Metal-substituted zirconium diboride (Zr1-xTMxB2; TM = Ni, Co, and Fe) as low-cost and high-performance bifunctional electrocatalyst for water splitting
•Successful incorporation of Ni, Co, and Fe into the structure of layered ZrB2 substantially enhanced both OER and HER performance.•Zr0.8Ni0.2B2 delivered a very low overpotential of 350 mV, only 60 mV higher than the obtained value for RuO2.•Surprisingly, after 1000 cycles of CV sweeps, Zr0.8Co0.2B...
Saved in:
Published in | Electrochimica acta Vol. 389; p. 138789 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.09.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Successful incorporation of Ni, Co, and Fe into the structure of layered ZrB2 substantially enhanced both OER and HER performance.•Zr0.8Ni0.2B2 delivered a very low overpotential of 350 mV, only 60 mV higher than the obtained value for RuO2.•Surprisingly, after 1000 cycles of CV sweeps, Zr0.8Co0.2B2 exhibited an enhancement in HER, dropping overpotential from 420 to 380 mV.•Both Zr0.8Ni0.2B2 and Zr0.8Co0.2B2 displayed decent long-run stability after 12 h with extremely infinitesimal overpotential growth.
Recent years have witnessed an unprecedented surge in research on earth-abundant and efficient electrocatalysts for the water splitting process. Among those, the development of boron-based advanced catalysts is subject to designing the active and durable compounds, working as bifunctional materials under alkaline medium. In this study, a series of ZrB2-based catalysts with a general formula of Zr(1-x)TMxB2 (x = 0.05, 0.1, and 0.2) (TM = Fe, Co, and Ni) were prepared through a straightforward route and employed as bifunctional electrocatalysts in hydrogen and oxygen evolution reactions (HER and OER). The electrochemical measurements confirmed that the incorporation of Ni into the crystal structure of ZrB2 in the Zr0.8Ni0.2B2 sample led to an onset potential of 1.58 V in OER at a current density of 10 mA cm–2, indicating a remarkable performance with a very low overpotential of 350 mV. Besides, Zr0.8Ni0.2B2 displayed an infinitesimal value of 56.6 mV dec–1 regarding the Tafel slope, which was lesser as compared to the commercial RuO2 (66.2 mV dec–1). For the case of HER, Zr0.8Co0.2B2 showed the best performance compared to other samples with an overpotential of 420 mV and a Tafel slope of 101.6 mV dec–1, following the Volmer mechanism. Both catalysts were examined for their long-term stability, manifesting excellent catalytic durability even after 12 h. Surprisingly, Zr0.8Co0.2B2 exhibited a drop from 420 to 380 mV in the overpotential value after 1000 CV sweeps, providing a promising performance in terms of HER. As-prepared metal-substituted ZrB2 electrocatalysts have great potential to be implemented in various green energy system applications.
[Display omitted] |
---|---|
AbstractList | Recent years have witnessed an unprecedented surge in research on earth-abundant and efficient electrocatalysts for the water splitting process. Among those, the development of boron-based advanced catalysts is subject to designing the active and durable compounds, working as bifunctional materials under alkaline medium. In this study, a series of ZrB2-based catalysts with a general formula of Zr(1-x)TMxB2 (x = 0.05, 0.1, and 0.2) (TM = Fe, Co, and Ni) were prepared through a straightforward route and employed as bifunctional electrocatalysts in hydrogen and oxygen evolution reactions (HER and OER). The electrochemical measurements confirmed that the incorporation of Ni into the crystal structure of ZrB2 in the Zr0.8Ni0.2B2 sample led to an onset potential of 1.58 V in OER at a current density of 10 mA cm–2, indicating a remarkable performance with a very low overpotential of 350 mV. Besides, Zr0.8Ni0.2B2 displayed an infinitesimal value of 56.6 mV dec−1 regarding the Tafel slope, which was lesser as compared to the commercial RuO2 (66.2 mV dec−1). For the case of HER, Zr0.8Co0.2B2 showed the best performance compared to other samples with an overpotential of 420 mV and a Tafel slope of 101.6 mV dec−1, following the Volmer mechanism. Both catalysts were examined for their long-term stability, manifesting excellent catalytic durability even after 12 h. Surprisingly, Zr0.8Co0.2B2 exhibited a drop from 420 to 380 mV in the overpotential value after 1000 CV sweeps, providing a promising performance in terms of HER. As-prepared metal-substituted ZrB2 electrocatalysts have great potential to be implemented in various green energy system applications. •Successful incorporation of Ni, Co, and Fe into the structure of layered ZrB2 substantially enhanced both OER and HER performance.•Zr0.8Ni0.2B2 delivered a very low overpotential of 350 mV, only 60 mV higher than the obtained value for RuO2.•Surprisingly, after 1000 cycles of CV sweeps, Zr0.8Co0.2B2 exhibited an enhancement in HER, dropping overpotential from 420 to 380 mV.•Both Zr0.8Ni0.2B2 and Zr0.8Co0.2B2 displayed decent long-run stability after 12 h with extremely infinitesimal overpotential growth. Recent years have witnessed an unprecedented surge in research on earth-abundant and efficient electrocatalysts for the water splitting process. Among those, the development of boron-based advanced catalysts is subject to designing the active and durable compounds, working as bifunctional materials under alkaline medium. In this study, a series of ZrB2-based catalysts with a general formula of Zr(1-x)TMxB2 (x = 0.05, 0.1, and 0.2) (TM = Fe, Co, and Ni) were prepared through a straightforward route and employed as bifunctional electrocatalysts in hydrogen and oxygen evolution reactions (HER and OER). The electrochemical measurements confirmed that the incorporation of Ni into the crystal structure of ZrB2 in the Zr0.8Ni0.2B2 sample led to an onset potential of 1.58 V in OER at a current density of 10 mA cm–2, indicating a remarkable performance with a very low overpotential of 350 mV. Besides, Zr0.8Ni0.2B2 displayed an infinitesimal value of 56.6 mV dec–1 regarding the Tafel slope, which was lesser as compared to the commercial RuO2 (66.2 mV dec–1). For the case of HER, Zr0.8Co0.2B2 showed the best performance compared to other samples with an overpotential of 420 mV and a Tafel slope of 101.6 mV dec–1, following the Volmer mechanism. Both catalysts were examined for their long-term stability, manifesting excellent catalytic durability even after 12 h. Surprisingly, Zr0.8Co0.2B2 exhibited a drop from 420 to 380 mV in the overpotential value after 1000 CV sweeps, providing a promising performance in terms of HER. As-prepared metal-substituted ZrB2 electrocatalysts have great potential to be implemented in various green energy system applications. [Display omitted] |
ArticleNumber | 138789 |
Author | Mete, Busra Aydemir, Umut Aydin, Samet Sadeghi, Ebrahim Peighambardoust, Naeimeh Sadat |
Author_xml | – sequence: 1 givenname: Busra orcidid: 0000-0003-4998-0698 surname: Mete fullname: Mete, Busra organization: Koç University Boron and Advanced Materials Application and Research Center (KUBAM), Sariyer, Istanbul 34450, Turkey – sequence: 2 givenname: Naeimeh Sadat surname: Peighambardoust fullname: Peighambardoust, Naeimeh Sadat organization: Koç University Boron and Advanced Materials Application and Research Center (KUBAM), Sariyer, Istanbul 34450, Turkey – sequence: 3 givenname: Samet surname: Aydin fullname: Aydin, Samet organization: Koç University Boron and Advanced Materials Application and Research Center (KUBAM), Sariyer, Istanbul 34450, Turkey – sequence: 4 givenname: Ebrahim surname: Sadeghi fullname: Sadeghi, Ebrahim organization: Koç University Boron and Advanced Materials Application and Research Center (KUBAM), Sariyer, Istanbul 34450, Turkey – sequence: 5 givenname: Umut orcidid: 0000-0003-1164-1973 surname: Aydemir fullname: Aydemir, Umut email: uaydemir@ku.edu.tr organization: Koç University Boron and Advanced Materials Application and Research Center (KUBAM), Sariyer, Istanbul 34450, Turkey |
BookMark | eNqNkcFuEzEQhi1UJNLCM2CJC0h1sNfZ9a5QDyWiLVIDl3DhYnnt2XaizTrYXtryKD31WfpkdZqqBy4gjeSR9X8zo__fJ3uDH4CQt4JPBRfVx9UUerDJ5JoWvBBTIWtVNy_IRNRKMlmXzR6ZcC4km1V19Yrsx7jinKtK8Qm5XUAyPYtjGxOmMYGjfzBYP-C4pg5bH9ABff8zCHa9XFx_Lj7R5eL-7uj-7hse0rk_pGZw9AQ-UBNp76-Y9TE9_l3ixSXbQOh8WJvBAm2xGweb0A-mp483B29N3n6TiayiVyZBoHHTY0o4XLwmLzvTR3jz9B6QHydflvMzdv799Ov8-JxZOZOJSemkKaHtugYKw5WSZd00nWlL4xRvubRCQNkJ0xiRu2ZW8dZaUdpWVYUrrDwg73ZzN8H_GiEmvfJjyEdGXZRVrXhZCJ5VaqeywccYoNObgGsTbrTgehuEXunnIPQ2CL0LIpNHf5EWk9n6kILB_j_44x0P2YTfCEFHi5AddRiyXjuP_5zxAPVJr40 |
CitedBy_id | crossref_primary_10_1021_acscatal_2c02672 crossref_primary_10_1016_j_jallcom_2022_164148 crossref_primary_10_2139_ssrn_3991604 crossref_primary_10_1021_acs_inorgchem_2c00403 crossref_primary_10_1016_j_matchemphys_2022_126886 crossref_primary_10_1039_D3MA00685A crossref_primary_10_1016_j_apt_2022_103892 crossref_primary_10_3390_catal12020222 crossref_primary_10_1016_j_surfin_2024_104619 crossref_primary_10_1002_er_8421 crossref_primary_10_1021_acs_inorgchem_4c04794 crossref_primary_10_1002_eem2_12873 crossref_primary_10_1016_j_surfin_2024_104491 crossref_primary_10_1016_j_jallcom_2021_161804 crossref_primary_10_1007_s10854_023_10811_1 crossref_primary_10_1002_cctc_202400022 crossref_primary_10_1016_j_renene_2025_122370 crossref_primary_10_1021_acsaem_3c03227 crossref_primary_10_1016_j_electacta_2022_140484 crossref_primary_10_1016_j_apsusc_2024_161851 crossref_primary_10_1149_1945_7111_ac7172 crossref_primary_10_1021_acssuschemeng_2c05251 crossref_primary_10_1016_j_ijhydene_2022_07_146 crossref_primary_10_1016_j_ijhydene_2023_04_085 crossref_primary_10_1021_acs_inorgchem_1c03374 crossref_primary_10_1021_acsomega_1c05183 crossref_primary_10_1002_est2_70112 crossref_primary_10_1149_1945_7111_ac83f3 |
Cites_doi | 10.1016/j.ijhydene.2016.08.096 10.1039/D0CC01931C 10.1002/adfm.201600566 10.1021/acsenergylett.0c01384 10.1038/ncomms4783 10.1039/cs9962500199 10.1002/celc.201800669 10.1021/ja510442p 10.1039/C9SE00700H 10.1016/j.ceramint.2011.11.058 10.1021/ja038401c 10.1016/j.nanoen.2015.02.025 10.1007/s12274-020-2618-y 10.1002/adfm.201906481 10.1016/j.apcatb.2016.03.032 10.1557/jmr.2017.38 10.1021/acscatal.9b02457 10.1021/acssuschemeng.9b03799 10.1039/C3CS60159E 10.1021/ja407115p 10.1039/C6TA02334G 10.1021/acscatal.5b02291 10.1016/j.electacta.2020.136738 10.1039/D0QI00146E 10.1116/1.1376317 10.1016/j.rinp.2019.102522 10.1021/jacs.7b07247 10.1039/C6CC06608A 10.1021/acsaem.9b01769 10.1016/j.electacta.2018.11.099 10.1126/sciadv.aba6586 10.1021/acscatal.6b02479 10.1021/acscatal.8b01046 10.1002/ange.201604040 10.1039/C8NR02142B 10.1016/j.ceramint.2019.01.073 10.1016/j.jssc.2011.05.040 10.1111/j.1551-2916.2007.01583.x 10.1021/acscatal.8b01794 10.1002/aenm.201502313 10.1002/anie.201915663 10.1002/aenm.201700513 10.1038/nmat4410 10.1039/C8EE03405B 10.1021/ja504696r 10.1021/acsenergylett.6b00219 10.1039/C7SE00397H 10.1021/nn800503a 10.1016/j.jcat.2020.04.010 10.1021/acscatal.7b03316 10.1016/j.jpowsour.2015.01.009 10.1002/celc.201801354 10.1016/j.jeurceramsoc.2008.11.008 10.1039/C6CS00328A 10.1002/aenm.201900796 10.1016/j.jallcom.2012.05.076 10.1039/C9CC03638E 10.1039/C7CC01489A 10.1039/D0CC00070A 10.1002/ange.201611756 10.1016/j.jcat.2020.05.013 10.1038/s41598-021-83066-7 10.1021/acs.jpcc.0c01043 10.1021/acsaem.8b01615 10.1039/C9TA00489K 10.1021/cr00075a003 10.1039/D0NR01279C 10.1002/anie.201703183 10.1016/j.nanoen.2015.11.020 |
ContentType | Journal Article |
Copyright | 2021 Copyright Elsevier BV Sep 1, 2021 |
Copyright_xml | – notice: 2021 – notice: Copyright Elsevier BV Sep 1, 2021 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.electacta.2021.138789 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-3859 |
ExternalDocumentID | 10_1016_j_electacta_2021_138789 S0013468621010793 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT WH7 XPP YK3 ZMT ~02 ~G- 29G 41~ 53G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIDUJ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ H~9 LPU R2- RIG SC5 SCB SCH SEW SSH T9H VH1 WUQ XOL ZY4 7SR 7U5 8BQ 8FD EFKBS JG9 L7M |
ID | FETCH-LOGICAL-c343t-33d3a5ebff9e2a07735899fab5ad70b03c11e5f1a9a111e9460bcc15cb762d2c3 |
IEDL.DBID | .~1 |
ISSN | 0013-4686 |
IngestDate | Fri Jul 25 08:26:06 EDT 2025 Tue Jul 01 03:02:25 EDT 2025 Thu Apr 24 22:56:19 EDT 2025 Fri Feb 23 02:38:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hydrogen evolution reaction Water splitting Oxygen evolution reaction Layered ZrB2 electrocatalyst Metal substitution |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-33d3a5ebff9e2a07735899fab5ad70b03c11e5f1a9a111e9460bcc15cb762d2c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4998-0698 0000-0003-1164-1973 |
PQID | 2568705210 |
PQPubID | 2045485 |
ParticipantIDs | proquest_journals_2568705210 crossref_primary_10_1016_j_electacta_2021_138789 crossref_citationtrail_10_1016_j_electacta_2021_138789 elsevier_sciencedirect_doi_10_1016_j_electacta_2021_138789 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 2021-09-00 20210901 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Electrochimica acta |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Mazánek, Nahdi, Luxa, Sofer, Pumera (bib0033) 2018; 10 Guo, Wu, Chen, Liu, Yang, Ai, Zou, Science (bib0072) 2019; 12 Ortiz, Zamora, Rodríguez-Rojas (bib0049) 2012; 38 Li, Chen, Liu, Gao, Zou (bib0028) 2019; 7 Ai, Zou, Chen, Su, Feng, Li, Liu, Zhang, Zou (bib0070) 2020; 59 Feng, Wang, Liu, Guo, Hu, Zhang, Jian, Yin, Zhang, Xie (bib0044) 2019; 45 Liu, Ran, Xia, Yi, Ji (bib0036) 2017; 32 Gupta, Patel, Miotello, Patel (bib0050) 2020; 30 Masa, Andronescu, Antoni, Sinev, Seisel, Elumeeva, Barwe, Marti-Sanchez, Arbiol, Cuenya (bib0026) 2019; 6 Wang, He, Xie, Jia, He, Zhang, Dong, Liu, Zhang, Li (bib0041) 2019; 296 Jung, Kim, Jung, Choi (bib0045) 2012; 538 Li, Wang, Zhang, Zou, Zou, Yang (bib0008) 2020; 124 Wang, Li, Zhao, Hao, Ma, Li, Guo (bib0009) 2019; 6 Zhang, Bai, Zhang, Li, Zhou (bib0006) 2019; 14 Fahrenholtz, Hilmas, Talmy, Zaykoski (bib0047) 2007; 90 Ge, Wu, Xu, Ye, Shen (bib0054) 2016; 41 Gupta, Patel, Fernandes, Kadrekar, Dashora, Yadav, Bhattacharyya, Jha, Miotello, Kothari (bib0025) 2016; 192 Jiang, Niu, Tang, Zhang, Liu, Zhang, Chen, Li, Gu, Wan (bib0030) 2017; 56 Li, Zou, Ai, Chen, Sun, Zou (bib0031) 2019; 9 Sivanantham, Ganesan, Shanmugam (bib0051) 2016; 26 Lin, Zhu, Xu (bib0058) 2014; 136 Guo (bib0046) 2009; 29 Wang, Wu, Gao, Miao, Wang, Bao (bib0060) 2015; 13 Park, Encinas, Scheifers, Zhang, Fokwa (bib0001) 2017; 129 Park, Zhang, Scheifers, Jothi, Encinas, Fokwa (bib0032) 2017; 139 Gupta, Patel, Miotello, Kothari (bib0071) 2015; 279 Fischer, Müller, Antonietti, Thomas (bib0057) 2008; 2 Yang, Qian, Li, Zhang, Mu, Do, Zhou, Dong, Yan, Qin (bib0012) 2020; 6 Yang, Ma, Lv, Huang, Dai (bib0003) 2020; 387 Zhang, Xu, Li, Li, Yang, Liang (bib0011) 2016; 6 Liu, Fechler, Antonietti (bib0035) 2013; 42 Parkin (bib0037) 1996; 25 Yuan, Zhao, Hao, Li, Wang, Ma, Guo (bib0029) 2019; 6 Zhang, Li, Jiang, Zhao, Duan, Li, Feng (bib0043) 2011; 184 Zhang, Wang, Yang, Yao, Han, Sun (bib0010) 2016; 19 Fernandes, Chunduri, Gupta, Kadrekar, Arya, Miotello, Patel (bib0066) 2020; 354 Masa, Piontek, Wilde, Antoni, Eckhard, Chen, Muhler, Apfel, Schuhmann (bib0027) 2019; 9 Cabán-Acevedo, Stone, Schmidt, Thomas, Ding, Chang, Tsai, He, Jin (bib0053) 2015; 14 Chen, Liu, Wang, Zhao, Zhang, Cheng, Li, Ji, Pu, Mu (bib0062) 2020; 5 McCrory, Jung, Peters, Jaramillo (bib0065) 2013; 135 Ganem, Osby (bib0024) 1986; 86 Sadeghi, Peighambardoust, Khatamian, Unal, Aydemir (bib0034) 2021; 11 McCrory, Jung, Ferrer, Chatman, Peters, Jaramillo (bib0064) 2015; 137 Li, Wen, Li, Dun, Xing, Lu, Adhikari, Jiang, Carroll, Geyer (bib0005) 2017; 7 Chen, Duan, Wei, Wang, Zhang, Ni (bib0039) 2020; 13 Wang, Xu, Li (bib0017) 2016; 1 Yu, He, Yang, Zhou, Shao, Ni (bib0014) 2019; 9 Liu, Hu, Jiang, Xiang, Weng, Li, Fan, Yu, Altman, Wang (bib0052) 2016; 7 Li, Hao, Abudula, Guan (bib0022) 2016; 4 Suen, Hung, Quan, Zhang, Xu, Chen (bib0023) 2017; 46 Zhang, Zhang, Pan, Shen, Mahmood, Ma, Shi, Jia, Wang, Zhang (bib0007) 2018; 8 Khatun, Roy (bib0002) 2020; 56 Qi, Gu, Sun, Lian, Yuan, Hu, Deng, Yao, Guo, Peng (bib0004) 2020; 389 Wang, Liu, Liu, Xie, Huo, Wang (bib0013) 2016; 52 Guo, Wu, Ai, Chen, Li, Chen, Zou (bib0021) 2019; 55 Qian, Kim, Ma, Tsui, Yang, Liu (bib0059) 2004; 126 Zheng, Jiao, Zhu, Li, Han, Chen, Du, Jaroniec, Qiao (bib0016) 2014; 5 Jadhav, Roy, Desalegan, Seo (bib0042) 2020; 4 Singh, Trenary, Paderno (bib0048) 2000; 7 GolrokháAmin (bib0055) 2017; 53 Anjum, Lee, Lee (bib0020) 2018; 8 Suliman, Adam, Li, Tian, Siddiqui, Yamani, Qamar (bib0018) 2019; 7 Yan, Wang, Zhou, Lin, Song, Shi, Yao (bib0038) 2019; 3 Jiang, Lu (bib0067) 2020; 12 Han, Tong, Liu, Chen, Wen, Yang, Guo (bib0019) 2018; 8 Anantharaj, Ede, Sakthikumar, Karthick, Mishra, Kundu (bib0068) 2016; 6 Masa, Weide, Peeters, Sinev, Xia, Sun, Somsen, Muhler, Schuhmann (bib0061) 2016; 6 Jothi, Zhang, Scheifers, Park, Fokwa (bib0040) 2017; 1 Zhong, Wang, Meng, Zhang (bib0056) 2016; 128 Jothi, Zhang, Yubuta, Culver, Conley, Fokwa (bib0063) 2018; 2 Zou, Wang, Ai, Chen, Zou (bib0069) 2020; 56 Chen, Zou (bib0015) 2020; 7 Chen (10.1016/j.electacta.2021.138789_bib0062) 2020; 5 McCrory (10.1016/j.electacta.2021.138789_bib0064) 2015; 137 Wang (10.1016/j.electacta.2021.138789_bib0060) 2015; 13 Parkin (10.1016/j.electacta.2021.138789_bib0037) 1996; 25 Yuan (10.1016/j.electacta.2021.138789_bib0029) 2019; 6 Liu (10.1016/j.electacta.2021.138789_bib0035) 2013; 42 Ganem (10.1016/j.electacta.2021.138789_bib0024) 1986; 86 Jothi (10.1016/j.electacta.2021.138789_bib0040) 2017; 1 Singh (10.1016/j.electacta.2021.138789_bib0048) 2000; 7 Gupta (10.1016/j.electacta.2021.138789_bib0071) 2015; 279 Li (10.1016/j.electacta.2021.138789_bib0008) 2020; 124 Suen (10.1016/j.electacta.2021.138789_bib0023) 2017; 46 Guo (10.1016/j.electacta.2021.138789_bib0072) 2019; 12 Ge (10.1016/j.electacta.2021.138789_bib0054) 2016; 41 Zou (10.1016/j.electacta.2021.138789_bib0069) 2020; 56 GolrokháAmin (10.1016/j.electacta.2021.138789_bib0055) 2017; 53 Lin (10.1016/j.electacta.2021.138789_bib0058) 2014; 136 Jung (10.1016/j.electacta.2021.138789_bib0045) 2012; 538 Masa (10.1016/j.electacta.2021.138789_bib0026) 2019; 6 Zhang (10.1016/j.electacta.2021.138789_bib0010) 2016; 19 Feng (10.1016/j.electacta.2021.138789_bib0044) 2019; 45 Fahrenholtz (10.1016/j.electacta.2021.138789_bib0047) 2007; 90 Khatun (10.1016/j.electacta.2021.138789_bib0002) 2020; 56 Zhang (10.1016/j.electacta.2021.138789_bib0011) 2016; 6 Jiang (10.1016/j.electacta.2021.138789_bib0067) 2020; 12 Zhang (10.1016/j.electacta.2021.138789_bib0006) 2019; 14 Yu (10.1016/j.electacta.2021.138789_bib0014) 2019; 9 Ai (10.1016/j.electacta.2021.138789_bib0070) 2020; 59 Wang (10.1016/j.electacta.2021.138789_bib0041) 2019; 296 Fischer (10.1016/j.electacta.2021.138789_bib0057) 2008; 2 Qi (10.1016/j.electacta.2021.138789_bib0004) 2020; 389 Zhang (10.1016/j.electacta.2021.138789_bib0043) 2011; 184 Gupta (10.1016/j.electacta.2021.138789_bib0050) 2020; 30 Wang (10.1016/j.electacta.2021.138789_bib0017) 2016; 1 Zhang (10.1016/j.electacta.2021.138789_bib0007) 2018; 8 Park (10.1016/j.electacta.2021.138789_bib0001) 2017; 129 Wang (10.1016/j.electacta.2021.138789_bib0013) 2016; 52 Qian (10.1016/j.electacta.2021.138789_bib0059) 2004; 126 Masa (10.1016/j.electacta.2021.138789_bib0061) 2016; 6 Sivanantham (10.1016/j.electacta.2021.138789_bib0051) 2016; 26 Anantharaj (10.1016/j.electacta.2021.138789_bib0068) 2016; 6 Jiang (10.1016/j.electacta.2021.138789_bib0030) 2017; 56 Jadhav (10.1016/j.electacta.2021.138789_bib0042) 2020; 4 Li (10.1016/j.electacta.2021.138789_bib0031) 2019; 9 Li (10.1016/j.electacta.2021.138789_bib0005) 2017; 7 Zheng (10.1016/j.electacta.2021.138789_bib0016) 2014; 5 Anjum (10.1016/j.electacta.2021.138789_bib0020) 2018; 8 Gupta (10.1016/j.electacta.2021.138789_bib0025) 2016; 192 Guo (10.1016/j.electacta.2021.138789_bib0046) 2009; 29 Li (10.1016/j.electacta.2021.138789_bib0028) 2019; 7 Chen (10.1016/j.electacta.2021.138789_bib0039) 2020; 13 Han (10.1016/j.electacta.2021.138789_bib0019) 2018; 8 Guo (10.1016/j.electacta.2021.138789_bib0021) 2019; 55 Sadeghi (10.1016/j.electacta.2021.138789_bib0034) 2021; 11 Yang (10.1016/j.electacta.2021.138789_bib0003) 2020; 387 Cabán-Acevedo (10.1016/j.electacta.2021.138789_bib0053) 2015; 14 Liu (10.1016/j.electacta.2021.138789_bib0052) 2016; 7 Suliman (10.1016/j.electacta.2021.138789_bib0018) 2019; 7 Park (10.1016/j.electacta.2021.138789_bib0032) 2017; 139 Wang (10.1016/j.electacta.2021.138789_bib0009) 2019; 6 Jothi (10.1016/j.electacta.2021.138789_bib0063) 2018; 2 Yan (10.1016/j.electacta.2021.138789_bib0038) 2019; 3 McCrory (10.1016/j.electacta.2021.138789_bib0065) 2013; 135 Li (10.1016/j.electacta.2021.138789_bib0022) 2016; 4 Yang (10.1016/j.electacta.2021.138789_bib0012) 2020; 6 Chen (10.1016/j.electacta.2021.138789_bib0015) 2020; 7 Masa (10.1016/j.electacta.2021.138789_bib0027) 2019; 9 Liu (10.1016/j.electacta.2021.138789_bib0036) 2017; 32 Zhong (10.1016/j.electacta.2021.138789_bib0056) 2016; 128 Mazánek (10.1016/j.electacta.2021.138789_bib0033) 2018; 10 Ortiz (10.1016/j.electacta.2021.138789_bib0049) 2012; 38 Fernandes (10.1016/j.electacta.2021.138789_bib0066) 2020; 354 |
References_xml | – volume: 42 start-page: 8237 year: 2013 end-page: 8265 ident: bib0035 article-title: Salt melt synthesis of ceramics, semiconductors and carbon nanostructures publication-title: Chem. Soc. Rev. – volume: 56 start-page: 3061 year: 2020 end-page: 3064 ident: bib0069 article-title: Crystal phase-dependent electrocatalytic hydrogen evolution performance of ruthenium–boron intermetallics publication-title: Chem. Commun. – volume: 41 start-page: 19847 year: 2016 end-page: 19854 ident: bib0054 article-title: Facile synthesis of CoNi publication-title: Int. J. Hydrog. Energy – volume: 8 start-page: 1828 year: 2018 end-page: 1836 ident: bib0019 article-title: Hydrogen evolution reaction on hybrid catalysts of vertical MoS publication-title: ACS Catal. – volume: 135 start-page: 16977 year: 2013 end-page: 16987 ident: bib0065 article-title: Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 11544 year: 2018 end-page: 11552 ident: bib0033 article-title: Electrochemistry of layered metal diborides publication-title: Nanoscale – volume: 86 start-page: 763 year: 1986 end-page: 780 ident: bib0024 article-title: Synthetically useful reactions with metal boride and aluminide catalysts publication-title: Chem. Rev. – volume: 12 start-page: 9327 year: 2020 end-page: 9351 ident: bib0067 article-title: Designing transition-metal-boride-based electrocatalysts for applications in electrochemical water splitting publication-title: Nanoscale – volume: 14 year: 2019 ident: bib0006 article-title: Effects of iron doping on the hydrogen evolution reaction performance of self-supported nickel selenides publication-title: Results Phys. – volume: 9 year: 2019 ident: bib0027 article-title: Ni-metalloid (B, Si, P, As, and Te) alloys as water oxidation electrocatalysts publication-title: Adv. Energy Mater. – volume: 136 start-page: 11027 year: 2014 end-page: 11033 ident: bib0058 article-title: Noble-metal-free Fe–N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions publication-title: J. Am. Chem. Soc. – volume: 192 start-page: 126 year: 2016 end-page: 133 ident: bib0025 article-title: Co-Ni-B nanocatalyst for efficient hydrogen evolution reaction in wide pH range publication-title: Appl. Catal. B Environ. – volume: 6 start-page: eaba6586 year: 2020 ident: bib0012 article-title: O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution publication-title: Sci. Adv. – volume: 1 start-page: 1928 year: 2017 end-page: 1934 ident: bib0040 article-title: Fuels, molybdenum diboride nanoparticles as a highly efficient electrocatalyst for the hydrogen evolution reaction publication-title: Sustain. Energy Fuels – volume: 11 start-page: 1 year: 2021 end-page: 13 ident: bib0034 article-title: Metal doped layered MgB publication-title: Sci. Rep. – volume: 6 start-page: 8069 year: 2016 end-page: 8097 ident: bib0068 article-title: Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: a review publication-title: ACS Catal. – volume: 32 start-page: 883 year: 2017 ident: bib0036 article-title: Synthesis and properties of Fe-B powders by molten salt method publication-title: J. Mater. Res. – volume: 38 start-page: 2857 year: 2012 end-page: 2863 ident: bib0049 article-title: A study of the oxidation of ZrB publication-title: Ceram. Int. – volume: 296 start-page: 644 year: 2019 end-page: 652 ident: bib0041 article-title: Tunable nanocotton-like amorphous ternary Ni-Co-B: a highly efficient catalyst for enhanced oxygen evolution reaction publication-title: Electrochim. Acta – volume: 129 start-page: 5667 year: 2017 end-page: 5670 ident: bib0001 article-title: Boron-dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction publication-title: Angew. Chem. – volume: 389 start-page: 29 year: 2020 end-page: 37 ident: bib0004 article-title: Active nickel derived from coordination complex with weak inter/intra-molecular interactions for efficient hydrogen evolution via a tandem mechanism publication-title: J. Catal. – volume: 30 year: 2020 ident: bib0050 article-title: Metal boride-based catalysts for electrochemical water-splitting: a review publication-title: Adv. Funct. Mater. – volume: 7 start-page: 5288 year: 2019 end-page: 5294 ident: bib0028 article-title: structural evolution of a nickel boride catalyst: synergistic geometric and electronic optimization for the oxygen evolution reaction publication-title: J. Mater. Chem. A – volume: 6 start-page: 764 year: 2019 end-page: 770 ident: bib0029 article-title: Performance of surface-oxidized Ni publication-title: ChemElectroChem – volume: 14 start-page: 1245 year: 2015 end-page: 1251 ident: bib0053 article-title: Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide publication-title: Nat. Mater. – volume: 2 start-page: 176 year: 2018 end-page: 181 ident: bib0063 article-title: Abundant vanadium diboride with graphene-like boron layers for hydrogen evolution publication-title: ACS Appl. Energy Mater. – volume: 6 year: 2016 ident: bib0061 article-title: Amorphous cobalt boride (Co publication-title: Adv. Energy Mater. – volume: 26 start-page: 4661 year: 2016 end-page: 4672 ident: bib0051 article-title: Hierarchical NiCo publication-title: Adv. Funct. Mater. – volume: 6 year: 2019 ident: bib0009 article-title: Surface-activated amorphous iron borides (FexB) as efficient electrocatalysts for oxygen evolution reaction publication-title: Adv. Mater. Interfaces – volume: 5 start-page: 1 year: 2014 end-page: 8 ident: bib0016 article-title: Hydrogen evolution by a metal-free electrocatalyst publication-title: Nat. Commun. – volume: 126 start-page: 1195 year: 2004 end-page: 1198 ident: bib0059 article-title: Solution-phase synthesis of single-crystalline iron phosphide nanorods/nanowires publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 5412 year: 2017 end-page: 5415 ident: bib0055 article-title: CoNi publication-title: Chem. Commun. – volume: 387 start-page: 12 year: 2020 end-page: 16 ident: bib0003 article-title: Prediction of intrinsic electrocatalytic activity for hydrogen evolution reaction in Ti publication-title: J. Catal. – volume: 538 start-page: 164 year: 2012 end-page: 168 ident: bib0045 article-title: Compounds, synthesis of ZrB publication-title: J. Alloy. Compd. – volume: 7 start-page: 310 year: 2000 end-page: 315 ident: bib0048 article-title: Analysis of a zirconium diboride single crystal, ZrB publication-title: Surf. Sci. Spectra – volume: 13 start-page: 387 year: 2015 end-page: 396 ident: bib0060 article-title: High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc–air battery publication-title: Nano Energy – volume: 354 year: 2020 ident: bib0066 article-title: Exploring the hydrogen evolution capabilities of earth-abundant ternary metal borides for neutral and alkaline water-splitting publication-title: Electrochim. Acta – volume: 25 start-page: 199 year: 1996 end-page: 207 ident: bib0037 article-title: Solid state metathesis reaction for metal borides, silicides, pnictides and chalcogenides: ionic or elemental pathways publication-title: Chem. Soc. Rev. – volume: 59 start-page: 3961 year: 2020 end-page: 3965 ident: bib0070 article-title: Transition-metal–boron intermetallics with strong Interatomic d–sp orbital hybridization for high-performance electrocatalysis publication-title: Angew. Chem. Int. Ed. – volume: 9 year: 2019 ident: bib0031 article-title: Revealing activity trends of metal diborides toward pH-universal hydrogen evolution electrocatalysts with Pt-like activity publication-title: Adv. Energy Mater. – volume: 29 start-page: 995 year: 2009 end-page: 1011 ident: bib0046 article-title: Densification of ZrB publication-title: J. Eur. Ceram. Soc. – volume: 137 start-page: 4347 year: 2015 end-page: 4357 ident: bib0064 article-title: Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 312 year: 2020 end-page: 323 ident: bib0042 article-title: Fuels, an advanced and highly efficient Ce assisted NiFe-LDH electrocatalyst for overall water splitting publication-title: Sustain. Energy Fuels – volume: 4 start-page: 11973 year: 2016 end-page: 12000 ident: bib0022 article-title: Nanostructured catalysts for electrochemical water splitting: current state and prospects publication-title: J. Mater. Chem. A – volume: 7 start-page: 17671 year: 2019 end-page: 17681 ident: bib0018 article-title: Engineering, FeP/MoS publication-title: ACS Sustain. Chem. Eng. – volume: 184 start-page: 2047 year: 2011 end-page: 2052 ident: bib0043 article-title: Morphology evolution of ZrB publication-title: J. Solid State Chem. – volume: 90 start-page: 1347 year: 2007 end-page: 1364 ident: bib0047 article-title: Refractory diborides of zirconium and hafnium publication-title: J. Am. Ceram. Soc. – volume: 7 start-page: 1 year: 2016 end-page: 9 ident: bib0052 article-title: A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide publication-title: Nat. Commun. – volume: 7 start-page: 2248 year: 2020 end-page: 2264 ident: bib0015 article-title: Intermetallic borides: structures, synthesis and applications in electrocatalysis publication-title: Inorg. Chem. Front. – volume: 3 start-page: 514 year: 2019 end-page: 520 ident: bib0038 article-title: Ultrafine Co: FeS publication-title: ACS Appl. Energy Mater. – volume: 52 start-page: 12614 year: 2016 end-page: 12617 ident: bib0013 article-title: Porous cobalt–iron nitride nanowires as excellent bifunctional electrocatalysts for overall water splitting publication-title: Chem. Commun. – volume: 19 start-page: 98 year: 2016 end-page: 107 ident: bib0010 article-title: Electroless plated Ni–Bx films as highly active electrocatalysts for hydrogen production from water over a wide pH range publication-title: Nano Energy – volume: 6 start-page: 580 year: 2016 end-page: 588 ident: bib0011 article-title: Facile synthesis of nickel–iron/nanocarbon hybrids as advanced electrocatalysts for efficient water splitting publication-title: ACS Catal. – volume: 56 start-page: 6572 year: 2017 end-page: 6577 ident: bib0030 article-title: Crystallinity-modulated electrocatalytic activity of a nickel (II) borate thin layer on Ni publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 8296 year: 2018 end-page: 8305 ident: bib0020 article-title: Boron-and nitrogen-codoped molybdenum carbide nanoparticles imbedded in a BCN network as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions publication-title: ACS Catal. – volume: 139 start-page: 12915 year: 2017 end-page: 12918 ident: bib0032 article-title: Graphene-and phosphorene-like boron layers with contrasting activities in highly active Mo publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 7717 year: 2019 end-page: 7722 ident: bib0044 article-title: Investigation of electrical properties of pressureless sintered ZrB publication-title: Ceram. Int. – volume: 9 start-page: 9973 year: 2019 end-page: 10011 ident: bib0014 article-title: Recent advances and prospective in ruthenium-based materials for electrochemical water splitting publication-title: ACS Catal. – volume: 2 start-page: 2489 year: 2008 end-page: 2496 ident: bib0057 article-title: Synthesis of ternary metal nitride nanoparticles using mesoporous carbon nitride as reactive template publication-title: ACS Nano – volume: 1 start-page: 445 year: 2016 end-page: 453 ident: bib0017 article-title: NiCoFe layered triple hydroxides with porous structures as high-performance electrocatalysts for overall water splitting publication-title: ACS Energy Lett. – volume: 55 start-page: 8627 year: 2019 end-page: 8630 ident: bib0021 article-title: A class of metal diboride electrocatalysts synthesized by a molten salt-assisted reaction for the hydrogen evolution reaction publication-title: Chem. Commun. – volume: 5 start-page: 2909 year: 2020 end-page: 2915 ident: bib0062 article-title: Ionothermal route to phase-pure RuB publication-title: ACS Energy Lett. – volume: 279 start-page: 620 year: 2015 end-page: 625 ident: bib0071 article-title: Cobalt-boride: an efficient and robust electrocatalyst for hydrogen evolution reaction publication-title: J. Power Sources – volume: 6 start-page: 235 year: 2019 end-page: 240 ident: bib0026 article-title: Role of boron and phosphorus in enhanced electrocatalytic oxygen evolution by nickel borides and nickel phosphides publication-title: ChemElectroChem – volume: 7 year: 2017 ident: bib0005 article-title: Earth-abundant iron diboride (FeB publication-title: Adv. Energy Mater. – volume: 13 start-page: 293 year: 2020 end-page: 314 ident: bib0039 article-title: Boride-based electrocatalysts: emerging candidates for water splitting publication-title: Nano Res. – volume: 12 start-page: 684 year: 2019 end-page: 692 ident: bib0072 article-title: High-performance oxygen evolution electrocatalysis by boronized metal sheets with self-functionalized surfaces publication-title: Energy Environ. Sci. – volume: 46 start-page: 337 year: 2017 end-page: 365 ident: bib0023 article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives publication-title: Chem. Soc. Rev. – volume: 56 start-page: 7293 year: 2020 end-page: 7296 ident: bib0002 article-title: Bismuth iron molybdenum oxide solid solution: a novel and durable electrocatalyst for overall water splitting publication-title: Chem. Commun. – volume: 8 start-page: 3803 year: 2018 end-page: 3811 ident: bib0007 article-title: Engineering cobalt defects in cobalt oxide for highly efficient electrocatalytic oxygen evolution publication-title: ACS Catal. – volume: 124 start-page: 11760 year: 2020 end-page: 11766 ident: bib0008 article-title: An atomically dispersed Pt catalyst anchored on an Fe/N/C support for enhanced hydrogen evolution reaction publication-title: J. Phys. Chem. C – volume: 128 start-page: 10091 year: 2016 end-page: 10095 ident: bib0056 article-title: activating ubiquitous rust towards low-cost, efficient, free-standing, and recoverable oxygen evolution electrodes publication-title: Angew. Chem. – volume: 41 start-page: 19847 year: 2016 ident: 10.1016/j.electacta.2021.138789_bib0054 article-title: Facile synthesis of CoNi2S4 and CuCo2S4 with different morphologies as prominent catalysts for hydrogen evolution reaction publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2016.08.096 – volume: 56 start-page: 7293 year: 2020 ident: 10.1016/j.electacta.2021.138789_bib0002 article-title: Bismuth iron molybdenum oxide solid solution: a novel and durable electrocatalyst for overall water splitting publication-title: Chem. Commun. doi: 10.1039/D0CC01931C – volume: 26 start-page: 4661 year: 2016 ident: 10.1016/j.electacta.2021.138789_bib0051 article-title: Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600566 – volume: 5 start-page: 2909 year: 2020 ident: 10.1016/j.electacta.2021.138789_bib0062 article-title: Ionothermal route to phase-pure RuB2 catalysts for efficient oxygen evolution and water splitting in acidic media publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c01384 – volume: 5 start-page: 1 year: 2014 ident: 10.1016/j.electacta.2021.138789_bib0016 article-title: Hydrogen evolution by a metal-free electrocatalyst publication-title: Nat. Commun. doi: 10.1038/ncomms4783 – volume: 25 start-page: 199 year: 1996 ident: 10.1016/j.electacta.2021.138789_bib0037 article-title: Solid state metathesis reaction for metal borides, silicides, pnictides and chalcogenides: ionic or elemental pathways publication-title: Chem. Soc. Rev. doi: 10.1039/cs9962500199 – volume: 6 start-page: 235 year: 2019 ident: 10.1016/j.electacta.2021.138789_bib0026 article-title: Role of boron and phosphorus in enhanced electrocatalytic oxygen evolution by nickel borides and nickel phosphides publication-title: ChemElectroChem doi: 10.1002/celc.201800669 – volume: 137 start-page: 4347 year: 2015 ident: 10.1016/j.electacta.2021.138789_bib0064 article-title: Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices publication-title: J. Am. Chem. Soc. doi: 10.1021/ja510442p – volume: 4 start-page: 312 year: 2020 ident: 10.1016/j.electacta.2021.138789_bib0042 article-title: Fuels, an advanced and highly efficient Ce assisted NiFe-LDH electrocatalyst for overall water splitting publication-title: Sustain. Energy Fuels doi: 10.1039/C9SE00700H – volume: 38 start-page: 2857 year: 2012 ident: 10.1016/j.electacta.2021.138789_bib0049 article-title: A study of the oxidation of ZrB2 powders during high-energy ball-milling in air publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2011.11.058 – volume: 126 start-page: 1195 year: 2004 ident: 10.1016/j.electacta.2021.138789_bib0059 article-title: Solution-phase synthesis of single-crystalline iron phosphide nanorods/nanowires publication-title: J. Am. Chem. Soc. doi: 10.1021/ja038401c – volume: 13 start-page: 387 year: 2015 ident: 10.1016/j.electacta.2021.138789_bib0060 article-title: High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc–air battery publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.02.025 – volume: 13 start-page: 293 year: 2020 ident: 10.1016/j.electacta.2021.138789_bib0039 article-title: Boride-based electrocatalysts: emerging candidates for water splitting publication-title: Nano Res. doi: 10.1007/s12274-020-2618-y – volume: 30 year: 2020 ident: 10.1016/j.electacta.2021.138789_bib0050 article-title: Metal boride-based catalysts for electrochemical water-splitting: a review publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201906481 – volume: 6 year: 2019 ident: 10.1016/j.electacta.2021.138789_bib0009 article-title: Surface-activated amorphous iron borides (FexB) as efficient electrocatalysts for oxygen evolution reaction publication-title: Adv. Mater. Interfaces – volume: 192 start-page: 126 year: 2016 ident: 10.1016/j.electacta.2021.138789_bib0025 article-title: Co-Ni-B nanocatalyst for efficient hydrogen evolution reaction in wide pH range publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.03.032 – volume: 32 start-page: 883 year: 2017 ident: 10.1016/j.electacta.2021.138789_bib0036 article-title: Synthesis and properties of Fe-B powders by molten salt method publication-title: J. Mater. Res. doi: 10.1557/jmr.2017.38 – volume: 9 start-page: 9973 year: 2019 ident: 10.1016/j.electacta.2021.138789_bib0014 article-title: Recent advances and prospective in ruthenium-based materials for electrochemical water splitting publication-title: ACS Catal. doi: 10.1021/acscatal.9b02457 – volume: 7 start-page: 17671 year: 2019 ident: 10.1016/j.electacta.2021.138789_bib0018 article-title: Engineering, FeP/MoS2 enriched with dense catalytic sites and high electrical conductivity for the hydrogen evolution reaction publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b03799 – volume: 42 start-page: 8237 year: 2013 ident: 10.1016/j.electacta.2021.138789_bib0035 article-title: Salt melt synthesis of ceramics, semiconductors and carbon nanostructures publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60159E – volume: 135 start-page: 16977 year: 2013 ident: 10.1016/j.electacta.2021.138789_bib0065 article-title: Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja407115p – volume: 4 start-page: 11973 year: 2016 ident: 10.1016/j.electacta.2021.138789_bib0022 article-title: Nanostructured catalysts for electrochemical water splitting: current state and prospects publication-title: J. Mater. Chem. A doi: 10.1039/C6TA02334G – volume: 9 year: 2019 ident: 10.1016/j.electacta.2021.138789_bib0031 article-title: Revealing activity trends of metal diborides toward pH-universal hydrogen evolution electrocatalysts with Pt-like activity publication-title: Adv. Energy Mater. – volume: 6 start-page: 580 year: 2016 ident: 10.1016/j.electacta.2021.138789_bib0011 article-title: Facile synthesis of nickel–iron/nanocarbon hybrids as advanced electrocatalysts for efficient water splitting publication-title: ACS Catal. doi: 10.1021/acscatal.5b02291 – volume: 354 year: 2020 ident: 10.1016/j.electacta.2021.138789_bib0066 article-title: Exploring the hydrogen evolution capabilities of earth-abundant ternary metal borides for neutral and alkaline water-splitting publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.136738 – volume: 7 start-page: 2248 year: 2020 ident: 10.1016/j.electacta.2021.138789_bib0015 article-title: Intermetallic borides: structures, synthesis and applications in electrocatalysis publication-title: Inorg. Chem. Front. doi: 10.1039/D0QI00146E – volume: 7 start-page: 310 year: 2000 ident: 10.1016/j.electacta.2021.138789_bib0048 article-title: Analysis of a zirconium diboride single crystal, ZrB2 (0001), by XPS publication-title: Surf. Sci. Spectra doi: 10.1116/1.1376317 – volume: 14 year: 2019 ident: 10.1016/j.electacta.2021.138789_bib0006 article-title: Effects of iron doping on the hydrogen evolution reaction performance of self-supported nickel selenides publication-title: Results Phys. doi: 10.1016/j.rinp.2019.102522 – volume: 139 start-page: 12915 year: 2017 ident: 10.1016/j.electacta.2021.138789_bib0032 article-title: Graphene-and phosphorene-like boron layers with contrasting activities in highly active Mo2B4 for hydrogen evolution publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07247 – volume: 52 start-page: 12614 year: 2016 ident: 10.1016/j.electacta.2021.138789_bib0013 article-title: Porous cobalt–iron nitride nanowires as excellent bifunctional electrocatalysts for overall water splitting publication-title: Chem. Commun. doi: 10.1039/C6CC06608A – volume: 3 start-page: 514 year: 2019 ident: 10.1016/j.electacta.2021.138789_bib0038 article-title: Ultrafine Co: FeS2/CoS2 heterostructure nanowires for highly efficient hydrogen evolution reaction publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b01769 – volume: 296 start-page: 644 year: 2019 ident: 10.1016/j.electacta.2021.138789_bib0041 article-title: Tunable nanocotton-like amorphous ternary Ni-Co-B: a highly efficient catalyst for enhanced oxygen evolution reaction publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.11.099 – volume: 6 start-page: eaba6586 year: 2020 ident: 10.1016/j.electacta.2021.138789_bib0012 article-title: O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution publication-title: Sci. Adv. doi: 10.1126/sciadv.aba6586 – volume: 6 start-page: 8069 year: 2016 ident: 10.1016/j.electacta.2021.138789_bib0068 article-title: Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: a review publication-title: ACS Catal. doi: 10.1021/acscatal.6b02479 – volume: 8 start-page: 3803 year: 2018 ident: 10.1016/j.electacta.2021.138789_bib0007 article-title: Engineering cobalt defects in cobalt oxide for highly efficient electrocatalytic oxygen evolution publication-title: ACS Catal. doi: 10.1021/acscatal.8b01046 – volume: 128 start-page: 10091 year: 2016 ident: 10.1016/j.electacta.2021.138789_bib0056 article-title: In situ activating ubiquitous rust towards low-cost, efficient, free-standing, and recoverable oxygen evolution electrodes publication-title: Angew. Chem. doi: 10.1002/ange.201604040 – volume: 10 start-page: 11544 year: 2018 ident: 10.1016/j.electacta.2021.138789_bib0033 article-title: Electrochemistry of layered metal diborides publication-title: Nanoscale doi: 10.1039/C8NR02142B – volume: 45 start-page: 7717 year: 2019 ident: 10.1016/j.electacta.2021.138789_bib0044 article-title: Investigation of electrical properties of pressureless sintered ZrB2-based ceramics publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.01.073 – volume: 184 start-page: 2047 year: 2011 ident: 10.1016/j.electacta.2021.138789_bib0043 article-title: Morphology evolution of ZrB2 nanoparticles synthesized by sol–gel method publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2011.05.040 – volume: 90 start-page: 1347 year: 2007 ident: 10.1016/j.electacta.2021.138789_bib0047 article-title: Refractory diborides of zirconium and hafnium publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2007.01583.x – volume: 8 start-page: 8296 year: 2018 ident: 10.1016/j.electacta.2021.138789_bib0020 article-title: Boron-and nitrogen-codoped molybdenum carbide nanoparticles imbedded in a BCN network as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions publication-title: ACS Catal. doi: 10.1021/acscatal.8b01794 – volume: 6 year: 2016 ident: 10.1016/j.electacta.2021.138789_bib0061 article-title: Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: oxygen and hydrogen evolution publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502313 – volume: 59 start-page: 3961 year: 2020 ident: 10.1016/j.electacta.2021.138789_bib0070 article-title: Transition-metal–boron intermetallics with strong Interatomic d–sp orbital hybridization for high-performance electrocatalysis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201915663 – volume: 7 year: 2017 ident: 10.1016/j.electacta.2021.138789_bib0005 article-title: Earth-abundant iron diboride (FeB2) nanoparticles as highly active bifunctional electrocatalysts for overall water splitting publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700513 – volume: 14 start-page: 1245 year: 2015 ident: 10.1016/j.electacta.2021.138789_bib0053 article-title: Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide publication-title: Nat. Mater. doi: 10.1038/nmat4410 – volume: 12 start-page: 684 year: 2019 ident: 10.1016/j.electacta.2021.138789_bib0072 article-title: High-performance oxygen evolution electrocatalysis by boronized metal sheets with self-functionalized surfaces publication-title: Energy Environ. Sci. doi: 10.1039/C8EE03405B – volume: 136 start-page: 11027 year: 2014 ident: 10.1016/j.electacta.2021.138789_bib0058 article-title: Noble-metal-free Fe–N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions publication-title: J. Am. Chem. Soc. doi: 10.1021/ja504696r – volume: 1 start-page: 445 year: 2016 ident: 10.1016/j.electacta.2021.138789_bib0017 article-title: NiCoFe layered triple hydroxides with porous structures as high-performance electrocatalysts for overall water splitting publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00219 – volume: 1 start-page: 1928 year: 2017 ident: 10.1016/j.electacta.2021.138789_bib0040 article-title: Fuels, molybdenum diboride nanoparticles as a highly efficient electrocatalyst for the hydrogen evolution reaction publication-title: Sustain. Energy Fuels doi: 10.1039/C7SE00397H – volume: 2 start-page: 2489 year: 2008 ident: 10.1016/j.electacta.2021.138789_bib0057 article-title: Synthesis of ternary metal nitride nanoparticles using mesoporous carbon nitride as reactive template publication-title: ACS Nano doi: 10.1021/nn800503a – volume: 387 start-page: 12 year: 2020 ident: 10.1016/j.electacta.2021.138789_bib0003 article-title: Prediction of intrinsic electrocatalytic activity for hydrogen evolution reaction in Ti4X3 (X= C, N) publication-title: J. Catal. doi: 10.1016/j.jcat.2020.04.010 – volume: 8 start-page: 1828 year: 2018 ident: 10.1016/j.electacta.2021.138789_bib0019 article-title: Hydrogen evolution reaction on hybrid catalysts of vertical MoS2 nanosheets and hydrogenated graphene publication-title: ACS Catal. doi: 10.1021/acscatal.7b03316 – volume: 279 start-page: 620 year: 2015 ident: 10.1016/j.electacta.2021.138789_bib0071 article-title: Cobalt-boride: an efficient and robust electrocatalyst for hydrogen evolution reaction publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.01.009 – volume: 6 start-page: 764 year: 2019 ident: 10.1016/j.electacta.2021.138789_bib0029 article-title: Performance of surface-oxidized Ni3B, Ni2B, and NiB2 electrocatalysts for overall water splitting publication-title: ChemElectroChem doi: 10.1002/celc.201801354 – volume: 29 start-page: 995 year: 2009 ident: 10.1016/j.electacta.2021.138789_bib0046 article-title: Densification of ZrB2-based composites and their mechanical and physical properties: a review publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2008.11.008 – volume: 46 start-page: 337 year: 2017 ident: 10.1016/j.electacta.2021.138789_bib0023 article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00328A – volume: 9 year: 2019 ident: 10.1016/j.electacta.2021.138789_bib0027 article-title: Ni-metalloid (B, Si, P, As, and Te) alloys as water oxidation electrocatalysts publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900796 – volume: 538 start-page: 164 year: 2012 ident: 10.1016/j.electacta.2021.138789_bib0045 article-title: Compounds, synthesis of ZrB2 powders by carbothermal and borothermal reduction publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2012.05.076 – volume: 55 start-page: 8627 year: 2019 ident: 10.1016/j.electacta.2021.138789_bib0021 article-title: A class of metal diboride electrocatalysts synthesized by a molten salt-assisted reaction for the hydrogen evolution reaction publication-title: Chem. Commun. doi: 10.1039/C9CC03638E – volume: 53 start-page: 5412 year: 2017 ident: 10.1016/j.electacta.2021.138789_bib0055 article-title: CoNi2Se4 as an efficient bifunctional electrocatalyst for overall water splitting publication-title: Chem. Commun. doi: 10.1039/C7CC01489A – volume: 56 start-page: 3061 year: 2020 ident: 10.1016/j.electacta.2021.138789_bib0069 article-title: Crystal phase-dependent electrocatalytic hydrogen evolution performance of ruthenium–boron intermetallics publication-title: Chem. Commun. doi: 10.1039/D0CC00070A – volume: 129 start-page: 5667 year: 2017 ident: 10.1016/j.electacta.2021.138789_bib0001 article-title: Boron-dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction publication-title: Angew. Chem. doi: 10.1002/ange.201611756 – volume: 389 start-page: 29 year: 2020 ident: 10.1016/j.electacta.2021.138789_bib0004 article-title: Active nickel derived from coordination complex with weak inter/intra-molecular interactions for efficient hydrogen evolution via a tandem mechanism publication-title: J. Catal. doi: 10.1016/j.jcat.2020.05.013 – volume: 11 start-page: 1 year: 2021 ident: 10.1016/j.electacta.2021.138789_bib0034 article-title: Metal doped layered MgB2 nanoparticles as novel electrocatalysts for water splitting publication-title: Sci. Rep. doi: 10.1038/s41598-021-83066-7 – volume: 124 start-page: 11760 year: 2020 ident: 10.1016/j.electacta.2021.138789_bib0008 article-title: An atomically dispersed Pt catalyst anchored on an Fe/N/C support for enhanced hydrogen evolution reaction publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c01043 – volume: 7 start-page: 1 year: 2016 ident: 10.1016/j.electacta.2021.138789_bib0052 article-title: A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide publication-title: Nat. Commun. – volume: 2 start-page: 176 year: 2018 ident: 10.1016/j.electacta.2021.138789_bib0063 article-title: Abundant vanadium diboride with graphene-like boron layers for hydrogen evolution publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b01615 – volume: 7 start-page: 5288 year: 2019 ident: 10.1016/j.electacta.2021.138789_bib0028 article-title: In situ structural evolution of a nickel boride catalyst: synergistic geometric and electronic optimization for the oxygen evolution reaction publication-title: J. Mater. Chem. A doi: 10.1039/C9TA00489K – volume: 86 start-page: 763 year: 1986 ident: 10.1016/j.electacta.2021.138789_bib0024 article-title: Synthetically useful reactions with metal boride and aluminide catalysts publication-title: Chem. Rev. doi: 10.1021/cr00075a003 – volume: 12 start-page: 9327 year: 2020 ident: 10.1016/j.electacta.2021.138789_bib0067 article-title: Designing transition-metal-boride-based electrocatalysts for applications in electrochemical water splitting publication-title: Nanoscale doi: 10.1039/D0NR01279C – volume: 56 start-page: 6572 year: 2017 ident: 10.1016/j.electacta.2021.138789_bib0030 article-title: Crystallinity-modulated electrocatalytic activity of a nickel (II) borate thin layer on Ni3B for efficient water oxidation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201703183 – volume: 19 start-page: 98 year: 2016 ident: 10.1016/j.electacta.2021.138789_bib0010 article-title: Electroless plated Ni–Bx films as highly active electrocatalysts for hydrogen production from water over a wide pH range publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.11.020 |
SSID | ssj0007670 |
Score | 2.5038428 |
Snippet | •Successful incorporation of Ni, Co, and Fe into the structure of layered ZrB2 substantially enhanced both OER and HER performance.•Zr0.8Ni0.2B2 delivered a... Recent years have witnessed an unprecedented surge in research on earth-abundant and efficient electrocatalysts for the water splitting process. Among those,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 138789 |
SubjectTerms | Catalysts Chemical reactions Clean energy Cobalt Crystal structure Durability Electrocatalysts Hydrogen evolution reaction Iron Layered ZrB2 electrocatalyst Metal substitution Nickel Oxygen evolution reaction Oxygen evolution reactions Refractory materials Substitutes Water splitting Zirconium compounds |
Title | Metal-substituted zirconium diboride (Zr1-xTMxB2; TM = Ni, Co, and Fe) as low-cost and high-performance bifunctional electrocatalyst for water splitting |
URI | https://dx.doi.org/10.1016/j.electacta.2021.138789 https://www.proquest.com/docview/2568705210 |
Volume | 389 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSxxBEG5EDyaH4CvExEgfPCRga_d094yT4MEsLpuE3dMKkkvTTxgxu8vOLmty8Id48rf4y1I9D40S8BCYywxdw9BV81VVU1UfQnvapiahMiGMBUqETQMxknuSJzLxMgBs2pgo9gdp70x8O5fnS6jT9sLEssoG-2tMr9C6eXLY7ObhpChijy_jIjY4gFXFMW-xg11k0coPrh_KPLI0oy2LQVz9qMaroprRcEGimLADxo-yyPf-bw_1BKsrB9RdQ6-ayBGf1B-3jpb8aAOtdlrCtg308q_Zgpvopu8hriYlAENdDeDw72IK2W8x_4ldERmxnMcffkwZuRr2r74kn_Gwf3d7fHc7KPZxZ7yP9cjhrv-IdYkvxwtix-WsehYnHJPJQ8MBNkX0jvWhIm54dapjoV8gAavwAgLaKS4h3q2qrLfQWfd02OmRhoiBWC74jHDuuJbehJD7RNMs4xLStKCN1C6jhoI-GSiW6VwDdPpcpNRYy6Q1ALUusfw1Wh6NR_4Nwj7IPBxZmUJcKoIQIGKMSG3OXBakddsobTdf2WZKeSTLuFRtOdqFuteailpTtda2Eb0XnNSDOp4X-dRqVz2yOQXu5HnhndYeVPPblwriR8A_iIjo2_959zv0It7VpWw7aHk2nfv3EPvMzG5l3Lto5eTr997gDxqCB4M |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbK9lA4ICigFkrxgQNINbVjO2lAPbQrVlva7GkrVVwsP6WgsrvabNXCT-HU39JfxjiPLUVIPSDl5GSiyDP55htrHgi91TY1CZUJYSxQImwaiJHckzyRiZcBYNPGQLEYpcNT8eVMnq2gflcLE9MqW-xvML1G63Zlt93N3VlZxhpfxkUscACrim3eHqDV2J1K9tDqwdHxcLQE5CzNaDfIIArcSfOqp81ouCBWTNgHxveyOPL9307qL7iufdDgCXrckkd80HzfU7TiJ-tord_NbFtHj_5oL_gM_So8UGtSATY0CQEO_yznEACXF9-xK-NQLOfxu69zRq7GxdVh8gmPi5vr_ZvrUbmD-9MdrCcOD_x7rCt8Pr0kdlot6rXY5JjMbmsOsCmjg2zOFXE7Wqc-GfoBEvAUvgROO8cVUN460fo5Oh18HveHpJ3FQCwXfEE4d1xLb0LIfaJplnEJkVrQRmqXUUNBpQx0y3SuAT19LlJqrGXSGkBbl1j-AvUm04nfQNgHmYc9K1OgpiIIASLGiNTmzGVBWreJ0m7zlW0blcd5Geeqy0j7ppZaU1FrqtHaJqJLwVnTq-N-kY-ddtUds1PgUe4X3ursQbV_fqWAQgIEAimiL__n3W_Q2nBcnKiTo9HxK_Qw3mky27ZQbzG_8K-BCi3MdmvqvwEPAQo0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal-substituted+zirconium+diboride+%28Zr1-xTMxB2%3B+TM+%3D+Ni%2C+Co%2C+and+Fe%29+as+low-cost+and+high-performance+bifunctional+electrocatalyst+for+water+splitting&rft.jtitle=Electrochimica+acta&rft.au=Mete%2C+Busra&rft.au=Peighambardoust%2C+Naeimeh+Sadat&rft.au=Aydin%2C+Samet&rft.au=Sadeghi%2C+Ebrahim&rft.date=2021-09-01&rft.pub=Elsevier+BV&rft.issn=0013-4686&rft.eissn=1873-3859&rft.volume=389&rft.spage=1&rft_id=info:doi/10.1016%2Fj.electacta.2021.138789&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon |