Effect of Ca selective chelator BAPTA as depressant on flotation separation of magnesite from dolomite

•For the flotation separation of magnesite from dolomite, BAPTA had few influence on the recovery of magnesite.•BAPTA acts on Ca sites of the dolomite surface to depress the adsorption of oleic acid on the surface of dolomite.•BAPTA prevented the precipitation of Ca on the surface of the magnesite....

Full description

Saved in:
Bibliographic Details
Published inMinerals engineering Vol. 144; p. 106050
Main Authors Yin, Wanzhong, Sun, Haoran, Hong, Jongsu, Cao, Shaohang, Yang, Bin, Won, Changdok, Song, Myongsong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •For the flotation separation of magnesite from dolomite, BAPTA had few influence on the recovery of magnesite.•BAPTA acts on Ca sites of the dolomite surface to depress the adsorption of oleic acid on the surface of dolomite.•BAPTA prevented the precipitation of Ca on the surface of the magnesite. With the depletion of high-grade magnesite mineral resources, improving the grade of magnesite obtained from gangue minerals such as dolomite has been attracting considerable attention from the industry. However, it is difficult to achieve the effective separation of magnesite from dolomite because of their similar chemical and crystal properties. In this study, 1, 2-bis (o-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid (BAPTA) was used as a depressant for dolomite to improve the separation of magnesite from dolomite. Microflotation tests of the single minerals and artificially mixed minerals using oleic acid as a collector were performed to evaluate the selective depression effect of BAPTA. The results indicated that the BAPTA depressant had a selective effect on dolomite, thereby suggesting that a magnesite grade of 87.5%, recovery of 95.8%, and CaO content of 3.8% can be achieved with a BAPTA dosage of 62.5 mg/L. The depression mechanism of BAPTA was investigated using zeta-potential measurements, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The results indicated that BAPTA was selectively adsorbed on the surface of dolomite. The selective depression effect can be attributed to the selective chelating formation of BAPTA on Ca rather than Mg, which not only adsorbed BAPTA decreasing the adsorption sites of oleic acid on the dolomite surface, but also prevented the precipitation of Ca on the surface of the magnesite.
AbstractList •For the flotation separation of magnesite from dolomite, BAPTA had few influence on the recovery of magnesite.•BAPTA acts on Ca sites of the dolomite surface to depress the adsorption of oleic acid on the surface of dolomite.•BAPTA prevented the precipitation of Ca on the surface of the magnesite. With the depletion of high-grade magnesite mineral resources, improving the grade of magnesite obtained from gangue minerals such as dolomite has been attracting considerable attention from the industry. However, it is difficult to achieve the effective separation of magnesite from dolomite because of their similar chemical and crystal properties. In this study, 1, 2-bis (o-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid (BAPTA) was used as a depressant for dolomite to improve the separation of magnesite from dolomite. Microflotation tests of the single minerals and artificially mixed minerals using oleic acid as a collector were performed to evaluate the selective depression effect of BAPTA. The results indicated that the BAPTA depressant had a selective effect on dolomite, thereby suggesting that a magnesite grade of 87.5%, recovery of 95.8%, and CaO content of 3.8% can be achieved with a BAPTA dosage of 62.5 mg/L. The depression mechanism of BAPTA was investigated using zeta-potential measurements, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The results indicated that BAPTA was selectively adsorbed on the surface of dolomite. The selective depression effect can be attributed to the selective chelating formation of BAPTA on Ca rather than Mg, which not only adsorbed BAPTA decreasing the adsorption sites of oleic acid on the dolomite surface, but also prevented the precipitation of Ca on the surface of the magnesite.
ArticleNumber 106050
Author Yin, Wanzhong
Song, Myongsong
Cao, Shaohang
Sun, Haoran
Yang, Bin
Hong, Jongsu
Won, Changdok
Author_xml – sequence: 1
  givenname: Wanzhong
  surname: Yin
  fullname: Yin, Wanzhong
  organization: School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China
– sequence: 2
  givenname: Haoran
  surname: Sun
  fullname: Sun, Haoran
  email: 18842504743@163.com
  organization: School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China
– sequence: 3
  givenname: Jongsu
  surname: Hong
  fullname: Hong, Jongsu
  email: hjs_kut@yeah.net
  organization: School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China
– sequence: 4
  givenname: Shaohang
  surname: Cao
  fullname: Cao, Shaohang
  organization: School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China
– sequence: 5
  givenname: Bin
  surname: Yang
  fullname: Yang, Bin
  organization: School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China
– sequence: 6
  givenname: Changdok
  surname: Won
  fullname: Won, Changdok
  organization: Faculty of Resource Probing Engineering, Kim Chaek University of Technology, Pyongyang 1001, Democratic People’s Republic of Korea
– sequence: 7
  givenname: Myongsong
  surname: Song
  fullname: Song, Myongsong
  organization: Faculty of Mining Engineering, Kim Chaek University of Technology, Pyongyang 1001, Democratic People’s Republic of Korea
BookMark eNqFkM1KAzEUhYNUsFbfwEVeYGoyyXQSF0It9QcKuqjrEJObmjKTlGQo-PamjCsXurr3XO45cL5LNAkxAEI3lMwpoYvb_bz3AcJuXhMqy2lBGnKGplS0dSU55xM0JULW1UK0zQW6zHlPCGlaIafIrZ0DM-Do8ErjDF0R_gjYfEKnh5jww_Jtu8Q6YwuHBDnrUJ4Ddl0c9ODLluGg07iWkF7vAmQ_AHYp9tjGLvZFXaFzp7sM1z9zht4f19vVc7V5fXpZLTeVYZwNFauJsA1rFgKEkMYy5qTRJ0kJMGGd5sxx25oWgJNyajizgnJJtRTGfrAZ4mOuSTHnBE4dku91-lKUqBMrtVcjK3VipUZWxXb3y2b8WG9I2nf_me9HM5RiRw9JZeMhGLA-FZrKRv93wDc6Uoqk
CitedBy_id crossref_primary_10_1016_j_colsurfa_2022_128586
crossref_primary_10_1016_j_powtec_2020_08_054
crossref_primary_10_1016_j_colsurfa_2021_126448
crossref_primary_10_1021_acs_langmuir_5c00081
crossref_primary_10_1016_j_mineng_2021_106963
crossref_primary_10_1016_j_mineng_2023_108310
crossref_primary_10_1016_j_colsurfa_2024_135472
crossref_primary_10_1016_j_mineng_2020_106492
crossref_primary_10_1016_j_seppur_2024_126444
crossref_primary_10_3390_min13020200
crossref_primary_10_1016_j_mineng_2024_108829
crossref_primary_10_3390_min10111031
crossref_primary_10_1016_j_colsurfa_2020_125460
crossref_primary_10_1016_j_colsurfa_2023_131957
crossref_primary_10_1016_j_colsurfa_2023_132969
crossref_primary_10_1080_01496395_2024_2335347
crossref_primary_10_1016_j_mineng_2021_106954
crossref_primary_10_1007_s12613_023_2708_4
crossref_primary_10_1016_j_mineng_2025_109198
crossref_primary_10_1016_j_powtec_2020_05_098
crossref_primary_10_1016_j_mineng_2022_107668
crossref_primary_10_1016_j_powtec_2020_12_040
crossref_primary_10_1016_j_mineng_2021_107045
crossref_primary_10_1016_j_mineng_2021_107243
crossref_primary_10_1016_j_mineng_2021_106991
crossref_primary_10_1016_j_mineng_2021_107124
crossref_primary_10_1002_sia_7171
crossref_primary_10_1016_j_seppur_2020_117803
crossref_primary_10_1016_j_psep_2025_107046
crossref_primary_10_1016_j_powtec_2020_07_007
crossref_primary_10_1080_08827508_2022_2132944
crossref_primary_10_1002_open_202100156
crossref_primary_10_1016_j_mineng_2024_108718
crossref_primary_10_1016_j_ijbiomac_2021_05_011
crossref_primary_10_1016_j_jece_2020_103957
crossref_primary_10_1016_j_partic_2021_06_007
crossref_primary_10_1016_j_psep_2024_12_047
crossref_primary_10_1016_j_colsurfa_2021_127597
crossref_primary_10_1016_j_gsme_2024_02_001
crossref_primary_10_1080_01496395_2023_2213818
crossref_primary_10_1515_tsd_2021_2394
crossref_primary_10_1016_j_seppur_2020_117278
crossref_primary_10_1016_j_mineng_2020_106660
crossref_primary_10_1016_j_mineng_2021_107311
crossref_primary_10_1016_j_mineng_2024_109017
crossref_primary_10_1080_01496395_2023_2262743
crossref_primary_10_1016_j_jcis_2020_05_100
crossref_primary_10_3390_min11050499
crossref_primary_10_1016_j_apsusc_2025_162928
crossref_primary_10_1016_j_surfin_2024_103872
crossref_primary_10_3390_min9120782
crossref_primary_10_1016_j_seppur_2022_121201
crossref_primary_10_1016_j_apsusc_2022_152482
crossref_primary_10_1016_j_mineng_2021_106778
crossref_primary_10_1016_j_mineng_2021_106899
crossref_primary_10_1016_j_gsme_2024_05_003
crossref_primary_10_1016_j_colsurfa_2021_126899
crossref_primary_10_1039_D1BM01464A
crossref_primary_10_1021_acsinfecdis_1c00264
crossref_primary_10_1016_j_mineng_2023_108281
crossref_primary_10_1016_j_molliq_2024_126184
crossref_primary_10_1016_j_apt_2020_08_025
crossref_primary_10_1016_j_colsurfa_2022_128380
crossref_primary_10_1016_j_cej_2020_125780
crossref_primary_10_1016_j_molliq_2021_117412
Cites_doi 10.1007/s11771-016-3099-8
10.1116/1.1247719
10.1081/SS-120027564
10.3390/min8080354
10.5650/jos1956.39.10_736
10.1523/JNEUROSCI.18-20-08261.1998
10.1016/j.mineng.2007.03.017
10.1016/j.minpro.2016.02.013
10.3390/min7080150
10.1016/S0168-583X(98)00360-7
10.1016/0301-7516(85)90001-8
10.1080/19443994.2015.1111595
10.1016/0143-4160(94)90060-4
10.1016/S0898-8838(09)00205-0
10.1007/s12034-011-0150-0
10.1116/1.1247674
10.1016/j.mineng.2007.03.012
10.1016/j.minpro.2004.04.004
10.1016/j.apsusc.2005.05.053
10.1016/j.apsusc.2005.10.015
10.1016/0166-6622(88)80116-1
10.1016/0301-7516(89)90021-5
10.1016/j.molliq.2017.11.148
10.3390/min8040141
10.1021/ie020729b
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.mineng.2019.106050
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-9444
ExternalDocumentID 10_1016_j_mineng_2019_106050
S0892687519304613
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SET
SEW
SPC
SPCBC
SSE
SSG
SSZ
T5K
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c343t-3208d53568e889cd33f9ca568e10e38dfa43f4d7c7ee400e3543d81491a98cdb3
IEDL.DBID .~1
ISSN 0892-6875
IngestDate Tue Jul 01 01:13:26 EDT 2025
Thu Apr 24 22:53:22 EDT 2025
Fri Feb 23 02:35:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Magnesite
Chelator
Flotation
Depressant
Dolomite
BAPTA
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-3208d53568e889cd33f9ca568e10e38dfa43f4d7c7ee400e3543d81491a98cdb3
ParticipantIDs crossref_primary_10_1016_j_mineng_2019_106050
crossref_citationtrail_10_1016_j_mineng_2019_106050
elsevier_sciencedirect_doi_10_1016_j_mineng_2019_106050
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Minerals engineering
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Fukami, Maeda (b0035) 1998; 144
Sorour, Hani, Hayam, Mayyada, El–Sayed (b0125) 2016; 57
Luo, Yin, Wang, Sun, Ma, Liu (b0075) 2016; 23
Moudgil, Ince (b0100) 1991
Oiki, Yamamoto, Okada (b0110) 1994; 15
Zhang, Liu, Han, Hao (b0140) 2018; 249
Nagaraj (b0105) 1982
Marabini, Ciriachi, Plescia, Barbaro (b0080) 2007; 20
Matis, Balabanidis, Gallios (b0090) 1988; 29
Yao, Yin, Gong (b0135) 2016; 149
Baer, Marmorstein, Williford, Blanchard (b0015) 1992; 1
Chen, Tao (b0030) 2005; 39
Ruan, Zhang, Luo, Xiao, Zhou, Chi (b0120) 2018; 8
Matis, Gallios (b0095) 1989; 25
Gence, Ozbay (b0045) 2006; 252
Luo, Wei, Shen, Han, Zhang (b0070) 2017; 7
Aslani, Samim-Bani-Hashemi, Arianpour (b0005) 2010; 33
Koide, Yamada (b0060) 1990; 39
Kozhevnikov, Kropanev, Baranovskii (b0065) 1973; 3
Marinakis, Shergold (b0085) 1985; 14
John, Emma (b0055) 2009; 61
Ricci, Wu, Fettiplace (b0115) 1998; 18
Botero, Torem, De Mesquita (b0020) 2007; 20
Hu, Chi, Xu (b0050) 2003; 42
Chen, Tao (b0025) 2004; 74
Baer, Moulder (b0010) 1993; 2
Wonyen, Kromah, Gibson, Nah, Chelgani (b0130) 2018; 8
Gence (b0040) 2006; 252
Gence (10.1016/j.mineng.2019.106050_b0040) 2006; 252
Moudgil (10.1016/j.mineng.2019.106050_b0100) 1991
Chen (10.1016/j.mineng.2019.106050_b0030) 2005; 39
Ricci (10.1016/j.mineng.2019.106050_b0115) 1998; 18
Kozhevnikov (10.1016/j.mineng.2019.106050_b0065) 1973; 3
Hu (10.1016/j.mineng.2019.106050_b0050) 2003; 42
John (10.1016/j.mineng.2019.106050_b0055) 2009; 61
Matis (10.1016/j.mineng.2019.106050_b0090) 1988; 29
Luo (10.1016/j.mineng.2019.106050_b0075) 2016; 23
Matis (10.1016/j.mineng.2019.106050_b0095) 1989; 25
Oiki (10.1016/j.mineng.2019.106050_b0110) 1994; 15
Baer (10.1016/j.mineng.2019.106050_b0015) 1992; 1
Luo (10.1016/j.mineng.2019.106050_b0070) 2017; 7
Marinakis (10.1016/j.mineng.2019.106050_b0085) 1985; 14
Fukami (10.1016/j.mineng.2019.106050_b0035) 1998; 144
Wonyen (10.1016/j.mineng.2019.106050_b0130) 2018; 8
Chen (10.1016/j.mineng.2019.106050_b0025) 2004; 74
Yao (10.1016/j.mineng.2019.106050_b0135) 2016; 149
Ruan (10.1016/j.mineng.2019.106050_b0120) 2018; 8
Botero (10.1016/j.mineng.2019.106050_b0020) 2007; 20
Baer (10.1016/j.mineng.2019.106050_b0010) 1993; 2
Marabini (10.1016/j.mineng.2019.106050_b0080) 2007; 20
Zhang (10.1016/j.mineng.2019.106050_b0140) 2018; 249
Sorour (10.1016/j.mineng.2019.106050_b0125) 2016; 57
Nagaraj (10.1016/j.mineng.2019.106050_b0105) 1982
Aslani (10.1016/j.mineng.2019.106050_b0005) 2010; 33
Gence (10.1016/j.mineng.2019.106050_b0045) 2006; 252
Koide (10.1016/j.mineng.2019.106050_b0060) 1990; 39
References_xml – volume: 29
  start-page: 191
  year: 1988
  end-page: 203
  ident: b0090
  article-title: Processing of magnesium carbonate fines by dissolved–air flotation
  publication-title: Colloids Surf.
– volume: 25
  start-page: 261
  year: 1989
  end-page: 274
  ident: b0095
  article-title: Anionic flotation of magnesium carbonates by modifiers
  publication-title: Int. J. Miner. Process.
– start-page: 191
  year: 1991
  end-page: 197
  ident: b0100
  article-title: Flotation separation of apatite from dolomite using dodecylamineand sodium chloride
  publication-title: Part. Technol. Surf. Phenom. Pet
– volume: 39
  start-page: 377
  year: 2005
  end-page: 390
  ident: b0030
  article-title: Reverse flotation of magnesite by dodecyl phosphate from dolomite in the presence of sodium silicate
  publication-title: Sep. Sci. Technol.
– volume: 20
  start-page: 1014
  year: 2007
  end-page: 1025
  ident: b0080
  article-title: Chelating reagents for flotation
  publication-title: Miner. Eng.
– volume: 33
  start-page: 697
  year: 2010
  end-page: 705
  ident: b0005
  article-title: Beneficiation of Iranian magnesite ores by reverse flotation process and its effects on shaped and unshaped refractories properties
  publication-title: Bull. Mater. Sci.
– volume: 8
  start-page: 354
  year: 2018
  ident: b0130
  article-title: A review of flotation separation of mg carbonates (dolomite and magnesite)
  publication-title: Mineral
– volume: 57
  start-page: 22799
  year: 2016
  end-page: 22808
  ident: b0125
  article-title: Experimental screening of some chelating agents for calcium and magnesium removal from saline solutions
  publication-title: Desalin. Water. Treat.
– volume: 252
  start-page: 8057
  year: 2006
  end-page: 8061
  ident: b0045
  article-title: pH dependence of electrokinetic behavior of dolomite and magnesite in aqueous electrolyte solutions
  publication-title: Appl. Surf. Sci.
– volume: 18
  start-page: 8261
  year: 1998
  end-page: 8277
  ident: b0115
  article-title: The endogenous calcium buffer and the time course of transducer adaptation in auditory hair cells
  publication-title: J. Neurosci.
– volume: 23
  start-page: 529
  year: 2016
  end-page: 534
  ident: b0075
  article-title: Effect and mechanism of dolomite with different size fractions on hematite flotation using sodium oleate as collector
  publication-title: J. Cent. South Univ.
– volume: 15
  start-page: 209
  year: 1994
  end-page: 216
  ident: b0110
  article-title: Apparent stability constants and purity of Ca–chelating agents evaluated using Ca–selective electrodes by the double–log optimization method
  publication-title: Cell Calcium.
– volume: 249
  start-page: 1060
  year: 2018
  end-page: 1067
  ident: b0140
  article-title: Effects of monohydric alcohols on the flotation of magnesite and dolomite by sodium oleate
  publication-title: J. Mol. Liq.
– start-page: 14
  year: 1982
  end-page: 18
  ident: b0105
  article-title: Chelating agents in mineral processing
  publication-title: III AIME Annual Meeting, Dallas
– volume: 2
  start-page: 1
  year: 1993
  end-page: 7
  ident: b0010
  article-title: High resolution XPS spectrum of calcite (CaCO3)
  publication-title: Surf. Sci. Spectra
– volume: 144
  start-page: 229
  year: 1998
  end-page: 235
  ident: b0035
  article-title: Raman and FT-IR studies of photodynamic processes of cholesteryl oleate using IRFELs
  publication-title: Nucl. Instru. Methods Phys. Res. B
– volume: 252
  start-page: 3744
  year: 2006
  end-page: 3750
  ident: b0040
  article-title: Wetting behavior of magnesite and dolomite surfaces
  publication-title: Appl. Surf. Sci.
– volume: 42
  start-page: 1641
  year: 2003
  end-page: 1647
  ident: b0050
  article-title: Solution chemistry study of salt–type mineral flotation systems: role of inorganic dispersants
  publication-title: Ind. Eng. Chem. Res.
– volume: 20
  start-page: 1026
  year: 2007
  end-page: 1032
  ident: b0020
  article-title: Fundamental studies of Rhodococcus opacus as a biocollector of calcite and magnesite
  publication-title: Miner. Eng.
– volume: 74
  start-page: 343
  year: 2004
  end-page: 357
  ident: b0025
  article-title: Effect of solution chemistry on floatability of magnesite and dolomite
  publication-title: Int. J. Miner. Process.
– volume: 3
  start-page: 19
  year: 1973
  end-page: 21
  ident: b0065
  article-title: Beneficiation of dolomites
  publication-title: Raw Mater.
– volume: 149
  start-page: 84
  year: 2016
  end-page: 93
  ident: b0135
  article-title: Depressing effect of fine hydrophilic particles on magnesite reverse flotation
  publication-title: Int. J. Miner. Process.
– volume: 39
  start-page: 736
  year: 1990
  end-page: 743
  ident: b0060
  article-title: Selective flotation of metal ions by using chelating surfactants
  publication-title: J. Jpn. Oil. Chem. Soc.
– volume: 7
  start-page: 150
  year: 2017
  ident: b0070
  article-title: Elimination of the adverse effect of calcium ion on the flotation separation of magnesite from dolomite
  publication-title: Mineral
– volume: 61
  start-page: 251
  year: 2009
  end-page: 366
  ident: b0055
  article-title: Calcium in biological systems
  publication-title: Adv. Inorg. Chem.
– volume: 1
  start-page: 80
  year: 1992
  end-page: 86
  ident: b0015
  article-title: Comparison Spectra for Calcite by XPS
  publication-title: Surf. Sci. Spectra
– volume: 14
  start-page: 161
  year: 1985
  end-page: 176
  ident: b0085
  article-title: The mechanism of fatty acid adsorption in the presence of fluorite, calcite and barite
  publication-title: Int. J. Miner. Process.
– volume: 8
  start-page: 141
  year: 2018
  ident: b0120
  article-title: Effects of metal ions on the flotation of apatite, dolomite and quartz
  publication-title: Mineral
– volume: 23
  start-page: 529
  year: 2016
  ident: 10.1016/j.mineng.2019.106050_b0075
  article-title: Effect and mechanism of dolomite with different size fractions on hematite flotation using sodium oleate as collector
  publication-title: J. Cent. South Univ.
  doi: 10.1007/s11771-016-3099-8
– volume: 2
  start-page: 1
  year: 1993
  ident: 10.1016/j.mineng.2019.106050_b0010
  article-title: High resolution XPS spectrum of calcite (CaCO3)
  publication-title: Surf. Sci. Spectra
  doi: 10.1116/1.1247719
– volume: 39
  start-page: 377
  year: 2005
  ident: 10.1016/j.mineng.2019.106050_b0030
  article-title: Reverse flotation of magnesite by dodecyl phosphate from dolomite in the presence of sodium silicate
  publication-title: Sep. Sci. Technol.
  doi: 10.1081/SS-120027564
– start-page: 14
  year: 1982
  ident: 10.1016/j.mineng.2019.106050_b0105
  article-title: Chelating agents in mineral processing
– volume: 8
  start-page: 354
  year: 2018
  ident: 10.1016/j.mineng.2019.106050_b0130
  article-title: A review of flotation separation of mg carbonates (dolomite and magnesite)
  publication-title: Mineral
  doi: 10.3390/min8080354
– volume: 39
  start-page: 736
  year: 1990
  ident: 10.1016/j.mineng.2019.106050_b0060
  article-title: Selective flotation of metal ions by using chelating surfactants
  publication-title: J. Jpn. Oil. Chem. Soc.
  doi: 10.5650/jos1956.39.10_736
– volume: 18
  start-page: 8261
  year: 1998
  ident: 10.1016/j.mineng.2019.106050_b0115
  article-title: The endogenous calcium buffer and the time course of transducer adaptation in auditory hair cells
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.18-20-08261.1998
– volume: 20
  start-page: 1026
  year: 2007
  ident: 10.1016/j.mineng.2019.106050_b0020
  article-title: Fundamental studies of Rhodococcus opacus as a biocollector of calcite and magnesite
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2007.03.017
– volume: 149
  start-page: 84
  year: 2016
  ident: 10.1016/j.mineng.2019.106050_b0135
  article-title: Depressing effect of fine hydrophilic particles on magnesite reverse flotation
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/j.minpro.2016.02.013
– volume: 7
  start-page: 150
  year: 2017
  ident: 10.1016/j.mineng.2019.106050_b0070
  article-title: Elimination of the adverse effect of calcium ion on the flotation separation of magnesite from dolomite
  publication-title: Mineral
  doi: 10.3390/min7080150
– volume: 144
  start-page: 229
  year: 1998
  ident: 10.1016/j.mineng.2019.106050_b0035
  article-title: Raman and FT-IR studies of photodynamic processes of cholesteryl oleate using IRFELs
  publication-title: Nucl. Instru. Methods Phys. Res. B
  doi: 10.1016/S0168-583X(98)00360-7
– volume: 14
  start-page: 161
  year: 1985
  ident: 10.1016/j.mineng.2019.106050_b0085
  article-title: The mechanism of fatty acid adsorption in the presence of fluorite, calcite and barite
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/0301-7516(85)90001-8
– volume: 57
  start-page: 22799
  year: 2016
  ident: 10.1016/j.mineng.2019.106050_b0125
  article-title: Experimental screening of some chelating agents for calcium and magnesium removal from saline solutions
  publication-title: Desalin. Water. Treat.
  doi: 10.1080/19443994.2015.1111595
– volume: 15
  start-page: 209
  year: 1994
  ident: 10.1016/j.mineng.2019.106050_b0110
  article-title: Apparent stability constants and purity of Ca–chelating agents evaluated using Ca–selective electrodes by the double–log optimization method
  publication-title: Cell Calcium.
  doi: 10.1016/0143-4160(94)90060-4
– volume: 61
  start-page: 251
  year: 2009
  ident: 10.1016/j.mineng.2019.106050_b0055
  article-title: Calcium in biological systems
  publication-title: Adv. Inorg. Chem.
  doi: 10.1016/S0898-8838(09)00205-0
– volume: 33
  start-page: 697
  year: 2010
  ident: 10.1016/j.mineng.2019.106050_b0005
  article-title: Beneficiation of Iranian magnesite ores by reverse flotation process and its effects on shaped and unshaped refractories properties
  publication-title: Bull. Mater. Sci.
  doi: 10.1007/s12034-011-0150-0
– volume: 1
  start-page: 80
  year: 1992
  ident: 10.1016/j.mineng.2019.106050_b0015
  article-title: Comparison Spectra for Calcite by XPS
  publication-title: Surf. Sci. Spectra
  doi: 10.1116/1.1247674
– volume: 20
  start-page: 1014
  year: 2007
  ident: 10.1016/j.mineng.2019.106050_b0080
  article-title: Chelating reagents for flotation
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2007.03.012
– volume: 74
  start-page: 343
  year: 2004
  ident: 10.1016/j.mineng.2019.106050_b0025
  article-title: Effect of solution chemistry on floatability of magnesite and dolomite
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/j.minpro.2004.04.004
– start-page: 191
  year: 1991
  ident: 10.1016/j.mineng.2019.106050_b0100
  article-title: Flotation separation of apatite from dolomite using dodecylamineand sodium chloride
  publication-title: Part. Technol. Surf. Phenom. Pet
– volume: 252
  start-page: 3744
  year: 2006
  ident: 10.1016/j.mineng.2019.106050_b0040
  article-title: Wetting behavior of magnesite and dolomite surfaces
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2005.05.053
– volume: 252
  start-page: 8057
  year: 2006
  ident: 10.1016/j.mineng.2019.106050_b0045
  article-title: pH dependence of electrokinetic behavior of dolomite and magnesite in aqueous electrolyte solutions
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2005.10.015
– volume: 29
  start-page: 191
  year: 1988
  ident: 10.1016/j.mineng.2019.106050_b0090
  article-title: Processing of magnesium carbonate fines by dissolved–air flotation
  publication-title: Colloids Surf.
  doi: 10.1016/0166-6622(88)80116-1
– volume: 25
  start-page: 261
  year: 1989
  ident: 10.1016/j.mineng.2019.106050_b0095
  article-title: Anionic flotation of magnesium carbonates by modifiers
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/0301-7516(89)90021-5
– volume: 3
  start-page: 19
  year: 1973
  ident: 10.1016/j.mineng.2019.106050_b0065
  article-title: Beneficiation of dolomites
  publication-title: Raw Mater.
– volume: 249
  start-page: 1060
  year: 2018
  ident: 10.1016/j.mineng.2019.106050_b0140
  article-title: Effects of monohydric alcohols on the flotation of magnesite and dolomite by sodium oleate
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2017.11.148
– volume: 8
  start-page: 141
  year: 2018
  ident: 10.1016/j.mineng.2019.106050_b0120
  article-title: Effects of metal ions on the flotation of apatite, dolomite and quartz
  publication-title: Mineral
  doi: 10.3390/min8040141
– volume: 42
  start-page: 1641
  year: 2003
  ident: 10.1016/j.mineng.2019.106050_b0050
  article-title: Solution chemistry study of salt–type mineral flotation systems: role of inorganic dispersants
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie020729b
SSID ssj0005789
Score 2.5042403
Snippet •For the flotation separation of magnesite from dolomite, BAPTA had few influence on the recovery of magnesite.•BAPTA acts on Ca sites of the dolomite surface...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106050
SubjectTerms BAPTA
Chelator
Depressant
Dolomite
Flotation
Magnesite
Title Effect of Ca selective chelator BAPTA as depressant on flotation separation of magnesite from dolomite
URI https://dx.doi.org/10.1016/j.mineng.2019.106050
Volume 144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl4jftIuiTHOpSpMAQ32K2kSTomWzfcvPq3-17TygRR8Na0eW15TV9-Ib_3e4RcKx9l2kWKWZVJJoSULDU6ZSrVkeWmpzuuYPkOe4OxeJxEkxrpV7kwSKssY3-I6UW0Ls-0Sm-2VrNZ66WtdLcHcBsgCKqGo-InPAtH-c3HFs1DFmXwsDPD3lX6XMHxWgCSy6dI8NJwCpB9--fpaWvKuT8g-yVWpHF4nUNS8_kR2dtSEDwmWVAfpsuM9g1dF0VtIH5R5Hficprexs-jmJo1LSmv4Ei6zGk2X4Y9eLAJ6t9wCDdZmGmOlQI8xbwT6iA0YgLUCRnf3436A1aWTmCWC75hvNtWLuJRT3mltHWcZ9oabHbaniuXGcEz4aSV3sNf7HkkuFOwWuoYraxL-Smp58vcnxGK-6iwkOVSGyPgUipcVwMqACAlrJBRg_DKY4ktdcWxvMU8qQhkr0nwc4J-ToKfG4R9Wa2CrsYf_WX1MZJv4yOB0P-r5fm_LS_ILrYCeeWS1Ddv7_4KIMgmbRZjrEl24oenwfAThk7a8Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61HtSD-MT6zMFr7CPZTXKsxVK1FsEWeluySbZU2t1i69Xf7mSzKxVEwdtuklnCbDL5hnwzg9C1sEEiTSCIFgknjHFOYiVjImIZaKpC2TQ5y3cQ9kbsYRyMK6hTxsI4WmVh-71Nz6110VIvtFlfTKf1l4aQrRDgNkAQlzWcbqBNBtvXlTG4-VjjefC8Dp4bTdzwMn4uJ3nNAcqlE8fwktAE0L7x8_m0duZ099BuARZx289nH1VseoB21lIIHqLEpx_GWYI7Ci_zqjZgwLAjeDp_Gt-2n4dtrJa44LyCJnGW4mSW-Ut4kPHpv-ERPjJXk9SVCrDYBZ5gA7bRRUAdoVH3btjpkaJ2AtGU0RWhrYYwAQ1CYYWQ2lCaSK3ca7NhqTCJYjRhhmtuLWxjSwNGjQB3qamk0Camx6iaZqk9QdhdpIInS7lUikFXzExLAiwAJMU040EN0VJjkS4Si7v6FrOoZJC9Rl7PkdNz5PVcQ-RLauETa_wxnpc_I_q2QCKw_b9Knv5b8gpt9YZP_ah_P3g8Q9uuxzNZzlF19fZuLwCPrOLLfL19AqcZ3H8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Ca+selective+chelator+BAPTA+as+depressant+on+flotation+separation+of+magnesite+from+dolomite&rft.jtitle=Minerals+engineering&rft.au=Yin%2C+Wanzhong&rft.au=Sun%2C+Haoran&rft.au=Hong%2C+Jongsu&rft.au=Cao%2C+Shaohang&rft.date=2019-12-01&rft.issn=0892-6875&rft.volume=144&rft.spage=106050&rft_id=info:doi/10.1016%2Fj.mineng.2019.106050&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mineng_2019_106050
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon