits the structure of conditional probabilities of a target node given the evidence. First, the set of parameters which is relevant to the calculation of the condit...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on systems, man and cybernetics. Part A, Systems and humans Vol. 27; no. 4; pp. 412 - 423
Main Authors Castillo, E., Gutierrez, J.M., Hadi, A.S.
Format Journal Article
LanguageEnglish
Published IEEE 01.07.1997
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents an efficient computational method for performing sensitivity analysis in discrete Bayesian networks. The method exploits the structure of conditional probabilities of a target node given the evidence. First, the set of parameters which is relevant to the calculation of the conditional probabilities of the target node is identified. Next, this set is reduced by removing those combinations of the parameters which either contradict the available evidence or are incompatible. Finally, using the canonical components associated with the resulting subset of parameters, the desired conditional probabilities are obtained. In this way, an important saving in the calculations is achieved. The proposed method can also be used to compute exact upper and lower bounds for the conditional probabilities, hence a sensitivity analysis can be easily performed. Examples are used to illustrate the proposed methodology.
AbstractList This paper presents an efficient computational method for performing sensitivity analysis in discrete Bayesian networks. The method exploits the structure of conditional probabilities of a target node given the evidence. First, the set of parameters which is relevant to the calculation of the conditional probabilities of the target node is identified. Next, this set is reduced by removing those combinations of the parameters which either contradict the available evidence or are incompatible. Finally, using the canonical components associated with the resulting subset of parameters, the desired conditional probabilities are obtained. In this way, an important saving in the calculations is achieved. The proposed method can also be used to compute exact upper and lower bounds for the conditional probabilities, hence a sensitivity analysis can be easily performed. Examples are used to illustrate the proposed methodology.
This paper presents an efficient computational method for performing sensitivity analysis in discrete Bayesian networks. The method exploits the structure of conditional probabilities of a target node given the evidence. First, the set of parameters which is relevant to the calculation of the conditional probabilities of the target node is identified. Next, this set is reduced by removing those combinations of the parameters which either contradict the available evidence or are incompatible. Finally, using the canonical components associated with the resulting subset of parameters, the desired conditional probabilities are obtained. In this way, an important saving in the calculations is achieved. The proposed method can also be used to compute exact upper and lower bounds for the conditional probabilities, hence a sensitivity analysis can be easily performed. Examples are used to illustrate the proposed methodology
Author Castillo, E.
Gutierrez, J.M.
Hadi, A.S.
Author_xml – sequence: 1
  givenname: E.
  surname: Castillo
  fullname: Castillo, E.
  organization: Dept. of Appl. Math. & Comput. Sci., Cantabria Univ., Santander, Spain
– sequence: 2
  givenname: J.M.
  surname: Gutierrez
  fullname: Gutierrez, J.M.
– sequence: 3
  givenname: A.S.
  surname: Hadi
  fullname: Hadi, A.S.
BookMark eNqF0D1PwzAQBmAPRaItTGxMmVhQii_-iD1CRQGpEgMwR65zkQypU2wXlH9Pq1QMSKi33HDPnU7vhIx855GQC6AzAKpvGJdqJjTXVI_IGKhiOedFeUomMb5TCpxrPibFC_rokvtyqc-MN20fXcycz2oXbcCE2Z3pMTrjM4_puwsf8YycNKaNeH7oU_K2uH-dP-bL54en-e0yt4yzlDNrGyiQK6tWJSsVrQFKUAXosgGuZQECldhVTcuGcaWVBJT1StVCgpE1m5Kr4e4mdJ9bjKla737CtjUeu22sCk2ZYlQch0oKJqQ8DksmqNR7CAO0oYsxYFNZl0xynU_BuLYCWu0zrvYZV0PGu53rPzub4NYm9P_oy0E7RPyVh-EPLMGGkQ
CODEN ITSHFX
CitedBy_id crossref_primary_10_1016_j_jrtpm_2019_100148
crossref_primary_10_1061_JTEPBS_TEENG_7805
crossref_primary_10_1109_TSMCA_2003_811116
crossref_primary_10_1111_mice_12195
crossref_primary_10_1016_j_jsr_2012_10_005
crossref_primary_10_1007_s10115_024_02222_3
crossref_primary_10_3390_su13031026
crossref_primary_10_1016_j_ssci_2021_105187
crossref_primary_10_1155_2012_359429
crossref_primary_10_3390_ijerph17010096
crossref_primary_10_3390_jmse11010084
crossref_primary_10_1785_0220230159
crossref_primary_10_1080_13588265_2024_2406607
crossref_primary_10_3390_su13116439
crossref_primary_10_1007_s42001_020_00067_8
crossref_primary_10_1080_10803548_2024_2428569
crossref_primary_10_1109_TITS_2011_2173933
crossref_primary_10_1016_j_ijar_2008_02_008
crossref_primary_10_1111_risa_13125
crossref_primary_10_1016_j_jhydrol_2022_128134
crossref_primary_10_1016_j_asoc_2013_02_018
crossref_primary_10_1186_s12544_020_0401_5
crossref_primary_10_7763_IJCTE_2015_V7_996
crossref_primary_10_1016_j_still_2018_01_002
crossref_primary_10_1162_neco_2007_19_1_231
crossref_primary_10_1016_j_trd_2024_104237
crossref_primary_10_1111_j_1539_6924_2011_01667_x
crossref_primary_10_1007_s10472_017_9553_y
crossref_primary_10_1080_17499518_2011_650147
crossref_primary_10_1177_1071181320641403
crossref_primary_10_1016_j_jestch_2020_10_002
crossref_primary_10_1016_j_jclepro_2023_137372
crossref_primary_10_1016_j_aap_2013_04_009
crossref_primary_10_1016_j_ijar_2022_09_006
crossref_primary_10_1109_ACCESS_2023_3347553
crossref_primary_10_1016_j_ins_2017_05_010
crossref_primary_10_1016_j_aap_2023_107278
crossref_primary_10_1016_j_automatica_2010_07_004
crossref_primary_10_1016_j_ijar_2012_06_003
crossref_primary_10_1109_TKDE_2013_72
crossref_primary_10_1061__ASCE_0899_1561_2008_20_11_707
crossref_primary_10_1007_s42113_019_00032_3
crossref_primary_10_1002_nav_22019
crossref_primary_10_1002_sec_58
crossref_primary_10_1080_00949655_2011_583247
crossref_primary_10_1016_j_ijar_2004_07_001
crossref_primary_10_1080_02664763_2014_934664
crossref_primary_10_1016_j_ejor_2014_06_033
crossref_primary_10_1016_j_ijdrr_2025_105297
crossref_primary_10_35784_iapgos_2968
crossref_primary_10_1016_j_scib_2023_11_012
crossref_primary_10_1109_TSMCB_2007_896018
crossref_primary_10_1016_j_esr_2021_100789
crossref_primary_10_1016_j_ssci_2012_09_004
crossref_primary_10_1016_S0951_8320_02_00225_9
crossref_primary_10_1155_2022_1923734
crossref_primary_10_1016_j_ijepes_2014_07_034
crossref_primary_10_3389_fbuil_2018_00067
crossref_primary_10_3390_rs13224709
crossref_primary_10_1007_s13202_015_0224_4
crossref_primary_10_1111_mice_12153
crossref_primary_10_1061_AJRUA6_0001117
crossref_primary_10_1007_s12571_024_01502_8
crossref_primary_10_1007_s10614_025_10866_8
crossref_primary_10_1016_j_ress_2024_110201
crossref_primary_10_1016_j_ssci_2016_03_002
crossref_primary_10_1096_fj_03_0475fje
crossref_primary_10_4236_jilsa_2013_53018
crossref_primary_10_1016_j_ejor_2004_06_028
crossref_primary_10_1109_TPWRS_2022_3152801
crossref_primary_10_1016_j_jlp_2022_104906
crossref_primary_10_1016_j_trb_2007_10_003
crossref_primary_10_1061_AJRUA6_0001088
crossref_primary_10_1016_j_ejor_2015_06_032
crossref_primary_10_1016_j_neucom_2015_01_027
crossref_primary_10_1061_AJRUA6_0001108
crossref_primary_10_1016_j_advengsoft_2017_09_003
crossref_primary_10_1016_j_engappai_2010_10_007
crossref_primary_10_1016_j_ijar_2015_03_005
crossref_primary_10_1016_j_jnc_2024_126570
crossref_primary_10_1111_risa_15072
crossref_primary_10_1148_ryai_210187
crossref_primary_10_5194_hess_25_901_2021
crossref_primary_10_1016_j_artint_2007_09_004
crossref_primary_10_1137_140953848
crossref_primary_10_1002_qre_2186
crossref_primary_10_1016_j_ejor_2014_05_015
crossref_primary_10_1109_TPWRS_2005_857918
crossref_primary_10_1061_JTEPBS_0000680
crossref_primary_10_1145_3468269
crossref_primary_10_1145_765568_765570
crossref_primary_10_1016_j_eswa_2019_113130
crossref_primary_10_1111_j_1468_0394_2004_00266_x
crossref_primary_10_1016_j_jlp_2023_105027
crossref_primary_10_1016_j_jpse_2021_08_003
crossref_primary_10_1016_j_artmed_2024_102937
crossref_primary_10_1016_j_eswa_2007_09_030
crossref_primary_10_1016_j_ijar_2017_05_011
crossref_primary_10_1016_j_ress_2020_107320
crossref_primary_10_1016_j_apenergy_2022_120050
crossref_primary_10_1016_j_engappai_2019_103384
crossref_primary_10_1057_jors_2013_49
crossref_primary_10_1007_s10639_023_12334_y
crossref_primary_10_1016_j_ijar_2023_108929
crossref_primary_10_1016_j_ress_2022_108573
crossref_primary_10_1111_risa_70003
crossref_primary_10_1016_j_ijar_2019_06_007
crossref_primary_10_1016_j_ijar_2013_07_004
crossref_primary_10_1007_s12063_021_00236_6
crossref_primary_10_1080_13669877_2024_2423196
crossref_primary_10_1016_j_jfranklin_2011_07_015
crossref_primary_10_3390_app112210866
crossref_primary_10_1016_j_ijar_2025_109368
crossref_primary_10_1016_j_ijar_2020_07_008
crossref_primary_10_1016_j_ijar_2017_07_002
crossref_primary_10_3390_su152416657
crossref_primary_10_3390_app14146221
crossref_primary_10_1016_j_ress_2008_10_004
crossref_primary_10_1016_j_trc_2021_103180
crossref_primary_10_1109_ACCESS_2025_3550572
crossref_primary_10_2139_ssrn_3867894
crossref_primary_10_1108_JEDT_04_2021_0222
crossref_primary_10_1080_17509653_2016_1255857
crossref_primary_10_1109_TKDE_2000_868901
crossref_primary_10_3390_su13137046
crossref_primary_10_1016_j_heliyon_2024_e35048
crossref_primary_10_1016_j_petrol_2021_109560
crossref_primary_10_1111_risa_14120
crossref_primary_10_1016_j_eswa_2023_121069
crossref_primary_10_1016_j_eswa_2017_03_056
crossref_primary_10_1016_j_ress_2025_110856
Cites_doi 10.1109/21.384253
10.1002/net.3230200504
10.1002/net.3230200505
10.1016/B978-1-55860-332-5.50070-5
10.1002/nav.3800110204
10.1016/0888-613X(94)90019-1
10.1109/21.384252
10.1002/net.3230200503
10.1007/3-540-60112-0_11
10.1002/net.3230200507
10.1016/0888-613X(92)90006-L
10.1016/0004-3702(86)90072-X
ContentType Journal Article
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
7SP
7TB
FR3
H8D
DOI 10.1109/3468.594909
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Aerospace Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Aerospace Database
DatabaseTitleList Computer and Information Systems Abstracts
Technology Research Database
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Mathematics
EndPage 423
ExternalDocumentID 10_1109_3468_594909
594909
GroupedDBID -~X
0R~
29I
4.4
5VS
6IK
85S
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
F5P
HZ~
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
PZZ
RIA
RIE
RNS
VH1
VJK
AAYOK
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
7SP
7TB
FR3
H8D
ID FETCH-LOGICAL-c343t-3ccf12e48c8b73780d117182197f1496215e85555d07f3489861e6db8d561a6d3
IEDL.DBID RIE
ISSN 1083-4427
IngestDate Fri Jul 11 14:24:38 EDT 2025
Sun Aug 24 04:08:07 EDT 2025
Mon Jul 21 11:31:38 EDT 2025
Tue Jul 01 04:13:38 EDT 2025
Thu Apr 24 22:53:46 EDT 2025
Tue Aug 26 21:00:16 EDT 2025
IsPeerReviewed false
IsScholarly false
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-3ccf12e48c8b73780d117182197f1496215e85555d07f3489861e6db8d561a6d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 27350696
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_29038305
ieee_primary_594909
crossref_citationtrail_10_1109_3468_594909
proquest_miscellaneous_28653566
proquest_miscellaneous_27350696
crossref_primary_10_1109_3468_594909
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1997-07-01
PublicationDateYYYYMMDD 1997-07-01
PublicationDate_xml – month: 07
  year: 1997
  text: 1997-07-01
  day: 01
PublicationDecade 1990
PublicationTitle IEEE transactions on systems, man and cybernetics. Part A, Systems and humans
PublicationTitleAbbrev TSMCA
PublicationYear 1997
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref15
ref14
ref11
ref10
lauritzen (ref9) 1988; 50
ref1
ref16
ref8
ref7
ref3
ref6
ref5
pearl (ref12) 1988
fertig (ref4) 1990
castillo (ref2) 1996
References_xml – ident: ref3
  doi: 10.1109/21.384253
– ident: ref6
  doi: 10.1002/net.3230200504
– ident: ref13
  doi: 10.1002/net.3230200505
– volume: 50
  start-page: 157
  year: 1988
  ident: ref9
  article-title: local computations with probabilities on graphical structures and their application to expert systems
  publication-title: J Royal Stat Soc B
– ident: ref14
  doi: 10.1016/B978-1-55860-332-5.50070-5
– ident: ref10
  doi: 10.1002/nav.3800110204
– ident: ref5
  doi: 10.1016/0888-613X(94)90019-1
– ident: ref7
  doi: 10.1109/21.384252
– ident: ref8
  doi: 10.1002/net.3230200503
– year: 1988
  ident: ref12
  publication-title: Probabilistic Reasoning in Intelligent Systems Networks of Plausible Inference
– ident: ref1
  doi: 10.1007/3-540-60112-0_11
– ident: ref15
  doi: 10.1002/net.3230200507
– year: 1990
  ident: ref4
  publication-title: Intervals Over Influence Diagrams
– ident: ref16
  doi: 10.1016/0888-613X(92)90006-L
– ident: ref11
  doi: 10.1016/0004-3702(86)90072-X
– year: 1996
  ident: ref2
  publication-title: Expert Systems and Probabilistic Network Models
SSID ssj0014494
Score 1.5737225
Snippet This paper presents an efficient computational method for performing sensitivity analysis in discrete Bayesian networks. The method exploits the structure of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 412
SubjectTerms Bayesian methods
Computer networks
Condition monitoring
Intelligent networks
Mathematics
Polynomials
Probability
Sensitivity analysis
Uncertainty
Uniform resource locators
Title Sensitivity analysis in discrete Bayesian networks
URI https://ieeexplore.ieee.org/document/594909
https://www.proquest.com/docview/27350696
https://www.proquest.com/docview/28653566
https://www.proquest.com/docview/29038305
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEN5oT3pQWzXWJ4ce1AQK7IPdoxqbxqRetElvBJYlMRpqChz01zu7S4mPppEDATJkyT6_Yef7BqEBTqjIaSJcqQLpEpljN01zAidwn1WU4izU3OHJIxtPycOMzhqdbcOFUUqZ4DPl6Uuzl5_NZa1_lQ2pIEKT9TbBb7NUrXbDgBCT8zAAROESEkYNFS_wxRATxj376o_Fx2RT-TMFm3VltGsJ26WRI9ThJK9eXaWe_Pwl1vjPT95DOw2-dG5sh-iiDVX00PY31UG4m7RSrWUPdZvRXTqXjQT11T4Kn3Rcu00s4SSNbonzUjiaxLsAnO3cJh9K8y-dwsaRlwdoOrp_vhu7TXYFV2KCKxdLmQehIlzyNMIR97MggIUKZrAoB7eJARZQnMKR-VGOCRecBYplKc8AciUsw4eoU8wLdYQcTDLJwyiRvtBzAE4TRsMoF6GUguZh0EfXy2qPZSM9rjNgvMXGBfFFrNsotnXVR4PW-N0qbqw26-nabk2WTy-WzRnDONGbH0mh5nUZA0yjPhNsjQVnFAO6XWMhfHDofXq8suwTtGW1bXUs7ynqVItanQFiqdJz01e_AHI759Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB5ROFAOLSxUQHn4ABJFypL4FfvQA08theVSkLiFxHGkCpRFZFcV_Sv9K_1xjONsRAFxQyKHKIlGeXjG84hnvgHYYKnQhUh1YGxkAm4KFmRZwXGH4bONM5ZTVzvcP5O9C_7jUlxOwN-2FsZaWyef2a47rNfy84EZuV9lO0JzHeomg_LE3v_G-Kz6fnyAzNyk9OjwfL8XNC0EAsM4GwbMmCKiliujspjFKsyjCLUxTtO4wNhAosGzSuCWh3HBuNJKRlbmmcrRr0hlzvC-H2AK3QxBfXFYu0TBed1lMUIfJuCcxk3xXxTqHcal6vqX_c_c1f1bnin92pIdfYZ_4zHwCSzX3dEw65o_T-Ah3-kgzcKnxoMmu17k52DClh2YeYSriGf9Foy26sBco78qstWAbH-bB_rTZe771hkkbZBZyK-SuDLlO4wkyF56b12FKSl9pny1ABdv8l1fYLIclHYRCOO5UTROTaidlmNZKgWNC02N0aKg0RJsj9mcmAZc3fX4uEnqICvUiZOJxPNmCTZa4luPKfIyWcdxtyUZX10fi0-CmsAt76SlHYyqBB1REUotX6FQUjD031-h0CFTaAKWX3z2Okz3zvunyenx2clX-OiRfF3m8gpMDu9GdhX9s2G2Vs8TAldvLXMP_oFBbA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+analysis+in+discrete+Bayesian+networks&rft.jtitle=IEEE+transactions+on+systems%2C+man+and+cybernetics.+Part+A%2C+Systems+and+humans&rft.au=Castillo%2C+E&rft.au=Gutierrez%2C+J+M&rft.au=Hadi%2C+A+S&rft.date=1997-07-01&rft.issn=1083-4427&rft.volume=27&rft.issue=4&rft.spage=412&rft.epage=423&rft_id=info:doi/10.1109%2F3468.594909&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4427&client=summon