Effect of Ca selective chelator BAPTA as depressant on flotation separation of magnesite from dolomite
•For the flotation separation of magnesite from dolomite, BAPTA had few influence on the recovery of magnesite.•BAPTA acts on Ca sites of the dolomite surface to depress the adsorption of oleic acid on the surface of dolomite.•BAPTA prevented the precipitation of Ca on the surface of the magnesite....
Saved in:
Published in | Minerals engineering Vol. 144; p. 106050 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •For the flotation separation of magnesite from dolomite, BAPTA had few influence on the recovery of magnesite.•BAPTA acts on Ca sites of the dolomite surface to depress the adsorption of oleic acid on the surface of dolomite.•BAPTA prevented the precipitation of Ca on the surface of the magnesite.
With the depletion of high-grade magnesite mineral resources, improving the grade of magnesite obtained from gangue minerals such as dolomite has been attracting considerable attention from the industry. However, it is difficult to achieve the effective separation of magnesite from dolomite because of their similar chemical and crystal properties. In this study, 1, 2-bis (o-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid (BAPTA) was used as a depressant for dolomite to improve the separation of magnesite from dolomite. Microflotation tests of the single minerals and artificially mixed minerals using oleic acid as a collector were performed to evaluate the selective depression effect of BAPTA. The results indicated that the BAPTA depressant had a selective effect on dolomite, thereby suggesting that a magnesite grade of 87.5%, recovery of 95.8%, and CaO content of 3.8% can be achieved with a BAPTA dosage of 62.5 mg/L. The depression mechanism of BAPTA was investigated using zeta-potential measurements, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The results indicated that BAPTA was selectively adsorbed on the surface of dolomite. The selective depression effect can be attributed to the selective chelating formation of BAPTA on Ca rather than Mg, which not only adsorbed BAPTA decreasing the adsorption sites of oleic acid on the dolomite surface, but also prevented the precipitation of Ca on the surface of the magnesite. |
---|---|
AbstractList | •For the flotation separation of magnesite from dolomite, BAPTA had few influence on the recovery of magnesite.•BAPTA acts on Ca sites of the dolomite surface to depress the adsorption of oleic acid on the surface of dolomite.•BAPTA prevented the precipitation of Ca on the surface of the magnesite.
With the depletion of high-grade magnesite mineral resources, improving the grade of magnesite obtained from gangue minerals such as dolomite has been attracting considerable attention from the industry. However, it is difficult to achieve the effective separation of magnesite from dolomite because of their similar chemical and crystal properties. In this study, 1, 2-bis (o-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid (BAPTA) was used as a depressant for dolomite to improve the separation of magnesite from dolomite. Microflotation tests of the single minerals and artificially mixed minerals using oleic acid as a collector were performed to evaluate the selective depression effect of BAPTA. The results indicated that the BAPTA depressant had a selective effect on dolomite, thereby suggesting that a magnesite grade of 87.5%, recovery of 95.8%, and CaO content of 3.8% can be achieved with a BAPTA dosage of 62.5 mg/L. The depression mechanism of BAPTA was investigated using zeta-potential measurements, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The results indicated that BAPTA was selectively adsorbed on the surface of dolomite. The selective depression effect can be attributed to the selective chelating formation of BAPTA on Ca rather than Mg, which not only adsorbed BAPTA decreasing the adsorption sites of oleic acid on the dolomite surface, but also prevented the precipitation of Ca on the surface of the magnesite. |
ArticleNumber | 106050 |
Author | Yin, Wanzhong Song, Myongsong Cao, Shaohang Sun, Haoran Yang, Bin Hong, Jongsu Won, Changdok |
Author_xml | – sequence: 1 givenname: Wanzhong surname: Yin fullname: Yin, Wanzhong organization: School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China – sequence: 2 givenname: Haoran surname: Sun fullname: Sun, Haoran email: 18842504743@163.com organization: School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China – sequence: 3 givenname: Jongsu surname: Hong fullname: Hong, Jongsu email: hjs_kut@yeah.net organization: School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China – sequence: 4 givenname: Shaohang surname: Cao fullname: Cao, Shaohang organization: School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China – sequence: 5 givenname: Bin surname: Yang fullname: Yang, Bin organization: School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China – sequence: 6 givenname: Changdok surname: Won fullname: Won, Changdok organization: Faculty of Resource Probing Engineering, Kim Chaek University of Technology, Pyongyang 1001, Democratic People’s Republic of Korea – sequence: 7 givenname: Myongsong surname: Song fullname: Song, Myongsong organization: Faculty of Mining Engineering, Kim Chaek University of Technology, Pyongyang 1001, Democratic People’s Republic of Korea |
BookMark | eNqFkM1KAzEUhYNUsFbfwEVeYGoyyXQSF0It9QcKuqjrEJObmjKTlGQo-PamjCsXurr3XO45cL5LNAkxAEI3lMwpoYvb_bz3AcJuXhMqy2lBGnKGplS0dSU55xM0JULW1UK0zQW6zHlPCGlaIafIrZ0DM-Do8ErjDF0R_gjYfEKnh5jww_Jtu8Q6YwuHBDnrUJ4Ddl0c9ODLluGg07iWkF7vAmQ_AHYp9tjGLvZFXaFzp7sM1z9zht4f19vVc7V5fXpZLTeVYZwNFauJsA1rFgKEkMYy5qTRJ0kJMGGd5sxx25oWgJNyajizgnJJtRTGfrAZ4mOuSTHnBE4dku91-lKUqBMrtVcjK3VipUZWxXb3y2b8WG9I2nf_me9HM5RiRw9JZeMhGLA-FZrKRv93wDc6Uoqk |
CitedBy_id | crossref_primary_10_1016_j_colsurfa_2022_128586 crossref_primary_10_1016_j_powtec_2020_08_054 crossref_primary_10_1016_j_colsurfa_2021_126448 crossref_primary_10_1021_acs_langmuir_5c00081 crossref_primary_10_1016_j_mineng_2021_106963 crossref_primary_10_1016_j_mineng_2023_108310 crossref_primary_10_1016_j_colsurfa_2024_135472 crossref_primary_10_1016_j_mineng_2020_106492 crossref_primary_10_1016_j_seppur_2024_126444 crossref_primary_10_3390_min13020200 crossref_primary_10_1016_j_mineng_2024_108829 crossref_primary_10_3390_min10111031 crossref_primary_10_1016_j_colsurfa_2020_125460 crossref_primary_10_1016_j_colsurfa_2023_131957 crossref_primary_10_1016_j_colsurfa_2023_132969 crossref_primary_10_1080_01496395_2024_2335347 crossref_primary_10_1016_j_mineng_2021_106954 crossref_primary_10_1007_s12613_023_2708_4 crossref_primary_10_1016_j_mineng_2025_109198 crossref_primary_10_1016_j_powtec_2020_05_098 crossref_primary_10_1016_j_mineng_2022_107668 crossref_primary_10_1016_j_powtec_2020_12_040 crossref_primary_10_1016_j_mineng_2021_107045 crossref_primary_10_1016_j_mineng_2021_107243 crossref_primary_10_1016_j_mineng_2021_106991 crossref_primary_10_1016_j_mineng_2021_107124 crossref_primary_10_1002_sia_7171 crossref_primary_10_1016_j_seppur_2020_117803 crossref_primary_10_1016_j_psep_2025_107046 crossref_primary_10_1016_j_powtec_2020_07_007 crossref_primary_10_1080_08827508_2022_2132944 crossref_primary_10_1002_open_202100156 crossref_primary_10_1016_j_mineng_2024_108718 crossref_primary_10_1016_j_ijbiomac_2021_05_011 crossref_primary_10_1016_j_jece_2020_103957 crossref_primary_10_1016_j_partic_2021_06_007 crossref_primary_10_1016_j_psep_2024_12_047 crossref_primary_10_1016_j_colsurfa_2021_127597 crossref_primary_10_1016_j_gsme_2024_02_001 crossref_primary_10_1080_01496395_2023_2213818 crossref_primary_10_1515_tsd_2021_2394 crossref_primary_10_1016_j_seppur_2020_117278 crossref_primary_10_1016_j_mineng_2020_106660 crossref_primary_10_1016_j_mineng_2021_107311 crossref_primary_10_1016_j_mineng_2024_109017 crossref_primary_10_1080_01496395_2023_2262743 crossref_primary_10_1016_j_jcis_2020_05_100 crossref_primary_10_3390_min11050499 crossref_primary_10_1016_j_apsusc_2025_162928 crossref_primary_10_1016_j_surfin_2024_103872 crossref_primary_10_3390_min9120782 crossref_primary_10_1016_j_seppur_2022_121201 crossref_primary_10_1016_j_apsusc_2022_152482 crossref_primary_10_1016_j_mineng_2021_106778 crossref_primary_10_1016_j_mineng_2021_106899 crossref_primary_10_1016_j_gsme_2024_05_003 crossref_primary_10_1016_j_colsurfa_2021_126899 crossref_primary_10_1039_D1BM01464A crossref_primary_10_1021_acsinfecdis_1c00264 crossref_primary_10_1016_j_mineng_2023_108281 crossref_primary_10_1016_j_molliq_2024_126184 crossref_primary_10_1016_j_apt_2020_08_025 crossref_primary_10_1016_j_colsurfa_2022_128380 crossref_primary_10_1016_j_cej_2020_125780 crossref_primary_10_1016_j_molliq_2021_117412 |
Cites_doi | 10.1007/s11771-016-3099-8 10.1116/1.1247719 10.1081/SS-120027564 10.3390/min8080354 10.5650/jos1956.39.10_736 10.1523/JNEUROSCI.18-20-08261.1998 10.1016/j.mineng.2007.03.017 10.1016/j.minpro.2016.02.013 10.3390/min7080150 10.1016/S0168-583X(98)00360-7 10.1016/0301-7516(85)90001-8 10.1080/19443994.2015.1111595 10.1016/0143-4160(94)90060-4 10.1016/S0898-8838(09)00205-0 10.1007/s12034-011-0150-0 10.1116/1.1247674 10.1016/j.mineng.2007.03.012 10.1016/j.minpro.2004.04.004 10.1016/j.apsusc.2005.05.053 10.1016/j.apsusc.2005.10.015 10.1016/0166-6622(88)80116-1 10.1016/0301-7516(89)90021-5 10.1016/j.molliq.2017.11.148 10.3390/min8040141 10.1021/ie020729b |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.mineng.2019.106050 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-9444 |
ExternalDocumentID | 10_1016_j_mineng_2019_106050 S0892687519304613 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNUV ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEP SES SET SEW SPC SPCBC SSE SSG SSZ T5K WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c343t-3208d53568e889cd33f9ca568e10e38dfa43f4d7c7ee400e3543d81491a98cdb3 |
IEDL.DBID | .~1 |
ISSN | 0892-6875 |
IngestDate | Tue Jul 01 01:13:26 EDT 2025 Thu Apr 24 22:53:22 EDT 2025 Fri Feb 23 02:35:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Magnesite Chelator Flotation Depressant Dolomite BAPTA |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-3208d53568e889cd33f9ca568e10e38dfa43f4d7c7ee400e3543d81491a98cdb3 |
ParticipantIDs | crossref_primary_10_1016_j_mineng_2019_106050 crossref_citationtrail_10_1016_j_mineng_2019_106050 elsevier_sciencedirect_doi_10_1016_j_mineng_2019_106050 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Minerals engineering |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Fukami, Maeda (b0035) 1998; 144 Sorour, Hani, Hayam, Mayyada, El–Sayed (b0125) 2016; 57 Luo, Yin, Wang, Sun, Ma, Liu (b0075) 2016; 23 Moudgil, Ince (b0100) 1991 Oiki, Yamamoto, Okada (b0110) 1994; 15 Zhang, Liu, Han, Hao (b0140) 2018; 249 Nagaraj (b0105) 1982 Marabini, Ciriachi, Plescia, Barbaro (b0080) 2007; 20 Matis, Balabanidis, Gallios (b0090) 1988; 29 Yao, Yin, Gong (b0135) 2016; 149 Baer, Marmorstein, Williford, Blanchard (b0015) 1992; 1 Chen, Tao (b0030) 2005; 39 Ruan, Zhang, Luo, Xiao, Zhou, Chi (b0120) 2018; 8 Matis, Gallios (b0095) 1989; 25 Gence, Ozbay (b0045) 2006; 252 Luo, Wei, Shen, Han, Zhang (b0070) 2017; 7 Aslani, Samim-Bani-Hashemi, Arianpour (b0005) 2010; 33 Koide, Yamada (b0060) 1990; 39 Kozhevnikov, Kropanev, Baranovskii (b0065) 1973; 3 Marinakis, Shergold (b0085) 1985; 14 John, Emma (b0055) 2009; 61 Ricci, Wu, Fettiplace (b0115) 1998; 18 Botero, Torem, De Mesquita (b0020) 2007; 20 Hu, Chi, Xu (b0050) 2003; 42 Chen, Tao (b0025) 2004; 74 Baer, Moulder (b0010) 1993; 2 Wonyen, Kromah, Gibson, Nah, Chelgani (b0130) 2018; 8 Gence (b0040) 2006; 252 Gence (10.1016/j.mineng.2019.106050_b0040) 2006; 252 Moudgil (10.1016/j.mineng.2019.106050_b0100) 1991 Chen (10.1016/j.mineng.2019.106050_b0030) 2005; 39 Ricci (10.1016/j.mineng.2019.106050_b0115) 1998; 18 Kozhevnikov (10.1016/j.mineng.2019.106050_b0065) 1973; 3 Hu (10.1016/j.mineng.2019.106050_b0050) 2003; 42 John (10.1016/j.mineng.2019.106050_b0055) 2009; 61 Matis (10.1016/j.mineng.2019.106050_b0090) 1988; 29 Luo (10.1016/j.mineng.2019.106050_b0075) 2016; 23 Matis (10.1016/j.mineng.2019.106050_b0095) 1989; 25 Oiki (10.1016/j.mineng.2019.106050_b0110) 1994; 15 Baer (10.1016/j.mineng.2019.106050_b0015) 1992; 1 Luo (10.1016/j.mineng.2019.106050_b0070) 2017; 7 Marinakis (10.1016/j.mineng.2019.106050_b0085) 1985; 14 Fukami (10.1016/j.mineng.2019.106050_b0035) 1998; 144 Wonyen (10.1016/j.mineng.2019.106050_b0130) 2018; 8 Chen (10.1016/j.mineng.2019.106050_b0025) 2004; 74 Yao (10.1016/j.mineng.2019.106050_b0135) 2016; 149 Ruan (10.1016/j.mineng.2019.106050_b0120) 2018; 8 Botero (10.1016/j.mineng.2019.106050_b0020) 2007; 20 Baer (10.1016/j.mineng.2019.106050_b0010) 1993; 2 Marabini (10.1016/j.mineng.2019.106050_b0080) 2007; 20 Zhang (10.1016/j.mineng.2019.106050_b0140) 2018; 249 Sorour (10.1016/j.mineng.2019.106050_b0125) 2016; 57 Nagaraj (10.1016/j.mineng.2019.106050_b0105) 1982 Aslani (10.1016/j.mineng.2019.106050_b0005) 2010; 33 Gence (10.1016/j.mineng.2019.106050_b0045) 2006; 252 Koide (10.1016/j.mineng.2019.106050_b0060) 1990; 39 |
References_xml | – volume: 29 start-page: 191 year: 1988 end-page: 203 ident: b0090 article-title: Processing of magnesium carbonate fines by dissolved–air flotation publication-title: Colloids Surf. – volume: 25 start-page: 261 year: 1989 end-page: 274 ident: b0095 article-title: Anionic flotation of magnesium carbonates by modifiers publication-title: Int. J. Miner. Process. – start-page: 191 year: 1991 end-page: 197 ident: b0100 article-title: Flotation separation of apatite from dolomite using dodecylamineand sodium chloride publication-title: Part. Technol. Surf. Phenom. Pet – volume: 39 start-page: 377 year: 2005 end-page: 390 ident: b0030 article-title: Reverse flotation of magnesite by dodecyl phosphate from dolomite in the presence of sodium silicate publication-title: Sep. Sci. Technol. – volume: 20 start-page: 1014 year: 2007 end-page: 1025 ident: b0080 article-title: Chelating reagents for flotation publication-title: Miner. Eng. – volume: 33 start-page: 697 year: 2010 end-page: 705 ident: b0005 article-title: Beneficiation of Iranian magnesite ores by reverse flotation process and its effects on shaped and unshaped refractories properties publication-title: Bull. Mater. Sci. – volume: 8 start-page: 354 year: 2018 ident: b0130 article-title: A review of flotation separation of mg carbonates (dolomite and magnesite) publication-title: Mineral – volume: 57 start-page: 22799 year: 2016 end-page: 22808 ident: b0125 article-title: Experimental screening of some chelating agents for calcium and magnesium removal from saline solutions publication-title: Desalin. Water. Treat. – volume: 252 start-page: 8057 year: 2006 end-page: 8061 ident: b0045 article-title: pH dependence of electrokinetic behavior of dolomite and magnesite in aqueous electrolyte solutions publication-title: Appl. Surf. Sci. – volume: 18 start-page: 8261 year: 1998 end-page: 8277 ident: b0115 article-title: The endogenous calcium buffer and the time course of transducer adaptation in auditory hair cells publication-title: J. Neurosci. – volume: 23 start-page: 529 year: 2016 end-page: 534 ident: b0075 article-title: Effect and mechanism of dolomite with different size fractions on hematite flotation using sodium oleate as collector publication-title: J. Cent. South Univ. – volume: 15 start-page: 209 year: 1994 end-page: 216 ident: b0110 article-title: Apparent stability constants and purity of Ca–chelating agents evaluated using Ca–selective electrodes by the double–log optimization method publication-title: Cell Calcium. – volume: 249 start-page: 1060 year: 2018 end-page: 1067 ident: b0140 article-title: Effects of monohydric alcohols on the flotation of magnesite and dolomite by sodium oleate publication-title: J. Mol. Liq. – start-page: 14 year: 1982 end-page: 18 ident: b0105 article-title: Chelating agents in mineral processing publication-title: III AIME Annual Meeting, Dallas – volume: 2 start-page: 1 year: 1993 end-page: 7 ident: b0010 article-title: High resolution XPS spectrum of calcite (CaCO3) publication-title: Surf. Sci. Spectra – volume: 144 start-page: 229 year: 1998 end-page: 235 ident: b0035 article-title: Raman and FT-IR studies of photodynamic processes of cholesteryl oleate using IRFELs publication-title: Nucl. Instru. Methods Phys. Res. B – volume: 252 start-page: 3744 year: 2006 end-page: 3750 ident: b0040 article-title: Wetting behavior of magnesite and dolomite surfaces publication-title: Appl. Surf. Sci. – volume: 42 start-page: 1641 year: 2003 end-page: 1647 ident: b0050 article-title: Solution chemistry study of salt–type mineral flotation systems: role of inorganic dispersants publication-title: Ind. Eng. Chem. Res. – volume: 20 start-page: 1026 year: 2007 end-page: 1032 ident: b0020 article-title: Fundamental studies of Rhodococcus opacus as a biocollector of calcite and magnesite publication-title: Miner. Eng. – volume: 74 start-page: 343 year: 2004 end-page: 357 ident: b0025 article-title: Effect of solution chemistry on floatability of magnesite and dolomite publication-title: Int. J. Miner. Process. – volume: 3 start-page: 19 year: 1973 end-page: 21 ident: b0065 article-title: Beneficiation of dolomites publication-title: Raw Mater. – volume: 149 start-page: 84 year: 2016 end-page: 93 ident: b0135 article-title: Depressing effect of fine hydrophilic particles on magnesite reverse flotation publication-title: Int. J. Miner. Process. – volume: 39 start-page: 736 year: 1990 end-page: 743 ident: b0060 article-title: Selective flotation of metal ions by using chelating surfactants publication-title: J. Jpn. Oil. Chem. Soc. – volume: 7 start-page: 150 year: 2017 ident: b0070 article-title: Elimination of the adverse effect of calcium ion on the flotation separation of magnesite from dolomite publication-title: Mineral – volume: 61 start-page: 251 year: 2009 end-page: 366 ident: b0055 article-title: Calcium in biological systems publication-title: Adv. Inorg. Chem. – volume: 1 start-page: 80 year: 1992 end-page: 86 ident: b0015 article-title: Comparison Spectra for Calcite by XPS publication-title: Surf. Sci. Spectra – volume: 14 start-page: 161 year: 1985 end-page: 176 ident: b0085 article-title: The mechanism of fatty acid adsorption in the presence of fluorite, calcite and barite publication-title: Int. J. Miner. Process. – volume: 8 start-page: 141 year: 2018 ident: b0120 article-title: Effects of metal ions on the flotation of apatite, dolomite and quartz publication-title: Mineral – volume: 23 start-page: 529 year: 2016 ident: 10.1016/j.mineng.2019.106050_b0075 article-title: Effect and mechanism of dolomite with different size fractions on hematite flotation using sodium oleate as collector publication-title: J. Cent. South Univ. doi: 10.1007/s11771-016-3099-8 – volume: 2 start-page: 1 year: 1993 ident: 10.1016/j.mineng.2019.106050_b0010 article-title: High resolution XPS spectrum of calcite (CaCO3) publication-title: Surf. Sci. Spectra doi: 10.1116/1.1247719 – volume: 39 start-page: 377 year: 2005 ident: 10.1016/j.mineng.2019.106050_b0030 article-title: Reverse flotation of magnesite by dodecyl phosphate from dolomite in the presence of sodium silicate publication-title: Sep. Sci. Technol. doi: 10.1081/SS-120027564 – start-page: 14 year: 1982 ident: 10.1016/j.mineng.2019.106050_b0105 article-title: Chelating agents in mineral processing – volume: 8 start-page: 354 year: 2018 ident: 10.1016/j.mineng.2019.106050_b0130 article-title: A review of flotation separation of mg carbonates (dolomite and magnesite) publication-title: Mineral doi: 10.3390/min8080354 – volume: 39 start-page: 736 year: 1990 ident: 10.1016/j.mineng.2019.106050_b0060 article-title: Selective flotation of metal ions by using chelating surfactants publication-title: J. Jpn. Oil. Chem. Soc. doi: 10.5650/jos1956.39.10_736 – volume: 18 start-page: 8261 year: 1998 ident: 10.1016/j.mineng.2019.106050_b0115 article-title: The endogenous calcium buffer and the time course of transducer adaptation in auditory hair cells publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.18-20-08261.1998 – volume: 20 start-page: 1026 year: 2007 ident: 10.1016/j.mineng.2019.106050_b0020 article-title: Fundamental studies of Rhodococcus opacus as a biocollector of calcite and magnesite publication-title: Miner. Eng. doi: 10.1016/j.mineng.2007.03.017 – volume: 149 start-page: 84 year: 2016 ident: 10.1016/j.mineng.2019.106050_b0135 article-title: Depressing effect of fine hydrophilic particles on magnesite reverse flotation publication-title: Int. J. Miner. Process. doi: 10.1016/j.minpro.2016.02.013 – volume: 7 start-page: 150 year: 2017 ident: 10.1016/j.mineng.2019.106050_b0070 article-title: Elimination of the adverse effect of calcium ion on the flotation separation of magnesite from dolomite publication-title: Mineral doi: 10.3390/min7080150 – volume: 144 start-page: 229 year: 1998 ident: 10.1016/j.mineng.2019.106050_b0035 article-title: Raman and FT-IR studies of photodynamic processes of cholesteryl oleate using IRFELs publication-title: Nucl. Instru. Methods Phys. Res. B doi: 10.1016/S0168-583X(98)00360-7 – volume: 14 start-page: 161 year: 1985 ident: 10.1016/j.mineng.2019.106050_b0085 article-title: The mechanism of fatty acid adsorption in the presence of fluorite, calcite and barite publication-title: Int. J. Miner. Process. doi: 10.1016/0301-7516(85)90001-8 – volume: 57 start-page: 22799 year: 2016 ident: 10.1016/j.mineng.2019.106050_b0125 article-title: Experimental screening of some chelating agents for calcium and magnesium removal from saline solutions publication-title: Desalin. Water. Treat. doi: 10.1080/19443994.2015.1111595 – volume: 15 start-page: 209 year: 1994 ident: 10.1016/j.mineng.2019.106050_b0110 article-title: Apparent stability constants and purity of Ca–chelating agents evaluated using Ca–selective electrodes by the double–log optimization method publication-title: Cell Calcium. doi: 10.1016/0143-4160(94)90060-4 – volume: 61 start-page: 251 year: 2009 ident: 10.1016/j.mineng.2019.106050_b0055 article-title: Calcium in biological systems publication-title: Adv. Inorg. Chem. doi: 10.1016/S0898-8838(09)00205-0 – volume: 33 start-page: 697 year: 2010 ident: 10.1016/j.mineng.2019.106050_b0005 article-title: Beneficiation of Iranian magnesite ores by reverse flotation process and its effects on shaped and unshaped refractories properties publication-title: Bull. Mater. Sci. doi: 10.1007/s12034-011-0150-0 – volume: 1 start-page: 80 year: 1992 ident: 10.1016/j.mineng.2019.106050_b0015 article-title: Comparison Spectra for Calcite by XPS publication-title: Surf. Sci. Spectra doi: 10.1116/1.1247674 – volume: 20 start-page: 1014 year: 2007 ident: 10.1016/j.mineng.2019.106050_b0080 article-title: Chelating reagents for flotation publication-title: Miner. Eng. doi: 10.1016/j.mineng.2007.03.012 – volume: 74 start-page: 343 year: 2004 ident: 10.1016/j.mineng.2019.106050_b0025 article-title: Effect of solution chemistry on floatability of magnesite and dolomite publication-title: Int. J. Miner. Process. doi: 10.1016/j.minpro.2004.04.004 – start-page: 191 year: 1991 ident: 10.1016/j.mineng.2019.106050_b0100 article-title: Flotation separation of apatite from dolomite using dodecylamineand sodium chloride publication-title: Part. Technol. Surf. Phenom. Pet – volume: 252 start-page: 3744 year: 2006 ident: 10.1016/j.mineng.2019.106050_b0040 article-title: Wetting behavior of magnesite and dolomite surfaces publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2005.05.053 – volume: 252 start-page: 8057 year: 2006 ident: 10.1016/j.mineng.2019.106050_b0045 article-title: pH dependence of electrokinetic behavior of dolomite and magnesite in aqueous electrolyte solutions publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2005.10.015 – volume: 29 start-page: 191 year: 1988 ident: 10.1016/j.mineng.2019.106050_b0090 article-title: Processing of magnesium carbonate fines by dissolved–air flotation publication-title: Colloids Surf. doi: 10.1016/0166-6622(88)80116-1 – volume: 25 start-page: 261 year: 1989 ident: 10.1016/j.mineng.2019.106050_b0095 article-title: Anionic flotation of magnesium carbonates by modifiers publication-title: Int. J. Miner. Process. doi: 10.1016/0301-7516(89)90021-5 – volume: 3 start-page: 19 year: 1973 ident: 10.1016/j.mineng.2019.106050_b0065 article-title: Beneficiation of dolomites publication-title: Raw Mater. – volume: 249 start-page: 1060 year: 2018 ident: 10.1016/j.mineng.2019.106050_b0140 article-title: Effects of monohydric alcohols on the flotation of magnesite and dolomite by sodium oleate publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2017.11.148 – volume: 8 start-page: 141 year: 2018 ident: 10.1016/j.mineng.2019.106050_b0120 article-title: Effects of metal ions on the flotation of apatite, dolomite and quartz publication-title: Mineral doi: 10.3390/min8040141 – volume: 42 start-page: 1641 year: 2003 ident: 10.1016/j.mineng.2019.106050_b0050 article-title: Solution chemistry study of salt–type mineral flotation systems: role of inorganic dispersants publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie020729b |
SSID | ssj0005789 |
Score | 2.5042403 |
Snippet | •For the flotation separation of magnesite from dolomite, BAPTA had few influence on the recovery of magnesite.•BAPTA acts on Ca sites of the dolomite surface... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106050 |
SubjectTerms | BAPTA Chelator Depressant Dolomite Flotation Magnesite |
Title | Effect of Ca selective chelator BAPTA as depressant on flotation separation of magnesite from dolomite |
URI | https://dx.doi.org/10.1016/j.mineng.2019.106050 |
Volume | 144 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl4jftIuiTHOpSpMAQ32K2kSTomWzfcvPq3-17TygRR8Na0eW15TV9-Ib_3e4RcKx9l2kWKWZVJJoSULDU6ZSrVkeWmpzuuYPkOe4OxeJxEkxrpV7kwSKssY3-I6UW0Ls-0Sm-2VrNZ66WtdLcHcBsgCKqGo-InPAtH-c3HFs1DFmXwsDPD3lX6XMHxWgCSy6dI8NJwCpB9--fpaWvKuT8g-yVWpHF4nUNS8_kR2dtSEDwmWVAfpsuM9g1dF0VtIH5R5Hficprexs-jmJo1LSmv4Ei6zGk2X4Y9eLAJ6t9wCDdZmGmOlQI8xbwT6iA0YgLUCRnf3436A1aWTmCWC75hvNtWLuJRT3mltHWcZ9oabHbaniuXGcEz4aSV3sNf7HkkuFOwWuoYraxL-Smp58vcnxGK-6iwkOVSGyPgUipcVwMqACAlrJBRg_DKY4ktdcWxvMU8qQhkr0nwc4J-ToKfG4R9Wa2CrsYf_WX1MZJv4yOB0P-r5fm_LS_ILrYCeeWS1Ddv7_4KIMgmbRZjrEl24oenwfAThk7a8Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61HtSD-MT6zMFr7CPZTXKsxVK1FsEWeluySbZU2t1i69Xf7mSzKxVEwdtuklnCbDL5hnwzg9C1sEEiTSCIFgknjHFOYiVjImIZaKpC2TQ5y3cQ9kbsYRyMK6hTxsI4WmVh-71Nz6110VIvtFlfTKf1l4aQrRDgNkAQlzWcbqBNBtvXlTG4-VjjefC8Dp4bTdzwMn4uJ3nNAcqlE8fwktAE0L7x8_m0duZ099BuARZx289nH1VseoB21lIIHqLEpx_GWYI7Ci_zqjZgwLAjeDp_Gt-2n4dtrJa44LyCJnGW4mSW-Ut4kPHpv-ERPjJXk9SVCrDYBZ5gA7bRRUAdoVH3btjpkaJ2AtGU0RWhrYYwAQ1CYYWQ2lCaSK3ca7NhqTCJYjRhhmtuLWxjSwNGjQB3qamk0Camx6iaZqk9QdhdpIInS7lUikFXzExLAiwAJMU040EN0VJjkS4Si7v6FrOoZJC9Rl7PkdNz5PVcQ-RLauETa_wxnpc_I_q2QCKw_b9Knv5b8gpt9YZP_ah_P3g8Q9uuxzNZzlF19fZuLwCPrOLLfL19AqcZ3H8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Ca+selective+chelator+BAPTA+as+depressant+on+flotation+separation+of+magnesite+from+dolomite&rft.jtitle=Minerals+engineering&rft.au=Yin%2C+Wanzhong&rft.au=Sun%2C+Haoran&rft.au=Hong%2C+Jongsu&rft.au=Cao%2C+Shaohang&rft.date=2019-12-01&rft.issn=0892-6875&rft.volume=144&rft.spage=106050&rft_id=info:doi/10.1016%2Fj.mineng.2019.106050&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mineng_2019_106050 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon |