Measuring nanomechanical motion with a microwave cavity interferometer

A mechanical resonator is a physicist’s most tangible example of a harmonic oscillator. With the advent of micro and nanoscale mechanical resonators, researchers are rapidly progressing towards a tangible harmonic oscillator with motion that requires a quantum description. Challenges include freezin...

Full description

Saved in:
Bibliographic Details
Published inNature physics Vol. 4; no. 7; pp. 555 - 560
Main Authors Lehnert, K. W, Regal, C. A, Teufel, J. D
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2008
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A mechanical resonator is a physicist’s most tangible example of a harmonic oscillator. With the advent of micro and nanoscale mechanical resonators, researchers are rapidly progressing towards a tangible harmonic oscillator with motion that requires a quantum description. Challenges include freezing out the thermomechanical motion to leave only zero-point quantum fluctuations δ x zp and, equally importantly, realizing a Heisenberg-limited displacement detector. Here, we introduce a detector that can be in principle quantum limited and is also capable of efficiently coupling to the motion of small-mass, nanoscale objects, which have the most accessible zero-point motion. Specifically, we measure the displacement of a nanomechanical beam using a superconducting transmission-line microwave cavity. We realize excellent mechanical force sensitivity (3 aN Hz −1/2 ), detect thermal motion at tens of millikelvin temperatures and achieve a displacement imprecision of 30 times the standard quantum limit. Measurements of the position of a nanoscale beam using a microwave cavity detector represents a promising step towards being able to measure displacements at the quantum limit.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1745-2473
1745-2481
DOI:10.1038/nphys974