Interface and composition engineering of vanadium doped cobalt nickel sulfide/phosphide heterostructure for efficient water splitting
•The ECSA is increased through producing heterogeneous interfaces.•The electron state of Ni, Co is modulated by introducing V and generating interfaces.•The V-CNS/P/NF only requires an overpotential of 38 mV at 10 mA cm−2 for HER. Developing efficient and robust non-noble electrocatalysts for hydrog...
Saved in:
Published in | Electrochimica acta Vol. 368; p. 137602 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.02.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The ECSA is increased through producing heterogeneous interfaces.•The electron state of Ni, Co is modulated by introducing V and generating interfaces.•The V-CNS/P/NF only requires an overpotential of 38 mV at 10 mA cm−2 for HER.
Developing efficient and robust non-noble electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is desirable for future green energy systems of electrochemical water splitting technology. Thus, the vanadium doped cobalt nickel sulfide/phosphide heterostructure catalyst supported on nickel foam (V-CNS/P/NF) is fabricated by sulfidation reaction, followed by phosphorization from the layer double hydroxide (LDH) precursor. After V doping, the peak position of Ni and Co shifts negatively. Simultaneously, it is noted that the introduction of V into CNS/P can result in the enhanced electrochemical surface area and improved conductivity of CNS/P. Importantly, the optimal electrocatalyst of V-CNS/P/N exhibits excellent performance in alkaline condition with small overpotentials of 38 mV and 210 mV to achieve 10 mA cm−2 for HER and OER, respectively. Remarkably, V-CNS/P/NF needs lower overpotential than that of Pt/C to reach higher current density of 500 mA cm−2. A two-electrode system both assembled by as-prepared V-CNS/P/NF for electrochemical water splitting requires a cell voltage of 1.56 V to reach 10 mA cm−2. |
---|---|
AbstractList | •The ECSA is increased through producing heterogeneous interfaces.•The electron state of Ni, Co is modulated by introducing V and generating interfaces.•The V-CNS/P/NF only requires an overpotential of 38 mV at 10 mA cm−2 for HER.
Developing efficient and robust non-noble electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is desirable for future green energy systems of electrochemical water splitting technology. Thus, the vanadium doped cobalt nickel sulfide/phosphide heterostructure catalyst supported on nickel foam (V-CNS/P/NF) is fabricated by sulfidation reaction, followed by phosphorization from the layer double hydroxide (LDH) precursor. After V doping, the peak position of Ni and Co shifts negatively. Simultaneously, it is noted that the introduction of V into CNS/P can result in the enhanced electrochemical surface area and improved conductivity of CNS/P. Importantly, the optimal electrocatalyst of V-CNS/P/N exhibits excellent performance in alkaline condition with small overpotentials of 38 mV and 210 mV to achieve 10 mA cm−2 for HER and OER, respectively. Remarkably, V-CNS/P/NF needs lower overpotential than that of Pt/C to reach higher current density of 500 mA cm−2. A two-electrode system both assembled by as-prepared V-CNS/P/NF for electrochemical water splitting requires a cell voltage of 1.56 V to reach 10 mA cm−2. Developing efficient and robust non-noble electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is desirable for future green energy systems of electrochemical water splitting technology. Thus, the vanadium doped cobalt nickel sulfide/phosphide heterostructure catalyst supported on nickel foam (V-CNS/P/NF) is fabricated by sulfidation reaction, followed by phosphorization from the layer double hydroxide (LDH) precursor. After V doping, the peak position of Ni and Co shifts negatively. Simultaneously, it is noted that the introduction of V into CNS/P can result in the enhanced electrochemical surface area and improved conductivity of CNS/P. Importantly, the optimal electrocatalyst of V-CNS/P/N exhibits excellent performance in alkaline condition with small overpotentials of 38 mV and 210 mV to achieve 10 mA cm−2 for HER and OER, respectively. Remarkably, V-CNS/P/NF needs lower overpotential than that of Pt/C to reach higher current density of 500 mA cm−2. A two-electrode system both assembled by as-prepared V-CNS/P/NF for electrochemical water splitting requires a cell voltage of 1.56 V to reach 10 mA cm−2. |
ArticleNumber | 137602 |
Author | Suo, Na Cui, Lili Dou, Zhiyu |
Author_xml | – sequence: 1 givenname: Na surname: Suo fullname: Suo, Na – sequence: 2 givenname: Zhiyu surname: Dou fullname: Dou, Zhiyu – sequence: 3 givenname: Lili orcidid: 0000-0002-8641-1657 surname: Cui fullname: Cui, Lili email: cuilili@cust.edu.cn |
