Modelling the effect of ageing on the yield strength of an aluminium alloy under cyclic loading at different ageing temperatures and test temperatures

•Development of a new test strategy for efficient ageing tests.•With this test concept, the ageing could be investigated at different ageing and test temperatures.•This test concept allows the investigation of the influence of ageing on the deformation behaviour.•An ageing model was developed to be...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of fatigue Vol. 137; pp. 105635 - 9
Main Authors Seisenbacher, B., Winter, G., Grün, F.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.08.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Development of a new test strategy for efficient ageing tests.•With this test concept, the ageing could be investigated at different ageing and test temperatures.•This test concept allows the investigation of the influence of ageing on the deformation behaviour.•An ageing model was developed to be able to model the material behaviour. The simulation of engine components made of age-hardening materials which are subject to thermal–mechanical loads and in homogeneous thermal distribution, places high demands on the material model. To simulate such load cases, a model is required that allows us to consider the effects of ageing on the material properties along the entire temperature profile. This work presents an improved physical-based ageing model which takes different ageing and test temperatures into account. The improved model was fitted to Al-Si-Mg-Cu alloy data under uniaxial strain-controlled isothermal loading conditions at temperatures from room temperature to 250 °C. At the same ageing temperature and test temperature, the peak values of the simulation and test results were within ±2%. This improved model can serve as the basis for the cycle by cycle simulation of thermomechanical fatigue tests.
AbstractList •Development of a new test strategy for efficient ageing tests.•With this test concept, the ageing could be investigated at different ageing and test temperatures.•This test concept allows the investigation of the influence of ageing on the deformation behaviour.•An ageing model was developed to be able to model the material behaviour. The simulation of engine components made of age-hardening materials which are subject to thermal–mechanical loads and in homogeneous thermal distribution, places high demands on the material model. To simulate such load cases, a model is required that allows us to consider the effects of ageing on the material properties along the entire temperature profile. This work presents an improved physical-based ageing model which takes different ageing and test temperatures into account. The improved model was fitted to Al-Si-Mg-Cu alloy data under uniaxial strain-controlled isothermal loading conditions at temperatures from room temperature to 250 °C. At the same ageing temperature and test temperature, the peak values of the simulation and test results were within ±2%. This improved model can serve as the basis for the cycle by cycle simulation of thermomechanical fatigue tests.
The simulation of engine components made of age-hardening materials which are subject to thermal–mechanical loads and in homogeneous thermal distribution, places high demands on the material model. To simulate such load cases, a model is required that allows us to consider the effects of ageing on the material properties along the entire temperature profile. This work presents an improved physical-based ageing model which takes different ageing and test temperatures into account. The improved model was fitted to Al-Si-Mg-Cu alloy data under uniaxial strain-controlled isothermal loading conditions at temperatures from room temperature to 250 °C. At the same ageing temperature and test temperature, the peak values of the simulation and test results were within [...] This improved model can serve as the basis for the cycle by cycle simulation of thermomechanical fatigue tests. ([...] denotes ProQuest formulae omitted)
ArticleNumber 105635
Author Seisenbacher, B.
Grün, F.
Winter, G.
Author_xml – sequence: 1
  givenname: B.
  surname: Seisenbacher
  fullname: Seisenbacher, B.
  email: benjamin.seisenbacher@unileoben.ac.at
– sequence: 2
  givenname: G.
  surname: Winter
  fullname: Winter, G.
– sequence: 3
  givenname: F.
  surname: Grün
  fullname: Grün, F.
BookMark eNqNkc1OGzEUhS0EEuHnGWqp60n9N57MoguEWloJxAbWlmPfCR45drA9lfIifV48pEWim7Ly1fE937XvOUPHIQZA6BMlS0qo_DIu3Tjo4jYTLBlhs9pK3h6hBV11fcNFy47RglDBGkoZP0VnOY-EkJ507QL9vosWvHdhg8sTYBgGMAXHAesNzGIMr_regbc4lwRhU55e7wPWftq64KZtrXzc4ylYSNjsjXcG-6jtDNAFW1ep1Vn-Qgtsd5B0mRLkCrJVyOWdeoFOBu0zXP45z9Hj928P1z-a2_ubn9dXt43hgpeGm3YA2q04kFVrLZdaSk47DqY3XS8Huzad6amt3xJCAF1LvbaC1qJfSwmMn6PPB-4uxeepvkKNcUqhjlRMCLZiUrRt7fp66DIp5pxgUMaVuvIYStLOK0rUHIUa1VsUao5CHaKo_u4f_y65rU77DzivDk6oS_jlIKlsHAQD1qUalLLR_ZfxAsl5rsY
CitedBy_id crossref_primary_10_1016_j_jmrt_2020_08_086
crossref_primary_10_1016_j_mechmat_2020_103612
crossref_primary_10_3390_applmech4020030
Cites_doi 10.1007/s11661-001-0254-z
10.1007/s11661-003-0191-0
10.1155/2018/5697986
10.1016/j.matdes.2016.01.119
10.1016/j.ijfatigue.2016.02.017
10.1016/j.engfailanal.2003.09.003
10.1007/s11661-006-0221-9
10.1016/j.msea.2014.11.094
10.1016/S0261-3069(97)00060-5
10.1016/S1359-6454(96)00100-0
10.1016/j.actamat.2007.02.032
10.1179/136404608X286156
10.1016/0956-7151(90)90291-N
10.1016/S0921-5093(00)02022-0
10.1016/S0921-5093(97)00207-4
10.1016/j.msea.2014.10.080
10.3184/096034007X207589
10.1007/s11661-015-2880-x
10.1016/S1359-6454(99)00033-6
10.1016/j.ijfatigue.2014.08.001
10.1016/0956-7151(90)90292-O
10.1023/A:1004383203476
10.1007/s11661-999-0201-y
10.1007/s11661-010-0258-7
10.1007/s11661-000-0060-z
10.1016/S1359-6454(02)00470-6
10.1016/j.ijfatigue.2018.05.010
10.1016/j.matlet.2003.12.027
10.1016/S1359-6454(00)00301-3
10.1016/j.actamat.2006.06.005
10.1016/j.msea.2016.01.015
10.1016/S1359-6454(98)00059-7
10.1007/s11661-015-3175-y
10.1016/0749-6419(86)90010-0
10.1051/rphysap:01988002304061500
10.1016/j.jmatprotec.2010.03.020
10.1016/j.scriptamat.2005.08.044
10.1016/j.proeng.2018.02.068
10.1016/j.matdes.2005.11.015
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Aug 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 2020
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.ijfatigue.2020.105635
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3452
EndPage 9
ExternalDocumentID 10_1016_j_ijfatigue_2020_105635
S0142112320301663
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABCJ
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
T9H
TN5
VH1
WUQ
XPP
ZMT
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
7SR
8BQ
8FD
EFKBS
JG9
ID FETCH-LOGICAL-c343t-3c5fe1783e085dd36a663173ec9c796fdbc7c91deff444e1b6abd41e1b9b66e23
IEDL.DBID .~1
ISSN 0142-1123
IngestDate Thu Aug 07 15:24:48 EDT 2025
Tue Jul 01 01:54:35 EDT 2025
Thu Apr 24 23:02:17 EDT 2025
Sun Apr 06 06:54:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Cyclic testing
Aluminium alloy
Simulation
Ageing
Shercliff-Ashby
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-3c5fe1783e085dd36a663173ec9c796fdbc7c91deff444e1b6abd41e1b9b66e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2442826455
PQPubID 2045465
PageCount 9
ParticipantIDs proquest_journals_2442826455
crossref_citationtrail_10_1016_j_ijfatigue_2020_105635
crossref_primary_10_1016_j_ijfatigue_2020_105635
elsevier_sciencedirect_doi_10_1016_j_ijfatigue_2020_105635
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
20200801
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle International journal of fatigue
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Huter, Oberfrank, Grün, Stauder (b0045) 2016; 88
Marquis, Lemaitre (b0075) 1988; 23
Vissers, van Huis, Jansen, Zandbergen, Marioara, Andersen (b0170) 2007; 55
Murayama, Hono, Miao, Laughlin (b0020) 2001; 32
Myhr, Grong, Pedersen (b0085) 2010; 41
Yin, Xiao, Chen, Liu, Yi, Wang (b0155) 2016; 95
Shercliff, Ashby (b0190) 1990; 38
Matvija, Fujda, Milkovič, Vojtko, Kočiško, Glogovský (b0150) 2018; 2018
Weakley-Bollin, Donlon, Wolverton, Allison, Jones (b0095) 2004; 35
Sjölander, Seifeddine (b0110) 2010; 210
Chaboche (b0065) 1986; 2
Farkoosh, Pekguleryuz (b0140) 2015; 621
Wang, Embury, Poole, Esmaeili, Lloyd (b0040) 2003; 34
Sehitoglu, Smith, Qing, Maier, Allison (b0055) 2000; 31
Tsao, Chen, Jeng, Kuo (b0165) 2006; 54
Seisenbacher, Winter, Grün (b0060) 2018; 09
Wang, Cáceres (b0100) 1997; 234–236
Li, Brusethaug, Olsen (b0130) 2006; 54
Gazizov, Kaibyshev (b0160) 2015; 625
Beranger, Fiard, Ammar, Cailletaud (b0005) 2018; 213
Frederick, Armstrong (b0070) 2007; 24
Wing Cheong, Rouse, Hyde, Kennedy (b0105) 2018; 114
Borrego, Abreu, Costa, Ferreira (b0145) 2004; 11
Shaha, Czerwinski, Kasprzak, Friedman, Chen (b0175) 2015; 70
Samuel (b0200) 1998; 33
Edwards, Stiller, Dunlop, Couper (b0025) 1998; 46
Myhr, Grong, Schäfer (b0090) 2015; 46
Shaha, Czerwinski, Kasprzak, Friedman, Chen (b0185) 2016; 657
Shercliff, Ashby (b0080) 1990; 38
Myhr (b0195) 2001; 49
Li, Li, Zhao, He, Li, Guan (b0120) 2004; 58
Wang, Sun, Feng, Hui, Jing (b0135) 2007; 28
Murayama, Hono (b0015) 1999; 47
Bratland, Grong, Shercliff, Myhr, Tjøtta (b0125) 1997; 45
Beck, Lang, Löhe (b0010) 2001; 319–321
Smith, Sehitoglu, Fleury, Maier, Allison (b0050) 1999; 30
Marioara, Andersen, Jansen, Zandbergen (b0115) 2003; 51
Reif, Yu, Dutkiewicz, Ciach, Król (b0035) 1997; 18
Möller, Govender, Stumpf (b0030) 2007; 20
Shaha, Czerwinski, Kasprzak, Friedman, Chen (b0180) 2015; 46
Beck (10.1016/j.ijfatigue.2020.105635_b0010) 2001; 319–321
Murayama (10.1016/j.ijfatigue.2020.105635_b0020) 2001; 32
Möller (10.1016/j.ijfatigue.2020.105635_b0030) 2007; 20
Marioara (10.1016/j.ijfatigue.2020.105635_b0115) 2003; 51
Sehitoglu (10.1016/j.ijfatigue.2020.105635_b0055) 2000; 31
Chaboche (10.1016/j.ijfatigue.2020.105635_b0065) 1986; 2
Murayama (10.1016/j.ijfatigue.2020.105635_b0015) 1999; 47
Wang (10.1016/j.ijfatigue.2020.105635_b0040) 2003; 34
Bratland (10.1016/j.ijfatigue.2020.105635_b0125) 1997; 45
Vissers (10.1016/j.ijfatigue.2020.105635_b0170) 2007; 55
Gazizov (10.1016/j.ijfatigue.2020.105635_b0160) 2015; 625
Myhr (10.1016/j.ijfatigue.2020.105635_b0090) 2015; 46
Frederick (10.1016/j.ijfatigue.2020.105635_b0070) 2007; 24
Smith (10.1016/j.ijfatigue.2020.105635_b0050) 1999; 30
Shercliff (10.1016/j.ijfatigue.2020.105635_b0080) 1990; 38
Marquis (10.1016/j.ijfatigue.2020.105635_b0075) 1988; 23
Borrego (10.1016/j.ijfatigue.2020.105635_b0145) 2004; 11
Tsao (10.1016/j.ijfatigue.2020.105635_b0165) 2006; 54
Reif (10.1016/j.ijfatigue.2020.105635_b0035) 1997; 18
Samuel (10.1016/j.ijfatigue.2020.105635_b0200) 1998; 33
Myhr (10.1016/j.ijfatigue.2020.105635_b0085) 2010; 41
Wing Cheong (10.1016/j.ijfatigue.2020.105635_b0105) 2018; 114
Sjölander (10.1016/j.ijfatigue.2020.105635_b0110) 2010; 210
Li (10.1016/j.ijfatigue.2020.105635_b0130) 2006; 54
Shercliff (10.1016/j.ijfatigue.2020.105635_b0190) 1990; 38
Huter (10.1016/j.ijfatigue.2020.105635_b0045) 2016; 88
Shaha (10.1016/j.ijfatigue.2020.105635_b0185) 2016; 657
Matvija (10.1016/j.ijfatigue.2020.105635_b0150) 2018; 2018
Beranger (10.1016/j.ijfatigue.2020.105635_b0005) 2018; 213
Yin (10.1016/j.ijfatigue.2020.105635_b0155) 2016; 95
Edwards (10.1016/j.ijfatigue.2020.105635_b0025) 1998; 46
Weakley-Bollin (10.1016/j.ijfatigue.2020.105635_b0095) 2004; 35
Wang (10.1016/j.ijfatigue.2020.105635_b0135) 2007; 28
Farkoosh (10.1016/j.ijfatigue.2020.105635_b0140) 2015; 621
Myhr (10.1016/j.ijfatigue.2020.105635_b0195) 2001; 49
Shaha (10.1016/j.ijfatigue.2020.105635_b0180) 2015; 46
Seisenbacher (10.1016/j.ijfatigue.2020.105635_b0060) 2018; 09
Wang (10.1016/j.ijfatigue.2020.105635_b0100) 1997; 234–236
Shaha (10.1016/j.ijfatigue.2020.105635_b0175) 2015; 70
Li (10.1016/j.ijfatigue.2020.105635_b0120) 2004; 58
References_xml – volume: 30
  start-page: 133
  year: 1999
  end-page: 146
  ident: b0050
  article-title: Modeling high-temperature stress-strain behavior of cast aluminum alloys
  publication-title: Metall Mater Trans A
– volume: 32
  start-page: 239
  year: 2001
  end-page: 246
  ident: b0020
  article-title: The effect of cu additions on the precipitation kinetics in an al-mg-si alloy with excess si
  publication-title: Metall Mater Trans A
– volume: 41
  start-page: 2276
  year: 2010
  end-page: 2289
  ident: b0085
  article-title: A combined precipitation, yield strength, and work hardening model for Al-Mg-Si alloys
  publication-title: Metall Mater Trans A
– volume: 55
  start-page: 3815
  year: 2007
  end-page: 3823
  ident: b0170
  article-title: The crystal structure of the
  publication-title: Acta Mater
– volume: 20
  start-page: 340
  year: 2007
  end-page: 346
  ident: b0030
  article-title: Natural and artificial aging response of semisolid metal processed Al–Si–Mg alloy a356
  publication-title: Int J Cast Met Res
– volume: 47
  start-page: 1537
  year: 1999
  end-page: 1548
  ident: b0015
  article-title: Pre-precipitate clusters and precipitation processes in Al–Mg–Si alloys
  publication-title: Acta Mater
– volume: 625
  start-page: 119
  year: 2015
  end-page: 130
  ident: b0160
  article-title: Effect of pre-straining on the aging behavior and mechanical properties of an Al–Cu–Mg–Ag alloy
  publication-title: Mater Sci Eng: A
– volume: 24
  start-page: 1
  year: 2007
  end-page: 26
  ident: b0070
  article-title: A mathematical representation of the multiaxial bauschinger effect
  publication-title: Mater High Temp
– volume: 33
  start-page: 2283
  year: 1998
  end-page: 2297
  ident: b0200
  article-title: Incipient melting of Al5Mg8Si6Cu
  publication-title: J Mater Sci
– volume: 18
  start-page: 253
  year: 1997
  end-page: 256
  ident: b0035
  article-title: Pre-ageing of alsicumg alloys in relation to structure and mechanical properties
  publication-title: Mater Des
– volume: 46
  start-page: 3893
  year: 1998
  end-page: 3904
  ident: b0025
  article-title: The precipitation sequence in Al–Mg–Si alloys
  publication-title: Acta Mater
– volume: 38
  start-page: 1789
  year: 1990
  end-page: 1802
  ident: b0080
  article-title: A process model for age hardening of aluminium alloys—I. The model
  publication-title: Acta Metall Mater
– volume: 46
  start-page: 3063
  year: 2015
  end-page: 3078
  ident: b0180
  article-title: Improving high-temperature tensile and low-cycle fatigue behavior of Al-Si-Cu-Mg alloys through micro-additions of Ti, V, and Zr
  publication-title: Metall Mater Trans A
– volume: 38
  start-page: 1803
  year: 1990
  end-page: 1812
  ident: b0190
  article-title: A process model for age hardening of aluminium alloys—II. Applications of the model
  publication-title: Acta Metall Mater
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 11
  ident: b0150
  article-title: Microstructure changes and improvement in the mechanical properties of as-cast AlSi7MgCu0.5 alloy induced by the heat treatment and ecap technique at room temperature
  publication-title: Adv Mater Sci Eng
– volume: 2
  start-page: 149
  year: 1986
  end-page: 188
  ident: b0065
  article-title: Time-independent constitutive theories for cyclic plasticity
  publication-title: Int J Plast
– volume: 51
  start-page: 789
  year: 2003
  end-page: 796
  ident: b0115
  article-title: The influence of temperature and storage time at rt on nucleation of the
  publication-title: Acta Mater
– volume: 31
  start-page: 139
  year: 2000
  end-page: 151
  ident: b0055
  article-title: Stress-strain response of a cast 319–T6 aluminum under thermomechanical loading
  publication-title: Metall Mater Trans A
– volume: 234–236
  start-page: 106
  year: 1997
  end-page: 109
  ident: b0100
  article-title: On the strain hardening behaviour of Al-Si-Mg casting alloys
  publication-title: Mater Sci Eng: A
– volume: 09
  start-page: 357
  year: 2018
  end-page: 367
  ident: b0060
  article-title: Improved approach to determine the material parameters for a combined hardening model
  publication-title: Mater Sci Appl
– volume: 88
  start-page: 142
  year: 2016
  end-page: 155
  ident: b0045
  article-title: Thermo-mechanical fatigue influence of copper and silicon on hypo-eutectic Al–Si–Cu and Al–Si–Mg cast alloys used in cylinder heads
  publication-title: Int J Fatigue
– volume: 95
  start-page: 329
  year: 2016
  end-page: 339
  ident: b0155
  article-title: Effect of natural ageing and pre-straining on the hardening behaviour and microstructural response during artificial ageing of an Al–Mg–Si–Cu alloy
  publication-title: Mater Des
– volume: 114
  start-page: 92
  year: 2018
  end-page: 108
  ident: b0105
  article-title: The prediction of isothermal cyclic plasticity in 7175–T7351 aluminium alloy with particular emphasis on thermal ageing effects
  publication-title: Int J Fatigue
– volume: 210
  start-page: 1249
  year: 2010
  end-page: 1259
  ident: b0110
  article-title: The heat treatment of Al–Si–Cu–Mg casting alloys
  publication-title: J Mater Process Technol
– volume: 621
  start-page: 277
  year: 2015
  end-page: 286
  ident: b0140
  article-title: Enhanced mechanical properties of an Al–Si–Cu–Mg alloy at 300c: Effects of mg and the q-precipitate phase
  publication-title: Mater Sci Eng: A
– volume: 11
  start-page: 715
  year: 2004
  end-page: 725
  ident: b0145
  article-title: Analysis of low cycle fatigue in almgsi aluminium alloys
  publication-title: Eng Fail Anal
– volume: 657
  start-page: 441
  year: 2016
  end-page: 452
  ident: b0185
  article-title: Effect of mn and heat treatment on improvements in static strength and low-cycle fatigue life of an Al–Si–Cu–Mg alloy
  publication-title: Mater Sci Eng: A
– volume: 35
  start-page: 2407
  year: 2004
  end-page: 2418
  ident: b0095
  article-title: Modeling the age-hardening behavior of Al-Si-Cu alloys
  publication-title: Metall Mater Trans A
– volume: 319–321
  start-page: 662
  year: 2001
  end-page: 666
  ident: b0010
  article-title: Thermal–mechanical fatigue behaviour of cast aluminium alloys for cylinder heads reinforced with 15 vol.% discontinous Al
  publication-title: Mater Sci Eng: A
– volume: 46
  start-page: 6018
  year: 2015
  end-page: 6039
  ident: b0090
  article-title: An extended age-hardening model for al-mg-si alloys incorporating the room-temperature storage and cold deformation process stages
  publication-title: Metall Mater Trans A
– volume: 45
  start-page: 1
  year: 1997
  end-page: 22
  ident: b0125
  article-title: Overview no. 124 modelling of precipitation reactions in industrial processing
  publication-title: Acta Mater
– volume: 54
  start-page: 99
  year: 2006
  end-page: 103
  ident: b0130
  article-title: Influence of cu on the mechanical properties and precipitation behavior of AlSi7Mg0.5 alloy during aging treatment
  publication-title: Scripta Mater
– volume: 34
  start-page: 2913
  year: 2003
  end-page: 2924
  ident: b0040
  article-title: Precipitation strengthening of the aluminum alloy AA6111
  publication-title: Metall Mater Trans A
– volume: 28
  start-page: 1001
  year: 2007
  end-page: 1005
  ident: b0135
  article-title: Influence of cu content on ageing behavior of alsimgcu cast alloys
  publication-title: Mater Des
– volume: 23
  start-page: 615
  year: 1988
  end-page: 624
  ident: b0075
  article-title: Constitutive equations for the coupling between elasto-plasticity damage and aging
  publication-title: Revue de Physique Appliquée
– volume: 70
  start-page: 383
  year: 2015
  end-page: 394
  ident: b0175
  article-title: Monotonic and cyclic deformation behavior of the Al–Si–Cu–Mg cast alloy with micro-additions of ti, v and zr
  publication-title: Int J Fatigue
– volume: 54
  start-page: 4621
  year: 2006
  end-page: 4631
  ident: b0165
  article-title: Precipitation kinetics and transformation of metastable phases in Al–Mg–Si alloys
  publication-title: Acta Mater
– volume: 49
  start-page: 65
  year: 2001
  end-page: 75
  ident: b0195
  article-title: Modelling of the age hardening behaviour of Al–Mg–Si alloys
  publication-title: Acta Mater
– volume: 58
  start-page: 2096
  year: 2004
  end-page: 2101
  ident: b0120
  article-title: Age-hardening behavior of cast Al–Si base alloy
  publication-title: Mater Lett
– volume: 213
  start-page: 720
  year: 2018
  end-page: 729
  ident: b0005
  article-title: A new fatigue model including thermal ageing for low copper aluminum-silicon alloys
  publication-title: Procedia Eng
– volume: 32
  start-page: 239
  issue: 2
  year: 2001
  ident: 10.1016/j.ijfatigue.2020.105635_b0020
  article-title: The effect of cu additions on the precipitation kinetics in an al-mg-si alloy with excess si
  publication-title: Metall Mater Trans A
  doi: 10.1007/s11661-001-0254-z
– volume: 34
  start-page: 2913
  issue: 12
  year: 2003
  ident: 10.1016/j.ijfatigue.2020.105635_b0040
  article-title: Precipitation strengthening of the aluminum alloy AA6111
  publication-title: Metall Mater Trans A
  doi: 10.1007/s11661-003-0191-0
– volume: 2018
  start-page: 1
  issue: 10
  year: 2018
  ident: 10.1016/j.ijfatigue.2020.105635_b0150
  article-title: Microstructure changes and improvement in the mechanical properties of as-cast AlSi7MgCu0.5 alloy induced by the heat treatment and ecap technique at room temperature
  publication-title: Adv Mater Sci Eng
  doi: 10.1155/2018/5697986
– volume: 95
  start-page: 329
  year: 2016
  ident: 10.1016/j.ijfatigue.2020.105635_b0155
  article-title: Effect of natural ageing and pre-straining on the hardening behaviour and microstructural response during artificial ageing of an Al–Mg–Si–Cu alloy
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2016.01.119
– volume: 88
  start-page: 142
  year: 2016
  ident: 10.1016/j.ijfatigue.2020.105635_b0045
  article-title: Thermo-mechanical fatigue influence of copper and silicon on hypo-eutectic Al–Si–Cu and Al–Si–Mg cast alloys used in cylinder heads
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2016.02.017
– volume: 11
  start-page: 715
  issue: 5
  year: 2004
  ident: 10.1016/j.ijfatigue.2020.105635_b0145
  article-title: Analysis of low cycle fatigue in almgsi aluminium alloys
  publication-title: Eng Fail Anal
  doi: 10.1016/j.engfailanal.2003.09.003
– volume: 35
  start-page: 2407
  issue: 8
  year: 2004
  ident: 10.1016/j.ijfatigue.2020.105635_b0095
  article-title: Modeling the age-hardening behavior of Al-Si-Cu alloys
  publication-title: Metall Mater Trans A
  doi: 10.1007/s11661-006-0221-9
– volume: 625
  start-page: 119
  year: 2015
  ident: 10.1016/j.ijfatigue.2020.105635_b0160
  article-title: Effect of pre-straining on the aging behavior and mechanical properties of an Al–Cu–Mg–Ag alloy
  publication-title: Mater Sci Eng: A
  doi: 10.1016/j.msea.2014.11.094
– volume: 18
  start-page: 253
  issue: 4–6
  year: 1997
  ident: 10.1016/j.ijfatigue.2020.105635_b0035
  article-title: Pre-ageing of alsicumg alloys in relation to structure and mechanical properties
  publication-title: Mater Des
  doi: 10.1016/S0261-3069(97)00060-5
– volume: 45
  start-page: 1
  issue: 1
  year: 1997
  ident: 10.1016/j.ijfatigue.2020.105635_b0125
  article-title: Overview no. 124 modelling of precipitation reactions in industrial processing
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(96)00100-0
– volume: 55
  start-page: 3815
  issue: 11
  year: 2007
  ident: 10.1016/j.ijfatigue.2020.105635_b0170
  article-title: The crystal structure of the β′ phase in Al–Mg–Si alloys
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2007.02.032
– volume: 20
  start-page: 340
  issue: 6
  year: 2007
  ident: 10.1016/j.ijfatigue.2020.105635_b0030
  article-title: Natural and artificial aging response of semisolid metal processed Al–Si–Mg alloy a356
  publication-title: Int J Cast Met Res
  doi: 10.1179/136404608X286156
– volume: 38
  start-page: 1789
  issue: 10
  year: 1990
  ident: 10.1016/j.ijfatigue.2020.105635_b0080
  article-title: A process model for age hardening of aluminium alloys—I. The model
  publication-title: Acta Metall Mater
  doi: 10.1016/0956-7151(90)90291-N
– volume: 319–321
  start-page: 662
  year: 2001
  ident: 10.1016/j.ijfatigue.2020.105635_b0010
  article-title: Thermal–mechanical fatigue behaviour of cast aluminium alloys for cylinder heads reinforced with 15 vol.% discontinous Al2O3 (saffil) fibers
  publication-title: Mater Sci Eng: A
  doi: 10.1016/S0921-5093(00)02022-0
– volume: 234–236
  start-page: 106
  year: 1997
  ident: 10.1016/j.ijfatigue.2020.105635_b0100
  article-title: On the strain hardening behaviour of Al-Si-Mg casting alloys
  publication-title: Mater Sci Eng: A
  doi: 10.1016/S0921-5093(97)00207-4
– volume: 621
  start-page: 277
  year: 2015
  ident: 10.1016/j.ijfatigue.2020.105635_b0140
  article-title: Enhanced mechanical properties of an Al–Si–Cu–Mg alloy at 300c: Effects of mg and the q-precipitate phase
  publication-title: Mater Sci Eng: A
  doi: 10.1016/j.msea.2014.10.080
– volume: 09
  start-page: 357
  issue: 04
  year: 2018
  ident: 10.1016/j.ijfatigue.2020.105635_b0060
  article-title: Improved approach to determine the material parameters for a combined hardening model
  publication-title: Mater Sci Appl
– volume: 24
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.ijfatigue.2020.105635_b0070
  article-title: A mathematical representation of the multiaxial bauschinger effect
  publication-title: Mater High Temp
  doi: 10.3184/096034007X207589
– volume: 46
  start-page: 3063
  issue: 7
  year: 2015
  ident: 10.1016/j.ijfatigue.2020.105635_b0180
  article-title: Improving high-temperature tensile and low-cycle fatigue behavior of Al-Si-Cu-Mg alloys through micro-additions of Ti, V, and Zr
  publication-title: Metall Mater Trans A
  doi: 10.1007/s11661-015-2880-x
– volume: 47
  start-page: 1537
  issue: 5
  year: 1999
  ident: 10.1016/j.ijfatigue.2020.105635_b0015
  article-title: Pre-precipitate clusters and precipitation processes in Al–Mg–Si alloys
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(99)00033-6
– volume: 70
  start-page: 383
  year: 2015
  ident: 10.1016/j.ijfatigue.2020.105635_b0175
  article-title: Monotonic and cyclic deformation behavior of the Al–Si–Cu–Mg cast alloy with micro-additions of ti, v and zr
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2014.08.001
– volume: 38
  start-page: 1803
  issue: 10
  year: 1990
  ident: 10.1016/j.ijfatigue.2020.105635_b0190
  article-title: A process model for age hardening of aluminium alloys—II. Applications of the model
  publication-title: Acta Metall Mater
  doi: 10.1016/0956-7151(90)90292-O
– volume: 33
  start-page: 2283
  issue: 9
  year: 1998
  ident: 10.1016/j.ijfatigue.2020.105635_b0200
  article-title: Incipient melting of Al5Mg8Si6Cu2 and Al2Cu intermetallics in unmodified and strontium-modified Al–Si–Cu–Mg (319) alloys during solution heat treatment
  publication-title: J Mater Sci
  doi: 10.1023/A:1004383203476
– volume: 30
  start-page: 133
  issue: 1
  year: 1999
  ident: 10.1016/j.ijfatigue.2020.105635_b0050
  article-title: Modeling high-temperature stress-strain behavior of cast aluminum alloys
  publication-title: Metall Mater Trans A
  doi: 10.1007/s11661-999-0201-y
– volume: 41
  start-page: 2276
  issue: 9
  year: 2010
  ident: 10.1016/j.ijfatigue.2020.105635_b0085
  article-title: A combined precipitation, yield strength, and work hardening model for Al-Mg-Si alloys
  publication-title: Metall Mater Trans A
  doi: 10.1007/s11661-010-0258-7
– volume: 31
  start-page: 139
  issue: 1
  year: 2000
  ident: 10.1016/j.ijfatigue.2020.105635_b0055
  article-title: Stress-strain response of a cast 319–T6 aluminum under thermomechanical loading
  publication-title: Metall Mater Trans A
  doi: 10.1007/s11661-000-0060-z
– volume: 51
  start-page: 789
  issue: 3
  year: 2003
  ident: 10.1016/j.ijfatigue.2020.105635_b0115
  article-title: The influence of temperature and storage time at rt on nucleation of the β″ phase in a 6082 Al–Mg–Si alloy
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(02)00470-6
– volume: 114
  start-page: 92
  year: 2018
  ident: 10.1016/j.ijfatigue.2020.105635_b0105
  article-title: The prediction of isothermal cyclic plasticity in 7175–T7351 aluminium alloy with particular emphasis on thermal ageing effects
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2018.05.010
– volume: 58
  start-page: 2096
  issue: 15
  year: 2004
  ident: 10.1016/j.ijfatigue.2020.105635_b0120
  article-title: Age-hardening behavior of cast Al–Si base alloy
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2003.12.027
– volume: 49
  start-page: 65
  issue: 1
  year: 2001
  ident: 10.1016/j.ijfatigue.2020.105635_b0195
  article-title: Modelling of the age hardening behaviour of Al–Mg–Si alloys
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(00)00301-3
– volume: 54
  start-page: 4621
  issue: 17
  year: 2006
  ident: 10.1016/j.ijfatigue.2020.105635_b0165
  article-title: Precipitation kinetics and transformation of metastable phases in Al–Mg–Si alloys
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2006.06.005
– volume: 657
  start-page: 441
  year: 2016
  ident: 10.1016/j.ijfatigue.2020.105635_b0185
  article-title: Effect of mn and heat treatment on improvements in static strength and low-cycle fatigue life of an Al–Si–Cu–Mg alloy
  publication-title: Mater Sci Eng: A
  doi: 10.1016/j.msea.2016.01.015
– volume: 46
  start-page: 3893
  issue: 11
  year: 1998
  ident: 10.1016/j.ijfatigue.2020.105635_b0025
  article-title: The precipitation sequence in Al–Mg–Si alloys
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(98)00059-7
– volume: 46
  start-page: 6018
  issue: 12
  year: 2015
  ident: 10.1016/j.ijfatigue.2020.105635_b0090
  article-title: An extended age-hardening model for al-mg-si alloys incorporating the room-temperature storage and cold deformation process stages
  publication-title: Metall Mater Trans A
  doi: 10.1007/s11661-015-3175-y
– volume: 2
  start-page: 149
  issue: 2
  year: 1986
  ident: 10.1016/j.ijfatigue.2020.105635_b0065
  article-title: Time-independent constitutive theories for cyclic plasticity
  publication-title: Int J Plast
  doi: 10.1016/0749-6419(86)90010-0
– volume: 23
  start-page: 615
  issue: 4
  year: 1988
  ident: 10.1016/j.ijfatigue.2020.105635_b0075
  article-title: Constitutive equations for the coupling between elasto-plasticity damage and aging
  publication-title: Revue de Physique Appliquée
  doi: 10.1051/rphysap:01988002304061500
– volume: 210
  start-page: 1249
  issue: 10
  year: 2010
  ident: 10.1016/j.ijfatigue.2020.105635_b0110
  article-title: The heat treatment of Al–Si–Cu–Mg casting alloys
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2010.03.020
– volume: 54
  start-page: 99
  issue: 1
  year: 2006
  ident: 10.1016/j.ijfatigue.2020.105635_b0130
  article-title: Influence of cu on the mechanical properties and precipitation behavior of AlSi7Mg0.5 alloy during aging treatment
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2005.08.044
– volume: 213
  start-page: 720
  year: 2018
  ident: 10.1016/j.ijfatigue.2020.105635_b0005
  article-title: A new fatigue model including thermal ageing for low copper aluminum-silicon alloys
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2018.02.068
– volume: 28
  start-page: 1001
  issue: 3
  year: 2007
  ident: 10.1016/j.ijfatigue.2020.105635_b0135
  article-title: Influence of cu content on ageing behavior of alsimgcu cast alloys
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2005.11.015
SSID ssj0009075
Score 2.3127608
Snippet •Development of a new test strategy for efficient ageing tests.•With this test concept, the ageing could be investigated at different ageing and test...
The simulation of engine components made of age-hardening materials which are subject to thermal–mechanical loads and in homogeneous thermal distribution,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105635
SubjectTerms Age hardening
Ageing
Aging
Aging (metallurgy)
Aluminium alloy
Aluminum base alloys
Computer simulation
Copper
Cyclic loads
Cyclic testing
Engine components
Fatigue tests
Magnesium base alloys
Material properties
Materials fatigue
Room temperature
Shercliff-Ashby
Silicon
Simulation
Temperature
Temperature profiles
Title Modelling the effect of ageing on the yield strength of an aluminium alloy under cyclic loading at different ageing temperatures and test temperatures
URI https://dx.doi.org/10.1016/j.ijfatigue.2020.105635
https://www.proquest.com/docview/2442826455
Volume 137
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4QwEG6MXvRgfMZ3evCKC9tSqDdjNKtGT5p4a_pCMSu7cfGwF3-Gv9eZAuoaEw_eYKAN7ZSZr_DNDCGH4NJMlvZt5GSuI876eWQci6NM5rHzifRxKDZxfSMGd_zyPr2fI6ddLAzSKlvb39j0YK1bSa-dzd64LHtIS4LdCyACRPXgODGCnWe4yo_evmgeskm2izdHePcMx6t8KmD8-ImkD7ApVKEPdd9-9VA_bHVwQOcrZLlFjvSkebhVMuerNbL0LZ_gOnnHymYhyTYFXEcbrgYdFRSMBgpHVZBPkbVGMUqkeqgfw_WKarBSZVW-PlP8FT-lGFz2Qu3UDktLh6NAtae6pl1FlbrrFJNbtZmZJ9CRA8GknpFukLvzs9vTQdQWXogs46yOGFLQkixnHgCZc0xomN4kY95Km0lROGMzKxMHw-Cc-8QIbRxP4EAaIXyfbZL5alT5LUIBP-m8iDUrrOEmTUymjZeJ9sLqtGBsm4huspVts5JjcYyh6uhnT-pTSwq1pBotbZP4s-G4Sczxd5PjTptqZo0pcB9_N97r9K_a13yiABvBllXwNN35T9-7ZBHPGl7hHpmvX179PmCd2hyExXxAFk4urgY3H5JgAsc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoHNoeUKFUpaXFB65hk7XjxL0hxGopjxNIe7P8CmS1ZFe74bCX_gx-LzNOAixC4tBbNLGtZMae-Zx8niHkAEKaydK-jZzMdcRZP4-MY3GUyTx2PpE-DsUmLi7F8Jr_HaWjNXLcnYVBWmXr-xufHrx1K-m12uzNyrKHtCTYvQAiQFQPgfMD2eCwfLGMweG_Z56HbLLtYusIm6-QvMpxAQrAbyR9wE2hDH0o_PZmiHrlrEMEGnwhmy10pEfN022RNV9tk88vEgp-JQ9Y2ixk2aYA7GhD1qDTgoLXQOG0CvIl0tYoHhOpburbcL-iGtxUWZX3dxT_xS8pni6bU7u0k9LSyTRw7amuaVdSpe4GxexWbWrmBQzkQLCoV6Q75HpwcnU8jNrKC5FlnNURQw5akuXMAyJzjgkN-k0y5q20mRSFMzazMnHwGpxznxihjeMJXEgjhO-zb2S9mlb-O6EAoHRexJoV1nCTJibTxstEe2F1WjC2S0SnbGXbtORYHWOiOv7ZWD1ZSaGVVGOlXRI_dZw1mTne7_Kns6ZamWQK4sf7nfc6-6t2nS8UgCPYswqepj_-Z-x98nF4dXGuzk8vz36ST3inIRnukfV6fu9_AfCpze8wsR8BZigEVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+the+effect+of+ageing+on+the+yield+strength+of+an+aluminium+alloy+under+cyclic+loading+at+different+ageing+temperatures+and+test+temperatures&rft.jtitle=International+journal+of+fatigue&rft.au=Seisenbacher%2C+B&rft.au=Winter%2C+G&rft.au=Gr%C3%BCn%2C+F&rft.date=2020-08-01&rft.pub=Elsevier+BV&rft.issn=0142-1123&rft.eissn=1879-3452&rft.volume=137&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1016%2Fj.ijfatigue.2020.105635&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-1123&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-1123&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-1123&client=summon