Surface modification of malachite with ethanediamine and its effect on sulfidization flotation
[Display omitted] •Ethanediamine modification of malachite improved its sulfidization and flotation behaviors.•Ethanediamine modification of malachite enhanced the reactivity of sulfidized mineral surfaces.•More Cu(II) species on sulfidized malachite surfaces were reduced to Cu(I) species after modi...
Saved in:
Published in | Applied surface science Vol. 436; pp. 823 - 831 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0169-4332 1873-5584 |
DOI | 10.1016/j.apsusc.2017.12.113 |
Cover
Loading…
Abstract | [Display omitted]
•Ethanediamine modification of malachite improved its sulfidization and flotation behaviors.•Ethanediamine modification of malachite enhanced the reactivity of sulfidized mineral surfaces.•More Cu(II) species on sulfidized malachite surfaces were reduced to Cu(I) species after modification.•The percentages of S22− and Sn2− relative to the total S on sulfidized mineral surfaces increased after modification.
Ethanediamine was used to modify the mineral surface of malachite to improve its sulfidization and flotation behavior. The activation mechanism was investigated by adsorption experiments, X-ray photoelectron spectroscopy (XPS) analysis, and zeta potential measurements. Microflotation experiments showed that the flotation recovery of malachite was enhanced after the pretreatment of the mineral particles with ethanediamine prior to the addition of Na2S. Adsorption tests revealed that numerous sulfide ion species in the pulp solution were transferred onto the mineral surface through the formation of more copper sulfide species. This finding was confirmed by the results of the XPS measurements. Ethanediamine modification not only increased the contents of copper sulfide species on the malachite surface but also enhanced the reactivity of the sulfidization products. During sulfidization, Cu(II) species on the mineral surface were reduced into Cu(I) species, and the percentages of S22− and Sn2− relative to the total S increased after modification, resulting in increased surface hydrophobicity. The results of zeta potential measurements showed that the ethanediamine-modified mineral surface adsorbed with more sulfide ion species was advantageous to the attachment of xanthate species, thereby improving malachite floatability. The proposed ethanediamine modification followed by sulfidization xanthate flotation exhibits potential for industrial application. |
---|---|
AbstractList | [Display omitted]
•Ethanediamine modification of malachite improved its sulfidization and flotation behaviors.•Ethanediamine modification of malachite enhanced the reactivity of sulfidized mineral surfaces.•More Cu(II) species on sulfidized malachite surfaces were reduced to Cu(I) species after modification.•The percentages of S22− and Sn2− relative to the total S on sulfidized mineral surfaces increased after modification.
Ethanediamine was used to modify the mineral surface of malachite to improve its sulfidization and flotation behavior. The activation mechanism was investigated by adsorption experiments, X-ray photoelectron spectroscopy (XPS) analysis, and zeta potential measurements. Microflotation experiments showed that the flotation recovery of malachite was enhanced after the pretreatment of the mineral particles with ethanediamine prior to the addition of Na2S. Adsorption tests revealed that numerous sulfide ion species in the pulp solution were transferred onto the mineral surface through the formation of more copper sulfide species. This finding was confirmed by the results of the XPS measurements. Ethanediamine modification not only increased the contents of copper sulfide species on the malachite surface but also enhanced the reactivity of the sulfidization products. During sulfidization, Cu(II) species on the mineral surface were reduced into Cu(I) species, and the percentages of S22− and Sn2− relative to the total S increased after modification, resulting in increased surface hydrophobicity. The results of zeta potential measurements showed that the ethanediamine-modified mineral surface adsorbed with more sulfide ion species was advantageous to the attachment of xanthate species, thereby improving malachite floatability. The proposed ethanediamine modification followed by sulfidization xanthate flotation exhibits potential for industrial application. |
Author | Feng, Qicheng Zhao, Wenjuan Wen, Shuming |
Author_xml | – sequence: 1 givenname: Qicheng surname: Feng fullname: Feng, Qicheng organization: State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, PR China – sequence: 2 givenname: Wenjuan surname: Zhao fullname: Zhao, Wenjuan organization: Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, PR China – sequence: 3 givenname: Shuming surname: Wen fullname: Wen, Shuming email: fqckmust@126.com, shmwen@126.com organization: State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, PR China |
BookMark | eNqFkE1Lw0AQhhepYFv9Bx72DyTuV9LEgyDFLyh4UK8um80OnZImZXer6K93azx50NMMzDzDO8-MTPqhd4Scc5ZzxsuLTW52YR9sLhhf5FzknMsjMuXVQmZFUakJmaa1OlNSihMyC2HDGBdpOiWvT3sPxjq6HVoEtCbi0NMB6NZ0xq4xOvqOcU1dXJvetWi22Dtq-pZiDNQBOBtpIsK-A2zxc-ShG-J3d0qOwXTBnf3UOXm5vXle3merx7uH5fUqs1LJmAmXwsAhVNEYy1VpnGgVsAJUK5vKNhWH2igDZQ2NShNprS0XDTOgeC0aOSeX413rhxC8A21xTBC9wU5zpg-m9EaPpvTBlOZCJ1MJVr_gncet8R__YVcj5tJjb-i8DhZdb5Mln6zodsC_D3wB6UmKYw |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2018_10_148 crossref_primary_10_1016_j_apsusc_2019_04_038 crossref_primary_10_1016_j_jmrt_2019_09_063 crossref_primary_10_1155_2019_1324065 crossref_primary_10_1016_j_mineng_2022_107458 crossref_primary_10_1016_j_colsurfa_2022_129959 crossref_primary_10_1016_j_mineng_2020_106242 crossref_primary_10_1016_j_colsurfa_2023_132560 crossref_primary_10_3390_molecules28217376 crossref_primary_10_1016_j_ijmst_2021_11_001 crossref_primary_10_1016_j_mineng_2019_03_021 crossref_primary_10_3390_min11010059 crossref_primary_10_1016_j_jiec_2018_06_020 crossref_primary_10_1002_qua_25817 crossref_primary_10_1002_er_7359 crossref_primary_10_1007_s11837_018_3135_2 crossref_primary_10_1016_j_mineng_2021_106809 crossref_primary_10_1016_j_scitotenv_2018_12_318 crossref_primary_10_1016_j_apsusc_2019_145012 crossref_primary_10_1016_j_molliq_2022_120658 crossref_primary_10_1016_j_chemosphere_2019_03_162 crossref_primary_10_1016_j_apsusc_2024_161479 crossref_primary_10_1016_j_mineng_2022_107741 crossref_primary_10_1016_j_mineng_2019_03_015 crossref_primary_10_3389_fmats_2019_00347 crossref_primary_10_1016_j_mineng_2021_107174 crossref_primary_10_1016_j_powtec_2019_06_019 crossref_primary_10_1016_j_seppur_2018_06_005 crossref_primary_10_1016_j_apsusc_2021_149350 crossref_primary_10_1016_j_apt_2024_104538 crossref_primary_10_3390_min10020157 crossref_primary_10_1007_s40831_023_00663_8 crossref_primary_10_1016_j_electacta_2023_141918 crossref_primary_10_1016_S1003_6326_20_65421_8 crossref_primary_10_3390_min8040165 crossref_primary_10_1016_j_bioelechem_2018_12_006 crossref_primary_10_1016_j_powtec_2022_117676 crossref_primary_10_1016_j_seppur_2019_115756 crossref_primary_10_1016_j_mineng_2019_03_009 crossref_primary_10_1016_j_apsusc_2018_06_145 crossref_primary_10_1016_j_seppur_2025_132476 crossref_primary_10_1007_s12613_021_2379_y crossref_primary_10_1016_j_cep_2018_11_012 crossref_primary_10_3390_min8120568 crossref_primary_10_1016_j_jece_2025_115746 crossref_primary_10_1016_j_wasman_2018_04_039 crossref_primary_10_1016_j_mineng_2022_107880 crossref_primary_10_1016_j_mineng_2023_108375 crossref_primary_10_3390_pr7060376 crossref_primary_10_1007_s11243_023_00538_7 crossref_primary_10_1080_07388551_2023_2238885 crossref_primary_10_2139_ssrn_4010577 crossref_primary_10_3390_min12111346 crossref_primary_10_3390_min14070692 crossref_primary_10_1016_j_apsusc_2020_148795 crossref_primary_10_1016_j_wasman_2018_10_032 crossref_primary_10_3390_w11051093 crossref_primary_10_1016_j_jiec_2019_05_005 crossref_primary_10_1016_j_scitotenv_2018_11_330 crossref_primary_10_1016_j_colsurfa_2022_128894 crossref_primary_10_3390_min12101258 crossref_primary_10_1016_j_apsusc_2018_01_234 crossref_primary_10_1016_j_colsurfa_2021_126854 crossref_primary_10_1016_j_ijmst_2022_09_011 crossref_primary_10_1016_j_mineng_2022_107882 crossref_primary_10_1007_s12613_019_1735_7 crossref_primary_10_1016_j_mineng_2024_108895 crossref_primary_10_1016_j_colsurfa_2024_134057 crossref_primary_10_1016_j_apsusc_2020_147334 crossref_primary_10_1016_j_mineng_2021_107072 crossref_primary_10_1016_j_jtice_2018_09_022 crossref_primary_10_1016_j_apt_2024_104715 crossref_primary_10_1016_j_molliq_2020_114167 crossref_primary_10_1016_j_molliq_2019_111774 crossref_primary_10_1016_j_apsusc_2024_161825 crossref_primary_10_1016_j_mineng_2021_106847 crossref_primary_10_3390_min8040143 crossref_primary_10_1016_j_molliq_2023_122865 crossref_primary_10_1016_j_jallcom_2018_02_056 crossref_primary_10_1016_j_wasman_2019_07_030 crossref_primary_10_5188_ijsmer_25_70 crossref_primary_10_1016_j_seppur_2020_116760 crossref_primary_10_1016_j_jallcom_2018_11_379 crossref_primary_10_1016_j_seppur_2020_117732 crossref_primary_10_1021_acsami_9b03616 crossref_primary_10_1016_j_mineng_2021_107256 crossref_primary_10_3390_min12040441 crossref_primary_10_1016_j_cej_2024_157857 crossref_primary_10_3390_min14111105 crossref_primary_10_1016_j_apsusc_2022_153235 crossref_primary_10_1080_01496395_2019_1577438 crossref_primary_10_1016_j_apsusc_2023_158426 crossref_primary_10_3390_min8050216 crossref_primary_10_1016_j_colsurfa_2022_129127 crossref_primary_10_1016_j_ijmst_2022_06_006 crossref_primary_10_1080_00958972_2022_2081564 crossref_primary_10_1155_2019_6295348 crossref_primary_10_1016_j_apsusc_2023_157294 crossref_primary_10_1016_j_mineng_2021_107128 crossref_primary_10_1016_j_mineng_2021_107243 crossref_primary_10_1016_S1003_6326_21_65748_5 crossref_primary_10_1016_j_mineng_2019_105846 crossref_primary_10_1016_j_mineng_2024_108636 crossref_primary_10_1016_j_seppur_2024_128693 crossref_primary_10_1088_1742_6596_2097_1_012004 crossref_primary_10_1016_j_apsusc_2019_02_113 crossref_primary_10_1016_j_microc_2018_12_047 crossref_primary_10_1016_j_apsusc_2023_157723 crossref_primary_10_1016_j_mineng_2018_11_051 crossref_primary_10_1016_j_powtec_2020_02_071 crossref_primary_10_1007_s12613_023_2793_4 crossref_primary_10_1016_j_molliq_2023_122765 crossref_primary_10_1016_j_colsurfa_2019_123698 crossref_primary_10_1007_s10163_022_01399_5 crossref_primary_10_1016_j_apsusc_2023_158631 crossref_primary_10_1016_j_fuel_2021_121810 crossref_primary_10_1007_s12613_023_2650_5 crossref_primary_10_1016_j_mineng_2019_106132 crossref_primary_10_3390_colloids2040043 crossref_primary_10_1016_j_apt_2024_104581 crossref_primary_10_1016_j_mineng_2020_106300 crossref_primary_10_1016_j_jhazmat_2019_121382 crossref_primary_10_1016_j_mineng_2023_108452 crossref_primary_10_1016_j_clay_2021_106153 crossref_primary_10_1016_j_mineng_2021_107164 crossref_primary_10_1016_j_seppur_2019_115683 crossref_primary_10_1016_j_jmrt_2018_11_010 crossref_primary_10_3390_min12101193 crossref_primary_10_1007_s12613_018_1678_4 crossref_primary_10_1080_01496395_2018_1512619 crossref_primary_10_1016_j_compscitech_2024_110543 crossref_primary_10_1016_j_apsusc_2019_06_196 crossref_primary_10_1016_j_colsurfa_2022_130497 crossref_primary_10_3390_min9050308 crossref_primary_10_1016_j_commatsci_2019_109395 crossref_primary_10_3389_fchem_2020_592771 crossref_primary_10_1021_acs_energyfuels_8b03600 crossref_primary_10_1016_j_apsusc_2020_147128 crossref_primary_10_1016_j_seppur_2018_02_048 crossref_primary_10_1016_j_apsusc_2019_03_323 crossref_primary_10_1039_D2RA02861A crossref_primary_10_1021_acsomega_3c09663 crossref_primary_10_3390_min8120599 crossref_primary_10_1016_j_colsurfa_2018_07_045 crossref_primary_10_1016_j_mineng_2021_107150 crossref_primary_10_1016_j_mineng_2024_108734 crossref_primary_10_1016_j_jiec_2020_11_008 crossref_primary_10_1016_j_apsusc_2020_145594 crossref_primary_10_3390_molecules29143433 crossref_primary_10_1016_j_seppur_2024_131040 |
Cites_doi | 10.1016/j.mineng.2016.11.011 10.1016/j.mineng.2016.05.016 10.15261/serdj.22.159 10.1016/j.mineng.2014.01.010 10.1016/S0301-7516(99)00058-7 10.1016/j.apsusc.2015.11.035 10.1016/0301-7516(93)90030-E 10.1016/j.colsurfa.2016.05.028 10.1016/j.minpro.2015.09.012 10.1021/la970440c 10.3390/min2040493 10.1016/j.minpro.2015.11.011 10.1016/j.jiec.2016.12.029 10.1016/j.apsusc.2016.11.061 10.1016/j.mineng.2014.11.013 10.1016/j.colsurfa.2016.06.046 10.1016/j.jiec.2016.03.011 10.1016/j.seppur.2016.04.053 10.1016/j.mineng.2010.03.012 10.1016/j.apsusc.2017.07.017 10.3390/min6030092 10.1016/j.mineng.2014.09.008 10.1002/(SICI)1096-9918(199908)28:1<101::AID-SIA627>3.0.CO;2-0 10.1016/0301-7516(91)90050-S 10.1016/j.seppur.2017.01.053 10.1016/j.mineng.2012.02.002 10.1016/j.seppur.2017.02.056 10.1016/j.mineng.2015.08.020 10.1016/j.hydromet.2016.06.029 10.1016/j.jallcom.2017.03.195 10.3390/min7020020 10.1016/j.mineng.2016.11.005 10.1016/j.jiec.2016.11.010 10.1007/s12613-016-1273-5 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. |
Copyright_xml | – notice: 2017 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apsusc.2017.12.113 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-5584 |
EndPage | 831 |
ExternalDocumentID | 10_1016_j_apsusc_2017_12_113 S0169433217337017 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCB SDF SDG SDP SES SMS SPC SPCBC SPD SPG SSK SSM SSQ SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB G-2 HMV HVGLF HZ~ NDZJH R2- SEW SSH WUQ |
ID | FETCH-LOGICAL-c343t-2e873f00125bac146ae2d4f05f4d3b8cb81f9a4af69fb4d4f3ccc67b0af4192b3 |
IEDL.DBID | AIKHN |
ISSN | 0169-4332 |
IngestDate | Tue Jul 01 02:09:00 EDT 2025 Thu Apr 24 22:58:45 EDT 2025 Fri Feb 23 02:16:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Surface sulfidization Ethanediamine modification Malachite flotation Sulfide ions Enhanced adsorption |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-2e873f00125bac146ae2d4f05f4d3b8cb81f9a4af69fb4d4f3ccc67b0af4192b3 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1016_j_apsusc_2017_12_113 crossref_primary_10_1016_j_apsusc_2017_12_113 elsevier_sciencedirect_doi_10_1016_j_apsusc_2017_12_113 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-01 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied surface science |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Li, Zhong, Wang, Liu (bib0155) 2016; 37 Li, Mu, Weng, Zhao, Song (bib0160) 2016; 506 Feng, Zhao, Wen, Cao (bib0030) 2017; 48 Smart, Skinner, Gerson (bib0185) 1999; 28 Yang, Liu, Liu, Zhong (bib0045) 2017; 46 Corin, Kalichini, O‘Connor, Simukanga (bib0010) 2017; 102 Feng, Wen, Cao, Deng, Zhao (bib0175) 2016; 6 Feng, Wen, Zhao, Lv, Bai (bib0005) 2015; 22 Li, Rao, Song (bib0040) 2017; 7 Feng, Wen, Zhao, Liu, Liu (bib0090) 2016; 52 Malghan (bib0105) 1986; 3 Bessiere, Housni, Predali (bib0120) 1991; 33 Buckley, Denman, Hope (bib0060) 2012; 2 Choi, Choi, Park, Han, Kim (bib0070) 2016; 146 Feng, Wen, Zhao, Deng, Xian (bib0115) 2016; 360 Marion, Jordens, Li, Rudolph, Waters (bib0065) 2017; 183 Feng, Wen, Deng, Zhao (bib0095) 2017; 396 Lotter, Bradshaw, Barnes (bib0020) 2016; 96–97 Feng, Zhao, Wen, Cao (bib0150) 2017; 178 Liu, Huang, Qu, Xiao, Yang, Xu (bib0025) 2016; 503 Feng, Wen, Deng, Zhao (bib0190) 2017; 425 Ejtemaei, Nguyen (bib0140) 2017; 100 Zhou, Chander (bib0125) 1993; 37 Chen, Peng, Bradshaw (bib0015) 2014; 58 Sui, Lee, Casuge, Finch (bib0135) 1999; 16 Li, Zhong, Xu, Jia, Liu (bib0075) 2015; 71 Park, Park, Choi, Kim, Tong, Kim (bib0130) 2016; 168 Kim, Choi, Silva, Song, Kim (bib0085) 2017; 168 Fuerstenau, Herrera-Urbina, McGlashan (bib0035) 2000; 58 Xia, Hart, Loshusan (bib0145) 2015; 70 Gush (bib0110) 2005; 105 Feng, Wen (bib0100) 2017; 709 Hope, Woods, Parker, Buckley, Mclean (bib0050) 2010; 23 Feng, Wen, Zhao, Wang, Cui (bib0165) 2015; 83 Kartio, Basilio, Yoon (bib0180) 1998; 14 Hope, Numprasanthai, Buckley, Parker, Sheldon (bib0055) 2012; 36–38 Kim, Park, Choi, Gomez-Flores, Han, Choi, Kim (bib0080) 2015; 143 Feng, Wen, Zhao, Cao, Lu (bib0170) 2016; 23 Kartio (10.1016/j.apsusc.2017.12.113_bib0180) 1998; 14 Liu (10.1016/j.apsusc.2017.12.113_bib0025) 2016; 503 Bessiere (10.1016/j.apsusc.2017.12.113_bib0120) 1991; 33 Li (10.1016/j.apsusc.2017.12.113_bib0040) 2017; 7 Yang (10.1016/j.apsusc.2017.12.113_bib0045) 2017; 46 Hope (10.1016/j.apsusc.2017.12.113_bib0050) 2010; 23 Feng (10.1016/j.apsusc.2017.12.113_bib0175) 2016; 6 Feng (10.1016/j.apsusc.2017.12.113_bib0150) 2017; 178 Li (10.1016/j.apsusc.2017.12.113_bib0160) 2016; 506 Feng (10.1016/j.apsusc.2017.12.113_bib0030) 2017; 48 Feng (10.1016/j.apsusc.2017.12.113_bib0190) 2017; 425 Feng (10.1016/j.apsusc.2017.12.113_bib0115) 2016; 360 Buckley (10.1016/j.apsusc.2017.12.113_bib0060) 2012; 2 Chen (10.1016/j.apsusc.2017.12.113_bib0015) 2014; 58 Kim (10.1016/j.apsusc.2017.12.113_bib0080) 2015; 143 Gush (10.1016/j.apsusc.2017.12.113_bib0110) 2005; 105 Feng (10.1016/j.apsusc.2017.12.113_bib0165) 2015; 83 Xia (10.1016/j.apsusc.2017.12.113_bib0145) 2015; 70 Kim (10.1016/j.apsusc.2017.12.113_bib0085) 2017; 168 Lotter (10.1016/j.apsusc.2017.12.113_bib0020) 2016; 96–97 Sui (10.1016/j.apsusc.2017.12.113_bib0135) 1999; 16 Park (10.1016/j.apsusc.2017.12.113_bib0130) 2016; 168 Corin (10.1016/j.apsusc.2017.12.113_bib0010) 2017; 102 Fuerstenau (10.1016/j.apsusc.2017.12.113_bib0035) 2000; 58 Smart (10.1016/j.apsusc.2017.12.113_bib0185) 1999; 28 Choi (10.1016/j.apsusc.2017.12.113_bib0070) 2016; 146 Marion (10.1016/j.apsusc.2017.12.113_bib0065) 2017; 183 Ejtemaei (10.1016/j.apsusc.2017.12.113_bib0140) 2017; 100 Malghan (10.1016/j.apsusc.2017.12.113_bib0105) 1986; 3 Feng (10.1016/j.apsusc.2017.12.113_bib0170) 2016; 23 Li (10.1016/j.apsusc.2017.12.113_bib0075) 2015; 71 Feng (10.1016/j.apsusc.2017.12.113_bib0095) 2017; 396 Feng (10.1016/j.apsusc.2017.12.113_bib0100) 2017; 709 Li (10.1016/j.apsusc.2017.12.113_bib0155) 2016; 37 Feng (10.1016/j.apsusc.2017.12.113_bib0005) 2015; 22 Hope (10.1016/j.apsusc.2017.12.113_bib0055) 2012; 36–38 Feng (10.1016/j.apsusc.2017.12.113_bib0090) 2016; 52 Zhou (10.1016/j.apsusc.2017.12.113_bib0125) 1993; 37 |
References_xml | – volume: 102 start-page: 15 year: 2017 end-page: 17 ident: bib0010 article-title: The recovery of oxide copper minerals from a complex copper ore by sulphidisation publication-title: Min. Eng. – volume: 396 start-page: 920 year: 2017 end-page: 925 ident: bib0095 article-title: DFT study on the interaction between hydrogen sulfide ions and cerussite (110) surface publication-title: Appl. Surf. Sci. – volume: 16 start-page: 53 year: 1999 end-page: 61 ident: bib0135 article-title: Comparison of the activation of sphalerite by copper and lead publication-title: Min. Metall. Proc. – volume: 168 start-page: 94 year: 2017 end-page: 102 ident: bib0085 article-title: Feasibility of bench-scale selective bioflotation of copper oxide minerals using Rhodococcus opacus publication-title: Hydrometallurgy – volume: 37 start-page: 123 year: 2016 end-page: 130 ident: bib0155 article-title: The activation mechanism of Cu(II) to ilmenite and subsequent flotation response to α-hydroxyoctyl phosphinic acid publication-title: J. Ind. Eng. Chem. – volume: 36–38 start-page: 12 year: 2012 end-page: 20 ident: bib0055 article-title: Bench-scale flotation of chrysocolla with n-octanohydroxamate publication-title: Min. Eng. – volume: 360 start-page: 365 year: 2016 end-page: 372 ident: bib0115 article-title: Adsorption of sulfide ions on cerussite surfaces and implications for flotation publication-title: Appl. Surf. Sci. – volume: 46 start-page: 404 year: 2017 end-page: 415 ident: bib0045 article-title: A DFT study on the structure–reactivity relationship of aliphatic oxime derivatives as copper chelating agents and malachite flotation collectors publication-title: J. Ind. Eng. Chem. – volume: 183 start-page: 258 year: 2017 end-page: 269 ident: bib0065 article-title: An evaluation of hydroxamate collectors for malachite flotation publication-title: Sep. Purif. Technol. – volume: 14 start-page: 5274 year: 1998 end-page: 5278 ident: bib0180 article-title: An XPS study of sphalerite activation by copper publication-title: Langmuir – volume: 2 start-page: 493 year: 2012 end-page: 515 ident: bib0060 article-title: The adsorption of n-octanohydroxamate collector on Cu and Fe oxide minerals investigated by static secondary ion mass spectrometry publication-title: Minerals – volume: 506 start-page: 431 year: 2016 end-page: 437 ident: bib0160 article-title: Rutile flotation with Pb publication-title: Colloid Surf. A – volume: 6 start-page: 92 year: 2016 ident: bib0175 article-title: The effect of chloride ions on the activity of cerussite surfaces publication-title: Minerals – volume: 143 start-page: 98 year: 2015 end-page: 104 ident: bib0080 article-title: Bioflotation of malachite using different growth phases of publication-title: Int. J. Min. Process. – volume: 3 start-page: 158 year: 1986 end-page: 163 ident: bib0105 article-title: Role of sodium sulfide in the flotation of oxidized copper, lead, and zinc ores publication-title: Min. Metall. Process. – volume: 178 start-page: 193 year: 2017 end-page: 199 ident: bib0150 article-title: Activation mechanism of lead ions in cassiterite flotation with salicylhydroxamic acid as collector publication-title: Sep. Purif. Technol. – volume: 22 start-page: 159 year: 2015 end-page: 168 ident: bib0005 article-title: Leaching of copper from malachite with methane-sulfonic acid publication-title: Solvent Extr. Res. Dev. Jpn. – volume: 7 start-page: 20 year: 2017 ident: bib0040 article-title: Comparison of adsorption of phenol O-O and N-O chelating collectors at the malachite/water interface in flotation publication-title: Minerals – volume: 146 start-page: 38 year: 2016 end-page: 45 ident: bib0070 article-title: Flotation behaviour of malachite in mono- and di-valent salt solutions using sodium oleate as a collector publication-title: Int. J. Min. Process. – volume: 503 start-page: 34 year: 2016 end-page: 42 ident: bib0025 article-title: Understanding the hydrophobic mechanism of 3-hexyl-4-amino-1, 2,4-triazole-5-thione to malachite by ToF-SIMS, XPS, FTIR, contact angle, zeta potential and micro-flotation publication-title: Colloids Surf. A: Physicochem. Eng. Asp. – volume: 58 start-page: 15 year: 2000 end-page: 33 ident: bib0035 article-title: Studies on the applicability of chelating agents as universal collectors for copper minerals publication-title: Int. J. Min. Process. – volume: 23 start-page: 952 year: 2010 end-page: 959 ident: bib0050 article-title: A vibrational spectroscopy and XPS investigation of the interaction of hydroxamate reagents on copper oxide minerals publication-title: Min. Eng. – volume: 58 start-page: 64 year: 2014 end-page: 72 ident: bib0015 article-title: The separation of chalcopyrite and chalcocite from pyrite in cleaner flotation after regrinding publication-title: Min. Eng. – volume: 33 start-page: 165 year: 1991 end-page: 183 ident: bib0120 article-title: Dielectric study of activation and deactivation of malachite by sulfide ions publication-title: Int. J. Min. Process. – volume: 105 start-page: 193 year: 2005 end-page: 197 ident: bib0110 article-title: Flotation of oxide minerals by sulphidization-the development of a sulphidization control system for laboratory testwork publication-title: J. S. Afr. Inst. Min. Metall. – volume: 71 start-page: 188 year: 2015 end-page: 193 ident: bib0075 article-title: Flotation behavior and adsorption mechanism of a-hydroxyoctyl phosphinic acid to malachite publication-title: Min. Eng. – volume: 168 start-page: 1 year: 2016 end-page: 7 ident: bib0130 article-title: Influence of excess sulfide ions on the malachite-bubble interaction in the presence of thiol-collector publication-title: Sep. Purif. Technol. – volume: 28 start-page: 101 year: 1999 end-page: 105 ident: bib0185 article-title: XPS of sulphide mineral surfaces: metal-deficient, polysulphides, defects and elemental sulphur publication-title: Surf. Interface Anal. – volume: 709 start-page: 602 year: 2017 end-page: 608 ident: bib0100 article-title: Formation of zinc sulfide species on smithsonite surfaces and its response to flotation performance publication-title: J. Alloys Comp. – volume: 23 start-page: 609 year: 2016 end-page: 617 ident: bib0170 article-title: A novel method for improving cerussite sulfidization publication-title: Int. J. Min. Metall. Mater. – volume: 96–97 start-page: 177 year: 2016 end-page: 184 ident: bib0020 article-title: Classification of the major copper sulphides into semiconductor types, and associated flotation characteristics publication-title: Min. Eng. – volume: 48 start-page: 125 year: 2017 end-page: 132 ident: bib0030 article-title: Copper sulfide species formed on malachite surfaces in relation to flotation publication-title: J. Ind. Eng. Chem. – volume: 83 start-page: 128 year: 2015 end-page: 135 ident: bib0165 article-title: Contribution of chloride ions to the sulfidization flotation of cerussite publication-title: Min. Eng. – volume: 100 start-page: 223 year: 2017 end-page: 232 ident: bib0140 article-title: Characterisation of sphalerite and pyrite surfaces activated by copper sulphate publication-title: Min. Eng. – volume: 70 start-page: 119 year: 2015 end-page: 129 ident: bib0145 article-title: A Tof-SIMS analysis of the effect of lead nitrate on rare earth flotation publication-title: Min. Eng. – volume: 37 start-page: 257 year: 1993 end-page: 272 ident: bib0125 article-title: Kinetics of sutfidization of malachite in hydrosulfide and tetrasulfide solutions publication-title: Int. J. Min. Process. – volume: 425 start-page: 8 year: 2017 end-page: 15 ident: bib0190 article-title: Combined DFT and XPS investigation of enhanced adsorption of sulfide species onto cerussite by surface modification with chloride publication-title: Appl. Surf. Sci. – volume: 52 start-page: 676 year: 2016 end-page: 689 ident: bib0090 article-title: Effect of pH on surface characteristics and flotation of sulfidized cerussite publication-title: Physicochem. Probl. Min. Process. – volume: 102 start-page: 15 year: 2017 ident: 10.1016/j.apsusc.2017.12.113_bib0010 article-title: The recovery of oxide copper minerals from a complex copper ore by sulphidisation publication-title: Min. Eng. doi: 10.1016/j.mineng.2016.11.011 – volume: 96–97 start-page: 177 year: 2016 ident: 10.1016/j.apsusc.2017.12.113_bib0020 article-title: Classification of the major copper sulphides into semiconductor types, and associated flotation characteristics publication-title: Min. Eng. doi: 10.1016/j.mineng.2016.05.016 – volume: 105 start-page: 193 year: 2005 ident: 10.1016/j.apsusc.2017.12.113_bib0110 article-title: Flotation of oxide minerals by sulphidization-the development of a sulphidization control system for laboratory testwork publication-title: J. S. Afr. Inst. Min. Metall. – volume: 22 start-page: 159 year: 2015 ident: 10.1016/j.apsusc.2017.12.113_bib0005 article-title: Leaching of copper from malachite with methane-sulfonic acid publication-title: Solvent Extr. Res. Dev. Jpn. doi: 10.15261/serdj.22.159 – volume: 52 start-page: 676 issue: 2 year: 2016 ident: 10.1016/j.apsusc.2017.12.113_bib0090 article-title: Effect of pH on surface characteristics and flotation of sulfidized cerussite publication-title: Physicochem. Probl. Min. Process. – volume: 58 start-page: 64 year: 2014 ident: 10.1016/j.apsusc.2017.12.113_bib0015 article-title: The separation of chalcopyrite and chalcocite from pyrite in cleaner flotation after regrinding publication-title: Min. Eng. doi: 10.1016/j.mineng.2014.01.010 – volume: 58 start-page: 15 year: 2000 ident: 10.1016/j.apsusc.2017.12.113_bib0035 article-title: Studies on the applicability of chelating agents as universal collectors for copper minerals publication-title: Int. J. Min. Process. doi: 10.1016/S0301-7516(99)00058-7 – volume: 360 start-page: 365 year: 2016 ident: 10.1016/j.apsusc.2017.12.113_bib0115 article-title: Adsorption of sulfide ions on cerussite surfaces and implications for flotation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.11.035 – volume: 37 start-page: 257 year: 1993 ident: 10.1016/j.apsusc.2017.12.113_bib0125 article-title: Kinetics of sutfidization of malachite in hydrosulfide and tetrasulfide solutions publication-title: Int. J. Min. Process. doi: 10.1016/0301-7516(93)90030-E – volume: 503 start-page: 34 year: 2016 ident: 10.1016/j.apsusc.2017.12.113_bib0025 article-title: Understanding the hydrophobic mechanism of 3-hexyl-4-amino-1, 2,4-triazole-5-thione to malachite by ToF-SIMS, XPS, FTIR, contact angle, zeta potential and micro-flotation publication-title: Colloids Surf. A: Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2016.05.028 – volume: 143 start-page: 98 year: 2015 ident: 10.1016/j.apsusc.2017.12.113_bib0080 article-title: Bioflotation of malachite using different growth phases of Rhodococcus opacus: Effect of bacterial shape on detachment by shear flow publication-title: Int. J. Min. Process. doi: 10.1016/j.minpro.2015.09.012 – volume: 14 start-page: 5274 year: 1998 ident: 10.1016/j.apsusc.2017.12.113_bib0180 article-title: An XPS study of sphalerite activation by copper publication-title: Langmuir doi: 10.1021/la970440c – volume: 2 start-page: 493 year: 2012 ident: 10.1016/j.apsusc.2017.12.113_bib0060 article-title: The adsorption of n-octanohydroxamate collector on Cu and Fe oxide minerals investigated by static secondary ion mass spectrometry publication-title: Minerals doi: 10.3390/min2040493 – volume: 146 start-page: 38 year: 2016 ident: 10.1016/j.apsusc.2017.12.113_bib0070 article-title: Flotation behaviour of malachite in mono- and di-valent salt solutions using sodium oleate as a collector publication-title: Int. J. Min. Process. doi: 10.1016/j.minpro.2015.11.011 – volume: 48 start-page: 125 year: 2017 ident: 10.1016/j.apsusc.2017.12.113_bib0030 article-title: Copper sulfide species formed on malachite surfaces in relation to flotation publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2016.12.029 – volume: 396 start-page: 920 year: 2017 ident: 10.1016/j.apsusc.2017.12.113_bib0095 article-title: DFT study on the interaction between hydrogen sulfide ions and cerussite (110) surface publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.11.061 – volume: 71 start-page: 188 year: 2015 ident: 10.1016/j.apsusc.2017.12.113_bib0075 article-title: Flotation behavior and adsorption mechanism of a-hydroxyoctyl phosphinic acid to malachite publication-title: Min. Eng. doi: 10.1016/j.mineng.2014.11.013 – volume: 506 start-page: 431 year: 2016 ident: 10.1016/j.apsusc.2017.12.113_bib0160 article-title: Rutile flotation with Pb2+ ions as activator: adsorption of Pb2+ at rutile/water interface publication-title: Colloid Surf. A doi: 10.1016/j.colsurfa.2016.06.046 – volume: 37 start-page: 123 year: 2016 ident: 10.1016/j.apsusc.2017.12.113_bib0155 article-title: The activation mechanism of Cu(II) to ilmenite and subsequent flotation response to α-hydroxyoctyl phosphinic acid publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2016.03.011 – volume: 168 start-page: 1 year: 2016 ident: 10.1016/j.apsusc.2017.12.113_bib0130 article-title: Influence of excess sulfide ions on the malachite-bubble interaction in the presence of thiol-collector publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2016.04.053 – volume: 23 start-page: 952 year: 2010 ident: 10.1016/j.apsusc.2017.12.113_bib0050 article-title: A vibrational spectroscopy and XPS investigation of the interaction of hydroxamate reagents on copper oxide minerals publication-title: Min. Eng. doi: 10.1016/j.mineng.2010.03.012 – volume: 425 start-page: 8 year: 2017 ident: 10.1016/j.apsusc.2017.12.113_bib0190 article-title: Combined DFT and XPS investigation of enhanced adsorption of sulfide species onto cerussite by surface modification with chloride publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.07.017 – volume: 6 start-page: 92 year: 2016 ident: 10.1016/j.apsusc.2017.12.113_bib0175 article-title: The effect of chloride ions on the activity of cerussite surfaces publication-title: Minerals doi: 10.3390/min6030092 – volume: 70 start-page: 119 year: 2015 ident: 10.1016/j.apsusc.2017.12.113_bib0145 article-title: A Tof-SIMS analysis of the effect of lead nitrate on rare earth flotation publication-title: Min. Eng. doi: 10.1016/j.mineng.2014.09.008 – volume: 28 start-page: 101 year: 1999 ident: 10.1016/j.apsusc.2017.12.113_bib0185 article-title: XPS of sulphide mineral surfaces: metal-deficient, polysulphides, defects and elemental sulphur publication-title: Surf. Interface Anal. doi: 10.1002/(SICI)1096-9918(199908)28:1<101::AID-SIA627>3.0.CO;2-0 – volume: 33 start-page: 165 year: 1991 ident: 10.1016/j.apsusc.2017.12.113_bib0120 article-title: Dielectric study of activation and deactivation of malachite by sulfide ions publication-title: Int. J. Min. Process. doi: 10.1016/0301-7516(91)90050-S – volume: 178 start-page: 193 year: 2017 ident: 10.1016/j.apsusc.2017.12.113_bib0150 article-title: Activation mechanism of lead ions in cassiterite flotation with salicylhydroxamic acid as collector publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2017.01.053 – volume: 36–38 start-page: 12 year: 2012 ident: 10.1016/j.apsusc.2017.12.113_bib0055 article-title: Bench-scale flotation of chrysocolla with n-octanohydroxamate publication-title: Min. Eng. doi: 10.1016/j.mineng.2012.02.002 – volume: 183 start-page: 258 year: 2017 ident: 10.1016/j.apsusc.2017.12.113_bib0065 article-title: An evaluation of hydroxamate collectors for malachite flotation publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2017.02.056 – volume: 3 start-page: 158 year: 1986 ident: 10.1016/j.apsusc.2017.12.113_bib0105 article-title: Role of sodium sulfide in the flotation of oxidized copper, lead, and zinc ores publication-title: Min. Metall. Process. – volume: 83 start-page: 128 year: 2015 ident: 10.1016/j.apsusc.2017.12.113_bib0165 article-title: Contribution of chloride ions to the sulfidization flotation of cerussite publication-title: Min. Eng. doi: 10.1016/j.mineng.2015.08.020 – volume: 168 start-page: 94 year: 2017 ident: 10.1016/j.apsusc.2017.12.113_bib0085 article-title: Feasibility of bench-scale selective bioflotation of copper oxide minerals using Rhodococcus opacus publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2016.06.029 – volume: 16 start-page: 53 year: 1999 ident: 10.1016/j.apsusc.2017.12.113_bib0135 article-title: Comparison of the activation of sphalerite by copper and lead publication-title: Min. Metall. Proc. – volume: 709 start-page: 602 year: 2017 ident: 10.1016/j.apsusc.2017.12.113_bib0100 article-title: Formation of zinc sulfide species on smithsonite surfaces and its response to flotation performance publication-title: J. Alloys Comp. doi: 10.1016/j.jallcom.2017.03.195 – volume: 7 start-page: 20 year: 2017 ident: 10.1016/j.apsusc.2017.12.113_bib0040 article-title: Comparison of adsorption of phenol O-O and N-O chelating collectors at the malachite/water interface in flotation publication-title: Minerals doi: 10.3390/min7020020 – volume: 100 start-page: 223 year: 2017 ident: 10.1016/j.apsusc.2017.12.113_bib0140 article-title: Characterisation of sphalerite and pyrite surfaces activated by copper sulphate publication-title: Min. Eng. doi: 10.1016/j.mineng.2016.11.005 – volume: 46 start-page: 404 year: 2017 ident: 10.1016/j.apsusc.2017.12.113_bib0045 article-title: A DFT study on the structure–reactivity relationship of aliphatic oxime derivatives as copper chelating agents and malachite flotation collectors publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2016.11.010 – volume: 23 start-page: 609 year: 2016 ident: 10.1016/j.apsusc.2017.12.113_bib0170 article-title: A novel method for improving cerussite sulfidization publication-title: Int. J. Min. Metall. Mater. doi: 10.1007/s12613-016-1273-5 |
SSID | ssj0012873 |
Score | 2.5945 |
Snippet | [Display omitted]
•Ethanediamine modification of malachite improved its sulfidization and flotation behaviors.•Ethanediamine modification of malachite enhanced... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 823 |
SubjectTerms | Enhanced adsorption Ethanediamine modification Malachite flotation Sulfide ions Surface sulfidization |
Title | Surface modification of malachite with ethanediamine and its effect on sulfidization flotation |
URI | https://dx.doi.org/10.1016/j.apsusc.2017.12.113 |
Volume | 436 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qe9GD-MT6KDl4Xbu7yb6OpViqYi-10JNLXgOVdlv6uPrbTZrdUkEUPO5jYDPJzmRmvvkCcO9ngqOS3IsxjT3jobn5pUzgqmiGiEzqCG1F93UQ90fseRyNa9CtemEsrLK0_c6mb611eaddarO9mEzaQ8sjYtm3goTSxCysA2iENIujOjQ6Ty_9wa6YYIIC6ii-M9sgFFYddFuYFzfB6MpyGQaJzQsGAf3ZQ-15nd4JHJfbRdJxX3QKNV2cwdEeieA5vA83S-RSk9lcWdzPVtVkjmTGp3xbJSA22Uq0TZLbPpGZkSW8UGSyXhGH5yBGYrWZ4kSVbZkEp3NXpL-AUe_xrdv3ylMTPEkZXXuhNsNFO-xIcGkMIdehYuhHyBQVqRRpgBlnHOMMBTNPqJQyToTP0VaEBb2EejEv9BWQLFYCuR8q6msmFOdK-FpnikUJSunLJtBKU7ksKcXtyRbTvMKOfeROv7nVbx6EJuCgTfB2UgtHqfHH-0k1Cfm3pZEbq_-r5PW_JW_g0FylDqJzC_X1cqPvzO5jLVpw8PAZtMo19gUH3d4d |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YE1NImd14gqqgJtl7ZSJyK_TgpKk6pNV347dh6oSAgk1tgnxZfLnc_33WeE7u2IM5CCWT6EvqUjNNO_lE5cJYkAgArlganojsb-YEZf5t68hXpNL4yBVda-v_Lppbeun3RrbXaXSdKdGB4Rw77lBIQE2rB20C71SGBwfQ8fXzgP7X-rMrOebdqD3KZ_rgR5MZ2Krg2ToROYU0HHIT_Hp62Y0z9Ch_VmET9W73OMWio7QQdbFIKn6G2yWQETCi9yaVA_paJxDnjBUlbWCLA5asXKHJGbLpGFlsUskzgp1rhCc2Atsd6kkMi6KRNDmlcl-jM06z9NewOrvjPBEoSSwnKVXi6YZXucCe0GmXIlBdsDKgkPBQ8diBhl4EfAqR4hQgg_4DYDUw_m5By1szxTFwhHvuTAbFcSW1EuGZPcViqS1AtACFt0EGk0FYuaUNzca5HGDXLsPa70Gxv9xo6r0w3SQdaX1LIi1PhjftB8hPibYcTa5_8qeflvyTu0N5iOhvHwefx6hfb1SFiBda5Ru1ht1I3ehxT8trSzT-yR3ug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+modification+of+malachite+with+ethanediamine+and+its+effect+on+sulfidization+flotation&rft.jtitle=Applied+surface+science&rft.au=Feng%2C+Qicheng&rft.au=Zhao%2C+Wenjuan&rft.au=Wen%2C+Shuming&rft.date=2018-04-01&rft.issn=0169-4332&rft.volume=436&rft.spage=823&rft.epage=831&rft_id=info:doi/10.1016%2Fj.apsusc.2017.12.113&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apsusc_2017_12_113 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-4332&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-4332&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-4332&client=summon |