Modelling the effect of ageing on the yield strength of an aluminium alloy under cyclic loading at different ageing temperatures and test temperatures
•Development of a new test strategy for efficient ageing tests.•With this test concept, the ageing could be investigated at different ageing and test temperatures.•This test concept allows the investigation of the influence of ageing on the deformation behaviour.•An ageing model was developed to be...
Saved in:
Published in | International journal of fatigue Vol. 137; pp. 105635 - 9 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.08.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Development of a new test strategy for efficient ageing tests.•With this test concept, the ageing could be investigated at different ageing and test temperatures.•This test concept allows the investigation of the influence of ageing on the deformation behaviour.•An ageing model was developed to be able to model the material behaviour.
The simulation of engine components made of age-hardening materials which are subject to thermal–mechanical loads and in homogeneous thermal distribution, places high demands on the material model. To simulate such load cases, a model is required that allows us to consider the effects of ageing on the material properties along the entire temperature profile. This work presents an improved physical-based ageing model which takes different ageing and test temperatures into account. The improved model was fitted to Al-Si-Mg-Cu alloy data under uniaxial strain-controlled isothermal loading conditions at temperatures from room temperature to 250 °C. At the same ageing temperature and test temperature, the peak values of the simulation and test results were within ±2%. This improved model can serve as the basis for the cycle by cycle simulation of thermomechanical fatigue tests. |
---|---|
AbstractList | •Development of a new test strategy for efficient ageing tests.•With this test concept, the ageing could be investigated at different ageing and test temperatures.•This test concept allows the investigation of the influence of ageing on the deformation behaviour.•An ageing model was developed to be able to model the material behaviour.
The simulation of engine components made of age-hardening materials which are subject to thermal–mechanical loads and in homogeneous thermal distribution, places high demands on the material model. To simulate such load cases, a model is required that allows us to consider the effects of ageing on the material properties along the entire temperature profile. This work presents an improved physical-based ageing model which takes different ageing and test temperatures into account. The improved model was fitted to Al-Si-Mg-Cu alloy data under uniaxial strain-controlled isothermal loading conditions at temperatures from room temperature to 250 °C. At the same ageing temperature and test temperature, the peak values of the simulation and test results were within ±2%. This improved model can serve as the basis for the cycle by cycle simulation of thermomechanical fatigue tests. The simulation of engine components made of age-hardening materials which are subject to thermal–mechanical loads and in homogeneous thermal distribution, places high demands on the material model. To simulate such load cases, a model is required that allows us to consider the effects of ageing on the material properties along the entire temperature profile. This work presents an improved physical-based ageing model which takes different ageing and test temperatures into account. The improved model was fitted to Al-Si-Mg-Cu alloy data under uniaxial strain-controlled isothermal loading conditions at temperatures from room temperature to 250 °C. At the same ageing temperature and test temperature, the peak values of the simulation and test results were within [...] This improved model can serve as the basis for the cycle by cycle simulation of thermomechanical fatigue tests. ([...] denotes ProQuest formulae omitted) |
ArticleNumber | 105635 |
Author | Seisenbacher, B. Grün, F. Winter, G. |
Author_xml | – sequence: 1 givenname: B. surname: Seisenbacher fullname: Seisenbacher, B. email: benjamin.seisenbacher@unileoben.ac.at – sequence: 2 givenname: G. surname: Winter fullname: Winter, G. – sequence: 3 givenname: F. surname: Grün fullname: Grün, F. |
BookMark | eNqNkc1OGzEUhS0EEuHnGWqp60n9N57MoguEWloJxAbWlmPfCR45drA9lfIifV48pEWim7Ly1fE937XvOUPHIQZA6BMlS0qo_DIu3Tjo4jYTLBlhs9pK3h6hBV11fcNFy47RglDBGkoZP0VnOY-EkJ507QL9vosWvHdhg8sTYBgGMAXHAesNzGIMr_regbc4lwRhU55e7wPWftq64KZtrXzc4ylYSNjsjXcG-6jtDNAFW1ep1Vn-Qgtsd5B0mRLkCrJVyOWdeoFOBu0zXP45z9Hj928P1z-a2_ubn9dXt43hgpeGm3YA2q04kFVrLZdaSk47DqY3XS8Huzad6amt3xJCAF1LvbaC1qJfSwmMn6PPB-4uxeepvkKNcUqhjlRMCLZiUrRt7fp66DIp5pxgUMaVuvIYStLOK0rUHIUa1VsUao5CHaKo_u4f_y65rU77DzivDk6oS_jlIKlsHAQD1qUalLLR_ZfxAsl5rsY |
CitedBy_id | crossref_primary_10_1016_j_jmrt_2020_08_086 crossref_primary_10_1016_j_mechmat_2020_103612 crossref_primary_10_3390_applmech4020030 |
Cites_doi | 10.1007/s11661-001-0254-z 10.1007/s11661-003-0191-0 10.1155/2018/5697986 10.1016/j.matdes.2016.01.119 10.1016/j.ijfatigue.2016.02.017 10.1016/j.engfailanal.2003.09.003 10.1007/s11661-006-0221-9 10.1016/j.msea.2014.11.094 10.1016/S0261-3069(97)00060-5 10.1016/S1359-6454(96)00100-0 10.1016/j.actamat.2007.02.032 10.1179/136404608X286156 10.1016/0956-7151(90)90291-N 10.1016/S0921-5093(00)02022-0 10.1016/S0921-5093(97)00207-4 10.1016/j.msea.2014.10.080 10.3184/096034007X207589 10.1007/s11661-015-2880-x 10.1016/S1359-6454(99)00033-6 10.1016/j.ijfatigue.2014.08.001 10.1016/0956-7151(90)90292-O 10.1023/A:1004383203476 10.1007/s11661-999-0201-y 10.1007/s11661-010-0258-7 10.1007/s11661-000-0060-z 10.1016/S1359-6454(02)00470-6 10.1016/j.ijfatigue.2018.05.010 10.1016/j.matlet.2003.12.027 10.1016/S1359-6454(00)00301-3 10.1016/j.actamat.2006.06.005 10.1016/j.msea.2016.01.015 10.1016/S1359-6454(98)00059-7 10.1007/s11661-015-3175-y 10.1016/0749-6419(86)90010-0 10.1051/rphysap:01988002304061500 10.1016/j.jmatprotec.2010.03.020 10.1016/j.scriptamat.2005.08.044 10.1016/j.proeng.2018.02.068 10.1016/j.matdes.2005.11.015 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Aug 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Aug 2020 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.ijfatigue.2020.105635 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3452 |
EndPage | 9 |
ExternalDocumentID | 10_1016_j_ijfatigue_2020_105635 S0142112320301663 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABCJ AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABEFU ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSH SST SSZ T5K T9H TN5 VH1 WUQ XPP ZMT ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION 7SR 8BQ 8FD EFKBS JG9 |
ID | FETCH-LOGICAL-c343t-3c5fe1783e085dd36a663173ec9c796fdbc7c91deff444e1b6abd41e1b9b66e23 |
IEDL.DBID | .~1 |
ISSN | 0142-1123 |
IngestDate | Thu Aug 07 15:24:48 EDT 2025 Tue Jul 01 01:54:35 EDT 2025 Thu Apr 24 23:02:17 EDT 2025 Sun Apr 06 06:54:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cyclic testing Aluminium alloy Simulation Ageing Shercliff-Ashby |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-3c5fe1783e085dd36a663173ec9c796fdbc7c91deff444e1b6abd41e1b9b66e23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2442826455 |
PQPubID | 2045465 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2442826455 crossref_citationtrail_10_1016_j_ijfatigue_2020_105635 crossref_primary_10_1016_j_ijfatigue_2020_105635 elsevier_sciencedirect_doi_10_1016_j_ijfatigue_2020_105635 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2020 2020-08-00 20200801 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
PublicationDecade | 2020 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | International journal of fatigue |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Huter, Oberfrank, Grün, Stauder (b0045) 2016; 88 Marquis, Lemaitre (b0075) 1988; 23 Vissers, van Huis, Jansen, Zandbergen, Marioara, Andersen (b0170) 2007; 55 Murayama, Hono, Miao, Laughlin (b0020) 2001; 32 Myhr, Grong, Pedersen (b0085) 2010; 41 Yin, Xiao, Chen, Liu, Yi, Wang (b0155) 2016; 95 Shercliff, Ashby (b0190) 1990; 38 Matvija, Fujda, Milkovič, Vojtko, Kočiško, Glogovský (b0150) 2018; 2018 Weakley-Bollin, Donlon, Wolverton, Allison, Jones (b0095) 2004; 35 Sjölander, Seifeddine (b0110) 2010; 210 Chaboche (b0065) 1986; 2 Farkoosh, Pekguleryuz (b0140) 2015; 621 Wang, Embury, Poole, Esmaeili, Lloyd (b0040) 2003; 34 Sehitoglu, Smith, Qing, Maier, Allison (b0055) 2000; 31 Tsao, Chen, Jeng, Kuo (b0165) 2006; 54 Seisenbacher, Winter, Grün (b0060) 2018; 09 Wang, Cáceres (b0100) 1997; 234–236 Li, Brusethaug, Olsen (b0130) 2006; 54 Gazizov, Kaibyshev (b0160) 2015; 625 Beranger, Fiard, Ammar, Cailletaud (b0005) 2018; 213 Frederick, Armstrong (b0070) 2007; 24 Wing Cheong, Rouse, Hyde, Kennedy (b0105) 2018; 114 Borrego, Abreu, Costa, Ferreira (b0145) 2004; 11 Shaha, Czerwinski, Kasprzak, Friedman, Chen (b0175) 2015; 70 Samuel (b0200) 1998; 33 Edwards, Stiller, Dunlop, Couper (b0025) 1998; 46 Myhr, Grong, Schäfer (b0090) 2015; 46 Shaha, Czerwinski, Kasprzak, Friedman, Chen (b0185) 2016; 657 Shercliff, Ashby (b0080) 1990; 38 Myhr (b0195) 2001; 49 Li, Li, Zhao, He, Li, Guan (b0120) 2004; 58 Wang, Sun, Feng, Hui, Jing (b0135) 2007; 28 Murayama, Hono (b0015) 1999; 47 Bratland, Grong, Shercliff, Myhr, Tjøtta (b0125) 1997; 45 Beck, Lang, Löhe (b0010) 2001; 319–321 Smith, Sehitoglu, Fleury, Maier, Allison (b0050) 1999; 30 Marioara, Andersen, Jansen, Zandbergen (b0115) 2003; 51 Reif, Yu, Dutkiewicz, Ciach, Król (b0035) 1997; 18 Möller, Govender, Stumpf (b0030) 2007; 20 Shaha, Czerwinski, Kasprzak, Friedman, Chen (b0180) 2015; 46 Beck (10.1016/j.ijfatigue.2020.105635_b0010) 2001; 319–321 Murayama (10.1016/j.ijfatigue.2020.105635_b0020) 2001; 32 Möller (10.1016/j.ijfatigue.2020.105635_b0030) 2007; 20 Marioara (10.1016/j.ijfatigue.2020.105635_b0115) 2003; 51 Sehitoglu (10.1016/j.ijfatigue.2020.105635_b0055) 2000; 31 Chaboche (10.1016/j.ijfatigue.2020.105635_b0065) 1986; 2 Murayama (10.1016/j.ijfatigue.2020.105635_b0015) 1999; 47 Wang (10.1016/j.ijfatigue.2020.105635_b0040) 2003; 34 Bratland (10.1016/j.ijfatigue.2020.105635_b0125) 1997; 45 Vissers (10.1016/j.ijfatigue.2020.105635_b0170) 2007; 55 Gazizov (10.1016/j.ijfatigue.2020.105635_b0160) 2015; 625 Myhr (10.1016/j.ijfatigue.2020.105635_b0090) 2015; 46 Frederick (10.1016/j.ijfatigue.2020.105635_b0070) 2007; 24 Smith (10.1016/j.ijfatigue.2020.105635_b0050) 1999; 30 Shercliff (10.1016/j.ijfatigue.2020.105635_b0080) 1990; 38 Marquis (10.1016/j.ijfatigue.2020.105635_b0075) 1988; 23 Borrego (10.1016/j.ijfatigue.2020.105635_b0145) 2004; 11 Tsao (10.1016/j.ijfatigue.2020.105635_b0165) 2006; 54 Reif (10.1016/j.ijfatigue.2020.105635_b0035) 1997; 18 Samuel (10.1016/j.ijfatigue.2020.105635_b0200) 1998; 33 Myhr (10.1016/j.ijfatigue.2020.105635_b0085) 2010; 41 Wing Cheong (10.1016/j.ijfatigue.2020.105635_b0105) 2018; 114 Sjölander (10.1016/j.ijfatigue.2020.105635_b0110) 2010; 210 Li (10.1016/j.ijfatigue.2020.105635_b0130) 2006; 54 Shercliff (10.1016/j.ijfatigue.2020.105635_b0190) 1990; 38 Huter (10.1016/j.ijfatigue.2020.105635_b0045) 2016; 88 Shaha (10.1016/j.ijfatigue.2020.105635_b0185) 2016; 657 Matvija (10.1016/j.ijfatigue.2020.105635_b0150) 2018; 2018 Beranger (10.1016/j.ijfatigue.2020.105635_b0005) 2018; 213 Yin (10.1016/j.ijfatigue.2020.105635_b0155) 2016; 95 Edwards (10.1016/j.ijfatigue.2020.105635_b0025) 1998; 46 Weakley-Bollin (10.1016/j.ijfatigue.2020.105635_b0095) 2004; 35 Wang (10.1016/j.ijfatigue.2020.105635_b0135) 2007; 28 Farkoosh (10.1016/j.ijfatigue.2020.105635_b0140) 2015; 621 Myhr (10.1016/j.ijfatigue.2020.105635_b0195) 2001; 49 Shaha (10.1016/j.ijfatigue.2020.105635_b0180) 2015; 46 Seisenbacher (10.1016/j.ijfatigue.2020.105635_b0060) 2018; 09 Wang (10.1016/j.ijfatigue.2020.105635_b0100) 1997; 234–236 Shaha (10.1016/j.ijfatigue.2020.105635_b0175) 2015; 70 Li (10.1016/j.ijfatigue.2020.105635_b0120) 2004; 58 |
References_xml | – volume: 30 start-page: 133 year: 1999 end-page: 146 ident: b0050 article-title: Modeling high-temperature stress-strain behavior of cast aluminum alloys publication-title: Metall Mater Trans A – volume: 32 start-page: 239 year: 2001 end-page: 246 ident: b0020 article-title: The effect of cu additions on the precipitation kinetics in an al-mg-si alloy with excess si publication-title: Metall Mater Trans A – volume: 41 start-page: 2276 year: 2010 end-page: 2289 ident: b0085 article-title: A combined precipitation, yield strength, and work hardening model for Al-Mg-Si alloys publication-title: Metall Mater Trans A – volume: 55 start-page: 3815 year: 2007 end-page: 3823 ident: b0170 article-title: The crystal structure of the publication-title: Acta Mater – volume: 20 start-page: 340 year: 2007 end-page: 346 ident: b0030 article-title: Natural and artificial aging response of semisolid metal processed Al–Si–Mg alloy a356 publication-title: Int J Cast Met Res – volume: 47 start-page: 1537 year: 1999 end-page: 1548 ident: b0015 article-title: Pre-precipitate clusters and precipitation processes in Al–Mg–Si alloys publication-title: Acta Mater – volume: 625 start-page: 119 year: 2015 end-page: 130 ident: b0160 article-title: Effect of pre-straining on the aging behavior and mechanical properties of an Al–Cu–Mg–Ag alloy publication-title: Mater Sci Eng: A – volume: 24 start-page: 1 year: 2007 end-page: 26 ident: b0070 article-title: A mathematical representation of the multiaxial bauschinger effect publication-title: Mater High Temp – volume: 33 start-page: 2283 year: 1998 end-page: 2297 ident: b0200 article-title: Incipient melting of Al5Mg8Si6Cu publication-title: J Mater Sci – volume: 18 start-page: 253 year: 1997 end-page: 256 ident: b0035 article-title: Pre-ageing of alsicumg alloys in relation to structure and mechanical properties publication-title: Mater Des – volume: 46 start-page: 3893 year: 1998 end-page: 3904 ident: b0025 article-title: The precipitation sequence in Al–Mg–Si alloys publication-title: Acta Mater – volume: 38 start-page: 1789 year: 1990 end-page: 1802 ident: b0080 article-title: A process model for age hardening of aluminium alloys—I. The model publication-title: Acta Metall Mater – volume: 46 start-page: 3063 year: 2015 end-page: 3078 ident: b0180 article-title: Improving high-temperature tensile and low-cycle fatigue behavior of Al-Si-Cu-Mg alloys through micro-additions of Ti, V, and Zr publication-title: Metall Mater Trans A – volume: 38 start-page: 1803 year: 1990 end-page: 1812 ident: b0190 article-title: A process model for age hardening of aluminium alloys—II. Applications of the model publication-title: Acta Metall Mater – volume: 2018 start-page: 1 year: 2018 end-page: 11 ident: b0150 article-title: Microstructure changes and improvement in the mechanical properties of as-cast AlSi7MgCu0.5 alloy induced by the heat treatment and ecap technique at room temperature publication-title: Adv Mater Sci Eng – volume: 2 start-page: 149 year: 1986 end-page: 188 ident: b0065 article-title: Time-independent constitutive theories for cyclic plasticity publication-title: Int J Plast – volume: 51 start-page: 789 year: 2003 end-page: 796 ident: b0115 article-title: The influence of temperature and storage time at rt on nucleation of the publication-title: Acta Mater – volume: 31 start-page: 139 year: 2000 end-page: 151 ident: b0055 article-title: Stress-strain response of a cast 319–T6 aluminum under thermomechanical loading publication-title: Metall Mater Trans A – volume: 234–236 start-page: 106 year: 1997 end-page: 109 ident: b0100 article-title: On the strain hardening behaviour of Al-Si-Mg casting alloys publication-title: Mater Sci Eng: A – volume: 09 start-page: 357 year: 2018 end-page: 367 ident: b0060 article-title: Improved approach to determine the material parameters for a combined hardening model publication-title: Mater Sci Appl – volume: 88 start-page: 142 year: 2016 end-page: 155 ident: b0045 article-title: Thermo-mechanical fatigue influence of copper and silicon on hypo-eutectic Al–Si–Cu and Al–Si–Mg cast alloys used in cylinder heads publication-title: Int J Fatigue – volume: 95 start-page: 329 year: 2016 end-page: 339 ident: b0155 article-title: Effect of natural ageing and pre-straining on the hardening behaviour and microstructural response during artificial ageing of an Al–Mg–Si–Cu alloy publication-title: Mater Des – volume: 114 start-page: 92 year: 2018 end-page: 108 ident: b0105 article-title: The prediction of isothermal cyclic plasticity in 7175–T7351 aluminium alloy with particular emphasis on thermal ageing effects publication-title: Int J Fatigue – volume: 210 start-page: 1249 year: 2010 end-page: 1259 ident: b0110 article-title: The heat treatment of Al–Si–Cu–Mg casting alloys publication-title: J Mater Process Technol – volume: 621 start-page: 277 year: 2015 end-page: 286 ident: b0140 article-title: Enhanced mechanical properties of an Al–Si–Cu–Mg alloy at 300c: Effects of mg and the q-precipitate phase publication-title: Mater Sci Eng: A – volume: 11 start-page: 715 year: 2004 end-page: 725 ident: b0145 article-title: Analysis of low cycle fatigue in almgsi aluminium alloys publication-title: Eng Fail Anal – volume: 657 start-page: 441 year: 2016 end-page: 452 ident: b0185 article-title: Effect of mn and heat treatment on improvements in static strength and low-cycle fatigue life of an Al–Si–Cu–Mg alloy publication-title: Mater Sci Eng: A – volume: 35 start-page: 2407 year: 2004 end-page: 2418 ident: b0095 article-title: Modeling the age-hardening behavior of Al-Si-Cu alloys publication-title: Metall Mater Trans A – volume: 319–321 start-page: 662 year: 2001 end-page: 666 ident: b0010 article-title: Thermal–mechanical fatigue behaviour of cast aluminium alloys for cylinder heads reinforced with 15 vol.% discontinous Al publication-title: Mater Sci Eng: A – volume: 46 start-page: 6018 year: 2015 end-page: 6039 ident: b0090 article-title: An extended age-hardening model for al-mg-si alloys incorporating the room-temperature storage and cold deformation process stages publication-title: Metall Mater Trans A – volume: 45 start-page: 1 year: 1997 end-page: 22 ident: b0125 article-title: Overview no. 124 modelling of precipitation reactions in industrial processing publication-title: Acta Mater – volume: 54 start-page: 99 year: 2006 end-page: 103 ident: b0130 article-title: Influence of cu on the mechanical properties and precipitation behavior of AlSi7Mg0.5 alloy during aging treatment publication-title: Scripta Mater – volume: 34 start-page: 2913 year: 2003 end-page: 2924 ident: b0040 article-title: Precipitation strengthening of the aluminum alloy AA6111 publication-title: Metall Mater Trans A – volume: 28 start-page: 1001 year: 2007 end-page: 1005 ident: b0135 article-title: Influence of cu content on ageing behavior of alsimgcu cast alloys publication-title: Mater Des – volume: 23 start-page: 615 year: 1988 end-page: 624 ident: b0075 article-title: Constitutive equations for the coupling between elasto-plasticity damage and aging publication-title: Revue de Physique Appliquée – volume: 70 start-page: 383 year: 2015 end-page: 394 ident: b0175 article-title: Monotonic and cyclic deformation behavior of the Al–Si–Cu–Mg cast alloy with micro-additions of ti, v and zr publication-title: Int J Fatigue – volume: 54 start-page: 4621 year: 2006 end-page: 4631 ident: b0165 article-title: Precipitation kinetics and transformation of metastable phases in Al–Mg–Si alloys publication-title: Acta Mater – volume: 49 start-page: 65 year: 2001 end-page: 75 ident: b0195 article-title: Modelling of the age hardening behaviour of Al–Mg–Si alloys publication-title: Acta Mater – volume: 58 start-page: 2096 year: 2004 end-page: 2101 ident: b0120 article-title: Age-hardening behavior of cast Al–Si base alloy publication-title: Mater Lett – volume: 213 start-page: 720 year: 2018 end-page: 729 ident: b0005 article-title: A new fatigue model including thermal ageing for low copper aluminum-silicon alloys publication-title: Procedia Eng – volume: 32 start-page: 239 issue: 2 year: 2001 ident: 10.1016/j.ijfatigue.2020.105635_b0020 article-title: The effect of cu additions on the precipitation kinetics in an al-mg-si alloy with excess si publication-title: Metall Mater Trans A doi: 10.1007/s11661-001-0254-z – volume: 34 start-page: 2913 issue: 12 year: 2003 ident: 10.1016/j.ijfatigue.2020.105635_b0040 article-title: Precipitation strengthening of the aluminum alloy AA6111 publication-title: Metall Mater Trans A doi: 10.1007/s11661-003-0191-0 – volume: 2018 start-page: 1 issue: 10 year: 2018 ident: 10.1016/j.ijfatigue.2020.105635_b0150 article-title: Microstructure changes and improvement in the mechanical properties of as-cast AlSi7MgCu0.5 alloy induced by the heat treatment and ecap technique at room temperature publication-title: Adv Mater Sci Eng doi: 10.1155/2018/5697986 – volume: 95 start-page: 329 year: 2016 ident: 10.1016/j.ijfatigue.2020.105635_b0155 article-title: Effect of natural ageing and pre-straining on the hardening behaviour and microstructural response during artificial ageing of an Al–Mg–Si–Cu alloy publication-title: Mater Des doi: 10.1016/j.matdes.2016.01.119 – volume: 88 start-page: 142 year: 2016 ident: 10.1016/j.ijfatigue.2020.105635_b0045 article-title: Thermo-mechanical fatigue influence of copper and silicon on hypo-eutectic Al–Si–Cu and Al–Si–Mg cast alloys used in cylinder heads publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2016.02.017 – volume: 11 start-page: 715 issue: 5 year: 2004 ident: 10.1016/j.ijfatigue.2020.105635_b0145 article-title: Analysis of low cycle fatigue in almgsi aluminium alloys publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2003.09.003 – volume: 35 start-page: 2407 issue: 8 year: 2004 ident: 10.1016/j.ijfatigue.2020.105635_b0095 article-title: Modeling the age-hardening behavior of Al-Si-Cu alloys publication-title: Metall Mater Trans A doi: 10.1007/s11661-006-0221-9 – volume: 625 start-page: 119 year: 2015 ident: 10.1016/j.ijfatigue.2020.105635_b0160 article-title: Effect of pre-straining on the aging behavior and mechanical properties of an Al–Cu–Mg–Ag alloy publication-title: Mater Sci Eng: A doi: 10.1016/j.msea.2014.11.094 – volume: 18 start-page: 253 issue: 4–6 year: 1997 ident: 10.1016/j.ijfatigue.2020.105635_b0035 article-title: Pre-ageing of alsicumg alloys in relation to structure and mechanical properties publication-title: Mater Des doi: 10.1016/S0261-3069(97)00060-5 – volume: 45 start-page: 1 issue: 1 year: 1997 ident: 10.1016/j.ijfatigue.2020.105635_b0125 article-title: Overview no. 124 modelling of precipitation reactions in industrial processing publication-title: Acta Mater doi: 10.1016/S1359-6454(96)00100-0 – volume: 55 start-page: 3815 issue: 11 year: 2007 ident: 10.1016/j.ijfatigue.2020.105635_b0170 article-title: The crystal structure of the β′ phase in Al–Mg–Si alloys publication-title: Acta Mater doi: 10.1016/j.actamat.2007.02.032 – volume: 20 start-page: 340 issue: 6 year: 2007 ident: 10.1016/j.ijfatigue.2020.105635_b0030 article-title: Natural and artificial aging response of semisolid metal processed Al–Si–Mg alloy a356 publication-title: Int J Cast Met Res doi: 10.1179/136404608X286156 – volume: 38 start-page: 1789 issue: 10 year: 1990 ident: 10.1016/j.ijfatigue.2020.105635_b0080 article-title: A process model for age hardening of aluminium alloys—I. The model publication-title: Acta Metall Mater doi: 10.1016/0956-7151(90)90291-N – volume: 319–321 start-page: 662 year: 2001 ident: 10.1016/j.ijfatigue.2020.105635_b0010 article-title: Thermal–mechanical fatigue behaviour of cast aluminium alloys for cylinder heads reinforced with 15 vol.% discontinous Al2O3 (saffil) fibers publication-title: Mater Sci Eng: A doi: 10.1016/S0921-5093(00)02022-0 – volume: 234–236 start-page: 106 year: 1997 ident: 10.1016/j.ijfatigue.2020.105635_b0100 article-title: On the strain hardening behaviour of Al-Si-Mg casting alloys publication-title: Mater Sci Eng: A doi: 10.1016/S0921-5093(97)00207-4 – volume: 621 start-page: 277 year: 2015 ident: 10.1016/j.ijfatigue.2020.105635_b0140 article-title: Enhanced mechanical properties of an Al–Si–Cu–Mg alloy at 300c: Effects of mg and the q-precipitate phase publication-title: Mater Sci Eng: A doi: 10.1016/j.msea.2014.10.080 – volume: 09 start-page: 357 issue: 04 year: 2018 ident: 10.1016/j.ijfatigue.2020.105635_b0060 article-title: Improved approach to determine the material parameters for a combined hardening model publication-title: Mater Sci Appl – volume: 24 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.ijfatigue.2020.105635_b0070 article-title: A mathematical representation of the multiaxial bauschinger effect publication-title: Mater High Temp doi: 10.3184/096034007X207589 – volume: 46 start-page: 3063 issue: 7 year: 2015 ident: 10.1016/j.ijfatigue.2020.105635_b0180 article-title: Improving high-temperature tensile and low-cycle fatigue behavior of Al-Si-Cu-Mg alloys through micro-additions of Ti, V, and Zr publication-title: Metall Mater Trans A doi: 10.1007/s11661-015-2880-x – volume: 47 start-page: 1537 issue: 5 year: 1999 ident: 10.1016/j.ijfatigue.2020.105635_b0015 article-title: Pre-precipitate clusters and precipitation processes in Al–Mg–Si alloys publication-title: Acta Mater doi: 10.1016/S1359-6454(99)00033-6 – volume: 70 start-page: 383 year: 2015 ident: 10.1016/j.ijfatigue.2020.105635_b0175 article-title: Monotonic and cyclic deformation behavior of the Al–Si–Cu–Mg cast alloy with micro-additions of ti, v and zr publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2014.08.001 – volume: 38 start-page: 1803 issue: 10 year: 1990 ident: 10.1016/j.ijfatigue.2020.105635_b0190 article-title: A process model for age hardening of aluminium alloys—II. Applications of the model publication-title: Acta Metall Mater doi: 10.1016/0956-7151(90)90292-O – volume: 33 start-page: 2283 issue: 9 year: 1998 ident: 10.1016/j.ijfatigue.2020.105635_b0200 article-title: Incipient melting of Al5Mg8Si6Cu2 and Al2Cu intermetallics in unmodified and strontium-modified Al–Si–Cu–Mg (319) alloys during solution heat treatment publication-title: J Mater Sci doi: 10.1023/A:1004383203476 – volume: 30 start-page: 133 issue: 1 year: 1999 ident: 10.1016/j.ijfatigue.2020.105635_b0050 article-title: Modeling high-temperature stress-strain behavior of cast aluminum alloys publication-title: Metall Mater Trans A doi: 10.1007/s11661-999-0201-y – volume: 41 start-page: 2276 issue: 9 year: 2010 ident: 10.1016/j.ijfatigue.2020.105635_b0085 article-title: A combined precipitation, yield strength, and work hardening model for Al-Mg-Si alloys publication-title: Metall Mater Trans A doi: 10.1007/s11661-010-0258-7 – volume: 31 start-page: 139 issue: 1 year: 2000 ident: 10.1016/j.ijfatigue.2020.105635_b0055 article-title: Stress-strain response of a cast 319–T6 aluminum under thermomechanical loading publication-title: Metall Mater Trans A doi: 10.1007/s11661-000-0060-z – volume: 51 start-page: 789 issue: 3 year: 2003 ident: 10.1016/j.ijfatigue.2020.105635_b0115 article-title: The influence of temperature and storage time at rt on nucleation of the β″ phase in a 6082 Al–Mg–Si alloy publication-title: Acta Mater doi: 10.1016/S1359-6454(02)00470-6 – volume: 114 start-page: 92 year: 2018 ident: 10.1016/j.ijfatigue.2020.105635_b0105 article-title: The prediction of isothermal cyclic plasticity in 7175–T7351 aluminium alloy with particular emphasis on thermal ageing effects publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2018.05.010 – volume: 58 start-page: 2096 issue: 15 year: 2004 ident: 10.1016/j.ijfatigue.2020.105635_b0120 article-title: Age-hardening behavior of cast Al–Si base alloy publication-title: Mater Lett doi: 10.1016/j.matlet.2003.12.027 – volume: 49 start-page: 65 issue: 1 year: 2001 ident: 10.1016/j.ijfatigue.2020.105635_b0195 article-title: Modelling of the age hardening behaviour of Al–Mg–Si alloys publication-title: Acta Mater doi: 10.1016/S1359-6454(00)00301-3 – volume: 54 start-page: 4621 issue: 17 year: 2006 ident: 10.1016/j.ijfatigue.2020.105635_b0165 article-title: Precipitation kinetics and transformation of metastable phases in Al–Mg–Si alloys publication-title: Acta Mater doi: 10.1016/j.actamat.2006.06.005 – volume: 657 start-page: 441 year: 2016 ident: 10.1016/j.ijfatigue.2020.105635_b0185 article-title: Effect of mn and heat treatment on improvements in static strength and low-cycle fatigue life of an Al–Si–Cu–Mg alloy publication-title: Mater Sci Eng: A doi: 10.1016/j.msea.2016.01.015 – volume: 46 start-page: 3893 issue: 11 year: 1998 ident: 10.1016/j.ijfatigue.2020.105635_b0025 article-title: The precipitation sequence in Al–Mg–Si alloys publication-title: Acta Mater doi: 10.1016/S1359-6454(98)00059-7 – volume: 46 start-page: 6018 issue: 12 year: 2015 ident: 10.1016/j.ijfatigue.2020.105635_b0090 article-title: An extended age-hardening model for al-mg-si alloys incorporating the room-temperature storage and cold deformation process stages publication-title: Metall Mater Trans A doi: 10.1007/s11661-015-3175-y – volume: 2 start-page: 149 issue: 2 year: 1986 ident: 10.1016/j.ijfatigue.2020.105635_b0065 article-title: Time-independent constitutive theories for cyclic plasticity publication-title: Int J Plast doi: 10.1016/0749-6419(86)90010-0 – volume: 23 start-page: 615 issue: 4 year: 1988 ident: 10.1016/j.ijfatigue.2020.105635_b0075 article-title: Constitutive equations for the coupling between elasto-plasticity damage and aging publication-title: Revue de Physique Appliquée doi: 10.1051/rphysap:01988002304061500 – volume: 210 start-page: 1249 issue: 10 year: 2010 ident: 10.1016/j.ijfatigue.2020.105635_b0110 article-title: The heat treatment of Al–Si–Cu–Mg casting alloys publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2010.03.020 – volume: 54 start-page: 99 issue: 1 year: 2006 ident: 10.1016/j.ijfatigue.2020.105635_b0130 article-title: Influence of cu on the mechanical properties and precipitation behavior of AlSi7Mg0.5 alloy during aging treatment publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2005.08.044 – volume: 213 start-page: 720 year: 2018 ident: 10.1016/j.ijfatigue.2020.105635_b0005 article-title: A new fatigue model including thermal ageing for low copper aluminum-silicon alloys publication-title: Procedia Eng doi: 10.1016/j.proeng.2018.02.068 – volume: 28 start-page: 1001 issue: 3 year: 2007 ident: 10.1016/j.ijfatigue.2020.105635_b0135 article-title: Influence of cu content on ageing behavior of alsimgcu cast alloys publication-title: Mater Des doi: 10.1016/j.matdes.2005.11.015 |
SSID | ssj0009075 |
Score | 2.3127608 |
Snippet | •Development of a new test strategy for efficient ageing tests.•With this test concept, the ageing could be investigated at different ageing and test... The simulation of engine components made of age-hardening materials which are subject to thermal–mechanical loads and in homogeneous thermal distribution,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105635 |
SubjectTerms | Age hardening Ageing Aging Aging (metallurgy) Aluminium alloy Aluminum base alloys Computer simulation Copper Cyclic loads Cyclic testing Engine components Fatigue tests Magnesium base alloys Material properties Materials fatigue Room temperature Shercliff-Ashby Silicon Simulation Temperature Temperature profiles |
Title | Modelling the effect of ageing on the yield strength of an aluminium alloy under cyclic loading at different ageing temperatures and test temperatures |
URI | https://dx.doi.org/10.1016/j.ijfatigue.2020.105635 https://www.proquest.com/docview/2442826455 |
Volume | 137 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4QwEG6MXvRgfMZ3evCKC9tSqDdjNKtGT5p4a_pCMSu7cfGwF3-Gv9eZAuoaEw_eYKAN7ZSZr_DNDCGH4NJMlvZt5GSuI876eWQci6NM5rHzifRxKDZxfSMGd_zyPr2fI6ddLAzSKlvb39j0YK1bSa-dzd64LHtIS4LdCyACRPXgODGCnWe4yo_evmgeskm2izdHePcMx6t8KmD8-ImkD7ApVKEPdd9-9VA_bHVwQOcrZLlFjvSkebhVMuerNbL0LZ_gOnnHymYhyTYFXEcbrgYdFRSMBgpHVZBPkbVGMUqkeqgfw_WKarBSZVW-PlP8FT-lGFz2Qu3UDktLh6NAtae6pl1FlbrrFJNbtZmZJ9CRA8GknpFukLvzs9vTQdQWXogs46yOGFLQkixnHgCZc0xomN4kY95Km0lROGMzKxMHw-Cc-8QIbRxP4EAaIXyfbZL5alT5LUIBP-m8iDUrrOEmTUymjZeJ9sLqtGBsm4huspVts5JjcYyh6uhnT-pTSwq1pBotbZP4s-G4Sczxd5PjTptqZo0pcB9_N97r9K_a13yiABvBllXwNN35T9-7ZBHPGl7hHpmvX179PmCd2hyExXxAFk4urgY3H5JgAsc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoHNoeUKFUpaXFB65hk7XjxL0hxGopjxNIe7P8CmS1ZFe74bCX_gx-LzNOAixC4tBbNLGtZMae-Zx8niHkAEKaydK-jZzMdcRZP4-MY3GUyTx2PpE-DsUmLi7F8Jr_HaWjNXLcnYVBWmXr-xufHrx1K-m12uzNyrKHtCTYvQAiQFQPgfMD2eCwfLGMweG_Z56HbLLtYusIm6-QvMpxAQrAbyR9wE2hDH0o_PZmiHrlrEMEGnwhmy10pEfN022RNV9tk88vEgp-JQ9Y2ixk2aYA7GhD1qDTgoLXQOG0CvIl0tYoHhOpburbcL-iGtxUWZX3dxT_xS8pni6bU7u0k9LSyTRw7amuaVdSpe4GxexWbWrmBQzkQLCoV6Q75HpwcnU8jNrKC5FlnNURQw5akuXMAyJzjgkN-k0y5q20mRSFMzazMnHwGpxznxihjeMJXEgjhO-zb2S9mlb-O6EAoHRexJoV1nCTJibTxstEe2F1WjC2S0SnbGXbtORYHWOiOv7ZWD1ZSaGVVGOlXRI_dZw1mTne7_Kns6ZamWQK4sf7nfc6-6t2nS8UgCPYswqepj_-Z-x98nF4dXGuzk8vz36ST3inIRnukfV6fu9_AfCpze8wsR8BZigEVQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+the+effect+of+ageing+on+the+yield+strength+of+an+aluminium+alloy+under+cyclic+loading+at+different+ageing+temperatures+and+test+temperatures&rft.jtitle=International+journal+of+fatigue&rft.au=Seisenbacher%2C+B&rft.au=Winter%2C+G&rft.au=Gr%C3%BCn%2C+F&rft.date=2020-08-01&rft.pub=Elsevier+BV&rft.issn=0142-1123&rft.eissn=1879-3452&rft.volume=137&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1016%2Fj.ijfatigue.2020.105635&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-1123&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-1123&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-1123&client=summon |