BookMark | eNqNkMtqHDEQRUWwIePHN1iQdY_16JZaiyyMycNg8CZZC41U8mjSI3UktUM-IP8dNROy8CaBgipU995C5wKdxRQBoRtKtpRQcXvYwgS2mlZbRlh75VIQ9gZt6Ch5x8dBnaENIZR3vRjFW3RRyoEQIoUkG_TrIVbI3ljAJjps03FOJdSQIob4HCJADvEZJ49fTDQuLEfs0gyrcmemimOw32DCZZl8cHA771OZ923Ce2i5qdS82LpkwD5lDN4HGyBW_MO0LS7zFGpt-Vfo3JupwPWffom-fvzw5f5z9_j06eH-7rGzvOe1Y0IwYERS6xRVYke9HCwXVngvmbd2IGYYLCNuNzoGShE1ODPwneyFl70a-SV6d8qdc_q-QKn6kJYc20nNekVZozSqppInlW0fKBm8nnM4mvxTU6JX5vqg_zLXK3N9Yt6c7185bahmpVmzCdN_-O9OfmgQXgJkXVZeFlzITa9dCv_M-A3E2aho |
CitedBy_id | crossref_primary_10_3390_coatings14050564 crossref_primary_10_1002_smll_202103826 crossref_primary_10_1039_D1EE02105B crossref_primary_10_1016_j_mcat_2023_113793 crossref_primary_10_1002_smll_202308564 crossref_primary_10_1007_s00339_021_04614_6 crossref_primary_10_1016_j_jallcom_2022_167312 crossref_primary_10_1016_j_jcis_2022_06_087 crossref_primary_10_1039_D3CP03002D crossref_primary_10_1016_j_jssc_2024_124701 crossref_primary_10_1039_D1DT04224F crossref_primary_10_1016_j_jcis_2023_12_049 crossref_primary_10_1007_s10008_024_05802_z crossref_primary_10_1016_j_cej_2022_134730 crossref_primary_10_1016_j_ijhydene_2023_12_067 crossref_primary_10_1039_D3SE01194A crossref_primary_10_1016_j_ijhydene_2023_12_064 crossref_primary_10_1016_j_jcis_2022_09_069 crossref_primary_10_1016_j_inoche_2024_112575 crossref_primary_10_1016_j_mtnano_2024_100516 crossref_primary_10_1016_j_apsusc_2022_153989 crossref_primary_10_3390_catal13050890 |
Cites_doi | 10.1038/440295a 10.1002/smll.201703257 10.1016/j.apcatb.2018.09.064 10.1016/j.jpowsour.2018.06.030 10.1038/s41467-019-11765-x 10.1039/C9NR00658C 10.1039/C8TA03128B 10.1126/science.aad4998 10.1016/j.electacta.2017.10.017 10.1126/science.1091939 10.1039/C8EE00076J 10.7567/APEX.9.095801 10.1021/acsami.6b07986 10.1021/acscatal.9b03359 10.1038/s41467-019-09666-0 10.1021/acssuschemeng.8b05378 10.1002/adma.201502696 10.1016/j.electacta.2019.06.106 10.1021/acs.inorgchem.9b02333 10.1039/C9TA07962A 10.1002/adfm.201803291 10.1002/admi.201800473 10.1039/C4EE00370E 10.1002/chem.201904352 10.1016/j.jpowsour.2019.227348 10.1016/j.nanoen.2016.06.037 10.1002/advs.201700515 10.1021/acs.nanolett.7b02518 10.1002/anie.201611863 10.1016/j.jallcom.2019.03.380 10.1149/2.0131816jes 10.1039/C8NR10167A 10.1021/acssuschemeng.8b05744 10.1039/C7TA00982H 10.1016/j.ijhydene.2019.08.164 10.1039/C6TA05196K 10.1016/j.electacta.2019.06.093 10.1007/978-981-13-0158-2 10.1039/C7NR00740J 10.1021/acs.inorgchem.6b02808 10.1039/C7SC04569G 10.1016/j.apcatb.2019.01.094 10.1039/C4EE00440J 10.1038/s41427-018-0063-0 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Feb 1, 2021 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Feb 1, 2021 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.electacta.2020.137602 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-3859 |
ExternalDocumentID | 10_1016_j_electacta_2020_137602 S0013468620319952 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT WH7 XPP YK3 ZMT ~02 ~G- 29G 41~ 53G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIDUJ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ H~9 LPU R2- RIG SC5 SCB SCH SEW SSH T9H VH1 WUQ XOL ZY4 7SR 7U5 8BQ 8FD EFKBS JG9 L7M |
ID | FETCH-LOGICAL-c343t-2662e2071cd9196b1f75c36c6ff72fcc50a55c20db8d2e99095da53b746f74983 |
IEDL.DBID | .~1 |
ISSN | 0013-4686 |
IngestDate | Fri Jul 25 04:29:37 EDT 2025 Thu Apr 24 23:07:40 EDT 2025 Tue Jul 01 03:02:19 EDT 2025 Fri Feb 23 02:48:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Heterostructure Overall water splitting Transition metal dichalcogenides Transition metal phosphides |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-2662e2071cd9196b1f75c36c6ff72fcc50a55c20db8d2e99095da53b746f74983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8641-1657 |
PQID | 2491200189 |
PQPubID | 2045485 |
ParticipantIDs | proquest_journals_2491200189 crossref_primary_10_1016_j_electacta_2020_137602 crossref_citationtrail_10_1016_j_electacta_2020_137602 elsevier_sciencedirect_doi_10_1016_j_electacta_2020_137602 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 2021-02-00 20210201 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Electrochimica acta |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Wu, Zhang, Bu, Zhao, Bi, Lin, Huang, S.Li, Huang (bib0011) 2019; 7 Deng, Ren, Deng, Yu, Yang, Bao (bib0040) 2014; 7 Li, Wang, Duan, Zheng, Cheng, Zhang, Sun (bib0046) 2019; 10 Ren, Wang, Lu, Tong, Li (bib0001) 2017; 5 Sun, Zhang, Li, Bai, Lyu, Liu, Li (bib0030) 2018; 5 Fang, Dong, Wei, Ho (bib0038) 2017; 7 Wang, Yue, Yang, Sirisomboonchai, Wang, Ma, Abudula, Guan (bib0007) 2019; 819 Wang, Wang, Zheng, Yang, Zhang, Chen (bib0031) 2019; 318 Wang, Ma, Qu, Asiri, Sun (bib0032) 2017; 56 Li, Peng, Huang, Cui, Al-Enizi, Zheng (bib0049) 2016; 8 Parra-Puerto, NG, Fahy, Goode, Ryan, Kucernak (bib0015) 2019; 9 Fu, He, Zhang, Wu, Wang, Wang, Liu (bib0043) 2016; 27 Xie, Chen, Cai, Teng, Huang, Fan, Su (bib0023) 2019; 58 Wen, Yu, Xing, Liu, Lyu, Cai, Li (bib0036) 2019; 11 Song, Chen, Guan, Zhang, Tao (bib0044) 2016; 9 Chow, Kopp, Portney (bib0003) 2003; 302 Yang, Liu, Hao, Kong, Asiri, Zhang, Sun (bib0013) 2017; 5 Li, Zhang, Xu, Li, Xue, Pang (bib0005) 2019; 7 Liu, Ou, Gao, Yang, Dong, Xiao, Zhang (bib0048) 2018; 396 Chen, He, Yin, Wang, Liu, Shi, Chen, Yin (bib0002) 2017 Liang, Jiang, Xu, Luo, Hu, Li (bib0024) 2018; 165 Han, Wu, Deng, Liu, Lu, Zhong, Hu (bib0022) 2018; 8 Fan, Ji, Zou, Zhang (bib0028) 2017; 56 Cao, Wu, Hu, Liang, Zhi (bib0034) 2018; 10 Yang, Zhang, Zhou, Zhu, Xie, Lv, Hu (bib0018) 2019; 44 Zhang, Wang, Luo, Liu, Zhang, He, Lu (bib0042) 2018; 9 Liu, Jiang, Li, Zhou, Li, Li, Shao (bib0008) 2019; 247 Qiu, He, Wang, Wang, Zhao (bib0009) 2019 Durst, Siebel, Simon, Hasché, Herranz, Gasteiger (bib0041) 2014; 7 Ling, Shi, Ouyang, Zeng, Wang (bib0045) 2017; 17 An, Feng, Zhang, Wang, Liu, Wang, Xi (bib0016) 2018; 29 Shang, Chi, Lu, Dong, Liu, Yan, Gao, Chai, Liu (bib0033) 2017; 256 Zhu, Yang, Guan, Xue, Cui (bib0039) 2016; 4 Seh, Kibsgaard, Dickens, Chorkendorff, Norskov, Jaramillio (bib0017) 2017; 355 Han, Wu, Deng, Liu, Lu, Zhong, Hu (bib0010) 2018 Xu, Jiang, Zhang, Hu, Li (bib0020) 2018; 242 Wang, Cui, Liu, Xing, Asiri, Sun (bib0027) 2015; 28 Wang, Li, Han, Lu, Xing, Yang (bib0025) 2019; 10 Zhang, Tang, Kong, Du, Asiri, Chen, Sun (bib0006) 2017; 9 Fan, Huang, Chen, Chen, Zhang, Ostrikov (bib0029) 2019; 7 Maeda, Teramura, Lu, Takata, Saito, Inoue, Domen (bib0004) 2006; 440 Zhao, Rui, Dou, Sun (bib0019) 2018; 28 Wang, Wang, Ji, Wang, Pollet, Wang (bib0021) 2020; 446 Hu, Feng, Nai, Zhao, Hu, Lou (bib0012) 2018; 11 Liu, Huang, Zhao, Cao, Li, Zhang, Feng (bib0035) 2019; 11 Zhang, Sun, Liu, Guo, Zhang (bib0037) 2019; 791 Xu, Li, Zheng, Wu, Zhan, Xue, Pang (bib0047) 2018; 6 Chandra Majhi, Karfa, Madhuri (bib0014) 2019; 318 Dinh, Zheng, Dai, Zhang, Dangol, Zheng, Yan (bib0026) 2018; 14 Zhang (10.1016/j.electacta.2020.137602_bib0037) 2019; 791 Qiu (10.1016/j.electacta.2020.137602_bib0009) 2019 Xu (10.1016/j.electacta.2020.137602_bib0020) 2018; 242 Wang (10.1016/j.electacta.2020.137602_bib0031) 2019; 318 Hu (10.1016/j.electacta.2020.137602_bib0012) 2018; 11 Deng (10.1016/j.electacta.2020.137602_bib0040) 2014; 7 Ling (10.1016/j.electacta.2020.137602_bib0045) 2017; 17 Sun (10.1016/j.electacta.2020.137602_bib0030) 2018; 5 An (10.1016/j.electacta.2020.137602_bib0016) 2018; 29 Song (10.1016/j.electacta.2020.137602_bib0044) 2016; 9 Wang (10.1016/j.electacta.2020.137602_bib0025) 2019; 10 Li (10.1016/j.electacta.2020.137602_bib0005) 2019; 7 Parra-Puerto (10.1016/j.electacta.2020.137602_bib0015) 2019; 9 Liu (10.1016/j.electacta.2020.137602_bib0008) 2019; 247 Ren (10.1016/j.electacta.2020.137602_bib0001) 2017; 5 Fu (10.1016/j.electacta.2020.137602_bib0043) 2016; 27 Dinh (10.1016/j.electacta.2020.137602_bib0026) 2018; 14 Xu (10.1016/j.electacta.2020.137602_bib0047) 2018; 6 Wang (10.1016/j.electacta.2020.137602_bib0027) 2015; 28 Wang (10.1016/j.electacta.2020.137602_bib0007) 2019; 819 Zhao (10.1016/j.electacta.2020.137602_bib0019) 2018; 28 Chow (10.1016/j.electacta.2020.137602_bib0003) 2003; 302 Li (10.1016/j.electacta.2020.137602_bib0049) 2016; 8 Liang (10.1016/j.electacta.2020.137602_bib0024) 2018; 165 Cao (10.1016/j.electacta.2020.137602_bib0034) 2018; 10 Yang (10.1016/j.electacta.2020.137602_bib0013) 2017; 5 Li (10.1016/j.electacta.2020.137602_bib0046) 2019; 10 Zhu (10.1016/j.electacta.2020.137602_bib0039) 2016; 4 Yang (10.1016/j.electacta.2020.137602_bib0018) 2019; 44 Wen (10.1016/j.electacta.2020.137602_bib0036) 2019; 11 Liu (10.1016/j.electacta.2020.137602_bib0048) 2018; 396 Han (10.1016/j.electacta.2020.137602_bib0022) 2018; 8 Zhang (10.1016/j.electacta.2020.137602_bib0042) 2018; 9 Chen (10.1016/j.electacta.2020.137602_bib0002) 2017 Chandra Majhi (10.1016/j.electacta.2020.137602_bib0014) 2019; 318 Wu (10.1016/j.electacta.2020.137602_bib0011) 2019; 7 Wang (10.1016/j.electacta.2020.137602_bib0021) 2020; 446 Han (10.1016/j.electacta.2020.137602_bib0010) 2018 Wang (10.1016/j.electacta.2020.137602_bib0032) 2017; 56 Xie (10.1016/j.electacta.2020.137602_bib0023) 2019; 58 Fang (10.1016/j.electacta.2020.137602_bib0038) 2017; 7 Durst (10.1016/j.electacta.2020.137602_bib0041) 2014; 7 Fan (10.1016/j.electacta.2020.137602_bib0029) 2019; 7 Seh (10.1016/j.electacta.2020.137602_bib0017) 2017; 355 Zhang (10.1016/j.electacta.2020.137602_bib0006) 2017; 9 Maeda (10.1016/j.electacta.2020.137602_bib0004) 2006; 440 Liu (10.1016/j.electacta.2020.137602_bib0035) 2019; 11 Fan (10.1016/j.electacta.2020.137602_bib0028) 2017; 56 Shang (10.1016/j.electacta.2020.137602_bib0033) 2017; 256 |
References_xml | – year: 2018 ident: bib0010 article-title: Ultrafine Pt nanoparticle-decorated pyrite-type CoS publication-title: Adv. Energy Mater. – volume: 6 start-page: 22070 year: 2018 end-page: 22076 ident: bib0047 article-title: Ultrathin two-dimensional cobalt–organic framework nanosheets for high-performance electrocatalytic oxygen evolution publication-title: J. Mater. Chem. A – volume: 8 start-page: 20534 year: 2016 end-page: 20539 ident: bib0049 article-title: Carbon-coated Co publication-title: ACS Appl. Mater. Interfaces – volume: 819 year: 2019 ident: bib0007 article-title: Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: a review publication-title: J Alloys Compd. – volume: 7 start-page: 22063 year: 2019 end-page: 22069 ident: bib0011 article-title: Nickel nitride-black phosphorus heterostructure nanosheets for boosting the electrocatalytic activity towards the oxygen evolution reaction publication-title: J. Mater. Chem. A – volume: 256 start-page: 100 year: 2017 end-page: 109 ident: bib0033 article-title: Hierarchically three-level Ni(VO publication-title: Electrochim. Acta – volume: 318 year: 2019 ident: bib0031 article-title: Self-assembled Ni publication-title: Electrochim. Acta – volume: 791 start-page: 1070 year: 2019 end-page: 1078 ident: bib0037 article-title: Vanadium and nitrogen co-doped CoP nanoleaf array as pH-universal electrocatalyst for efficient hydrogen evolution publication-title: J. Alloys. Compd. – volume: 11 start-page: 8855 year: 2019 end-page: 8863 ident: bib0035 article-title: Tuning coupling interface of ultrathin Ni publication-title: Nanoscale – volume: 302 start-page: 1528 year: 2003 end-page: 1531 ident: bib0003 article-title: Energy resources and global development publication-title: Science – volume: 9 start-page: 11515 year: 2019 end-page: 11529 ident: bib0015 article-title: Supported transition metal phosphides: activity survey for HER, ORR, OER and corrosion resistance in acid and alkaline electrolytes publication-title: ACS Catal. – volume: 165 start-page: 1286 year: 2018 end-page: 1291 ident: bib0024 article-title: Modulating the volmer step by mof derivatives assembled with heterogeneous Ni publication-title: J. Electrochem. Soc. – volume: 10 start-page: 670 year: 2018 end-page: 684 ident: bib0034 article-title: Monodisperse Co publication-title: NPG Asia Mater. – volume: 396 start-page: 395 year: 2018 end-page: 403 ident: bib0048 article-title: Surface engineering by a novel electrochemical activation method for the synthesis of Co publication-title: J. Power Sources – volume: 10 start-page: 3899 year: 2019 ident: bib0025 article-title: Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics publication-title: Nat. Commun. – volume: 5 start-page: 7305 year: 2017 end-page: 7308 ident: bib0013 article-title: A cobalt-borate nanosheet array: an efficient and durable non-noble-metal electrocatalyst for water oxidation at near neutral pH publication-title: J. Mater. Chem. A – volume: 11 start-page: 872 year: 2018 ident: bib0012 article-title: Construction of hierarchical Ni-Co-P hollownanobricks with oriented nanosheets for efficient overall water splitting publication-title: Energy Environ. Sci. – volume: 28 start-page: 215 year: 2015 end-page: 230 ident: bib0027 article-title: Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting publication-title: Adv. Mater. – volume: 17 start-page: 5133 year: 2017 end-page: 5139 ident: bib0045 article-title: Nanosheet supported single-metal atom bifunctional catalyst for overall water splitting publication-title: Nano Lett. – volume: 14 year: 2018 ident: bib0026 article-title: Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting publication-title: Small – volume: 9 start-page: 4793 year: 2017 end-page: 4800 ident: bib0006 article-title: Al-doped CoP nanoarray: a durable water-splitting electrocatalyst with superhigh Activity publication-title: Nanoscale – volume: 8 year: 2018 ident: bib0022 article-title: Ultrafine Pt nanoparticle-decorated pyrite-type CoS publication-title: Adv. Energy Mater. – volume: 56 start-page: 1041 year: 2017 end-page: 1044 ident: bib0032 article-title: Fe-doped Ni publication-title: Inorg. Chem. – volume: 7 start-page: 2255 year: 2014 end-page: 2260 ident: bib0041 article-title: New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism publication-title: Energy Environ. Sci. – volume: 440 start-page: 295 year: 2006 ident: bib0004 article-title: Photocatalyst releasing hydrogen from water publication-title: Nature – volume: 318 start-page: 901 year: 2019 end-page: 912 ident: bib0014 article-title: Bimetallic transition metal chalcogenide nanowire array: an effective catalyst for overall water splitting publication-title: Electrochim. Acta – volume: 242 start-page: 60 year: 2018 end-page: 66 ident: bib0020 article-title: Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH) publication-title: Appl. Catal. B: Environ. – year: 2019 ident: bib0009 article-title: Interfacial engineering FeOOH/CoO nanoneedle array for efficient overall water splitting driven by solar energy publication-title: Chem. Eur. J. – volume: 7 start-page: 5027 year: 2019 end-page: 5033 ident: bib0005 article-title: Smart yolk/shell ZIF-67@POM hybrids as efficient electrocatalysts for the oxygen evolution reaction publication-title: ACS Sustain. Chem. Eng. – volume: 5 year: 2018 ident: bib0030 article-title: Bifunctional hybrid Ni/Ni publication-title: Adv. Mater. Interfaces – volume: 7 year: 2017 ident: bib0038 article-title: Hierarchical nanostructures: design for sustainable water splitting publication-title: Adv. Energy Mater. – volume: 11 start-page: 4198 year: 2019 end-page: 4203 ident: bib0036 article-title: Flexible vanadium-doped Ni publication-title: Nanoscale – volume: 5 year: 2017 ident: bib0001 article-title: Recent progress on mof-derived heteroatom-doped carbon-based electrocatalysts for oxygen reduction reaction publication-title: Adv. Sci. – volume: 446 year: 2020 ident: bib0021 article-title: Multidimensional regulation of Ni publication-title: Power Sources – volume: 58 start-page: 14652 year: 2019 end-page: 14659 ident: bib0023 article-title: Hollow cobalt phosphide with N-doped carbon skeleton as bifunctional electrocatalyst for overall water splitting publication-title: Inorg. Chem. – volume: 9 year: 2016 ident: bib0044 article-title: Interfacial engineering of MoS publication-title: Appl. Phys. Express – volume: 29 year: 2018 ident: bib0016 article-title: Epitaxial heterogeneous interfaces on N-NiMoO publication-title: Adv. Funct. Mater. – volume: 9 start-page: 1375 year: 2018 end-page: 1384 ident: bib0042 article-title: Extraction of nickel from NiFe-LDH into Ni publication-title: Chem. Sci. – volume: 247 start-page: 107 year: 2019 end-page: 114 ident: bib0008 article-title: Interface engineering of (Ni, Fe)S publication-title: Appl. Catal. B: Environ. – volume: 10 start-page: 1711 year: 2019 ident: bib0046 article-title: Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides publication-title: Nat. Commun. – volume: 56 start-page: 3289 year: 2017 end-page: 3293 ident: bib0028 article-title: Hollow iron-vanadium composite spheres: a highly efficient iron-based water oxidation electrocatalyst without the need for nickel or cobalt publication-title: Angew. Chem., Int. Ed. – volume: 27 start-page: 44 year: 2016 end-page: 50 ident: bib0043 article-title: Strong interfacial coupling of MoS publication-title: Nano Energy – volume: 28 year: 2018 ident: bib0019 article-title: Heterostructures for electrochemical hydrogen evolution reaction: a review publication-title: Adv. Funct. Mater. – volume: 7 start-page: 1919 year: 2014 end-page: 1923 ident: bib0040 article-title: Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction publication-title: Energy Environ. Sci – volume: 7 start-page: 1622 year: 2019 end-page: 1632 ident: bib0029 article-title: Hollow Ni-V-Mo chalcogenide nanopetals as bifunctional electrocatalyst for overall water splitting publication-title: ACS Sustain. Chem. Eng – volume: 44 start-page: 26753 year: 2019 ident: bib0018 article-title: Design and synthesis of NiS@CoS@CC with abundant heterointerfaces as high-efficiency hydrogen evolution electrocatalyst publication-title: Inter. J. Hydrog. Energy – year: 2017 ident: bib0002 article-title: MO-Co@N-doped carbon (M = Zn or Co): vital roles of inactive Zn and highly efficient activity toward oxygen reduction/evolution reactions for rechargeable Zn–Air battery publication-title: Adv. Funct. Mater. – volume: 4 start-page: 15536 year: 2016 end-page: 15545 ident: bib0039 article-title: Construction of a cobalt-embedded nitrogen doped carbon material with the desired porosity derived from the confined growth of MOFs within graphene aerogels as a superior catalyst towards HER and ORR publication-title: J. Mater. Chem. A. – volume: 355 year: 2017 ident: bib0017 article-title: Combining theory and experiment in electrocatalysis: insights into materials design publication-title: Science – volume: 440 start-page: 295 year: 2006 ident: 10.1016/j.electacta.2020.137602_bib0004 article-title: Photocatalyst releasing hydrogen from water publication-title: Nature doi: 10.1038/440295a – volume: 14 year: 2018 ident: 10.1016/j.electacta.2020.137602_bib0026 article-title: Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting publication-title: Small doi: 10.1002/smll.201703257 – volume: 242 start-page: 60 year: 2018 ident: 10.1016/j.electacta.2020.137602_bib0020 article-title: Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)2/Ni3S2 nanoforests for efficient water splitting publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.09.064 – volume: 396 start-page: 395 year: 2018 ident: 10.1016/j.electacta.2020.137602_bib0048 article-title: Surface engineering by a novel electrochemical activation method for the synthesis of Co3+ enriched Co(OH)2/CoOOH heterostructure for water oxidation publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.06.030 – volume: 10 start-page: 3899 year: 2019 ident: 10.1016/j.electacta.2020.137602_bib0025 article-title: Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics publication-title: Nat. Commun. doi: 10.1038/s41467-019-11765-x – volume: 11 start-page: 8855 year: 2019 ident: 10.1016/j.electacta.2020.137602_bib0035 article-title: Tuning coupling interface of ultrathin Ni3S2@NiV-LDH heterogeneous nanosheet electrocatalysts for improved overall water splitting publication-title: Nanoscale doi: 10.1039/C9NR00658C – volume: 6 start-page: 22070 year: 2018 ident: 10.1016/j.electacta.2020.137602_bib0047 article-title: Ultrathin two-dimensional cobalt–organic framework nanosheets for high-performance electrocatalytic oxygen evolution publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03128B – year: 2017 ident: 10.1016/j.electacta.2020.137602_bib0002 article-title: MO-Co@N-doped carbon (M = Zn or Co): vital roles of inactive Zn and highly efficient activity toward oxygen reduction/evolution reactions for rechargeable Zn–Air battery publication-title: Adv. Funct. Mater. – volume: 355 year: 2017 ident: 10.1016/j.electacta.2020.137602_bib0017 article-title: Combining theory and experiment in electrocatalysis: insights into materials design publication-title: Science doi: 10.1126/science.aad4998 – volume: 256 start-page: 100 year: 2017 ident: 10.1016/j.electacta.2020.137602_bib0033 article-title: Hierarchically three-level Ni(VO4)2@NiCo2O4 nanostructure based on nickel foam towards highly efficient alkaline hydrogen evolution publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.10.017 – volume: 7 year: 2017 ident: 10.1016/j.electacta.2020.137602_bib0038 article-title: Hierarchical nanostructures: design for sustainable water splitting publication-title: Adv. Energy Mater. – volume: 302 start-page: 1528 year: 2003 ident: 10.1016/j.electacta.2020.137602_bib0003 article-title: Energy resources and global development publication-title: Science doi: 10.1126/science.1091939 – volume: 11 start-page: 872 year: 2018 ident: 10.1016/j.electacta.2020.137602_bib0012 article-title: Construction of hierarchical Ni-Co-P hollownanobricks with oriented nanosheets for efficient overall water splitting publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00076J – volume: 9 issue: 9 year: 2016 ident: 10.1016/j.electacta.2020.137602_bib0044 article-title: Interfacial engineering of MoS2/TiO2 hybrids for enhanced electrocatalytic hydrogen evolution reaction publication-title: Appl. Phys. Express doi: 10.7567/APEX.9.095801 – volume: 8 start-page: 20534 issue: 32 year: 2016 ident: 10.1016/j.electacta.2020.137602_bib0049 article-title: Carbon-coated Co3+-Rich cobalt selenide derived from ZIF-67 for efficient electrochemical water oxidation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b07986 – volume: 9 start-page: 11515 issue: 12 year: 2019 ident: 10.1016/j.electacta.2020.137602_bib0015 article-title: Supported transition metal phosphides: activity survey for HER, ORR, OER and corrosion resistance in acid and alkaline electrolytes publication-title: ACS Catal. doi: 10.1021/acscatal.9b03359 – volume: 10 start-page: 1711 issue: 1 year: 2019 ident: 10.1016/j.electacta.2020.137602_bib0046 article-title: Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides publication-title: Nat. Commun. doi: 10.1038/s41467-019-09666-0 – volume: 7 start-page: 1622 year: 2019 ident: 10.1016/j.electacta.2020.137602_bib0029 article-title: Hollow Ni-V-Mo chalcogenide nanopetals as bifunctional electrocatalyst for overall water splitting publication-title: ACS Sustain. Chem. Eng doi: 10.1021/acssuschemeng.8b05378 – volume: 28 start-page: 215 issue: 2 year: 2015 ident: 10.1016/j.electacta.2020.137602_bib0027 article-title: Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting publication-title: Adv. Mater. doi: 10.1002/adma.201502696 – volume: 318 start-page: 901 year: 2019 ident: 10.1016/j.electacta.2020.137602_bib0014 article-title: Bimetallic transition metal chalcogenide nanowire array: an effective catalyst for overall water splitting publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.06.106 – volume: 58 start-page: 14652 issue: 21 year: 2019 ident: 10.1016/j.electacta.2020.137602_bib0023 article-title: Hollow cobalt phosphide with N-doped carbon skeleton as bifunctional electrocatalyst for overall water splitting publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b02333 – volume: 7 start-page: 22063 year: 2019 ident: 10.1016/j.electacta.2020.137602_bib0011 article-title: Nickel nitride-black phosphorus heterostructure nanosheets for boosting the electrocatalytic activity towards the oxygen evolution reaction publication-title: J. Mater. Chem. A doi: 10.1039/C9TA07962A – volume: 28 year: 2018 ident: 10.1016/j.electacta.2020.137602_bib0019 article-title: Heterostructures for electrochemical hydrogen evolution reaction: a review publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201803291 – volume: 5 issue: 15 year: 2018 ident: 10.1016/j.electacta.2020.137602_bib0030 article-title: Bifunctional hybrid Ni/Ni2P nanoparticles encapsulated by graphitic carbon supported with N, S modified 3D carbon framework for highly efficient overall water splitting publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201800473 – volume: 7 start-page: 1919 issue: 6 year: 2014 ident: 10.1016/j.electacta.2020.137602_bib0040 article-title: Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction publication-title: Energy Environ. Sci doi: 10.1039/C4EE00370E – year: 2019 ident: 10.1016/j.electacta.2020.137602_bib0009 article-title: Interfacial engineering FeOOH/CoO nanoneedle array for efficient overall water splitting driven by solar energy publication-title: Chem. Eur. J. doi: 10.1002/chem.201904352 – volume: 446 year: 2020 ident: 10.1016/j.electacta.2020.137602_bib0021 article-title: Multidimensional regulation of Ni3S2@Co(OH)2 catalyst with high performance for wind energy electrolytic water, J publication-title: Power Sources doi: 10.1016/j.jpowsour.2019.227348 – volume: 27 start-page: 44 year: 2016 ident: 10.1016/j.electacta.2020.137602_bib0043 article-title: Strong interfacial coupling of MoS2/g-C3N4 van de Waals solids for highly active water reduction publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.06.037 – volume: 5 issue: 3 year: 2017 ident: 10.1016/j.electacta.2020.137602_bib0001 article-title: Recent progress on mof-derived heteroatom-doped carbon-based electrocatalysts for oxygen reduction reaction publication-title: Adv. Sci. doi: 10.1002/advs.201700515 – volume: 29 year: 2018 ident: 10.1016/j.electacta.2020.137602_bib0016 article-title: Epitaxial heterogeneous interfaces on N-NiMoO4/NiS2 nanowires/nanosheets to boost hydrogen and oxygen production for overall water splitting publication-title: Adv. Funct. Mater. – volume: 17 start-page: 5133 year: 2017 ident: 10.1016/j.electacta.2020.137602_bib0045 article-title: Nanosheet supported single-metal atom bifunctional catalyst for overall water splitting publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b02518 – volume: 56 start-page: 3289 year: 2017 ident: 10.1016/j.electacta.2020.137602_bib0028 article-title: Hollow iron-vanadium composite spheres: a highly efficient iron-based water oxidation electrocatalyst without the need for nickel or cobalt publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201611863 – volume: 791 start-page: 1070 year: 2019 ident: 10.1016/j.electacta.2020.137602_bib0037 article-title: Vanadium and nitrogen co-doped CoP nanoleaf array as pH-universal electrocatalyst for efficient hydrogen evolution publication-title: J. Alloys. Compd. doi: 10.1016/j.jallcom.2019.03.380 – volume: 165 start-page: 1286 issue: 16 year: 2018 ident: 10.1016/j.electacta.2020.137602_bib0024 article-title: Modulating the volmer step by mof derivatives assembled with heterogeneous Ni2P-CoP nanocrystals in alkaline hydrogen evolution reaction publication-title: J. Electrochem. Soc. doi: 10.1149/2.0131816jes – volume: 11 start-page: 4198 year: 2019 ident: 10.1016/j.electacta.2020.137602_bib0036 article-title: Flexible vanadium-doped Ni2P nanosheet arrays grown on carbon cloth for efficient hydrogen evolution reaction publication-title: Nanoscale doi: 10.1039/C8NR10167A – volume: 7 start-page: 5027 issue: 5 year: 2019 ident: 10.1016/j.electacta.2020.137602_bib0005 article-title: Smart yolk/shell ZIF-67@POM hybrids as efficient electrocatalysts for the oxygen evolution reaction publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b05744 – volume: 5 start-page: 7305 issue: 16 year: 2017 ident: 10.1016/j.electacta.2020.137602_bib0013 article-title: A cobalt-borate nanosheet array: an efficient and durable non-noble-metal electrocatalyst for water oxidation at near neutral pH publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00982H – volume: 44 start-page: 26753 year: 2019 ident: 10.1016/j.electacta.2020.137602_bib0018 article-title: Design and synthesis of NiS@CoS@CC with abundant heterointerfaces as high-efficiency hydrogen evolution electrocatalyst publication-title: Inter. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2019.08.164 – volume: 4 start-page: 15536 year: 2016 ident: 10.1016/j.electacta.2020.137602_bib0039 article-title: Construction of a cobalt-embedded nitrogen doped carbon material with the desired porosity derived from the confined growth of MOFs within graphene aerogels as a superior catalyst towards HER and ORR publication-title: J. Mater. Chem. A. doi: 10.1039/C6TA05196K – volume: 318 year: 2019 ident: 10.1016/j.electacta.2020.137602_bib0031 article-title: Self-assembled Ni2P/FeP heterostructural nanoparticles embedded in N-doped graphene nanosheets as highly efficient and stable multifunctional electrocatalyst for water splitting publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.06.093 – volume: 8 issue: 24 year: 2018 ident: 10.1016/j.electacta.2020.137602_bib0022 article-title: Ultrafine Pt nanoparticle-decorated pyrite-type CoS2 nanosheet arrays coated on carbon cloth as a bifunctional electrode for overall water splitting publication-title: Adv. Energy Mater. doi: 10.1007/978-981-13-0158-2 – year: 2018 ident: 10.1016/j.electacta.2020.137602_bib0010 article-title: Ultrafine Pt nanoparticle-decorated pyrite-type CoS2 nanosheet arrays coated on carbon cloth as a bifunctional electrode for overall water splitting publication-title: Adv. Energy Mater. doi: 10.1007/978-981-13-0158-2 – volume: 9 start-page: 4793 year: 2017 ident: 10.1016/j.electacta.2020.137602_bib0006 article-title: Al-doped CoP nanoarray: a durable water-splitting electrocatalyst with superhigh Activity publication-title: Nanoscale doi: 10.1039/C7NR00740J – volume: 56 start-page: 1041 issue: 3 year: 2017 ident: 10.1016/j.electacta.2020.137602_bib0032 article-title: Fe-doped Ni2P nanosheet array for high-efficiency electrochemical water oxidation publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b02808 – volume: 9 start-page: 1375 issue: 5 year: 2018 ident: 10.1016/j.electacta.2020.137602_bib0042 article-title: Extraction of nickel from NiFe-LDH into Ni2P@NiFe hydroxide as a bifunctional electrocatalyst for efficient overall water splitting publication-title: Chem. Sci. doi: 10.1039/C7SC04569G – volume: 247 start-page: 107 year: 2019 ident: 10.1016/j.electacta.2020.137602_bib0008 article-title: Interface engineering of (Ni, Fe)S2@MoS2 heterostructures for synergetic electrochemical water splitting publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.01.094 – volume: 7 start-page: 2255 issue: 7 year: 2014 ident: 10.1016/j.electacta.2020.137602_bib0041 article-title: New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism publication-title: Energy Environ. Sci. doi: 10.1039/C4EE00440J – volume: 819 year: 2019 ident: 10.1016/j.electacta.2020.137602_bib0007 article-title: Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: a review publication-title: J Alloys Compd. – volume: 10 start-page: 670 issue: 7 year: 2018 ident: 10.1016/j.electacta.2020.137602_bib0034 article-title: Monodisperse Co9S8 nanoparticles in situ embedded within N, S-codoped honeycomb-structured porous carbon for bifunctional oxygen electrocatalyst in a rechargeable Zn-air battery publication-title: NPG Asia Mater. doi: 10.1038/s41427-018-0063-0 |
SSID | ssj0007670 |
Score | 2.4659152 |
Snippet | •The ECSA is increased through producing heterogeneous interfaces.•The electron state of Ni, Co is modulated by introducing V and generating interfaces.•The... Developing efficient and robust non-noble electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is desirable for future... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 137602 |
SubjectTerms | Clean energy Cobalt Electrocatalysts Heterostructure Heterostructures Hydrogen evolution reactions Metal foams Nickel Nickel sulfide Overall water splitting Oxygen evolution reactions Phosphating (coating) Phosphides Sulfidation Transition metal dichalcogenides Transition metal phosphides Water splitting |
Title | Interface and composition engineering of vanadium doped cobalt nickel sulfide/phosphide heterostructure for efficient water splitting |
URI | https://dx.doi.org/10.1016/j.electacta.2020.137602 https://www.proquest.com/docview/2491200189 |
Volume | 368 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iB_UgPvG55OC12m2TpvUmi7IqenLBW8iTXVnbZR968-b_dpKmriuCB6GHUpJQZjIzX8I3MwidFjSXWuQkYtpf3TAayVzKCIJhCnaZC2ld7vD9Q9btkdsn-rSEOk0ujKNVBt9f-3TvrcOX8yDN89Fg4HJ827AcIHKXiFNQ54cJYW6Xn73PaR4sY3HTxcCNXuB4-VYzAh44KCauBwTLwv3KLxHqh6_2Aeh6E20E5Igv65_bQkum3EarnaZh2zZa_1ZbcAd9-Ls-K5TBotTYUccDPwub-ThcWfzqeV-zF6yrkXEjpRhOcTkA-x7iyWxoBxpk0a8moz684b4j0FR13dnZ2GBAvdj4QhQQv_AbYNcxngC09YTqXdS7vnrsdKPQcyFSKUmnEcTrxCSAO5QuwDhl2zKq0kxl1rLEKkVjQalKYi1znRgIZQXVgqaSkcwyUuTpHlouq9LsIwyeQstYA0YxhLiTSypiaovCgtbawtIDlDVy5ioUJHd9MYa8YZ498y8FcacgXivoAMVfE0d1TY6_p1w0iuQL24tD5Ph78nGjeh4sfMLh2Np2fLS8OPzP2kdoLXEsGc8DP0bLoDxzAjBnKlt-H7fQyuXNXffhE4df_2A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5V5QB7QMAuWp7rw14j0iSOk72hCtQupacicbP8VItKUtGW_QX7v3fsOOUhJA4r5RBFHivyeGY-W9_MAPwsaSG1KLKIaX91w2gkCykjDIYp2mUhpHW5w7fjfHCX_b6n9x3ot7kwjlYZfH_j0723Dl8uwmpeLGYzl-Pbw-kQkbtEnJKiH95y1aloF7YuhzeD8cYhs5zFbSMDJ_CG5uW7zQh88KyYuDYQLA9XLB8EqXfu2seg6z3YDeCRXDb_tw8dUx3Adr_t2XYAX16VF_wKf_11nxXKEFFp4tjjgaJFzMs4Ulvy7Klf60ei64VxI6WYr0g1QxOfk-V6bmcal2NaLxdTfCNTx6Gpm9Kz6ydDEPgS42tRYAgjfxC-PpElolvPqf4Gd9dXk_4gCm0XIpVm6SrCkJ2YBKGH0iXap-xZRlWaq9xallilaCwoVUmsZaETg9GspFrQVLIstywri_QQulVdme9A0FloGWuEKSbL3OElFTG1ZWlRcT1h6RHk7TpzFWqSu9YYc96Szx74RkHcKYg3CjqCeCO4aMpyfC7yq1Ukf7PDOAaPz4VPW9XzYORLjifXnqOkFeXx_8z9A7YHk9sRHw3HNyewkzjSjKeFn0IXFWnOEPWs5HnY1f8APDMCIA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interface+and+composition+engineering+of+vanadium+doped+cobalt+nickel+sulfide%2Fphosphide+heterostructure+for+efficient+water+splitting&rft.jtitle=Electrochimica+acta&rft.au=Suo%2C+Na&rft.au=Dou%2C+Zhiyu&rft.au=Cui%2C+Lili&rft.date=2021-02-01&rft.issn=0013-4686&rft.volume=368&rft.spage=137602&rft_id=info:doi/10.1016%2Fj.electacta.2020.137602&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_electacta_2020_137602 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon |