Surface modification of malachite with ethanediamine and its effect on sulfidization flotation

[Display omitted] •Ethanediamine modification of malachite improved its sulfidization and flotation behaviors.•Ethanediamine modification of malachite enhanced the reactivity of sulfidized mineral surfaces.•More Cu(II) species on sulfidized malachite surfaces were reduced to Cu(I) species after modi...

Full description

Saved in:
Bibliographic Details
Published inApplied surface science Vol. 436; pp. 823 - 831
Main Authors Feng, Qicheng, Zhao, Wenjuan, Wen, Shuming
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2018
Subjects
Online AccessGet full text
ISSN0169-4332
1873-5584
DOI10.1016/j.apsusc.2017.12.113

Cover

Loading…
Abstract [Display omitted] •Ethanediamine modification of malachite improved its sulfidization and flotation behaviors.•Ethanediamine modification of malachite enhanced the reactivity of sulfidized mineral surfaces.•More Cu(II) species on sulfidized malachite surfaces were reduced to Cu(I) species after modification.•The percentages of S22− and Sn2− relative to the total S on sulfidized mineral surfaces increased after modification. Ethanediamine was used to modify the mineral surface of malachite to improve its sulfidization and flotation behavior. The activation mechanism was investigated by adsorption experiments, X-ray photoelectron spectroscopy (XPS) analysis, and zeta potential measurements. Microflotation experiments showed that the flotation recovery of malachite was enhanced after the pretreatment of the mineral particles with ethanediamine prior to the addition of Na2S. Adsorption tests revealed that numerous sulfide ion species in the pulp solution were transferred onto the mineral surface through the formation of more copper sulfide species. This finding was confirmed by the results of the XPS measurements. Ethanediamine modification not only increased the contents of copper sulfide species on the malachite surface but also enhanced the reactivity of the sulfidization products. During sulfidization, Cu(II) species on the mineral surface were reduced into Cu(I) species, and the percentages of S22− and Sn2− relative to the total S increased after modification, resulting in increased surface hydrophobicity. The results of zeta potential measurements showed that the ethanediamine-modified mineral surface adsorbed with more sulfide ion species was advantageous to the attachment of xanthate species, thereby improving malachite floatability. The proposed ethanediamine modification followed by sulfidization xanthate flotation exhibits potential for industrial application.
AbstractList [Display omitted] •Ethanediamine modification of malachite improved its sulfidization and flotation behaviors.•Ethanediamine modification of malachite enhanced the reactivity of sulfidized mineral surfaces.•More Cu(II) species on sulfidized malachite surfaces were reduced to Cu(I) species after modification.•The percentages of S22− and Sn2− relative to the total S on sulfidized mineral surfaces increased after modification. Ethanediamine was used to modify the mineral surface of malachite to improve its sulfidization and flotation behavior. The activation mechanism was investigated by adsorption experiments, X-ray photoelectron spectroscopy (XPS) analysis, and zeta potential measurements. Microflotation experiments showed that the flotation recovery of malachite was enhanced after the pretreatment of the mineral particles with ethanediamine prior to the addition of Na2S. Adsorption tests revealed that numerous sulfide ion species in the pulp solution were transferred onto the mineral surface through the formation of more copper sulfide species. This finding was confirmed by the results of the XPS measurements. Ethanediamine modification not only increased the contents of copper sulfide species on the malachite surface but also enhanced the reactivity of the sulfidization products. During sulfidization, Cu(II) species on the mineral surface were reduced into Cu(I) species, and the percentages of S22− and Sn2− relative to the total S increased after modification, resulting in increased surface hydrophobicity. The results of zeta potential measurements showed that the ethanediamine-modified mineral surface adsorbed with more sulfide ion species was advantageous to the attachment of xanthate species, thereby improving malachite floatability. The proposed ethanediamine modification followed by sulfidization xanthate flotation exhibits potential for industrial application.
Author Feng, Qicheng
Zhao, Wenjuan
Wen, Shuming
Author_xml – sequence: 1
  givenname: Qicheng
  surname: Feng
  fullname: Feng, Qicheng
  organization: State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, PR China
– sequence: 2
  givenname: Wenjuan
  surname: Zhao
  fullname: Zhao, Wenjuan
  organization: Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
– sequence: 3
  givenname: Shuming
  surname: Wen
  fullname: Wen, Shuming
  email: fqckmust@126.com, shmwen@126.com
  organization: State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, PR China
BookMark eNqFkE1Lw0AQhhepYFv9Bx72DyTuV9LEgyDFLyh4UK8um80OnZImZXer6K93azx50NMMzDzDO8-MTPqhd4Scc5ZzxsuLTW52YR9sLhhf5FzknMsjMuXVQmZFUakJmaa1OlNSihMyC2HDGBdpOiWvT3sPxjq6HVoEtCbi0NMB6NZ0xq4xOvqOcU1dXJvetWi22Dtq-pZiDNQBOBtpIsK-A2zxc-ShG-J3d0qOwXTBnf3UOXm5vXle3merx7uH5fUqs1LJmAmXwsAhVNEYy1VpnGgVsAJUK5vKNhWH2igDZQ2NShNprS0XDTOgeC0aOSeX413rhxC8A21xTBC9wU5zpg-m9EaPpvTBlOZCJ1MJVr_gncet8R__YVcj5tJjb-i8DhZdb5Mln6zodsC_D3wB6UmKYw
CitedBy_id crossref_primary_10_1016_j_apsusc_2018_10_148
crossref_primary_10_1016_j_apsusc_2019_04_038
crossref_primary_10_1016_j_jmrt_2019_09_063
crossref_primary_10_1155_2019_1324065
crossref_primary_10_1016_j_mineng_2022_107458
crossref_primary_10_1016_j_colsurfa_2022_129959
crossref_primary_10_1016_j_mineng_2020_106242
crossref_primary_10_1016_j_colsurfa_2023_132560
crossref_primary_10_3390_molecules28217376
crossref_primary_10_1016_j_ijmst_2021_11_001
crossref_primary_10_1016_j_mineng_2019_03_021
crossref_primary_10_3390_min11010059
crossref_primary_10_1016_j_jiec_2018_06_020
crossref_primary_10_1002_qua_25817
crossref_primary_10_1002_er_7359
crossref_primary_10_1007_s11837_018_3135_2
crossref_primary_10_1016_j_mineng_2021_106809
crossref_primary_10_1016_j_scitotenv_2018_12_318
crossref_primary_10_1016_j_apsusc_2019_145012
crossref_primary_10_1016_j_molliq_2022_120658
crossref_primary_10_1016_j_chemosphere_2019_03_162
crossref_primary_10_1016_j_apsusc_2024_161479
crossref_primary_10_1016_j_mineng_2022_107741
crossref_primary_10_1016_j_mineng_2019_03_015
crossref_primary_10_3389_fmats_2019_00347
crossref_primary_10_1016_j_mineng_2021_107174
crossref_primary_10_1016_j_powtec_2019_06_019
crossref_primary_10_1016_j_seppur_2018_06_005
crossref_primary_10_1016_j_apsusc_2021_149350
crossref_primary_10_1016_j_apt_2024_104538
crossref_primary_10_3390_min10020157
crossref_primary_10_1007_s40831_023_00663_8
crossref_primary_10_1016_j_electacta_2023_141918
crossref_primary_10_1016_S1003_6326_20_65421_8
crossref_primary_10_3390_min8040165
crossref_primary_10_1016_j_bioelechem_2018_12_006
crossref_primary_10_1016_j_powtec_2022_117676
crossref_primary_10_1016_j_seppur_2019_115756
crossref_primary_10_1016_j_mineng_2019_03_009
crossref_primary_10_1016_j_apsusc_2018_06_145
crossref_primary_10_1016_j_seppur_2025_132476
crossref_primary_10_1007_s12613_021_2379_y
crossref_primary_10_1016_j_cep_2018_11_012
crossref_primary_10_3390_min8120568
crossref_primary_10_1016_j_jece_2025_115746
crossref_primary_10_1016_j_wasman_2018_04_039
crossref_primary_10_1016_j_mineng_2022_107880
crossref_primary_10_1016_j_mineng_2023_108375
crossref_primary_10_3390_pr7060376
crossref_primary_10_1007_s11243_023_00538_7
crossref_primary_10_1080_07388551_2023_2238885
crossref_primary_10_2139_ssrn_4010577
crossref_primary_10_3390_min12111346
crossref_primary_10_3390_min14070692
crossref_primary_10_1016_j_apsusc_2020_148795
crossref_primary_10_1016_j_wasman_2018_10_032
crossref_primary_10_3390_w11051093
crossref_primary_10_1016_j_jiec_2019_05_005
crossref_primary_10_1016_j_scitotenv_2018_11_330
crossref_primary_10_1016_j_colsurfa_2022_128894
crossref_primary_10_3390_min12101258
crossref_primary_10_1016_j_apsusc_2018_01_234
crossref_primary_10_1016_j_colsurfa_2021_126854
crossref_primary_10_1016_j_ijmst_2022_09_011
crossref_primary_10_1016_j_mineng_2022_107882
crossref_primary_10_1007_s12613_019_1735_7
crossref_primary_10_1016_j_mineng_2024_108895
crossref_primary_10_1016_j_colsurfa_2024_134057
crossref_primary_10_1016_j_apsusc_2020_147334
crossref_primary_10_1016_j_mineng_2021_107072
crossref_primary_10_1016_j_jtice_2018_09_022
crossref_primary_10_1016_j_apt_2024_104715
crossref_primary_10_1016_j_molliq_2020_114167
crossref_primary_10_1016_j_molliq_2019_111774
crossref_primary_10_1016_j_apsusc_2024_161825
crossref_primary_10_1016_j_mineng_2021_106847
crossref_primary_10_3390_min8040143
crossref_primary_10_1016_j_molliq_2023_122865
crossref_primary_10_1016_j_jallcom_2018_02_056
crossref_primary_10_1016_j_wasman_2019_07_030
crossref_primary_10_5188_ijsmer_25_70
crossref_primary_10_1016_j_seppur_2020_116760
crossref_primary_10_1016_j_jallcom_2018_11_379
crossref_primary_10_1016_j_seppur_2020_117732
crossref_primary_10_1021_acsami_9b03616
crossref_primary_10_1016_j_mineng_2021_107256
crossref_primary_10_3390_min12040441
crossref_primary_10_1016_j_cej_2024_157857
crossref_primary_10_3390_min14111105
crossref_primary_10_1016_j_apsusc_2022_153235
crossref_primary_10_1080_01496395_2019_1577438
crossref_primary_10_1016_j_apsusc_2023_158426
crossref_primary_10_3390_min8050216
crossref_primary_10_1016_j_colsurfa_2022_129127
crossref_primary_10_1016_j_ijmst_2022_06_006
crossref_primary_10_1080_00958972_2022_2081564
crossref_primary_10_1155_2019_6295348
crossref_primary_10_1016_j_apsusc_2023_157294
crossref_primary_10_1016_j_mineng_2021_107128
crossref_primary_10_1016_j_mineng_2021_107243
crossref_primary_10_1016_S1003_6326_21_65748_5
crossref_primary_10_1016_j_mineng_2019_105846
crossref_primary_10_1016_j_mineng_2024_108636
crossref_primary_10_1016_j_seppur_2024_128693
crossref_primary_10_1088_1742_6596_2097_1_012004
crossref_primary_10_1016_j_apsusc_2019_02_113
crossref_primary_10_1016_j_microc_2018_12_047
crossref_primary_10_1016_j_apsusc_2023_157723
crossref_primary_10_1016_j_mineng_2018_11_051
crossref_primary_10_1016_j_powtec_2020_02_071
crossref_primary_10_1007_s12613_023_2793_4
crossref_primary_10_1016_j_molliq_2023_122765
crossref_primary_10_1016_j_colsurfa_2019_123698
crossref_primary_10_1007_s10163_022_01399_5
crossref_primary_10_1016_j_apsusc_2023_158631
crossref_primary_10_1016_j_fuel_2021_121810
crossref_primary_10_1007_s12613_023_2650_5
crossref_primary_10_1016_j_mineng_2019_106132
crossref_primary_10_3390_colloids2040043
crossref_primary_10_1016_j_apt_2024_104581
crossref_primary_10_1016_j_mineng_2020_106300
crossref_primary_10_1016_j_jhazmat_2019_121382
crossref_primary_10_1016_j_mineng_2023_108452
crossref_primary_10_1016_j_clay_2021_106153
crossref_primary_10_1016_j_mineng_2021_107164
crossref_primary_10_1016_j_seppur_2019_115683
crossref_primary_10_1016_j_jmrt_2018_11_010
crossref_primary_10_3390_min12101193
crossref_primary_10_1007_s12613_018_1678_4
crossref_primary_10_1080_01496395_2018_1512619
crossref_primary_10_1016_j_compscitech_2024_110543
crossref_primary_10_1016_j_apsusc_2019_06_196
crossref_primary_10_1016_j_colsurfa_2022_130497
crossref_primary_10_3390_min9050308
crossref_primary_10_1016_j_commatsci_2019_109395
crossref_primary_10_3389_fchem_2020_592771
crossref_primary_10_1021_acs_energyfuels_8b03600
crossref_primary_10_1016_j_apsusc_2020_147128
crossref_primary_10_1016_j_seppur_2018_02_048
crossref_primary_10_1016_j_apsusc_2019_03_323
crossref_primary_10_1039_D2RA02861A
crossref_primary_10_1021_acsomega_3c09663
crossref_primary_10_3390_min8120599
crossref_primary_10_1016_j_colsurfa_2018_07_045
crossref_primary_10_1016_j_mineng_2021_107150
crossref_primary_10_1016_j_mineng_2024_108734
crossref_primary_10_1016_j_jiec_2020_11_008
crossref_primary_10_1016_j_apsusc_2020_145594
crossref_primary_10_3390_molecules29143433
crossref_primary_10_1016_j_seppur_2024_131040
Cites_doi 10.1016/j.mineng.2016.11.011
10.1016/j.mineng.2016.05.016
10.15261/serdj.22.159
10.1016/j.mineng.2014.01.010
10.1016/S0301-7516(99)00058-7
10.1016/j.apsusc.2015.11.035
10.1016/0301-7516(93)90030-E
10.1016/j.colsurfa.2016.05.028
10.1016/j.minpro.2015.09.012
10.1021/la970440c
10.3390/min2040493
10.1016/j.minpro.2015.11.011
10.1016/j.jiec.2016.12.029
10.1016/j.apsusc.2016.11.061
10.1016/j.mineng.2014.11.013
10.1016/j.colsurfa.2016.06.046
10.1016/j.jiec.2016.03.011
10.1016/j.seppur.2016.04.053
10.1016/j.mineng.2010.03.012
10.1016/j.apsusc.2017.07.017
10.3390/min6030092
10.1016/j.mineng.2014.09.008
10.1002/(SICI)1096-9918(199908)28:1<101::AID-SIA627>3.0.CO;2-0
10.1016/0301-7516(91)90050-S
10.1016/j.seppur.2017.01.053
10.1016/j.mineng.2012.02.002
10.1016/j.seppur.2017.02.056
10.1016/j.mineng.2015.08.020
10.1016/j.hydromet.2016.06.029
10.1016/j.jallcom.2017.03.195
10.3390/min7020020
10.1016/j.mineng.2016.11.005
10.1016/j.jiec.2016.11.010
10.1007/s12613-016-1273-5
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.apsusc.2017.12.113
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5584
EndPage 831
ExternalDocumentID 10_1016_j_apsusc_2017_12_113
S0169433217337017
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SPG
SSK
SSM
SSQ
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
NDZJH
R2-
SEW
SSH
WUQ
ID FETCH-LOGICAL-c343t-2e873f00125bac146ae2d4f05f4d3b8cb81f9a4af69fb4d4f3ccc67b0af4192b3
IEDL.DBID AIKHN
ISSN 0169-4332
IngestDate Tue Jul 01 02:09:00 EDT 2025
Thu Apr 24 22:58:45 EDT 2025
Fri Feb 23 02:16:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Surface sulfidization
Ethanediamine modification
Malachite flotation
Sulfide ions
Enhanced adsorption
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-2e873f00125bac146ae2d4f05f4d3b8cb81f9a4af69fb4d4f3ccc67b0af4192b3
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_apsusc_2017_12_113
crossref_primary_10_1016_j_apsusc_2017_12_113
elsevier_sciencedirect_doi_10_1016_j_apsusc_2017_12_113
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied surface science
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Zhong, Wang, Liu (bib0155) 2016; 37
Li, Mu, Weng, Zhao, Song (bib0160) 2016; 506
Feng, Zhao, Wen, Cao (bib0030) 2017; 48
Smart, Skinner, Gerson (bib0185) 1999; 28
Yang, Liu, Liu, Zhong (bib0045) 2017; 46
Corin, Kalichini, O‘Connor, Simukanga (bib0010) 2017; 102
Feng, Wen, Cao, Deng, Zhao (bib0175) 2016; 6
Feng, Wen, Zhao, Lv, Bai (bib0005) 2015; 22
Li, Rao, Song (bib0040) 2017; 7
Feng, Wen, Zhao, Liu, Liu (bib0090) 2016; 52
Malghan (bib0105) 1986; 3
Bessiere, Housni, Predali (bib0120) 1991; 33
Buckley, Denman, Hope (bib0060) 2012; 2
Choi, Choi, Park, Han, Kim (bib0070) 2016; 146
Feng, Wen, Zhao, Deng, Xian (bib0115) 2016; 360
Marion, Jordens, Li, Rudolph, Waters (bib0065) 2017; 183
Feng, Wen, Deng, Zhao (bib0095) 2017; 396
Lotter, Bradshaw, Barnes (bib0020) 2016; 96–97
Feng, Zhao, Wen, Cao (bib0150) 2017; 178
Liu, Huang, Qu, Xiao, Yang, Xu (bib0025) 2016; 503
Feng, Wen, Deng, Zhao (bib0190) 2017; 425
Ejtemaei, Nguyen (bib0140) 2017; 100
Zhou, Chander (bib0125) 1993; 37
Chen, Peng, Bradshaw (bib0015) 2014; 58
Sui, Lee, Casuge, Finch (bib0135) 1999; 16
Li, Zhong, Xu, Jia, Liu (bib0075) 2015; 71
Park, Park, Choi, Kim, Tong, Kim (bib0130) 2016; 168
Kim, Choi, Silva, Song, Kim (bib0085) 2017; 168
Fuerstenau, Herrera-Urbina, McGlashan (bib0035) 2000; 58
Xia, Hart, Loshusan (bib0145) 2015; 70
Gush (bib0110) 2005; 105
Feng, Wen (bib0100) 2017; 709
Hope, Woods, Parker, Buckley, Mclean (bib0050) 2010; 23
Feng, Wen, Zhao, Wang, Cui (bib0165) 2015; 83
Kartio, Basilio, Yoon (bib0180) 1998; 14
Hope, Numprasanthai, Buckley, Parker, Sheldon (bib0055) 2012; 36–38
Kim, Park, Choi, Gomez-Flores, Han, Choi, Kim (bib0080) 2015; 143
Feng, Wen, Zhao, Cao, Lu (bib0170) 2016; 23
Kartio (10.1016/j.apsusc.2017.12.113_bib0180) 1998; 14
Liu (10.1016/j.apsusc.2017.12.113_bib0025) 2016; 503
Bessiere (10.1016/j.apsusc.2017.12.113_bib0120) 1991; 33
Li (10.1016/j.apsusc.2017.12.113_bib0040) 2017; 7
Yang (10.1016/j.apsusc.2017.12.113_bib0045) 2017; 46
Hope (10.1016/j.apsusc.2017.12.113_bib0050) 2010; 23
Feng (10.1016/j.apsusc.2017.12.113_bib0175) 2016; 6
Feng (10.1016/j.apsusc.2017.12.113_bib0150) 2017; 178
Li (10.1016/j.apsusc.2017.12.113_bib0160) 2016; 506
Feng (10.1016/j.apsusc.2017.12.113_bib0030) 2017; 48
Feng (10.1016/j.apsusc.2017.12.113_bib0190) 2017; 425
Feng (10.1016/j.apsusc.2017.12.113_bib0115) 2016; 360
Buckley (10.1016/j.apsusc.2017.12.113_bib0060) 2012; 2
Chen (10.1016/j.apsusc.2017.12.113_bib0015) 2014; 58
Kim (10.1016/j.apsusc.2017.12.113_bib0080) 2015; 143
Gush (10.1016/j.apsusc.2017.12.113_bib0110) 2005; 105
Feng (10.1016/j.apsusc.2017.12.113_bib0165) 2015; 83
Xia (10.1016/j.apsusc.2017.12.113_bib0145) 2015; 70
Kim (10.1016/j.apsusc.2017.12.113_bib0085) 2017; 168
Lotter (10.1016/j.apsusc.2017.12.113_bib0020) 2016; 96–97
Sui (10.1016/j.apsusc.2017.12.113_bib0135) 1999; 16
Park (10.1016/j.apsusc.2017.12.113_bib0130) 2016; 168
Corin (10.1016/j.apsusc.2017.12.113_bib0010) 2017; 102
Fuerstenau (10.1016/j.apsusc.2017.12.113_bib0035) 2000; 58
Smart (10.1016/j.apsusc.2017.12.113_bib0185) 1999; 28
Choi (10.1016/j.apsusc.2017.12.113_bib0070) 2016; 146
Marion (10.1016/j.apsusc.2017.12.113_bib0065) 2017; 183
Ejtemaei (10.1016/j.apsusc.2017.12.113_bib0140) 2017; 100
Malghan (10.1016/j.apsusc.2017.12.113_bib0105) 1986; 3
Feng (10.1016/j.apsusc.2017.12.113_bib0170) 2016; 23
Li (10.1016/j.apsusc.2017.12.113_bib0075) 2015; 71
Feng (10.1016/j.apsusc.2017.12.113_bib0095) 2017; 396
Feng (10.1016/j.apsusc.2017.12.113_bib0100) 2017; 709
Li (10.1016/j.apsusc.2017.12.113_bib0155) 2016; 37
Feng (10.1016/j.apsusc.2017.12.113_bib0005) 2015; 22
Hope (10.1016/j.apsusc.2017.12.113_bib0055) 2012; 36–38
Feng (10.1016/j.apsusc.2017.12.113_bib0090) 2016; 52
Zhou (10.1016/j.apsusc.2017.12.113_bib0125) 1993; 37
References_xml – volume: 102
  start-page: 15
  year: 2017
  end-page: 17
  ident: bib0010
  article-title: The recovery of oxide copper minerals from a complex copper ore by sulphidisation
  publication-title: Min. Eng.
– volume: 396
  start-page: 920
  year: 2017
  end-page: 925
  ident: bib0095
  article-title: DFT study on the interaction between hydrogen sulfide ions and cerussite (110) surface
  publication-title: Appl. Surf. Sci.
– volume: 16
  start-page: 53
  year: 1999
  end-page: 61
  ident: bib0135
  article-title: Comparison of the activation of sphalerite by copper and lead
  publication-title: Min. Metall. Proc.
– volume: 168
  start-page: 94
  year: 2017
  end-page: 102
  ident: bib0085
  article-title: Feasibility of bench-scale selective bioflotation of copper oxide minerals using Rhodococcus opacus
  publication-title: Hydrometallurgy
– volume: 37
  start-page: 123
  year: 2016
  end-page: 130
  ident: bib0155
  article-title: The activation mechanism of Cu(II) to ilmenite and subsequent flotation response to α-hydroxyoctyl phosphinic acid
  publication-title: J. Ind. Eng. Chem.
– volume: 36–38
  start-page: 12
  year: 2012
  end-page: 20
  ident: bib0055
  article-title: Bench-scale flotation of chrysocolla with n-octanohydroxamate
  publication-title: Min. Eng.
– volume: 360
  start-page: 365
  year: 2016
  end-page: 372
  ident: bib0115
  article-title: Adsorption of sulfide ions on cerussite surfaces and implications for flotation
  publication-title: Appl. Surf. Sci.
– volume: 46
  start-page: 404
  year: 2017
  end-page: 415
  ident: bib0045
  article-title: A DFT study on the structure–reactivity relationship of aliphatic oxime derivatives as copper chelating agents and malachite flotation collectors
  publication-title: J. Ind. Eng. Chem.
– volume: 183
  start-page: 258
  year: 2017
  end-page: 269
  ident: bib0065
  article-title: An evaluation of hydroxamate collectors for malachite flotation
  publication-title: Sep. Purif. Technol.
– volume: 14
  start-page: 5274
  year: 1998
  end-page: 5278
  ident: bib0180
  article-title: An XPS study of sphalerite activation by copper
  publication-title: Langmuir
– volume: 2
  start-page: 493
  year: 2012
  end-page: 515
  ident: bib0060
  article-title: The adsorption of n-octanohydroxamate collector on Cu and Fe oxide minerals investigated by static secondary ion mass spectrometry
  publication-title: Minerals
– volume: 506
  start-page: 431
  year: 2016
  end-page: 437
  ident: bib0160
  article-title: Rutile flotation with Pb
  publication-title: Colloid Surf. A
– volume: 6
  start-page: 92
  year: 2016
  ident: bib0175
  article-title: The effect of chloride ions on the activity of cerussite surfaces
  publication-title: Minerals
– volume: 143
  start-page: 98
  year: 2015
  end-page: 104
  ident: bib0080
  article-title: Bioflotation of malachite using different growth phases of
  publication-title: Int. J. Min. Process.
– volume: 3
  start-page: 158
  year: 1986
  end-page: 163
  ident: bib0105
  article-title: Role of sodium sulfide in the flotation of oxidized copper, lead, and zinc ores
  publication-title: Min. Metall. Process.
– volume: 178
  start-page: 193
  year: 2017
  end-page: 199
  ident: bib0150
  article-title: Activation mechanism of lead ions in cassiterite flotation with salicylhydroxamic acid as collector
  publication-title: Sep. Purif. Technol.
– volume: 22
  start-page: 159
  year: 2015
  end-page: 168
  ident: bib0005
  article-title: Leaching of copper from malachite with methane-sulfonic acid
  publication-title: Solvent Extr. Res. Dev. Jpn.
– volume: 7
  start-page: 20
  year: 2017
  ident: bib0040
  article-title: Comparison of adsorption of phenol O-O and N-O chelating collectors at the malachite/water interface in flotation
  publication-title: Minerals
– volume: 146
  start-page: 38
  year: 2016
  end-page: 45
  ident: bib0070
  article-title: Flotation behaviour of malachite in mono- and di-valent salt solutions using sodium oleate as a collector
  publication-title: Int. J. Min. Process.
– volume: 503
  start-page: 34
  year: 2016
  end-page: 42
  ident: bib0025
  article-title: Understanding the hydrophobic mechanism of 3-hexyl-4-amino-1, 2,4-triazole-5-thione to malachite by ToF-SIMS, XPS, FTIR, contact angle, zeta potential and micro-flotation
  publication-title: Colloids Surf. A: Physicochem. Eng. Asp.
– volume: 58
  start-page: 15
  year: 2000
  end-page: 33
  ident: bib0035
  article-title: Studies on the applicability of chelating agents as universal collectors for copper minerals
  publication-title: Int. J. Min. Process.
– volume: 23
  start-page: 952
  year: 2010
  end-page: 959
  ident: bib0050
  article-title: A vibrational spectroscopy and XPS investigation of the interaction of hydroxamate reagents on copper oxide minerals
  publication-title: Min. Eng.
– volume: 58
  start-page: 64
  year: 2014
  end-page: 72
  ident: bib0015
  article-title: The separation of chalcopyrite and chalcocite from pyrite in cleaner flotation after regrinding
  publication-title: Min. Eng.
– volume: 33
  start-page: 165
  year: 1991
  end-page: 183
  ident: bib0120
  article-title: Dielectric study of activation and deactivation of malachite by sulfide ions
  publication-title: Int. J. Min. Process.
– volume: 105
  start-page: 193
  year: 2005
  end-page: 197
  ident: bib0110
  article-title: Flotation of oxide minerals by sulphidization-the development of a sulphidization control system for laboratory testwork
  publication-title: J. S. Afr. Inst. Min. Metall.
– volume: 71
  start-page: 188
  year: 2015
  end-page: 193
  ident: bib0075
  article-title: Flotation behavior and adsorption mechanism of a-hydroxyoctyl phosphinic acid to malachite
  publication-title: Min. Eng.
– volume: 168
  start-page: 1
  year: 2016
  end-page: 7
  ident: bib0130
  article-title: Influence of excess sulfide ions on the malachite-bubble interaction in the presence of thiol-collector
  publication-title: Sep. Purif. Technol.
– volume: 28
  start-page: 101
  year: 1999
  end-page: 105
  ident: bib0185
  article-title: XPS of sulphide mineral surfaces: metal-deficient, polysulphides, defects and elemental sulphur
  publication-title: Surf. Interface Anal.
– volume: 709
  start-page: 602
  year: 2017
  end-page: 608
  ident: bib0100
  article-title: Formation of zinc sulfide species on smithsonite surfaces and its response to flotation performance
  publication-title: J. Alloys Comp.
– volume: 23
  start-page: 609
  year: 2016
  end-page: 617
  ident: bib0170
  article-title: A novel method for improving cerussite sulfidization
  publication-title: Int. J. Min. Metall. Mater.
– volume: 96–97
  start-page: 177
  year: 2016
  end-page: 184
  ident: bib0020
  article-title: Classification of the major copper sulphides into semiconductor types, and associated flotation characteristics
  publication-title: Min. Eng.
– volume: 48
  start-page: 125
  year: 2017
  end-page: 132
  ident: bib0030
  article-title: Copper sulfide species formed on malachite surfaces in relation to flotation
  publication-title: J. Ind. Eng. Chem.
– volume: 83
  start-page: 128
  year: 2015
  end-page: 135
  ident: bib0165
  article-title: Contribution of chloride ions to the sulfidization flotation of cerussite
  publication-title: Min. Eng.
– volume: 100
  start-page: 223
  year: 2017
  end-page: 232
  ident: bib0140
  article-title: Characterisation of sphalerite and pyrite surfaces activated by copper sulphate
  publication-title: Min. Eng.
– volume: 70
  start-page: 119
  year: 2015
  end-page: 129
  ident: bib0145
  article-title: A Tof-SIMS analysis of the effect of lead nitrate on rare earth flotation
  publication-title: Min. Eng.
– volume: 37
  start-page: 257
  year: 1993
  end-page: 272
  ident: bib0125
  article-title: Kinetics of sutfidization of malachite in hydrosulfide and tetrasulfide solutions
  publication-title: Int. J. Min. Process.
– volume: 425
  start-page: 8
  year: 2017
  end-page: 15
  ident: bib0190
  article-title: Combined DFT and XPS investigation of enhanced adsorption of sulfide species onto cerussite by surface modification with chloride
  publication-title: Appl. Surf. Sci.
– volume: 52
  start-page: 676
  year: 2016
  end-page: 689
  ident: bib0090
  article-title: Effect of pH on surface characteristics and flotation of sulfidized cerussite
  publication-title: Physicochem. Probl. Min. Process.
– volume: 102
  start-page: 15
  year: 2017
  ident: 10.1016/j.apsusc.2017.12.113_bib0010
  article-title: The recovery of oxide copper minerals from a complex copper ore by sulphidisation
  publication-title: Min. Eng.
  doi: 10.1016/j.mineng.2016.11.011
– volume: 96–97
  start-page: 177
  year: 2016
  ident: 10.1016/j.apsusc.2017.12.113_bib0020
  article-title: Classification of the major copper sulphides into semiconductor types, and associated flotation characteristics
  publication-title: Min. Eng.
  doi: 10.1016/j.mineng.2016.05.016
– volume: 105
  start-page: 193
  year: 2005
  ident: 10.1016/j.apsusc.2017.12.113_bib0110
  article-title: Flotation of oxide minerals by sulphidization-the development of a sulphidization control system for laboratory testwork
  publication-title: J. S. Afr. Inst. Min. Metall.
– volume: 22
  start-page: 159
  year: 2015
  ident: 10.1016/j.apsusc.2017.12.113_bib0005
  article-title: Leaching of copper from malachite with methane-sulfonic acid
  publication-title: Solvent Extr. Res. Dev. Jpn.
  doi: 10.15261/serdj.22.159
– volume: 52
  start-page: 676
  issue: 2
  year: 2016
  ident: 10.1016/j.apsusc.2017.12.113_bib0090
  article-title: Effect of pH on surface characteristics and flotation of sulfidized cerussite
  publication-title: Physicochem. Probl. Min. Process.
– volume: 58
  start-page: 64
  year: 2014
  ident: 10.1016/j.apsusc.2017.12.113_bib0015
  article-title: The separation of chalcopyrite and chalcocite from pyrite in cleaner flotation after regrinding
  publication-title: Min. Eng.
  doi: 10.1016/j.mineng.2014.01.010
– volume: 58
  start-page: 15
  year: 2000
  ident: 10.1016/j.apsusc.2017.12.113_bib0035
  article-title: Studies on the applicability of chelating agents as universal collectors for copper minerals
  publication-title: Int. J. Min. Process.
  doi: 10.1016/S0301-7516(99)00058-7
– volume: 360
  start-page: 365
  year: 2016
  ident: 10.1016/j.apsusc.2017.12.113_bib0115
  article-title: Adsorption of sulfide ions on cerussite surfaces and implications for flotation
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.11.035
– volume: 37
  start-page: 257
  year: 1993
  ident: 10.1016/j.apsusc.2017.12.113_bib0125
  article-title: Kinetics of sutfidization of malachite in hydrosulfide and tetrasulfide solutions
  publication-title: Int. J. Min. Process.
  doi: 10.1016/0301-7516(93)90030-E
– volume: 503
  start-page: 34
  year: 2016
  ident: 10.1016/j.apsusc.2017.12.113_bib0025
  article-title: Understanding the hydrophobic mechanism of 3-hexyl-4-amino-1, 2,4-triazole-5-thione to malachite by ToF-SIMS, XPS, FTIR, contact angle, zeta potential and micro-flotation
  publication-title: Colloids Surf. A: Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2016.05.028
– volume: 143
  start-page: 98
  year: 2015
  ident: 10.1016/j.apsusc.2017.12.113_bib0080
  article-title: Bioflotation of malachite using different growth phases of Rhodococcus opacus: Effect of bacterial shape on detachment by shear flow
  publication-title: Int. J. Min. Process.
  doi: 10.1016/j.minpro.2015.09.012
– volume: 14
  start-page: 5274
  year: 1998
  ident: 10.1016/j.apsusc.2017.12.113_bib0180
  article-title: An XPS study of sphalerite activation by copper
  publication-title: Langmuir
  doi: 10.1021/la970440c
– volume: 2
  start-page: 493
  year: 2012
  ident: 10.1016/j.apsusc.2017.12.113_bib0060
  article-title: The adsorption of n-octanohydroxamate collector on Cu and Fe oxide minerals investigated by static secondary ion mass spectrometry
  publication-title: Minerals
  doi: 10.3390/min2040493
– volume: 146
  start-page: 38
  year: 2016
  ident: 10.1016/j.apsusc.2017.12.113_bib0070
  article-title: Flotation behaviour of malachite in mono- and di-valent salt solutions using sodium oleate as a collector
  publication-title: Int. J. Min. Process.
  doi: 10.1016/j.minpro.2015.11.011
– volume: 48
  start-page: 125
  year: 2017
  ident: 10.1016/j.apsusc.2017.12.113_bib0030
  article-title: Copper sulfide species formed on malachite surfaces in relation to flotation
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2016.12.029
– volume: 396
  start-page: 920
  year: 2017
  ident: 10.1016/j.apsusc.2017.12.113_bib0095
  article-title: DFT study on the interaction between hydrogen sulfide ions and cerussite (110) surface
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.11.061
– volume: 71
  start-page: 188
  year: 2015
  ident: 10.1016/j.apsusc.2017.12.113_bib0075
  article-title: Flotation behavior and adsorption mechanism of a-hydroxyoctyl phosphinic acid to malachite
  publication-title: Min. Eng.
  doi: 10.1016/j.mineng.2014.11.013
– volume: 506
  start-page: 431
  year: 2016
  ident: 10.1016/j.apsusc.2017.12.113_bib0160
  article-title: Rutile flotation with Pb2+ ions as activator: adsorption of Pb2+ at rutile/water interface
  publication-title: Colloid Surf. A
  doi: 10.1016/j.colsurfa.2016.06.046
– volume: 37
  start-page: 123
  year: 2016
  ident: 10.1016/j.apsusc.2017.12.113_bib0155
  article-title: The activation mechanism of Cu(II) to ilmenite and subsequent flotation response to α-hydroxyoctyl phosphinic acid
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2016.03.011
– volume: 168
  start-page: 1
  year: 2016
  ident: 10.1016/j.apsusc.2017.12.113_bib0130
  article-title: Influence of excess sulfide ions on the malachite-bubble interaction in the presence of thiol-collector
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.04.053
– volume: 23
  start-page: 952
  year: 2010
  ident: 10.1016/j.apsusc.2017.12.113_bib0050
  article-title: A vibrational spectroscopy and XPS investigation of the interaction of hydroxamate reagents on copper oxide minerals
  publication-title: Min. Eng.
  doi: 10.1016/j.mineng.2010.03.012
– volume: 425
  start-page: 8
  year: 2017
  ident: 10.1016/j.apsusc.2017.12.113_bib0190
  article-title: Combined DFT and XPS investigation of enhanced adsorption of sulfide species onto cerussite by surface modification with chloride
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.07.017
– volume: 6
  start-page: 92
  year: 2016
  ident: 10.1016/j.apsusc.2017.12.113_bib0175
  article-title: The effect of chloride ions on the activity of cerussite surfaces
  publication-title: Minerals
  doi: 10.3390/min6030092
– volume: 70
  start-page: 119
  year: 2015
  ident: 10.1016/j.apsusc.2017.12.113_bib0145
  article-title: A Tof-SIMS analysis of the effect of lead nitrate on rare earth flotation
  publication-title: Min. Eng.
  doi: 10.1016/j.mineng.2014.09.008
– volume: 28
  start-page: 101
  year: 1999
  ident: 10.1016/j.apsusc.2017.12.113_bib0185
  article-title: XPS of sulphide mineral surfaces: metal-deficient, polysulphides, defects and elemental sulphur
  publication-title: Surf. Interface Anal.
  doi: 10.1002/(SICI)1096-9918(199908)28:1<101::AID-SIA627>3.0.CO;2-0
– volume: 33
  start-page: 165
  year: 1991
  ident: 10.1016/j.apsusc.2017.12.113_bib0120
  article-title: Dielectric study of activation and deactivation of malachite by sulfide ions
  publication-title: Int. J. Min. Process.
  doi: 10.1016/0301-7516(91)90050-S
– volume: 178
  start-page: 193
  year: 2017
  ident: 10.1016/j.apsusc.2017.12.113_bib0150
  article-title: Activation mechanism of lead ions in cassiterite flotation with salicylhydroxamic acid as collector
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2017.01.053
– volume: 36–38
  start-page: 12
  year: 2012
  ident: 10.1016/j.apsusc.2017.12.113_bib0055
  article-title: Bench-scale flotation of chrysocolla with n-octanohydroxamate
  publication-title: Min. Eng.
  doi: 10.1016/j.mineng.2012.02.002
– volume: 183
  start-page: 258
  year: 2017
  ident: 10.1016/j.apsusc.2017.12.113_bib0065
  article-title: An evaluation of hydroxamate collectors for malachite flotation
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2017.02.056
– volume: 3
  start-page: 158
  year: 1986
  ident: 10.1016/j.apsusc.2017.12.113_bib0105
  article-title: Role of sodium sulfide in the flotation of oxidized copper, lead, and zinc ores
  publication-title: Min. Metall. Process.
– volume: 83
  start-page: 128
  year: 2015
  ident: 10.1016/j.apsusc.2017.12.113_bib0165
  article-title: Contribution of chloride ions to the sulfidization flotation of cerussite
  publication-title: Min. Eng.
  doi: 10.1016/j.mineng.2015.08.020
– volume: 168
  start-page: 94
  year: 2017
  ident: 10.1016/j.apsusc.2017.12.113_bib0085
  article-title: Feasibility of bench-scale selective bioflotation of copper oxide minerals using Rhodococcus opacus
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2016.06.029
– volume: 16
  start-page: 53
  year: 1999
  ident: 10.1016/j.apsusc.2017.12.113_bib0135
  article-title: Comparison of the activation of sphalerite by copper and lead
  publication-title: Min. Metall. Proc.
– volume: 709
  start-page: 602
  year: 2017
  ident: 10.1016/j.apsusc.2017.12.113_bib0100
  article-title: Formation of zinc sulfide species on smithsonite surfaces and its response to flotation performance
  publication-title: J. Alloys Comp.
  doi: 10.1016/j.jallcom.2017.03.195
– volume: 7
  start-page: 20
  year: 2017
  ident: 10.1016/j.apsusc.2017.12.113_bib0040
  article-title: Comparison of adsorption of phenol O-O and N-O chelating collectors at the malachite/water interface in flotation
  publication-title: Minerals
  doi: 10.3390/min7020020
– volume: 100
  start-page: 223
  year: 2017
  ident: 10.1016/j.apsusc.2017.12.113_bib0140
  article-title: Characterisation of sphalerite and pyrite surfaces activated by copper sulphate
  publication-title: Min. Eng.
  doi: 10.1016/j.mineng.2016.11.005
– volume: 46
  start-page: 404
  year: 2017
  ident: 10.1016/j.apsusc.2017.12.113_bib0045
  article-title: A DFT study on the structure–reactivity relationship of aliphatic oxime derivatives as copper chelating agents and malachite flotation collectors
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2016.11.010
– volume: 23
  start-page: 609
  year: 2016
  ident: 10.1016/j.apsusc.2017.12.113_bib0170
  article-title: A novel method for improving cerussite sulfidization
  publication-title: Int. J. Min. Metall. Mater.
  doi: 10.1007/s12613-016-1273-5
SSID ssj0012873
Score 2.5945
Snippet [Display omitted] •Ethanediamine modification of malachite improved its sulfidization and flotation behaviors.•Ethanediamine modification of malachite enhanced...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 823
SubjectTerms Enhanced adsorption
Ethanediamine modification
Malachite flotation
Sulfide ions
Surface sulfidization
Title Surface modification of malachite with ethanediamine and its effect on sulfidization flotation
URI https://dx.doi.org/10.1016/j.apsusc.2017.12.113
Volume 436
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qe9GD-MT6KDl4Xbu7yb6OpViqYi-10JNLXgOVdlv6uPrbTZrdUkEUPO5jYDPJzmRmvvkCcO9ngqOS3IsxjT3jobn5pUzgqmiGiEzqCG1F93UQ90fseRyNa9CtemEsrLK0_c6mb611eaddarO9mEzaQ8sjYtm3goTSxCysA2iENIujOjQ6Ty_9wa6YYIIC6ii-M9sgFFYddFuYFzfB6MpyGQaJzQsGAf3ZQ-15nd4JHJfbRdJxX3QKNV2cwdEeieA5vA83S-RSk9lcWdzPVtVkjmTGp3xbJSA22Uq0TZLbPpGZkSW8UGSyXhGH5yBGYrWZ4kSVbZkEp3NXpL-AUe_xrdv3ylMTPEkZXXuhNsNFO-xIcGkMIdehYuhHyBQVqRRpgBlnHOMMBTNPqJQyToTP0VaEBb2EejEv9BWQLFYCuR8q6msmFOdK-FpnikUJSunLJtBKU7ksKcXtyRbTvMKOfeROv7nVbx6EJuCgTfB2UgtHqfHH-0k1Cfm3pZEbq_-r5PW_JW_g0FylDqJzC_X1cqPvzO5jLVpw8PAZtMo19gUH3d4d
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YE1NImd14gqqgJtl7ZSJyK_TgpKk6pNV347dh6oSAgk1tgnxZfLnc_33WeE7u2IM5CCWT6EvqUjNNO_lE5cJYkAgArlganojsb-YEZf5t68hXpNL4yBVda-v_Lppbeun3RrbXaXSdKdGB4Rw77lBIQE2rB20C71SGBwfQ8fXzgP7X-rMrOebdqD3KZ_rgR5MZ2Krg2ToROYU0HHIT_Hp62Y0z9Ch_VmET9W73OMWio7QQdbFIKn6G2yWQETCi9yaVA_paJxDnjBUlbWCLA5asXKHJGbLpGFlsUskzgp1rhCc2Atsd6kkMi6KRNDmlcl-jM06z9NewOrvjPBEoSSwnKVXi6YZXucCe0GmXIlBdsDKgkPBQ8diBhl4EfAqR4hQgg_4DYDUw_m5By1szxTFwhHvuTAbFcSW1EuGZPcViqS1AtACFt0EGk0FYuaUNzca5HGDXLsPa70Gxv9xo6r0w3SQdaX1LIi1PhjftB8hPibYcTa5_8qeflvyTu0N5iOhvHwefx6hfb1SFiBda5Ru1ht1I3ehxT8trSzT-yR3ug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+modification+of+malachite+with+ethanediamine+and+its+effect+on+sulfidization+flotation&rft.jtitle=Applied+surface+science&rft.au=Feng%2C+Qicheng&rft.au=Zhao%2C+Wenjuan&rft.au=Wen%2C+Shuming&rft.date=2018-04-01&rft.issn=0169-4332&rft.volume=436&rft.spage=823&rft.epage=831&rft_id=info:doi/10.1016%2Fj.apsusc.2017.12.113&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apsusc_2017_12_113
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-4332&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-4332&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-4332&client=summon