Metal-substituted zirconium diboride (Zr1-xTMxB2; TM = Ni, Co, and Fe) as low-cost and high-performance bifunctional electrocatalyst for water splitting

•Successful incorporation of Ni, Co, and Fe into the structure of layered ZrB2 substantially enhanced both OER and HER performance.•Zr0.8Ni0.2B2 delivered a very low overpotential of 350 mV, only 60 mV higher than the obtained value for RuO2.•Surprisingly, after 1000 cycles of CV sweeps, Zr0.8Co0.2B...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 389; p. 138789
Main Authors Mete, Busra, Peighambardoust, Naeimeh Sadat, Aydin, Samet, Sadeghi, Ebrahim, Aydemir, Umut
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.09.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Successful incorporation of Ni, Co, and Fe into the structure of layered ZrB2 substantially enhanced both OER and HER performance.•Zr0.8Ni0.2B2 delivered a very low overpotential of 350 mV, only 60 mV higher than the obtained value for RuO2.•Surprisingly, after 1000 cycles of CV sweeps, Zr0.8Co0.2B2 exhibited an enhancement in HER, dropping overpotential from 420 to 380 mV.•Both Zr0.8Ni0.2B2 and Zr0.8Co0.2B2 displayed decent long-run stability after 12 h with extremely infinitesimal overpotential growth. Recent years have witnessed an unprecedented surge in research on earth-abundant and efficient electrocatalysts for the water splitting process. Among those, the development of boron-based advanced catalysts is subject to designing the active and durable compounds, working as bifunctional materials under alkaline medium. In this study, a series of ZrB2-based catalysts with a general formula of Zr(1-x)TMxB2 (x = 0.05, 0.1, and 0.2) (TM = Fe, Co, and Ni) were prepared through a straightforward route and employed as bifunctional electrocatalysts in hydrogen and oxygen evolution reactions (HER and OER). The electrochemical measurements confirmed that the incorporation of Ni into the crystal structure of ZrB2 in the Zr0.8Ni0.2B2 sample led to an onset potential of 1.58 V in OER at a current density of 10 mA cm–2, indicating a remarkable performance with a very low overpotential of 350 mV. Besides, Zr0.8Ni0.2B2 displayed an infinitesimal value of 56.6 mV dec–1 regarding the Tafel slope, which was lesser as compared to the commercial RuO2 (66.2 mV dec–1). For the case of HER, Zr0.8Co0.2B2 showed the best performance compared to other samples with an overpotential of 420 mV and a Tafel slope of 101.6 mV dec–1, following the Volmer mechanism. Both catalysts were examined for their long-term stability, manifesting excellent catalytic durability even after 12 h. Surprisingly, Zr0.8Co0.2B2 exhibited a drop from 420 to 380 mV in the overpotential value after 1000 CV sweeps, providing a promising performance in terms of HER. As-prepared metal-substituted ZrB2 electrocatalysts have great potential to be implemented in various green energy system applications. [Display omitted]
AbstractList Recent years have witnessed an unprecedented surge in research on earth-abundant and efficient electrocatalysts for the water splitting process. Among those, the development of boron-based advanced catalysts is subject to designing the active and durable compounds, working as bifunctional materials under alkaline medium. In this study, a series of ZrB2-based catalysts with a general formula of Zr(1-x)TMxB2 (x = 0.05, 0.1, and 0.2) (TM = Fe, Co, and Ni) were prepared through a straightforward route and employed as bifunctional electrocatalysts in hydrogen and oxygen evolution reactions (HER and OER). The electrochemical measurements confirmed that the incorporation of Ni into the crystal structure of ZrB2 in the Zr0.8Ni0.2B2 sample led to an onset potential of 1.58 V in OER at a current density of 10 mA cm–2, indicating a remarkable performance with a very low overpotential of 350 mV. Besides, Zr0.8Ni0.2B2 displayed an infinitesimal value of 56.6 mV dec−1 regarding the Tafel slope, which was lesser as compared to the commercial RuO2 (66.2 mV dec−1). For the case of HER, Zr0.8Co0.2B2 showed the best performance compared to other samples with an overpotential of 420 mV and a Tafel slope of 101.6 mV dec−1, following the Volmer mechanism. Both catalysts were examined for their long-term stability, manifesting excellent catalytic durability even after 12 h. Surprisingly, Zr0.8Co0.2B2 exhibited a drop from 420 to 380 mV in the overpotential value after 1000 CV sweeps, providing a promising performance in terms of HER. As-prepared metal-substituted ZrB2 electrocatalysts have great potential to be implemented in various green energy system applications.
•Successful incorporation of Ni, Co, and Fe into the structure of layered ZrB2 substantially enhanced both OER and HER performance.•Zr0.8Ni0.2B2 delivered a very low overpotential of 350 mV, only 60 mV higher than the obtained value for RuO2.•Surprisingly, after 1000 cycles of CV sweeps, Zr0.8Co0.2B2 exhibited an enhancement in HER, dropping overpotential from 420 to 380 mV.•Both Zr0.8Ni0.2B2 and Zr0.8Co0.2B2 displayed decent long-run stability after 12 h with extremely infinitesimal overpotential growth. Recent years have witnessed an unprecedented surge in research on earth-abundant and efficient electrocatalysts for the water splitting process. Among those, the development of boron-based advanced catalysts is subject to designing the active and durable compounds, working as bifunctional materials under alkaline medium. In this study, a series of ZrB2-based catalysts with a general formula of Zr(1-x)TMxB2 (x = 0.05, 0.1, and 0.2) (TM = Fe, Co, and Ni) were prepared through a straightforward route and employed as bifunctional electrocatalysts in hydrogen and oxygen evolution reactions (HER and OER). The electrochemical measurements confirmed that the incorporation of Ni into the crystal structure of ZrB2 in the Zr0.8Ni0.2B2 sample led to an onset potential of 1.58 V in OER at a current density of 10 mA cm–2, indicating a remarkable performance with a very low overpotential of 350 mV. Besides, Zr0.8Ni0.2B2 displayed an infinitesimal value of 56.6 mV dec–1 regarding the Tafel slope, which was lesser as compared to the commercial RuO2 (66.2 mV dec–1). For the case of HER, Zr0.8Co0.2B2 showed the best performance compared to other samples with an overpotential of 420 mV and a Tafel slope of 101.6 mV dec–1, following the Volmer mechanism. Both catalysts were examined for their long-term stability, manifesting excellent catalytic durability even after 12 h. Surprisingly, Zr0.8Co0.2B2 exhibited a drop from 420 to 380 mV in the overpotential value after 1000 CV sweeps, providing a promising performance in terms of HER. As-prepared metal-substituted ZrB2 electrocatalysts have great potential to be implemented in various green energy system applications. [Display omitted]
ArticleNumber 138789
Author Mete, Busra
Aydemir, Umut
Aydin, Samet
Sadeghi, Ebrahim
Peighambardoust, Naeimeh Sadat
Author_xml – sequence: 1
  givenname: Busra
  orcidid: 0000-0003-4998-0698
  surname: Mete
  fullname: Mete, Busra
  organization: Koç University Boron and Advanced Materials Application and Research Center (KUBAM), Sariyer, Istanbul 34450, Turkey
– sequence: 2
  givenname: Naeimeh Sadat
  surname: Peighambardoust
  fullname: Peighambardoust, Naeimeh Sadat
  organization: Koç University Boron and Advanced Materials Application and Research Center (KUBAM), Sariyer, Istanbul 34450, Turkey
– sequence: 3
  givenname: Samet
  surname: Aydin
  fullname: Aydin, Samet
  organization: Koç University Boron and Advanced Materials Application and Research Center (KUBAM), Sariyer, Istanbul 34450, Turkey
– sequence: 4
  givenname: Ebrahim
  surname: Sadeghi
  fullname: Sadeghi, Ebrahim
  organization: Koç University Boron and Advanced Materials Application and Research Center (KUBAM), Sariyer, Istanbul 34450, Turkey
– sequence: 5
  givenname: Umut
  orcidid: 0000-0003-1164-1973
  surname: Aydemir
  fullname: Aydemir, Umut
  email: uaydemir@ku.edu.tr
  organization: Koç University Boron and Advanced Materials Application and Research Center (KUBAM), Sariyer, Istanbul 34450, Turkey
BookMark eNqNkcFuEzEQhi1UJNLCM2CJC0h1sNfZ9a5QDyWiLVIDl3DhYnnt2XaizTrYXtryKD31WfpkdZqqBy4gjeSR9X8zo__fJ3uDH4CQt4JPBRfVx9UUerDJ5JoWvBBTIWtVNy_IRNRKMlmXzR6ZcC4km1V19Yrsx7jinKtK8Qm5XUAyPYtjGxOmMYGjfzBYP-C4pg5bH9ABff8zCHa9XFx_Lj7R5eL-7uj-7hse0rk_pGZw9AQ-UBNp76-Y9TE9_l3ixSXbQOh8WJvBAm2xGweb0A-mp483B29N3n6TiayiVyZBoHHTY0o4XLwmLzvTR3jz9B6QHydflvMzdv799Ov8-JxZOZOJSemkKaHtugYKw5WSZd00nWlL4xRvubRCQNkJ0xiRu2ZW8dZaUdpWVYUrrDwg73ZzN8H_GiEmvfJjyEdGXZRVrXhZCJ5VaqeywccYoNObgGsTbrTgehuEXunnIPQ2CL0LIpNHf5EWk9n6kILB_j_44x0P2YTfCEFHi5AddRiyXjuP_5zxAPVJr40
CitedBy_id crossref_primary_10_1021_acscatal_2c02672
crossref_primary_10_1016_j_jallcom_2022_164148
crossref_primary_10_2139_ssrn_3991604
crossref_primary_10_1021_acs_inorgchem_2c00403
crossref_primary_10_1016_j_matchemphys_2022_126886
crossref_primary_10_1039_D3MA00685A
crossref_primary_10_1016_j_apt_2022_103892
crossref_primary_10_3390_catal12020222
crossref_primary_10_1016_j_surfin_2024_104619
crossref_primary_10_1002_er_8421
crossref_primary_10_1021_acs_inorgchem_4c04794
crossref_primary_10_1002_eem2_12873
crossref_primary_10_1016_j_surfin_2024_104491
crossref_primary_10_1016_j_jallcom_2021_161804
crossref_primary_10_1007_s10854_023_10811_1
crossref_primary_10_1002_cctc_202400022
crossref_primary_10_1016_j_renene_2025_122370
crossref_primary_10_1021_acsaem_3c03227
crossref_primary_10_1016_j_electacta_2022_140484
crossref_primary_10_1016_j_apsusc_2024_161851
crossref_primary_10_1149_1945_7111_ac7172
crossref_primary_10_1021_acssuschemeng_2c05251
crossref_primary_10_1016_j_ijhydene_2022_07_146
crossref_primary_10_1016_j_ijhydene_2023_04_085
crossref_primary_10_1021_acs_inorgchem_1c03374
crossref_primary_10_1021_acsomega_1c05183
crossref_primary_10_1002_est2_70112
crossref_primary_10_1149_1945_7111_ac83f3
Cites_doi 10.1016/j.ijhydene.2016.08.096
10.1039/D0CC01931C
10.1002/adfm.201600566
10.1021/acsenergylett.0c01384
10.1038/ncomms4783
10.1039/cs9962500199
10.1002/celc.201800669
10.1021/ja510442p
10.1039/C9SE00700H
10.1016/j.ceramint.2011.11.058
10.1021/ja038401c
10.1016/j.nanoen.2015.02.025
10.1007/s12274-020-2618-y
10.1002/adfm.201906481
10.1016/j.apcatb.2016.03.032
10.1557/jmr.2017.38
10.1021/acscatal.9b02457
10.1021/acssuschemeng.9b03799
10.1039/C3CS60159E
10.1021/ja407115p
10.1039/C6TA02334G
10.1021/acscatal.5b02291
10.1016/j.electacta.2020.136738
10.1039/D0QI00146E
10.1116/1.1376317
10.1016/j.rinp.2019.102522
10.1021/jacs.7b07247
10.1039/C6CC06608A
10.1021/acsaem.9b01769
10.1016/j.electacta.2018.11.099
10.1126/sciadv.aba6586
10.1021/acscatal.6b02479
10.1021/acscatal.8b01046
10.1002/ange.201604040
10.1039/C8NR02142B
10.1016/j.ceramint.2019.01.073
10.1016/j.jssc.2011.05.040
10.1111/j.1551-2916.2007.01583.x
10.1021/acscatal.8b01794
10.1002/aenm.201502313
10.1002/anie.201915663
10.1002/aenm.201700513
10.1038/nmat4410
10.1039/C8EE03405B
10.1021/ja504696r
10.1021/acsenergylett.6b00219
10.1039/C7SE00397H
10.1021/nn800503a
10.1016/j.jcat.2020.04.010
10.1021/acscatal.7b03316
10.1016/j.jpowsour.2015.01.009
10.1002/celc.201801354
10.1016/j.jeurceramsoc.2008.11.008
10.1039/C6CS00328A
10.1002/aenm.201900796
10.1016/j.jallcom.2012.05.076
10.1039/C9CC03638E
10.1039/C7CC01489A
10.1039/D0CC00070A
10.1002/ange.201611756
10.1016/j.jcat.2020.05.013
10.1038/s41598-021-83066-7
10.1021/acs.jpcc.0c01043
10.1021/acsaem.8b01615
10.1039/C9TA00489K
10.1021/cr00075a003
10.1039/D0NR01279C
10.1002/anie.201703183
10.1016/j.nanoen.2015.11.020
ContentType Journal Article
Copyright 2021
Copyright Elsevier BV Sep 1, 2021
Copyright_xml – notice: 2021
– notice: Copyright Elsevier BV Sep 1, 2021
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.electacta.2021.138789
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3859
ExternalDocumentID 10_1016_j_electacta_2021_138789
S0013468621010793
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
WH7
XPP
YK3
ZMT
~02
~G-
29G
41~
53G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIDUJ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
LPU
R2-
RIG
SC5
SCB
SCH
SEW
SSH
T9H
VH1
WUQ
XOL
ZY4
7SR
7U5
8BQ
8FD
EFKBS
JG9
L7M
ID FETCH-LOGICAL-c343t-33d3a5ebff9e2a07735899fab5ad70b03c11e5f1a9a111e9460bcc15cb762d2c3
IEDL.DBID .~1
ISSN 0013-4686
IngestDate Fri Jul 25 08:26:06 EDT 2025
Tue Jul 01 03:02:25 EDT 2025
Thu Apr 24 22:56:19 EDT 2025
Fri Feb 23 02:38:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hydrogen evolution reaction
Water splitting
Oxygen evolution reaction
Layered ZrB2 electrocatalyst
Metal substitution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-33d3a5ebff9e2a07735899fab5ad70b03c11e5f1a9a111e9460bcc15cb762d2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4998-0698
0000-0003-1164-1973
PQID 2568705210
PQPubID 2045485
ParticipantIDs proquest_journals_2568705210
crossref_primary_10_1016_j_electacta_2021_138789
crossref_citationtrail_10_1016_j_electacta_2021_138789
elsevier_sciencedirect_doi_10_1016_j_electacta_2021_138789
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Electrochimica acta
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Mazánek, Nahdi, Luxa, Sofer, Pumera (bib0033) 2018; 10
Guo, Wu, Chen, Liu, Yang, Ai, Zou, Science (bib0072) 2019; 12
Ortiz, Zamora, Rodríguez-Rojas (bib0049) 2012; 38
Li, Chen, Liu, Gao, Zou (bib0028) 2019; 7
Ai, Zou, Chen, Su, Feng, Li, Liu, Zhang, Zou (bib0070) 2020; 59
Feng, Wang, Liu, Guo, Hu, Zhang, Jian, Yin, Zhang, Xie (bib0044) 2019; 45
Liu, Ran, Xia, Yi, Ji (bib0036) 2017; 32
Gupta, Patel, Miotello, Patel (bib0050) 2020; 30
Masa, Andronescu, Antoni, Sinev, Seisel, Elumeeva, Barwe, Marti-Sanchez, Arbiol, Cuenya (bib0026) 2019; 6
Wang, He, Xie, Jia, He, Zhang, Dong, Liu, Zhang, Li (bib0041) 2019; 296
Jung, Kim, Jung, Choi (bib0045) 2012; 538
Li, Wang, Zhang, Zou, Zou, Yang (bib0008) 2020; 124
Wang, Li, Zhao, Hao, Ma, Li, Guo (bib0009) 2019; 6
Zhang, Bai, Zhang, Li, Zhou (bib0006) 2019; 14
Fahrenholtz, Hilmas, Talmy, Zaykoski (bib0047) 2007; 90
Ge, Wu, Xu, Ye, Shen (bib0054) 2016; 41
Gupta, Patel, Fernandes, Kadrekar, Dashora, Yadav, Bhattacharyya, Jha, Miotello, Kothari (bib0025) 2016; 192
Jiang, Niu, Tang, Zhang, Liu, Zhang, Chen, Li, Gu, Wan (bib0030) 2017; 56
Li, Zou, Ai, Chen, Sun, Zou (bib0031) 2019; 9
Sivanantham, Ganesan, Shanmugam (bib0051) 2016; 26
Lin, Zhu, Xu (bib0058) 2014; 136
Guo (bib0046) 2009; 29
Wang, Wu, Gao, Miao, Wang, Bao (bib0060) 2015; 13
Park, Encinas, Scheifers, Zhang, Fokwa (bib0001) 2017; 129
Park, Zhang, Scheifers, Jothi, Encinas, Fokwa (bib0032) 2017; 139
Gupta, Patel, Miotello, Kothari (bib0071) 2015; 279
Fischer, Müller, Antonietti, Thomas (bib0057) 2008; 2
Yang, Qian, Li, Zhang, Mu, Do, Zhou, Dong, Yan, Qin (bib0012) 2020; 6
Yang, Ma, Lv, Huang, Dai (bib0003) 2020; 387
Zhang, Xu, Li, Li, Yang, Liang (bib0011) 2016; 6
Liu, Fechler, Antonietti (bib0035) 2013; 42
Parkin (bib0037) 1996; 25
Yuan, Zhao, Hao, Li, Wang, Ma, Guo (bib0029) 2019; 6
Zhang, Li, Jiang, Zhao, Duan, Li, Feng (bib0043) 2011; 184
Zhang, Wang, Yang, Yao, Han, Sun (bib0010) 2016; 19
Fernandes, Chunduri, Gupta, Kadrekar, Arya, Miotello, Patel (bib0066) 2020; 354
Masa, Piontek, Wilde, Antoni, Eckhard, Chen, Muhler, Apfel, Schuhmann (bib0027) 2019; 9
Cabán-Acevedo, Stone, Schmidt, Thomas, Ding, Chang, Tsai, He, Jin (bib0053) 2015; 14
Chen, Liu, Wang, Zhao, Zhang, Cheng, Li, Ji, Pu, Mu (bib0062) 2020; 5
McCrory, Jung, Peters, Jaramillo (bib0065) 2013; 135
Ganem, Osby (bib0024) 1986; 86
Sadeghi, Peighambardoust, Khatamian, Unal, Aydemir (bib0034) 2021; 11
McCrory, Jung, Ferrer, Chatman, Peters, Jaramillo (bib0064) 2015; 137
Li, Wen, Li, Dun, Xing, Lu, Adhikari, Jiang, Carroll, Geyer (bib0005) 2017; 7
Chen, Duan, Wei, Wang, Zhang, Ni (bib0039) 2020; 13
Wang, Xu, Li (bib0017) 2016; 1
Yu, He, Yang, Zhou, Shao, Ni (bib0014) 2019; 9
Liu, Hu, Jiang, Xiang, Weng, Li, Fan, Yu, Altman, Wang (bib0052) 2016; 7
Li, Hao, Abudula, Guan (bib0022) 2016; 4
Suen, Hung, Quan, Zhang, Xu, Chen (bib0023) 2017; 46
Zhang, Zhang, Pan, Shen, Mahmood, Ma, Shi, Jia, Wang, Zhang (bib0007) 2018; 8
Khatun, Roy (bib0002) 2020; 56
Qi, Gu, Sun, Lian, Yuan, Hu, Deng, Yao, Guo, Peng (bib0004) 2020; 389
Wang, Liu, Liu, Xie, Huo, Wang (bib0013) 2016; 52
Guo, Wu, Ai, Chen, Li, Chen, Zou (bib0021) 2019; 55
Qian, Kim, Ma, Tsui, Yang, Liu (bib0059) 2004; 126
Zheng, Jiao, Zhu, Li, Han, Chen, Du, Jaroniec, Qiao (bib0016) 2014; 5
Jadhav, Roy, Desalegan, Seo (bib0042) 2020; 4
Singh, Trenary, Paderno (bib0048) 2000; 7
GolrokháAmin (bib0055) 2017; 53
Anjum, Lee, Lee (bib0020) 2018; 8
Suliman, Adam, Li, Tian, Siddiqui, Yamani, Qamar (bib0018) 2019; 7
Yan, Wang, Zhou, Lin, Song, Shi, Yao (bib0038) 2019; 3
Jiang, Lu (bib0067) 2020; 12
Han, Tong, Liu, Chen, Wen, Yang, Guo (bib0019) 2018; 8
Anantharaj, Ede, Sakthikumar, Karthick, Mishra, Kundu (bib0068) 2016; 6
Masa, Weide, Peeters, Sinev, Xia, Sun, Somsen, Muhler, Schuhmann (bib0061) 2016; 6
Jothi, Zhang, Scheifers, Park, Fokwa (bib0040) 2017; 1
Zhong, Wang, Meng, Zhang (bib0056) 2016; 128
Jothi, Zhang, Yubuta, Culver, Conley, Fokwa (bib0063) 2018; 2
Zou, Wang, Ai, Chen, Zou (bib0069) 2020; 56
Chen, Zou (bib0015) 2020; 7
Chen (10.1016/j.electacta.2021.138789_bib0062) 2020; 5
McCrory (10.1016/j.electacta.2021.138789_bib0064) 2015; 137
Wang (10.1016/j.electacta.2021.138789_bib0060) 2015; 13
Parkin (10.1016/j.electacta.2021.138789_bib0037) 1996; 25
Yuan (10.1016/j.electacta.2021.138789_bib0029) 2019; 6
Liu (10.1016/j.electacta.2021.138789_bib0035) 2013; 42
Ganem (10.1016/j.electacta.2021.138789_bib0024) 1986; 86
Jothi (10.1016/j.electacta.2021.138789_bib0040) 2017; 1
Singh (10.1016/j.electacta.2021.138789_bib0048) 2000; 7
Gupta (10.1016/j.electacta.2021.138789_bib0071) 2015; 279
Li (10.1016/j.electacta.2021.138789_bib0008) 2020; 124
Suen (10.1016/j.electacta.2021.138789_bib0023) 2017; 46
Guo (10.1016/j.electacta.2021.138789_bib0072) 2019; 12
Ge (10.1016/j.electacta.2021.138789_bib0054) 2016; 41
Zou (10.1016/j.electacta.2021.138789_bib0069) 2020; 56
GolrokháAmin (10.1016/j.electacta.2021.138789_bib0055) 2017; 53
Lin (10.1016/j.electacta.2021.138789_bib0058) 2014; 136
Jung (10.1016/j.electacta.2021.138789_bib0045) 2012; 538
Masa (10.1016/j.electacta.2021.138789_bib0026) 2019; 6
Zhang (10.1016/j.electacta.2021.138789_bib0010) 2016; 19
Feng (10.1016/j.electacta.2021.138789_bib0044) 2019; 45
Fahrenholtz (10.1016/j.electacta.2021.138789_bib0047) 2007; 90
Khatun (10.1016/j.electacta.2021.138789_bib0002) 2020; 56
Zhang (10.1016/j.electacta.2021.138789_bib0011) 2016; 6
Jiang (10.1016/j.electacta.2021.138789_bib0067) 2020; 12
Zhang (10.1016/j.electacta.2021.138789_bib0006) 2019; 14
Yu (10.1016/j.electacta.2021.138789_bib0014) 2019; 9
Ai (10.1016/j.electacta.2021.138789_bib0070) 2020; 59
Wang (10.1016/j.electacta.2021.138789_bib0041) 2019; 296
Fischer (10.1016/j.electacta.2021.138789_bib0057) 2008; 2
Qi (10.1016/j.electacta.2021.138789_bib0004) 2020; 389
Zhang (10.1016/j.electacta.2021.138789_bib0043) 2011; 184
Gupta (10.1016/j.electacta.2021.138789_bib0050) 2020; 30
Wang (10.1016/j.electacta.2021.138789_bib0017) 2016; 1
Zhang (10.1016/j.electacta.2021.138789_bib0007) 2018; 8
Park (10.1016/j.electacta.2021.138789_bib0001) 2017; 129
Wang (10.1016/j.electacta.2021.138789_bib0013) 2016; 52
Qian (10.1016/j.electacta.2021.138789_bib0059) 2004; 126
Masa (10.1016/j.electacta.2021.138789_bib0061) 2016; 6
Sivanantham (10.1016/j.electacta.2021.138789_bib0051) 2016; 26
Anantharaj (10.1016/j.electacta.2021.138789_bib0068) 2016; 6
Jiang (10.1016/j.electacta.2021.138789_bib0030) 2017; 56
Jadhav (10.1016/j.electacta.2021.138789_bib0042) 2020; 4
Li (10.1016/j.electacta.2021.138789_bib0031) 2019; 9
Li (10.1016/j.electacta.2021.138789_bib0005) 2017; 7
Zheng (10.1016/j.electacta.2021.138789_bib0016) 2014; 5
Anjum (10.1016/j.electacta.2021.138789_bib0020) 2018; 8
Gupta (10.1016/j.electacta.2021.138789_bib0025) 2016; 192
Guo (10.1016/j.electacta.2021.138789_bib0046) 2009; 29
Li (10.1016/j.electacta.2021.138789_bib0028) 2019; 7
Chen (10.1016/j.electacta.2021.138789_bib0039) 2020; 13
Han (10.1016/j.electacta.2021.138789_bib0019) 2018; 8
Guo (10.1016/j.electacta.2021.138789_bib0021) 2019; 55
Sadeghi (10.1016/j.electacta.2021.138789_bib0034) 2021; 11
Yang (10.1016/j.electacta.2021.138789_bib0003) 2020; 387
Cabán-Acevedo (10.1016/j.electacta.2021.138789_bib0053) 2015; 14
Liu (10.1016/j.electacta.2021.138789_bib0052) 2016; 7
Suliman (10.1016/j.electacta.2021.138789_bib0018) 2019; 7
Park (10.1016/j.electacta.2021.138789_bib0032) 2017; 139
Wang (10.1016/j.electacta.2021.138789_bib0009) 2019; 6
Jothi (10.1016/j.electacta.2021.138789_bib0063) 2018; 2
Yan (10.1016/j.electacta.2021.138789_bib0038) 2019; 3
McCrory (10.1016/j.electacta.2021.138789_bib0065) 2013; 135
Li (10.1016/j.electacta.2021.138789_bib0022) 2016; 4
Yang (10.1016/j.electacta.2021.138789_bib0012) 2020; 6
Chen (10.1016/j.electacta.2021.138789_bib0015) 2020; 7
Masa (10.1016/j.electacta.2021.138789_bib0027) 2019; 9
Liu (10.1016/j.electacta.2021.138789_bib0036) 2017; 32
Zhong (10.1016/j.electacta.2021.138789_bib0056) 2016; 128
Mazánek (10.1016/j.electacta.2021.138789_bib0033) 2018; 10
Ortiz (10.1016/j.electacta.2021.138789_bib0049) 2012; 38
Fernandes (10.1016/j.electacta.2021.138789_bib0066) 2020; 354
References_xml – volume: 42
  start-page: 8237
  year: 2013
  end-page: 8265
  ident: bib0035
  article-title: Salt melt synthesis of ceramics, semiconductors and carbon nanostructures
  publication-title: Chem. Soc. Rev.
– volume: 56
  start-page: 3061
  year: 2020
  end-page: 3064
  ident: bib0069
  article-title: Crystal phase-dependent electrocatalytic hydrogen evolution performance of ruthenium–boron intermetallics
  publication-title: Chem. Commun.
– volume: 41
  start-page: 19847
  year: 2016
  end-page: 19854
  ident: bib0054
  article-title: Facile synthesis of CoNi
  publication-title: Int. J. Hydrog. Energy
– volume: 8
  start-page: 1828
  year: 2018
  end-page: 1836
  ident: bib0019
  article-title: Hydrogen evolution reaction on hybrid catalysts of vertical MoS
  publication-title: ACS Catal.
– volume: 135
  start-page: 16977
  year: 2013
  end-page: 16987
  ident: bib0065
  article-title: Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 11544
  year: 2018
  end-page: 11552
  ident: bib0033
  article-title: Electrochemistry of layered metal diborides
  publication-title: Nanoscale
– volume: 86
  start-page: 763
  year: 1986
  end-page: 780
  ident: bib0024
  article-title: Synthetically useful reactions with metal boride and aluminide catalysts
  publication-title: Chem. Rev.
– volume: 12
  start-page: 9327
  year: 2020
  end-page: 9351
  ident: bib0067
  article-title: Designing transition-metal-boride-based electrocatalysts for applications in electrochemical water splitting
  publication-title: Nanoscale
– volume: 14
  year: 2019
  ident: bib0006
  article-title: Effects of iron doping on the hydrogen evolution reaction performance of self-supported nickel selenides
  publication-title: Results Phys.
– volume: 9
  year: 2019
  ident: bib0027
  article-title: Ni-metalloid (B, Si, P, As, and Te) alloys as water oxidation electrocatalysts
  publication-title: Adv. Energy Mater.
– volume: 136
  start-page: 11027
  year: 2014
  end-page: 11033
  ident: bib0058
  article-title: Noble-metal-free Fe–N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions
  publication-title: J. Am. Chem. Soc.
– volume: 192
  start-page: 126
  year: 2016
  end-page: 133
  ident: bib0025
  article-title: Co-Ni-B nanocatalyst for efficient hydrogen evolution reaction in wide pH range
  publication-title: Appl. Catal. B Environ.
– volume: 6
  start-page: eaba6586
  year: 2020
  ident: bib0012
  article-title: O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution
  publication-title: Sci. Adv.
– volume: 1
  start-page: 1928
  year: 2017
  end-page: 1934
  ident: bib0040
  article-title: Fuels, molybdenum diboride nanoparticles as a highly efficient electrocatalyst for the hydrogen evolution reaction
  publication-title: Sustain. Energy Fuels
– volume: 11
  start-page: 1
  year: 2021
  end-page: 13
  ident: bib0034
  article-title: Metal doped layered MgB
  publication-title: Sci. Rep.
– volume: 6
  start-page: 8069
  year: 2016
  end-page: 8097
  ident: bib0068
  article-title: Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: a review
  publication-title: ACS Catal.
– volume: 32
  start-page: 883
  year: 2017
  ident: bib0036
  article-title: Synthesis and properties of Fe-B powders by molten salt method
  publication-title: J. Mater. Res.
– volume: 38
  start-page: 2857
  year: 2012
  end-page: 2863
  ident: bib0049
  article-title: A study of the oxidation of ZrB
  publication-title: Ceram. Int.
– volume: 296
  start-page: 644
  year: 2019
  end-page: 652
  ident: bib0041
  article-title: Tunable nanocotton-like amorphous ternary Ni-Co-B: a highly efficient catalyst for enhanced oxygen evolution reaction
  publication-title: Electrochim. Acta
– volume: 129
  start-page: 5667
  year: 2017
  end-page: 5670
  ident: bib0001
  article-title: Boron-dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction
  publication-title: Angew. Chem.
– volume: 389
  start-page: 29
  year: 2020
  end-page: 37
  ident: bib0004
  article-title: Active nickel derived from coordination complex with weak inter/intra-molecular interactions for efficient hydrogen evolution via a tandem mechanism
  publication-title: J. Catal.
– volume: 30
  year: 2020
  ident: bib0050
  article-title: Metal boride-based catalysts for electrochemical water-splitting: a review
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 5288
  year: 2019
  end-page: 5294
  ident: bib0028
  article-title: structural evolution of a nickel boride catalyst: synergistic geometric and electronic optimization for the oxygen evolution reaction
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 764
  year: 2019
  end-page: 770
  ident: bib0029
  article-title: Performance of surface-oxidized Ni
  publication-title: ChemElectroChem
– volume: 14
  start-page: 1245
  year: 2015
  end-page: 1251
  ident: bib0053
  article-title: Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide
  publication-title: Nat. Mater.
– volume: 2
  start-page: 176
  year: 2018
  end-page: 181
  ident: bib0063
  article-title: Abundant vanadium diboride with graphene-like boron layers for hydrogen evolution
  publication-title: ACS Appl. Energy Mater.
– volume: 6
  year: 2016
  ident: bib0061
  article-title: Amorphous cobalt boride (Co
  publication-title: Adv. Energy Mater.
– volume: 26
  start-page: 4661
  year: 2016
  end-page: 4672
  ident: bib0051
  article-title: Hierarchical NiCo
  publication-title: Adv. Funct. Mater.
– volume: 6
  year: 2019
  ident: bib0009
  article-title: Surface-activated amorphous iron borides (FexB) as efficient electrocatalysts for oxygen evolution reaction
  publication-title: Adv. Mater. Interfaces
– volume: 5
  start-page: 1
  year: 2014
  end-page: 8
  ident: bib0016
  article-title: Hydrogen evolution by a metal-free electrocatalyst
  publication-title: Nat. Commun.
– volume: 126
  start-page: 1195
  year: 2004
  end-page: 1198
  ident: bib0059
  article-title: Solution-phase synthesis of single-crystalline iron phosphide nanorods/nanowires
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 5412
  year: 2017
  end-page: 5415
  ident: bib0055
  article-title: CoNi
  publication-title: Chem. Commun.
– volume: 387
  start-page: 12
  year: 2020
  end-page: 16
  ident: bib0003
  article-title: Prediction of intrinsic electrocatalytic activity for hydrogen evolution reaction in Ti
  publication-title: J. Catal.
– volume: 538
  start-page: 164
  year: 2012
  end-page: 168
  ident: bib0045
  article-title: Compounds, synthesis of ZrB
  publication-title: J. Alloy. Compd.
– volume: 7
  start-page: 310
  year: 2000
  end-page: 315
  ident: bib0048
  article-title: Analysis of a zirconium diboride single crystal, ZrB
  publication-title: Surf. Sci. Spectra
– volume: 13
  start-page: 387
  year: 2015
  end-page: 396
  ident: bib0060
  article-title: High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc–air battery
  publication-title: Nano Energy
– volume: 354
  year: 2020
  ident: bib0066
  article-title: Exploring the hydrogen evolution capabilities of earth-abundant ternary metal borides for neutral and alkaline water-splitting
  publication-title: Electrochim. Acta
– volume: 25
  start-page: 199
  year: 1996
  end-page: 207
  ident: bib0037
  article-title: Solid state metathesis reaction for metal borides, silicides, pnictides and chalcogenides: ionic or elemental pathways
  publication-title: Chem. Soc. Rev.
– volume: 59
  start-page: 3961
  year: 2020
  end-page: 3965
  ident: bib0070
  article-title: Transition-metal–boron intermetallics with strong Interatomic d–sp orbital hybridization for high-performance electrocatalysis
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  year: 2019
  ident: bib0031
  article-title: Revealing activity trends of metal diborides toward pH-universal hydrogen evolution electrocatalysts with Pt-like activity
  publication-title: Adv. Energy Mater.
– volume: 29
  start-page: 995
  year: 2009
  end-page: 1011
  ident: bib0046
  article-title: Densification of ZrB
  publication-title: J. Eur. Ceram. Soc.
– volume: 137
  start-page: 4347
  year: 2015
  end-page: 4357
  ident: bib0064
  article-title: Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 312
  year: 2020
  end-page: 323
  ident: bib0042
  article-title: Fuels, an advanced and highly efficient Ce assisted NiFe-LDH electrocatalyst for overall water splitting
  publication-title: Sustain. Energy Fuels
– volume: 4
  start-page: 11973
  year: 2016
  end-page: 12000
  ident: bib0022
  article-title: Nanostructured catalysts for electrochemical water splitting: current state and prospects
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 17671
  year: 2019
  end-page: 17681
  ident: bib0018
  article-title: Engineering, FeP/MoS
  publication-title: ACS Sustain. Chem. Eng.
– volume: 184
  start-page: 2047
  year: 2011
  end-page: 2052
  ident: bib0043
  article-title: Morphology evolution of ZrB
  publication-title: J. Solid State Chem.
– volume: 90
  start-page: 1347
  year: 2007
  end-page: 1364
  ident: bib0047
  article-title: Refractory diborides of zirconium and hafnium
  publication-title: J. Am. Ceram. Soc.
– volume: 7
  start-page: 1
  year: 2016
  end-page: 9
  ident: bib0052
  article-title: A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide
  publication-title: Nat. Commun.
– volume: 7
  start-page: 2248
  year: 2020
  end-page: 2264
  ident: bib0015
  article-title: Intermetallic borides: structures, synthesis and applications in electrocatalysis
  publication-title: Inorg. Chem. Front.
– volume: 3
  start-page: 514
  year: 2019
  end-page: 520
  ident: bib0038
  article-title: Ultrafine Co: FeS
  publication-title: ACS Appl. Energy Mater.
– volume: 52
  start-page: 12614
  year: 2016
  end-page: 12617
  ident: bib0013
  article-title: Porous cobalt–iron nitride nanowires as excellent bifunctional electrocatalysts for overall water splitting
  publication-title: Chem. Commun.
– volume: 19
  start-page: 98
  year: 2016
  end-page: 107
  ident: bib0010
  article-title: Electroless plated Ni–Bx films as highly active electrocatalysts for hydrogen production from water over a wide pH range
  publication-title: Nano Energy
– volume: 6
  start-page: 580
  year: 2016
  end-page: 588
  ident: bib0011
  article-title: Facile synthesis of nickel–iron/nanocarbon hybrids as advanced electrocatalysts for efficient water splitting
  publication-title: ACS Catal.
– volume: 56
  start-page: 6572
  year: 2017
  end-page: 6577
  ident: bib0030
  article-title: Crystallinity-modulated electrocatalytic activity of a nickel (II) borate thin layer on Ni
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 8296
  year: 2018
  end-page: 8305
  ident: bib0020
  article-title: Boron-and nitrogen-codoped molybdenum carbide nanoparticles imbedded in a BCN network as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions
  publication-title: ACS Catal.
– volume: 139
  start-page: 12915
  year: 2017
  end-page: 12918
  ident: bib0032
  article-title: Graphene-and phosphorene-like boron layers with contrasting activities in highly active Mo
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 7717
  year: 2019
  end-page: 7722
  ident: bib0044
  article-title: Investigation of electrical properties of pressureless sintered ZrB
  publication-title: Ceram. Int.
– volume: 9
  start-page: 9973
  year: 2019
  end-page: 10011
  ident: bib0014
  article-title: Recent advances and prospective in ruthenium-based materials for electrochemical water splitting
  publication-title: ACS Catal.
– volume: 2
  start-page: 2489
  year: 2008
  end-page: 2496
  ident: bib0057
  article-title: Synthesis of ternary metal nitride nanoparticles using mesoporous carbon nitride as reactive template
  publication-title: ACS Nano
– volume: 1
  start-page: 445
  year: 2016
  end-page: 453
  ident: bib0017
  article-title: NiCoFe layered triple hydroxides with porous structures as high-performance electrocatalysts for overall water splitting
  publication-title: ACS Energy Lett.
– volume: 55
  start-page: 8627
  year: 2019
  end-page: 8630
  ident: bib0021
  article-title: A class of metal diboride electrocatalysts synthesized by a molten salt-assisted reaction for the hydrogen evolution reaction
  publication-title: Chem. Commun.
– volume: 5
  start-page: 2909
  year: 2020
  end-page: 2915
  ident: bib0062
  article-title: Ionothermal route to phase-pure RuB
  publication-title: ACS Energy Lett.
– volume: 279
  start-page: 620
  year: 2015
  end-page: 625
  ident: bib0071
  article-title: Cobalt-boride: an efficient and robust electrocatalyst for hydrogen evolution reaction
  publication-title: J. Power Sources
– volume: 6
  start-page: 235
  year: 2019
  end-page: 240
  ident: bib0026
  article-title: Role of boron and phosphorus in enhanced electrocatalytic oxygen evolution by nickel borides and nickel phosphides
  publication-title: ChemElectroChem
– volume: 7
  year: 2017
  ident: bib0005
  article-title: Earth-abundant iron diboride (FeB
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 293
  year: 2020
  end-page: 314
  ident: bib0039
  article-title: Boride-based electrocatalysts: emerging candidates for water splitting
  publication-title: Nano Res.
– volume: 12
  start-page: 684
  year: 2019
  end-page: 692
  ident: bib0072
  article-title: High-performance oxygen evolution electrocatalysis by boronized metal sheets with self-functionalized surfaces
  publication-title: Energy Environ. Sci.
– volume: 46
  start-page: 337
  year: 2017
  end-page: 365
  ident: bib0023
  article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives
  publication-title: Chem. Soc. Rev.
– volume: 56
  start-page: 7293
  year: 2020
  end-page: 7296
  ident: bib0002
  article-title: Bismuth iron molybdenum oxide solid solution: a novel and durable electrocatalyst for overall water splitting
  publication-title: Chem. Commun.
– volume: 8
  start-page: 3803
  year: 2018
  end-page: 3811
  ident: bib0007
  article-title: Engineering cobalt defects in cobalt oxide for highly efficient electrocatalytic oxygen evolution
  publication-title: ACS Catal.
– volume: 124
  start-page: 11760
  year: 2020
  end-page: 11766
  ident: bib0008
  article-title: An atomically dispersed Pt catalyst anchored on an Fe/N/C support for enhanced hydrogen evolution reaction
  publication-title: J. Phys. Chem. C
– volume: 128
  start-page: 10091
  year: 2016
  end-page: 10095
  ident: bib0056
  article-title: activating ubiquitous rust towards low-cost, efficient, free-standing, and recoverable oxygen evolution electrodes
  publication-title: Angew. Chem.
– volume: 41
  start-page: 19847
  year: 2016
  ident: 10.1016/j.electacta.2021.138789_bib0054
  article-title: Facile synthesis of CoNi2S4 and CuCo2S4 with different morphologies as prominent catalysts for hydrogen evolution reaction
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2016.08.096
– volume: 56
  start-page: 7293
  year: 2020
  ident: 10.1016/j.electacta.2021.138789_bib0002
  article-title: Bismuth iron molybdenum oxide solid solution: a novel and durable electrocatalyst for overall water splitting
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC01931C
– volume: 26
  start-page: 4661
  year: 2016
  ident: 10.1016/j.electacta.2021.138789_bib0051
  article-title: Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201600566
– volume: 5
  start-page: 2909
  year: 2020
  ident: 10.1016/j.electacta.2021.138789_bib0062
  article-title: Ionothermal route to phase-pure RuB2 catalysts for efficient oxygen evolution and water splitting in acidic media
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c01384
– volume: 5
  start-page: 1
  year: 2014
  ident: 10.1016/j.electacta.2021.138789_bib0016
  article-title: Hydrogen evolution by a metal-free electrocatalyst
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4783
– volume: 25
  start-page: 199
  year: 1996
  ident: 10.1016/j.electacta.2021.138789_bib0037
  article-title: Solid state metathesis reaction for metal borides, silicides, pnictides and chalcogenides: ionic or elemental pathways
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/cs9962500199
– volume: 6
  start-page: 235
  year: 2019
  ident: 10.1016/j.electacta.2021.138789_bib0026
  article-title: Role of boron and phosphorus in enhanced electrocatalytic oxygen evolution by nickel borides and nickel phosphides
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201800669
– volume: 137
  start-page: 4347
  year: 2015
  ident: 10.1016/j.electacta.2021.138789_bib0064
  article-title: Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja510442p
– volume: 4
  start-page: 312
  year: 2020
  ident: 10.1016/j.electacta.2021.138789_bib0042
  article-title: Fuels, an advanced and highly efficient Ce assisted NiFe-LDH electrocatalyst for overall water splitting
  publication-title: Sustain. Energy Fuels
  doi: 10.1039/C9SE00700H
– volume: 38
  start-page: 2857
  year: 2012
  ident: 10.1016/j.electacta.2021.138789_bib0049
  article-title: A study of the oxidation of ZrB2 powders during high-energy ball-milling in air
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2011.11.058
– volume: 126
  start-page: 1195
  year: 2004
  ident: 10.1016/j.electacta.2021.138789_bib0059
  article-title: Solution-phase synthesis of single-crystalline iron phosphide nanorods/nanowires
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja038401c
– volume: 13
  start-page: 387
  year: 2015
  ident: 10.1016/j.electacta.2021.138789_bib0060
  article-title: High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc–air battery
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.02.025
– volume: 13
  start-page: 293
  year: 2020
  ident: 10.1016/j.electacta.2021.138789_bib0039
  article-title: Boride-based electrocatalysts: emerging candidates for water splitting
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-2618-y
– volume: 30
  year: 2020
  ident: 10.1016/j.electacta.2021.138789_bib0050
  article-title: Metal boride-based catalysts for electrochemical water-splitting: a review
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201906481
– volume: 6
  year: 2019
  ident: 10.1016/j.electacta.2021.138789_bib0009
  article-title: Surface-activated amorphous iron borides (FexB) as efficient electrocatalysts for oxygen evolution reaction
  publication-title: Adv. Mater. Interfaces
– volume: 192
  start-page: 126
  year: 2016
  ident: 10.1016/j.electacta.2021.138789_bib0025
  article-title: Co-Ni-B nanocatalyst for efficient hydrogen evolution reaction in wide pH range
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.03.032
– volume: 32
  start-page: 883
  year: 2017
  ident: 10.1016/j.electacta.2021.138789_bib0036
  article-title: Synthesis and properties of Fe-B powders by molten salt method
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2017.38
– volume: 9
  start-page: 9973
  year: 2019
  ident: 10.1016/j.electacta.2021.138789_bib0014
  article-title: Recent advances and prospective in ruthenium-based materials for electrochemical water splitting
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b02457
– volume: 7
  start-page: 17671
  year: 2019
  ident: 10.1016/j.electacta.2021.138789_bib0018
  article-title: Engineering, FeP/MoS2 enriched with dense catalytic sites and high electrical conductivity for the hydrogen evolution reaction
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b03799
– volume: 42
  start-page: 8237
  year: 2013
  ident: 10.1016/j.electacta.2021.138789_bib0035
  article-title: Salt melt synthesis of ceramics, semiconductors and carbon nanostructures
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60159E
– volume: 135
  start-page: 16977
  year: 2013
  ident: 10.1016/j.electacta.2021.138789_bib0065
  article-title: Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja407115p
– volume: 4
  start-page: 11973
  year: 2016
  ident: 10.1016/j.electacta.2021.138789_bib0022
  article-title: Nanostructured catalysts for electrochemical water splitting: current state and prospects
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA02334G
– volume: 9
  year: 2019
  ident: 10.1016/j.electacta.2021.138789_bib0031
  article-title: Revealing activity trends of metal diborides toward pH-universal hydrogen evolution electrocatalysts with Pt-like activity
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 580
  year: 2016
  ident: 10.1016/j.electacta.2021.138789_bib0011
  article-title: Facile synthesis of nickel–iron/nanocarbon hybrids as advanced electrocatalysts for efficient water splitting
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b02291
– volume: 354
  year: 2020
  ident: 10.1016/j.electacta.2021.138789_bib0066
  article-title: Exploring the hydrogen evolution capabilities of earth-abundant ternary metal borides for neutral and alkaline water-splitting
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.136738
– volume: 7
  start-page: 2248
  year: 2020
  ident: 10.1016/j.electacta.2021.138789_bib0015
  article-title: Intermetallic borides: structures, synthesis and applications in electrocatalysis
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D0QI00146E
– volume: 7
  start-page: 310
  year: 2000
  ident: 10.1016/j.electacta.2021.138789_bib0048
  article-title: Analysis of a zirconium diboride single crystal, ZrB2 (0001), by XPS
  publication-title: Surf. Sci. Spectra
  doi: 10.1116/1.1376317
– volume: 14
  year: 2019
  ident: 10.1016/j.electacta.2021.138789_bib0006
  article-title: Effects of iron doping on the hydrogen evolution reaction performance of self-supported nickel selenides
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2019.102522
– volume: 139
  start-page: 12915
  year: 2017
  ident: 10.1016/j.electacta.2021.138789_bib0032
  article-title: Graphene-and phosphorene-like boron layers with contrasting activities in highly active Mo2B4 for hydrogen evolution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07247
– volume: 52
  start-page: 12614
  year: 2016
  ident: 10.1016/j.electacta.2021.138789_bib0013
  article-title: Porous cobalt–iron nitride nanowires as excellent bifunctional electrocatalysts for overall water splitting
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC06608A
– volume: 3
  start-page: 514
  year: 2019
  ident: 10.1016/j.electacta.2021.138789_bib0038
  article-title: Ultrafine Co: FeS2/CoS2 heterostructure nanowires for highly efficient hydrogen evolution reaction
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b01769
– volume: 296
  start-page: 644
  year: 2019
  ident: 10.1016/j.electacta.2021.138789_bib0041
  article-title: Tunable nanocotton-like amorphous ternary Ni-Co-B: a highly efficient catalyst for enhanced oxygen evolution reaction
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.11.099
– volume: 6
  start-page: eaba6586
  year: 2020
  ident: 10.1016/j.electacta.2021.138789_bib0012
  article-title: O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aba6586
– volume: 6
  start-page: 8069
  year: 2016
  ident: 10.1016/j.electacta.2021.138789_bib0068
  article-title: Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: a review
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02479
– volume: 8
  start-page: 3803
  year: 2018
  ident: 10.1016/j.electacta.2021.138789_bib0007
  article-title: Engineering cobalt defects in cobalt oxide for highly efficient electrocatalytic oxygen evolution
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01046
– volume: 128
  start-page: 10091
  year: 2016
  ident: 10.1016/j.electacta.2021.138789_bib0056
  article-title: In situ activating ubiquitous rust towards low-cost, efficient, free-standing, and recoverable oxygen evolution electrodes
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201604040
– volume: 10
  start-page: 11544
  year: 2018
  ident: 10.1016/j.electacta.2021.138789_bib0033
  article-title: Electrochemistry of layered metal diborides
  publication-title: Nanoscale
  doi: 10.1039/C8NR02142B
– volume: 45
  start-page: 7717
  year: 2019
  ident: 10.1016/j.electacta.2021.138789_bib0044
  article-title: Investigation of electrical properties of pressureless sintered ZrB2-based ceramics
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.01.073
– volume: 184
  start-page: 2047
  year: 2011
  ident: 10.1016/j.electacta.2021.138789_bib0043
  article-title: Morphology evolution of ZrB2 nanoparticles synthesized by sol–gel method
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2011.05.040
– volume: 90
  start-page: 1347
  year: 2007
  ident: 10.1016/j.electacta.2021.138789_bib0047
  article-title: Refractory diborides of zirconium and hafnium
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2007.01583.x
– volume: 8
  start-page: 8296
  year: 2018
  ident: 10.1016/j.electacta.2021.138789_bib0020
  article-title: Boron-and nitrogen-codoped molybdenum carbide nanoparticles imbedded in a BCN network as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01794
– volume: 6
  year: 2016
  ident: 10.1016/j.electacta.2021.138789_bib0061
  article-title: Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: oxygen and hydrogen evolution
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201502313
– volume: 59
  start-page: 3961
  year: 2020
  ident: 10.1016/j.electacta.2021.138789_bib0070
  article-title: Transition-metal–boron intermetallics with strong Interatomic d–sp orbital hybridization for high-performance electrocatalysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201915663
– volume: 7
  year: 2017
  ident: 10.1016/j.electacta.2021.138789_bib0005
  article-title: Earth-abundant iron diboride (FeB2) nanoparticles as highly active bifunctional electrocatalysts for overall water splitting
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700513
– volume: 14
  start-page: 1245
  year: 2015
  ident: 10.1016/j.electacta.2021.138789_bib0053
  article-title: Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4410
– volume: 12
  start-page: 684
  year: 2019
  ident: 10.1016/j.electacta.2021.138789_bib0072
  article-title: High-performance oxygen evolution electrocatalysis by boronized metal sheets with self-functionalized surfaces
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE03405B
– volume: 136
  start-page: 11027
  year: 2014
  ident: 10.1016/j.electacta.2021.138789_bib0058
  article-title: Noble-metal-free Fe–N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja504696r
– volume: 1
  start-page: 445
  year: 2016
  ident: 10.1016/j.electacta.2021.138789_bib0017
  article-title: NiCoFe layered triple hydroxides with porous structures as high-performance electrocatalysts for overall water splitting
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00219
– volume: 1
  start-page: 1928
  year: 2017
  ident: 10.1016/j.electacta.2021.138789_bib0040
  article-title: Fuels, molybdenum diboride nanoparticles as a highly efficient electrocatalyst for the hydrogen evolution reaction
  publication-title: Sustain. Energy Fuels
  doi: 10.1039/C7SE00397H
– volume: 2
  start-page: 2489
  year: 2008
  ident: 10.1016/j.electacta.2021.138789_bib0057
  article-title: Synthesis of ternary metal nitride nanoparticles using mesoporous carbon nitride as reactive template
  publication-title: ACS Nano
  doi: 10.1021/nn800503a
– volume: 387
  start-page: 12
  year: 2020
  ident: 10.1016/j.electacta.2021.138789_bib0003
  article-title: Prediction of intrinsic electrocatalytic activity for hydrogen evolution reaction in Ti4X3 (X= C, N)
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2020.04.010
– volume: 8
  start-page: 1828
  year: 2018
  ident: 10.1016/j.electacta.2021.138789_bib0019
  article-title: Hydrogen evolution reaction on hybrid catalysts of vertical MoS2 nanosheets and hydrogenated graphene
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03316
– volume: 279
  start-page: 620
  year: 2015
  ident: 10.1016/j.electacta.2021.138789_bib0071
  article-title: Cobalt-boride: an efficient and robust electrocatalyst for hydrogen evolution reaction
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.01.009
– volume: 6
  start-page: 764
  year: 2019
  ident: 10.1016/j.electacta.2021.138789_bib0029
  article-title: Performance of surface-oxidized Ni3B, Ni2B, and NiB2 electrocatalysts for overall water splitting
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201801354
– volume: 29
  start-page: 995
  year: 2009
  ident: 10.1016/j.electacta.2021.138789_bib0046
  article-title: Densification of ZrB2-based composites and their mechanical and physical properties: a review
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2008.11.008
– volume: 46
  start-page: 337
  year: 2017
  ident: 10.1016/j.electacta.2021.138789_bib0023
  article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00328A
– volume: 9
  year: 2019
  ident: 10.1016/j.electacta.2021.138789_bib0027
  article-title: Ni-metalloid (B, Si, P, As, and Te) alloys as water oxidation electrocatalysts
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900796
– volume: 538
  start-page: 164
  year: 2012
  ident: 10.1016/j.electacta.2021.138789_bib0045
  article-title: Compounds, synthesis of ZrB2 powders by carbothermal and borothermal reduction
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2012.05.076
– volume: 55
  start-page: 8627
  year: 2019
  ident: 10.1016/j.electacta.2021.138789_bib0021
  article-title: A class of metal diboride electrocatalysts synthesized by a molten salt-assisted reaction for the hydrogen evolution reaction
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC03638E
– volume: 53
  start-page: 5412
  year: 2017
  ident: 10.1016/j.electacta.2021.138789_bib0055
  article-title: CoNi2Se4 as an efficient bifunctional electrocatalyst for overall water splitting
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC01489A
– volume: 56
  start-page: 3061
  year: 2020
  ident: 10.1016/j.electacta.2021.138789_bib0069
  article-title: Crystal phase-dependent electrocatalytic hydrogen evolution performance of ruthenium–boron intermetallics
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC00070A
– volume: 129
  start-page: 5667
  year: 2017
  ident: 10.1016/j.electacta.2021.138789_bib0001
  article-title: Boron-dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201611756
– volume: 389
  start-page: 29
  year: 2020
  ident: 10.1016/j.electacta.2021.138789_bib0004
  article-title: Active nickel derived from coordination complex with weak inter/intra-molecular interactions for efficient hydrogen evolution via a tandem mechanism
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2020.05.013
– volume: 11
  start-page: 1
  year: 2021
  ident: 10.1016/j.electacta.2021.138789_bib0034
  article-title: Metal doped layered MgB2 nanoparticles as novel electrocatalysts for water splitting
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-83066-7
– volume: 124
  start-page: 11760
  year: 2020
  ident: 10.1016/j.electacta.2021.138789_bib0008
  article-title: An atomically dispersed Pt catalyst anchored on an Fe/N/C support for enhanced hydrogen evolution reaction
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c01043
– volume: 7
  start-page: 1
  year: 2016
  ident: 10.1016/j.electacta.2021.138789_bib0052
  article-title: A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide
  publication-title: Nat. Commun.
– volume: 2
  start-page: 176
  year: 2018
  ident: 10.1016/j.electacta.2021.138789_bib0063
  article-title: Abundant vanadium diboride with graphene-like boron layers for hydrogen evolution
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b01615
– volume: 7
  start-page: 5288
  year: 2019
  ident: 10.1016/j.electacta.2021.138789_bib0028
  article-title: In situ structural evolution of a nickel boride catalyst: synergistic geometric and electronic optimization for the oxygen evolution reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA00489K
– volume: 86
  start-page: 763
  year: 1986
  ident: 10.1016/j.electacta.2021.138789_bib0024
  article-title: Synthetically useful reactions with metal boride and aluminide catalysts
  publication-title: Chem. Rev.
  doi: 10.1021/cr00075a003
– volume: 12
  start-page: 9327
  year: 2020
  ident: 10.1016/j.electacta.2021.138789_bib0067
  article-title: Designing transition-metal-boride-based electrocatalysts for applications in electrochemical water splitting
  publication-title: Nanoscale
  doi: 10.1039/D0NR01279C
– volume: 56
  start-page: 6572
  year: 2017
  ident: 10.1016/j.electacta.2021.138789_bib0030
  article-title: Crystallinity-modulated electrocatalytic activity of a nickel (II) borate thin layer on Ni3B for efficient water oxidation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201703183
– volume: 19
  start-page: 98
  year: 2016
  ident: 10.1016/j.electacta.2021.138789_bib0010
  article-title: Electroless plated Ni–Bx films as highly active electrocatalysts for hydrogen production from water over a wide pH range
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.11.020
SSID ssj0007670
Score 2.5038428
Snippet •Successful incorporation of Ni, Co, and Fe into the structure of layered ZrB2 substantially enhanced both OER and HER performance.•Zr0.8Ni0.2B2 delivered a...
Recent years have witnessed an unprecedented surge in research on earth-abundant and efficient electrocatalysts for the water splitting process. Among those,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 138789
SubjectTerms Catalysts
Chemical reactions
Clean energy
Cobalt
Crystal structure
Durability
Electrocatalysts
Hydrogen evolution reaction
Iron
Layered ZrB2 electrocatalyst
Metal substitution
Nickel
Oxygen evolution reaction
Oxygen evolution reactions
Refractory materials
Substitutes
Water splitting
Zirconium compounds
Title Metal-substituted zirconium diboride (Zr1-xTMxB2; TM = Ni, Co, and Fe) as low-cost and high-performance bifunctional electrocatalyst for water splitting
URI https://dx.doi.org/10.1016/j.electacta.2021.138789
https://www.proquest.com/docview/2568705210
Volume 389
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSxxBEG5EDyaH4CvExEgfPCRga_d094yT4MEsLpuE3dMKkkvTTxgxu8vOLmty8Id48rf4y1I9D40S8BCYywxdw9BV81VVU1UfQnvapiahMiGMBUqETQMxknuSJzLxMgBs2pgo9gdp70x8O5fnS6jT9sLEssoG-2tMr9C6eXLY7ObhpChijy_jIjY4gFXFMW-xg11k0coPrh_KPLI0oy2LQVz9qMaroprRcEGimLADxo-yyPf-bw_1BKsrB9RdQ6-ayBGf1B-3jpb8aAOtdlrCtg308q_Zgpvopu8hriYlAENdDeDw72IK2W8x_4ldERmxnMcffkwZuRr2r74kn_Gwf3d7fHc7KPZxZ7yP9cjhrv-IdYkvxwtix-WsehYnHJPJQ8MBNkX0jvWhIm54dapjoV8gAavwAgLaKS4h3q2qrLfQWfd02OmRhoiBWC74jHDuuJbehJD7RNMs4xLStKCN1C6jhoI-GSiW6VwDdPpcpNRYy6Q1ALUusfw1Wh6NR_4Nwj7IPBxZmUJcKoIQIGKMSG3OXBakddsobTdf2WZKeSTLuFRtOdqFuteailpTtda2Eb0XnNSDOp4X-dRqVz2yOQXu5HnhndYeVPPblwriR8A_iIjo2_959zv0It7VpWw7aHk2nfv3EPvMzG5l3Lto5eTr997gDxqCB4M
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbK9lA4ICigFkrxgQNINbVjO2lAPbQrVlva7GkrVVwsP6WgsrvabNXCT-HU39JfxjiPLUVIPSDl5GSiyDP55htrHgi91TY1CZUJYSxQImwaiJHckzyRiZcBYNPGQLEYpcNT8eVMnq2gflcLE9MqW-xvML1G63Zlt93N3VlZxhpfxkUscACrim3eHqDV2J1K9tDqwdHxcLQE5CzNaDfIIArcSfOqp81ouCBWTNgHxveyOPL9307qL7iufdDgCXrckkd80HzfU7TiJ-tord_NbFtHj_5oL_gM_So8UGtSATY0CQEO_yznEACXF9-xK-NQLOfxu69zRq7GxdVh8gmPi5vr_ZvrUbmD-9MdrCcOD_x7rCt8Pr0kdlot6rXY5JjMbmsOsCmjg2zOFXE7Wqc-GfoBEvAUvgROO8cVUN460fo5Oh18HveHpJ3FQCwXfEE4d1xLb0LIfaJplnEJkVrQRmqXUUNBpQx0y3SuAT19LlJqrGXSGkBbl1j-AvUm04nfQNgHmYc9K1OgpiIIASLGiNTmzGVBWreJ0m7zlW0blcd5Geeqy0j7ppZaU1FrqtHaJqJLwVnTq-N-kY-ddtUds1PgUe4X3ursQbV_fqWAQgIEAimiL__n3W_Q2nBcnKiTo9HxK_Qw3mky27ZQbzG_8K-BCi3MdmvqvwEPAQo0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal-substituted+zirconium+diboride+%28Zr1-xTMxB2%3B+TM+%3D+Ni%2C+Co%2C+and+Fe%29+as+low-cost+and+high-performance+bifunctional+electrocatalyst+for+water+splitting&rft.jtitle=Electrochimica+acta&rft.au=Mete%2C+Busra&rft.au=Peighambardoust%2C+Naeimeh+Sadat&rft.au=Aydin%2C+Samet&rft.au=Sadeghi%2C+Ebrahim&rft.date=2021-09-01&rft.pub=Elsevier+BV&rft.issn=0013-4686&rft.eissn=1873-3859&rft.volume=389&rft.spage=1&rft_id=info:doi/10.1016%2Fj.electacta.2021.138789&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon