Interface and composition engineering of vanadium doped cobalt nickel sulfide/phosphide heterostructure for efficient water splitting

•The ECSA is increased through producing heterogeneous interfaces.•The electron state of Ni, Co is modulated by introducing V and generating interfaces.•The V-CNS/P/NF only requires an overpotential of 38 mV at 10 mA cm−2 for HER. Developing efficient and robust non-noble electrocatalysts for hydrog...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 368; p. 137602
Main Authors Suo, Na, Dou, Zhiyu, Cui, Lili
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.02.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The ECSA is increased through producing heterogeneous interfaces.•The electron state of Ni, Co is modulated by introducing V and generating interfaces.•The V-CNS/P/NF only requires an overpotential of 38 mV at 10 mA cm−2 for HER. Developing efficient and robust non-noble electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is desirable for future green energy systems of electrochemical water splitting technology. Thus, the vanadium doped cobalt nickel sulfide/phosphide heterostructure catalyst supported on nickel foam (V-CNS/P/NF) is fabricated by sulfidation reaction, followed by phosphorization from the layer double hydroxide (LDH) precursor. After V doping, the peak position of Ni and Co shifts negatively. Simultaneously, it is noted that the introduction of V into CNS/P can result in the enhanced electrochemical surface area and improved conductivity of CNS/P. Importantly, the optimal electrocatalyst of V-CNS/P/N exhibits excellent performance in alkaline condition with small overpotentials of 38 mV and 210 mV to achieve 10 mA cm−2 for HER and OER, respectively. Remarkably, V-CNS/P/NF needs lower overpotential than that of Pt/C to reach higher current density of 500 mA cm−2. A two-electrode system both assembled by as-prepared V-CNS/P/NF for electrochemical water splitting requires a cell voltage of 1.56 V to reach 10 mA cm−2.
AbstractList •The ECSA is increased through producing heterogeneous interfaces.•The electron state of Ni, Co is modulated by introducing V and generating interfaces.•The V-CNS/P/NF only requires an overpotential of 38 mV at 10 mA cm−2 for HER. Developing efficient and robust non-noble electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is desirable for future green energy systems of electrochemical water splitting technology. Thus, the vanadium doped cobalt nickel sulfide/phosphide heterostructure catalyst supported on nickel foam (V-CNS/P/NF) is fabricated by sulfidation reaction, followed by phosphorization from the layer double hydroxide (LDH) precursor. After V doping, the peak position of Ni and Co shifts negatively. Simultaneously, it is noted that the introduction of V into CNS/P can result in the enhanced electrochemical surface area and improved conductivity of CNS/P. Importantly, the optimal electrocatalyst of V-CNS/P/N exhibits excellent performance in alkaline condition with small overpotentials of 38 mV and 210 mV to achieve 10 mA cm−2 for HER and OER, respectively. Remarkably, V-CNS/P/NF needs lower overpotential than that of Pt/C to reach higher current density of 500 mA cm−2. A two-electrode system both assembled by as-prepared V-CNS/P/NF for electrochemical water splitting requires a cell voltage of 1.56 V to reach 10 mA cm−2.
Developing efficient and robust non-noble electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is desirable for future green energy systems of electrochemical water splitting technology. Thus, the vanadium doped cobalt nickel sulfide/phosphide heterostructure catalyst supported on nickel foam (V-CNS/P/NF) is fabricated by sulfidation reaction, followed by phosphorization from the layer double hydroxide (LDH) precursor. After V doping, the peak position of Ni and Co shifts negatively. Simultaneously, it is noted that the introduction of V into CNS/P can result in the enhanced electrochemical surface area and improved conductivity of CNS/P. Importantly, the optimal electrocatalyst of V-CNS/P/N exhibits excellent performance in alkaline condition with small overpotentials of 38 mV and 210 mV to achieve 10 mA cm−2 for HER and OER, respectively. Remarkably, V-CNS/P/NF needs lower overpotential than that of Pt/C to reach higher current density of 500 mA cm−2. A two-electrode system both assembled by as-prepared V-CNS/P/NF for electrochemical water splitting requires a cell voltage of 1.56 V to reach 10 mA cm−2.
ArticleNumber 137602
Author Suo, Na
Cui, Lili
Dou, Zhiyu
Author_xml – sequence: 1
  givenname: Na
  surname: Suo
  fullname: Suo, Na
– sequence: 2
  givenname: Zhiyu
  surname: Dou
  fullname: Dou, Zhiyu
– sequence: 3
  givenname: Lili
  orcidid: 0000-0002-8641-1657
  surname: Cui
  fullname: Cui, Lili
  email: cuilili@cust.edu.cn
BookMark eNqNkMtqHDEQRUWwIePHN1iQdY_16JZaiyyMycNg8CZZC41U8mjSI3UktUM-IP8dNROy8CaBgipU995C5wKdxRQBoRtKtpRQcXvYwgS2mlZbRlh75VIQ9gZt6Ch5x8dBnaENIZR3vRjFW3RRyoEQIoUkG_TrIVbI3ljAJjps03FOJdSQIob4HCJADvEZJ49fTDQuLEfs0gyrcmemimOw32DCZZl8cHA771OZ923Ce2i5qdS82LpkwD5lDN4HGyBW_MO0LS7zFGpt-Vfo3JupwPWffom-fvzw5f5z9_j06eH-7rGzvOe1Y0IwYERS6xRVYke9HCwXVngvmbd2IGYYLCNuNzoGShE1ODPwneyFl70a-SV6d8qdc_q-QKn6kJYc20nNekVZozSqppInlW0fKBm8nnM4mvxTU6JX5vqg_zLXK3N9Yt6c7185bahmpVmzCdN_-O9OfmgQXgJkXVZeFlzITa9dCv_M-A3E2aho
CitedBy_id crossref_primary_10_3390_coatings14050564
crossref_primary_10_1002_smll_202103826
crossref_primary_10_1039_D1EE02105B
crossref_primary_10_1016_j_mcat_2023_113793
crossref_primary_10_1002_smll_202308564
crossref_primary_10_1007_s00339_021_04614_6
crossref_primary_10_1016_j_jallcom_2022_167312
crossref_primary_10_1016_j_jcis_2022_06_087
crossref_primary_10_1039_D3CP03002D
crossref_primary_10_1016_j_jssc_2024_124701
crossref_primary_10_1039_D1DT04224F
crossref_primary_10_1016_j_jcis_2023_12_049
crossref_primary_10_1007_s10008_024_05802_z
crossref_primary_10_1016_j_cej_2022_134730
crossref_primary_10_1016_j_ijhydene_2023_12_067
crossref_primary_10_1039_D3SE01194A
crossref_primary_10_1016_j_ijhydene_2023_12_064
crossref_primary_10_1016_j_jcis_2022_09_069
crossref_primary_10_1016_j_inoche_2024_112575
crossref_primary_10_1016_j_mtnano_2024_100516
crossref_primary_10_1016_j_apsusc_2022_153989
crossref_primary_10_3390_catal13050890
Cites_doi 10.1038/440295a
10.1002/smll.201703257
10.1016/j.apcatb.2018.09.064
10.1016/j.jpowsour.2018.06.030
10.1038/s41467-019-11765-x
10.1039/C9NR00658C
10.1039/C8TA03128B
10.1126/science.aad4998
10.1016/j.electacta.2017.10.017
10.1126/science.1091939
10.1039/C8EE00076J
10.7567/APEX.9.095801
10.1021/acsami.6b07986
10.1021/acscatal.9b03359
10.1038/s41467-019-09666-0
10.1021/acssuschemeng.8b05378
10.1002/adma.201502696
10.1016/j.electacta.2019.06.106
10.1021/acs.inorgchem.9b02333
10.1039/C9TA07962A
10.1002/adfm.201803291
10.1002/admi.201800473
10.1039/C4EE00370E
10.1002/chem.201904352
10.1016/j.jpowsour.2019.227348
10.1016/j.nanoen.2016.06.037
10.1002/advs.201700515
10.1021/acs.nanolett.7b02518
10.1002/anie.201611863
10.1016/j.jallcom.2019.03.380
10.1149/2.0131816jes
10.1039/C8NR10167A
10.1021/acssuschemeng.8b05744
10.1039/C7TA00982H
10.1016/j.ijhydene.2019.08.164
10.1039/C6TA05196K
10.1016/j.electacta.2019.06.093
10.1007/978-981-13-0158-2
10.1039/C7NR00740J
10.1021/acs.inorgchem.6b02808
10.1039/C7SC04569G
10.1016/j.apcatb.2019.01.094
10.1039/C4EE00440J
10.1038/s41427-018-0063-0
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Feb 1, 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Feb 1, 2021
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.electacta.2020.137602
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3859
ExternalDocumentID 10_1016_j_electacta_2020_137602
S0013468620319952
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
WH7
XPP
YK3
ZMT
~02
~G-
29G
41~
53G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIDUJ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
LPU
R2-
RIG
SC5
SCB
SCH
SEW
SSH
T9H
VH1
WUQ
XOL
ZY4
7SR
7U5
8BQ
8FD
EFKBS
JG9
L7M
ID FETCH-LOGICAL-c343t-2662e2071cd9196b1f75c36c6ff72fcc50a55c20db8d2e99095da53b746f74983
IEDL.DBID .~1
ISSN 0013-4686
IngestDate Fri Jul 25 04:29:37 EDT 2025
Thu Apr 24 23:07:40 EDT 2025
Tue Jul 01 03:02:19 EDT 2025
Fri Feb 23 02:48:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Heterostructure
Overall water splitting
Transition metal dichalcogenides
Transition metal phosphides
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-2662e2071cd9196b1f75c36c6ff72fcc50a55c20db8d2e99095da53b746f74983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8641-1657
PQID 2491200189
PQPubID 2045485
ParticipantIDs proquest_journals_2491200189
crossref_primary_10_1016_j_electacta_2020_137602
crossref_citationtrail_10_1016_j_electacta_2020_137602
elsevier_sciencedirect_doi_10_1016_j_electacta_2020_137602
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Electrochimica acta
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Wu, Zhang, Bu, Zhao, Bi, Lin, Huang, S.Li, Huang (bib0011) 2019; 7
Deng, Ren, Deng, Yu, Yang, Bao (bib0040) 2014; 7
Li, Wang, Duan, Zheng, Cheng, Zhang, Sun (bib0046) 2019; 10
Ren, Wang, Lu, Tong, Li (bib0001) 2017; 5
Sun, Zhang, Li, Bai, Lyu, Liu, Li (bib0030) 2018; 5
Fang, Dong, Wei, Ho (bib0038) 2017; 7
Wang, Yue, Yang, Sirisomboonchai, Wang, Ma, Abudula, Guan (bib0007) 2019; 819
Wang, Wang, Zheng, Yang, Zhang, Chen (bib0031) 2019; 318
Wang, Ma, Qu, Asiri, Sun (bib0032) 2017; 56
Li, Peng, Huang, Cui, Al-Enizi, Zheng (bib0049) 2016; 8
Parra-Puerto, NG, Fahy, Goode, Ryan, Kucernak (bib0015) 2019; 9
Fu, He, Zhang, Wu, Wang, Wang, Liu (bib0043) 2016; 27
Xie, Chen, Cai, Teng, Huang, Fan, Su (bib0023) 2019; 58
Wen, Yu, Xing, Liu, Lyu, Cai, Li (bib0036) 2019; 11
Song, Chen, Guan, Zhang, Tao (bib0044) 2016; 9
Chow, Kopp, Portney (bib0003) 2003; 302
Yang, Liu, Hao, Kong, Asiri, Zhang, Sun (bib0013) 2017; 5
Li, Zhang, Xu, Li, Xue, Pang (bib0005) 2019; 7
Liu, Ou, Gao, Yang, Dong, Xiao, Zhang (bib0048) 2018; 396
Chen, He, Yin, Wang, Liu, Shi, Chen, Yin (bib0002) 2017
Liang, Jiang, Xu, Luo, Hu, Li (bib0024) 2018; 165
Han, Wu, Deng, Liu, Lu, Zhong, Hu (bib0022) 2018; 8
Fan, Ji, Zou, Zhang (bib0028) 2017; 56
Cao, Wu, Hu, Liang, Zhi (bib0034) 2018; 10
Yang, Zhang, Zhou, Zhu, Xie, Lv, Hu (bib0018) 2019; 44
Zhang, Wang, Luo, Liu, Zhang, He, Lu (bib0042) 2018; 9
Liu, Jiang, Li, Zhou, Li, Li, Shao (bib0008) 2019; 247
Qiu, He, Wang, Wang, Zhao (bib0009) 2019
Durst, Siebel, Simon, Hasché, Herranz, Gasteiger (bib0041) 2014; 7
Ling, Shi, Ouyang, Zeng, Wang (bib0045) 2017; 17
An, Feng, Zhang, Wang, Liu, Wang, Xi (bib0016) 2018; 29
Shang, Chi, Lu, Dong, Liu, Yan, Gao, Chai, Liu (bib0033) 2017; 256
Zhu, Yang, Guan, Xue, Cui (bib0039) 2016; 4
Seh, Kibsgaard, Dickens, Chorkendorff, Norskov, Jaramillio (bib0017) 2017; 355
Han, Wu, Deng, Liu, Lu, Zhong, Hu (bib0010) 2018
Xu, Jiang, Zhang, Hu, Li (bib0020) 2018; 242
Wang, Cui, Liu, Xing, Asiri, Sun (bib0027) 2015; 28
Wang, Li, Han, Lu, Xing, Yang (bib0025) 2019; 10
Zhang, Tang, Kong, Du, Asiri, Chen, Sun (bib0006) 2017; 9
Fan, Huang, Chen, Chen, Zhang, Ostrikov (bib0029) 2019; 7
Maeda, Teramura, Lu, Takata, Saito, Inoue, Domen (bib0004) 2006; 440
Zhao, Rui, Dou, Sun (bib0019) 2018; 28
Wang, Wang, Ji, Wang, Pollet, Wang (bib0021) 2020; 446
Hu, Feng, Nai, Zhao, Hu, Lou (bib0012) 2018; 11
Liu, Huang, Zhao, Cao, Li, Zhang, Feng (bib0035) 2019; 11
Zhang, Sun, Liu, Guo, Zhang (bib0037) 2019; 791
Xu, Li, Zheng, Wu, Zhan, Xue, Pang (bib0047) 2018; 6
Chandra Majhi, Karfa, Madhuri (bib0014) 2019; 318
Dinh, Zheng, Dai, Zhang, Dangol, Zheng, Yan (bib0026) 2018; 14
Zhang (10.1016/j.electacta.2020.137602_bib0037) 2019; 791
Qiu (10.1016/j.electacta.2020.137602_bib0009) 2019
Xu (10.1016/j.electacta.2020.137602_bib0020) 2018; 242
Wang (10.1016/j.electacta.2020.137602_bib0031) 2019; 318
Hu (10.1016/j.electacta.2020.137602_bib0012) 2018; 11
Deng (10.1016/j.electacta.2020.137602_bib0040) 2014; 7
Ling (10.1016/j.electacta.2020.137602_bib0045) 2017; 17
Sun (10.1016/j.electacta.2020.137602_bib0030) 2018; 5
An (10.1016/j.electacta.2020.137602_bib0016) 2018; 29
Song (10.1016/j.electacta.2020.137602_bib0044) 2016; 9
Wang (10.1016/j.electacta.2020.137602_bib0025) 2019; 10
Li (10.1016/j.electacta.2020.137602_bib0005) 2019; 7
Parra-Puerto (10.1016/j.electacta.2020.137602_bib0015) 2019; 9
Liu (10.1016/j.electacta.2020.137602_bib0008) 2019; 247
Ren (10.1016/j.electacta.2020.137602_bib0001) 2017; 5
Fu (10.1016/j.electacta.2020.137602_bib0043) 2016; 27
Dinh (10.1016/j.electacta.2020.137602_bib0026) 2018; 14
Xu (10.1016/j.electacta.2020.137602_bib0047) 2018; 6
Wang (10.1016/j.electacta.2020.137602_bib0027) 2015; 28
Wang (10.1016/j.electacta.2020.137602_bib0007) 2019; 819
Zhao (10.1016/j.electacta.2020.137602_bib0019) 2018; 28
Chow (10.1016/j.electacta.2020.137602_bib0003) 2003; 302
Li (10.1016/j.electacta.2020.137602_bib0049) 2016; 8
Liang (10.1016/j.electacta.2020.137602_bib0024) 2018; 165
Cao (10.1016/j.electacta.2020.137602_bib0034) 2018; 10
Yang (10.1016/j.electacta.2020.137602_bib0013) 2017; 5
Li (10.1016/j.electacta.2020.137602_bib0046) 2019; 10
Zhu (10.1016/j.electacta.2020.137602_bib0039) 2016; 4
Yang (10.1016/j.electacta.2020.137602_bib0018) 2019; 44
Wen (10.1016/j.electacta.2020.137602_bib0036) 2019; 11
Liu (10.1016/j.electacta.2020.137602_bib0048) 2018; 396
Han (10.1016/j.electacta.2020.137602_bib0022) 2018; 8
Zhang (10.1016/j.electacta.2020.137602_bib0042) 2018; 9
Chen (10.1016/j.electacta.2020.137602_bib0002) 2017
Chandra Majhi (10.1016/j.electacta.2020.137602_bib0014) 2019; 318
Wu (10.1016/j.electacta.2020.137602_bib0011) 2019; 7
Wang (10.1016/j.electacta.2020.137602_bib0021) 2020; 446
Han (10.1016/j.electacta.2020.137602_bib0010) 2018
Wang (10.1016/j.electacta.2020.137602_bib0032) 2017; 56
Xie (10.1016/j.electacta.2020.137602_bib0023) 2019; 58
Fang (10.1016/j.electacta.2020.137602_bib0038) 2017; 7
Durst (10.1016/j.electacta.2020.137602_bib0041) 2014; 7
Fan (10.1016/j.electacta.2020.137602_bib0029) 2019; 7
Seh (10.1016/j.electacta.2020.137602_bib0017) 2017; 355
Zhang (10.1016/j.electacta.2020.137602_bib0006) 2017; 9
Maeda (10.1016/j.electacta.2020.137602_bib0004) 2006; 440
Liu (10.1016/j.electacta.2020.137602_bib0035) 2019; 11
Fan (10.1016/j.electacta.2020.137602_bib0028) 2017; 56
Shang (10.1016/j.electacta.2020.137602_bib0033) 2017; 256
References_xml – year: 2018
  ident: bib0010
  article-title: Ultrafine Pt nanoparticle-decorated pyrite-type CoS
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 22070
  year: 2018
  end-page: 22076
  ident: bib0047
  article-title: Ultrathin two-dimensional cobalt–organic framework nanosheets for high-performance electrocatalytic oxygen evolution
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 20534
  year: 2016
  end-page: 20539
  ident: bib0049
  article-title: Carbon-coated Co
  publication-title: ACS Appl. Mater. Interfaces
– volume: 819
  year: 2019
  ident: bib0007
  article-title: Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: a review
  publication-title: J Alloys Compd.
– volume: 7
  start-page: 22063
  year: 2019
  end-page: 22069
  ident: bib0011
  article-title: Nickel nitride-black phosphorus heterostructure nanosheets for boosting the electrocatalytic activity towards the oxygen evolution reaction
  publication-title: J. Mater. Chem. A
– volume: 256
  start-page: 100
  year: 2017
  end-page: 109
  ident: bib0033
  article-title: Hierarchically three-level Ni(VO
  publication-title: Electrochim. Acta
– volume: 318
  year: 2019
  ident: bib0031
  article-title: Self-assembled Ni
  publication-title: Electrochim. Acta
– volume: 791
  start-page: 1070
  year: 2019
  end-page: 1078
  ident: bib0037
  article-title: Vanadium and nitrogen co-doped CoP nanoleaf array as pH-universal electrocatalyst for efficient hydrogen evolution
  publication-title: J. Alloys. Compd.
– volume: 11
  start-page: 8855
  year: 2019
  end-page: 8863
  ident: bib0035
  article-title: Tuning coupling interface of ultrathin Ni
  publication-title: Nanoscale
– volume: 302
  start-page: 1528
  year: 2003
  end-page: 1531
  ident: bib0003
  article-title: Energy resources and global development
  publication-title: Science
– volume: 9
  start-page: 11515
  year: 2019
  end-page: 11529
  ident: bib0015
  article-title: Supported transition metal phosphides: activity survey for HER, ORR, OER and corrosion resistance in acid and alkaline electrolytes
  publication-title: ACS Catal.
– volume: 165
  start-page: 1286
  year: 2018
  end-page: 1291
  ident: bib0024
  article-title: Modulating the volmer step by mof derivatives assembled with heterogeneous Ni
  publication-title: J. Electrochem. Soc.
– volume: 10
  start-page: 670
  year: 2018
  end-page: 684
  ident: bib0034
  article-title: Monodisperse Co
  publication-title: NPG Asia Mater.
– volume: 396
  start-page: 395
  year: 2018
  end-page: 403
  ident: bib0048
  article-title: Surface engineering by a novel electrochemical activation method for the synthesis of Co
  publication-title: J. Power Sources
– volume: 10
  start-page: 3899
  year: 2019
  ident: bib0025
  article-title: Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics
  publication-title: Nat. Commun.
– volume: 5
  start-page: 7305
  year: 2017
  end-page: 7308
  ident: bib0013
  article-title: A cobalt-borate nanosheet array: an efficient and durable non-noble-metal electrocatalyst for water oxidation at near neutral pH
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 872
  year: 2018
  ident: bib0012
  article-title: Construction of hierarchical Ni-Co-P hollownanobricks with oriented nanosheets for efficient overall water splitting
  publication-title: Energy Environ. Sci.
– volume: 28
  start-page: 215
  year: 2015
  end-page: 230
  ident: bib0027
  article-title: Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting
  publication-title: Adv. Mater.
– volume: 17
  start-page: 5133
  year: 2017
  end-page: 5139
  ident: bib0045
  article-title: Nanosheet supported single-metal atom bifunctional catalyst for overall water splitting
  publication-title: Nano Lett.
– volume: 14
  year: 2018
  ident: bib0026
  article-title: Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting
  publication-title: Small
– volume: 9
  start-page: 4793
  year: 2017
  end-page: 4800
  ident: bib0006
  article-title: Al-doped CoP nanoarray: a durable water-splitting electrocatalyst with superhigh Activity
  publication-title: Nanoscale
– volume: 8
  year: 2018
  ident: bib0022
  article-title: Ultrafine Pt nanoparticle-decorated pyrite-type CoS
  publication-title: Adv. Energy Mater.
– volume: 56
  start-page: 1041
  year: 2017
  end-page: 1044
  ident: bib0032
  article-title: Fe-doped Ni
  publication-title: Inorg. Chem.
– volume: 7
  start-page: 2255
  year: 2014
  end-page: 2260
  ident: bib0041
  article-title: New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism
  publication-title: Energy Environ. Sci.
– volume: 440
  start-page: 295
  year: 2006
  ident: bib0004
  article-title: Photocatalyst releasing hydrogen from water
  publication-title: Nature
– volume: 318
  start-page: 901
  year: 2019
  end-page: 912
  ident: bib0014
  article-title: Bimetallic transition metal chalcogenide nanowire array: an effective catalyst for overall water splitting
  publication-title: Electrochim. Acta
– volume: 242
  start-page: 60
  year: 2018
  end-page: 66
  ident: bib0020
  article-title: Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)
  publication-title: Appl. Catal. B: Environ.
– year: 2019
  ident: bib0009
  article-title: Interfacial engineering FeOOH/CoO nanoneedle array for efficient overall water splitting driven by solar energy
  publication-title: Chem. Eur. J.
– volume: 7
  start-page: 5027
  year: 2019
  end-page: 5033
  ident: bib0005
  article-title: Smart yolk/shell ZIF-67@POM hybrids as efficient electrocatalysts for the oxygen evolution reaction
  publication-title: ACS Sustain. Chem. Eng.
– volume: 5
  year: 2018
  ident: bib0030
  article-title: Bifunctional hybrid Ni/Ni
  publication-title: Adv. Mater. Interfaces
– volume: 7
  year: 2017
  ident: bib0038
  article-title: Hierarchical nanostructures: design for sustainable water splitting
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 4198
  year: 2019
  end-page: 4203
  ident: bib0036
  article-title: Flexible vanadium-doped Ni
  publication-title: Nanoscale
– volume: 5
  year: 2017
  ident: bib0001
  article-title: Recent progress on mof-derived heteroatom-doped carbon-based electrocatalysts for oxygen reduction reaction
  publication-title: Adv. Sci.
– volume: 446
  year: 2020
  ident: bib0021
  article-title: Multidimensional regulation of Ni
  publication-title: Power Sources
– volume: 58
  start-page: 14652
  year: 2019
  end-page: 14659
  ident: bib0023
  article-title: Hollow cobalt phosphide with N-doped carbon skeleton as bifunctional electrocatalyst for overall water splitting
  publication-title: Inorg. Chem.
– volume: 9
  year: 2016
  ident: bib0044
  article-title: Interfacial engineering of MoS
  publication-title: Appl. Phys. Express
– volume: 29
  year: 2018
  ident: bib0016
  article-title: Epitaxial heterogeneous interfaces on N-NiMoO
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 1375
  year: 2018
  end-page: 1384
  ident: bib0042
  article-title: Extraction of nickel from NiFe-LDH into Ni
  publication-title: Chem. Sci.
– volume: 247
  start-page: 107
  year: 2019
  end-page: 114
  ident: bib0008
  article-title: Interface engineering of (Ni, Fe)S
  publication-title: Appl. Catal. B: Environ.
– volume: 10
  start-page: 1711
  year: 2019
  ident: bib0046
  article-title: Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides
  publication-title: Nat. Commun.
– volume: 56
  start-page: 3289
  year: 2017
  end-page: 3293
  ident: bib0028
  article-title: Hollow iron-vanadium composite spheres: a highly efficient iron-based water oxidation electrocatalyst without the need for nickel or cobalt
  publication-title: Angew. Chem., Int. Ed.
– volume: 27
  start-page: 44
  year: 2016
  end-page: 50
  ident: bib0043
  article-title: Strong interfacial coupling of MoS
  publication-title: Nano Energy
– volume: 28
  year: 2018
  ident: bib0019
  article-title: Heterostructures for electrochemical hydrogen evolution reaction: a review
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 1919
  year: 2014
  end-page: 1923
  ident: bib0040
  article-title: Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction
  publication-title: Energy Environ. Sci
– volume: 7
  start-page: 1622
  year: 2019
  end-page: 1632
  ident: bib0029
  article-title: Hollow Ni-V-Mo chalcogenide nanopetals as bifunctional electrocatalyst for overall water splitting
  publication-title: ACS Sustain. Chem. Eng
– volume: 44
  start-page: 26753
  year: 2019
  ident: bib0018
  article-title: Design and synthesis of NiS@CoS@CC with abundant heterointerfaces as high-efficiency hydrogen evolution electrocatalyst
  publication-title: Inter. J. Hydrog. Energy
– year: 2017
  ident: bib0002
  article-title: MO-Co@N-doped carbon (M = Zn or Co): vital roles of inactive Zn and highly efficient activity toward oxygen reduction/evolution reactions for rechargeable Zn–Air battery
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 15536
  year: 2016
  end-page: 15545
  ident: bib0039
  article-title: Construction of a cobalt-embedded nitrogen doped carbon material with the desired porosity derived from the confined growth of MOFs within graphene aerogels as a superior catalyst towards HER and ORR
  publication-title: J. Mater. Chem. A.
– volume: 355
  year: 2017
  ident: bib0017
  article-title: Combining theory and experiment in electrocatalysis: insights into materials design
  publication-title: Science
– volume: 440
  start-page: 295
  year: 2006
  ident: 10.1016/j.electacta.2020.137602_bib0004
  article-title: Photocatalyst releasing hydrogen from water
  publication-title: Nature
  doi: 10.1038/440295a
– volume: 14
  year: 2018
  ident: 10.1016/j.electacta.2020.137602_bib0026
  article-title: Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting
  publication-title: Small
  doi: 10.1002/smll.201703257
– volume: 242
  start-page: 60
  year: 2018
  ident: 10.1016/j.electacta.2020.137602_bib0020
  article-title: Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)2/Ni3S2 nanoforests for efficient water splitting
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2018.09.064
– volume: 396
  start-page: 395
  year: 2018
  ident: 10.1016/j.electacta.2020.137602_bib0048
  article-title: Surface engineering by a novel electrochemical activation method for the synthesis of Co3+ enriched Co(OH)2/CoOOH heterostructure for water oxidation
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.06.030
– volume: 10
  start-page: 3899
  year: 2019
  ident: 10.1016/j.electacta.2020.137602_bib0025
  article-title: Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11765-x
– volume: 11
  start-page: 8855
  year: 2019
  ident: 10.1016/j.electacta.2020.137602_bib0035
  article-title: Tuning coupling interface of ultrathin Ni3S2@NiV-LDH heterogeneous nanosheet electrocatalysts for improved overall water splitting
  publication-title: Nanoscale
  doi: 10.1039/C9NR00658C
– volume: 6
  start-page: 22070
  year: 2018
  ident: 10.1016/j.electacta.2020.137602_bib0047
  article-title: Ultrathin two-dimensional cobalt–organic framework nanosheets for high-performance electrocatalytic oxygen evolution
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03128B
– year: 2017
  ident: 10.1016/j.electacta.2020.137602_bib0002
  article-title: MO-Co@N-doped carbon (M = Zn or Co): vital roles of inactive Zn and highly efficient activity toward oxygen reduction/evolution reactions for rechargeable Zn–Air battery
  publication-title: Adv. Funct. Mater.
– volume: 355
  year: 2017
  ident: 10.1016/j.electacta.2020.137602_bib0017
  article-title: Combining theory and experiment in electrocatalysis: insights into materials design
  publication-title: Science
  doi: 10.1126/science.aad4998
– volume: 256
  start-page: 100
  year: 2017
  ident: 10.1016/j.electacta.2020.137602_bib0033
  article-title: Hierarchically three-level Ni(VO4)2@NiCo2O4 nanostructure based on nickel foam towards highly efficient alkaline hydrogen evolution
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.10.017
– volume: 7
  year: 2017
  ident: 10.1016/j.electacta.2020.137602_bib0038
  article-title: Hierarchical nanostructures: design for sustainable water splitting
  publication-title: Adv. Energy Mater.
– volume: 302
  start-page: 1528
  year: 2003
  ident: 10.1016/j.electacta.2020.137602_bib0003
  article-title: Energy resources and global development
  publication-title: Science
  doi: 10.1126/science.1091939
– volume: 11
  start-page: 872
  year: 2018
  ident: 10.1016/j.electacta.2020.137602_bib0012
  article-title: Construction of hierarchical Ni-Co-P hollownanobricks with oriented nanosheets for efficient overall water splitting
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00076J
– volume: 9
  issue: 9
  year: 2016
  ident: 10.1016/j.electacta.2020.137602_bib0044
  article-title: Interfacial engineering of MoS2/TiO2 hybrids for enhanced electrocatalytic hydrogen evolution reaction
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.9.095801
– volume: 8
  start-page: 20534
  issue: 32
  year: 2016
  ident: 10.1016/j.electacta.2020.137602_bib0049
  article-title: Carbon-coated Co3+-Rich cobalt selenide derived from ZIF-67 for efficient electrochemical water oxidation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b07986
– volume: 9
  start-page: 11515
  issue: 12
  year: 2019
  ident: 10.1016/j.electacta.2020.137602_bib0015
  article-title: Supported transition metal phosphides: activity survey for HER, ORR, OER and corrosion resistance in acid and alkaline electrolytes
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b03359
– volume: 10
  start-page: 1711
  issue: 1
  year: 2019
  ident: 10.1016/j.electacta.2020.137602_bib0046
  article-title: Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09666-0
– volume: 7
  start-page: 1622
  year: 2019
  ident: 10.1016/j.electacta.2020.137602_bib0029
  article-title: Hollow Ni-V-Mo chalcogenide nanopetals as bifunctional electrocatalyst for overall water splitting
  publication-title: ACS Sustain. Chem. Eng
  doi: 10.1021/acssuschemeng.8b05378
– volume: 28
  start-page: 215
  issue: 2
  year: 2015
  ident: 10.1016/j.electacta.2020.137602_bib0027
  article-title: Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502696
– volume: 318
  start-page: 901
  year: 2019
  ident: 10.1016/j.electacta.2020.137602_bib0014
  article-title: Bimetallic transition metal chalcogenide nanowire array: an effective catalyst for overall water splitting
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.06.106
– volume: 58
  start-page: 14652
  issue: 21
  year: 2019
  ident: 10.1016/j.electacta.2020.137602_bib0023
  article-title: Hollow cobalt phosphide with N-doped carbon skeleton as bifunctional electrocatalyst for overall water splitting
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b02333
– volume: 7
  start-page: 22063
  year: 2019
  ident: 10.1016/j.electacta.2020.137602_bib0011
  article-title: Nickel nitride-black phosphorus heterostructure nanosheets for boosting the electrocatalytic activity towards the oxygen evolution reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA07962A
– volume: 28
  year: 2018
  ident: 10.1016/j.electacta.2020.137602_bib0019
  article-title: Heterostructures for electrochemical hydrogen evolution reaction: a review
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201803291
– volume: 5
  issue: 15
  year: 2018
  ident: 10.1016/j.electacta.2020.137602_bib0030
  article-title: Bifunctional hybrid Ni/Ni2P nanoparticles encapsulated by graphitic carbon supported with N, S modified 3D carbon framework for highly efficient overall water splitting
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201800473
– volume: 7
  start-page: 1919
  issue: 6
  year: 2014
  ident: 10.1016/j.electacta.2020.137602_bib0040
  article-title: Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction
  publication-title: Energy Environ. Sci
  doi: 10.1039/C4EE00370E
– year: 2019
  ident: 10.1016/j.electacta.2020.137602_bib0009
  article-title: Interfacial engineering FeOOH/CoO nanoneedle array for efficient overall water splitting driven by solar energy
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201904352
– volume: 446
  year: 2020
  ident: 10.1016/j.electacta.2020.137602_bib0021
  article-title: Multidimensional regulation of Ni3S2@Co(OH)2 catalyst with high performance for wind energy electrolytic water, J
  publication-title: Power Sources
  doi: 10.1016/j.jpowsour.2019.227348
– volume: 27
  start-page: 44
  year: 2016
  ident: 10.1016/j.electacta.2020.137602_bib0043
  article-title: Strong interfacial coupling of MoS2/g-C3N4 van de Waals solids for highly active water reduction
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.06.037
– volume: 5
  issue: 3
  year: 2017
  ident: 10.1016/j.electacta.2020.137602_bib0001
  article-title: Recent progress on mof-derived heteroatom-doped carbon-based electrocatalysts for oxygen reduction reaction
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700515
– volume: 29
  year: 2018
  ident: 10.1016/j.electacta.2020.137602_bib0016
  article-title: Epitaxial heterogeneous interfaces on N-NiMoO4/NiS2 nanowires/nanosheets to boost hydrogen and oxygen production for overall water splitting
  publication-title: Adv. Funct. Mater.
– volume: 17
  start-page: 5133
  year: 2017
  ident: 10.1016/j.electacta.2020.137602_bib0045
  article-title: Nanosheet supported single-metal atom bifunctional catalyst for overall water splitting
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b02518
– volume: 56
  start-page: 3289
  year: 2017
  ident: 10.1016/j.electacta.2020.137602_bib0028
  article-title: Hollow iron-vanadium composite spheres: a highly efficient iron-based water oxidation electrocatalyst without the need for nickel or cobalt
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201611863
– volume: 791
  start-page: 1070
  year: 2019
  ident: 10.1016/j.electacta.2020.137602_bib0037
  article-title: Vanadium and nitrogen co-doped CoP nanoleaf array as pH-universal electrocatalyst for efficient hydrogen evolution
  publication-title: J. Alloys. Compd.
  doi: 10.1016/j.jallcom.2019.03.380
– volume: 165
  start-page: 1286
  issue: 16
  year: 2018
  ident: 10.1016/j.electacta.2020.137602_bib0024
  article-title: Modulating the volmer step by mof derivatives assembled with heterogeneous Ni2P-CoP nanocrystals in alkaline hydrogen evolution reaction
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0131816jes
– volume: 11
  start-page: 4198
  year: 2019
  ident: 10.1016/j.electacta.2020.137602_bib0036
  article-title: Flexible vanadium-doped Ni2P nanosheet arrays grown on carbon cloth for efficient hydrogen evolution reaction
  publication-title: Nanoscale
  doi: 10.1039/C8NR10167A
– volume: 7
  start-page: 5027
  issue: 5
  year: 2019
  ident: 10.1016/j.electacta.2020.137602_bib0005
  article-title: Smart yolk/shell ZIF-67@POM hybrids as efficient electrocatalysts for the oxygen evolution reaction
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b05744
– volume: 5
  start-page: 7305
  issue: 16
  year: 2017
  ident: 10.1016/j.electacta.2020.137602_bib0013
  article-title: A cobalt-borate nanosheet array: an efficient and durable non-noble-metal electrocatalyst for water oxidation at near neutral pH
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00982H
– volume: 44
  start-page: 26753
  year: 2019
  ident: 10.1016/j.electacta.2020.137602_bib0018
  article-title: Design and synthesis of NiS@CoS@CC with abundant heterointerfaces as high-efficiency hydrogen evolution electrocatalyst
  publication-title: Inter. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.08.164
– volume: 4
  start-page: 15536
  year: 2016
  ident: 10.1016/j.electacta.2020.137602_bib0039
  article-title: Construction of a cobalt-embedded nitrogen doped carbon material with the desired porosity derived from the confined growth of MOFs within graphene aerogels as a superior catalyst towards HER and ORR
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C6TA05196K
– volume: 318
  year: 2019
  ident: 10.1016/j.electacta.2020.137602_bib0031
  article-title: Self-assembled Ni2P/FeP heterostructural nanoparticles embedded in N-doped graphene nanosheets as highly efficient and stable multifunctional electrocatalyst for water splitting
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.06.093
– volume: 8
  issue: 24
  year: 2018
  ident: 10.1016/j.electacta.2020.137602_bib0022
  article-title: Ultrafine Pt nanoparticle-decorated pyrite-type CoS2 nanosheet arrays coated on carbon cloth as a bifunctional electrode for overall water splitting
  publication-title: Adv. Energy Mater.
  doi: 10.1007/978-981-13-0158-2
– year: 2018
  ident: 10.1016/j.electacta.2020.137602_bib0010
  article-title: Ultrafine Pt nanoparticle-decorated pyrite-type CoS2 nanosheet arrays coated on carbon cloth as a bifunctional electrode for overall water splitting
  publication-title: Adv. Energy Mater.
  doi: 10.1007/978-981-13-0158-2
– volume: 9
  start-page: 4793
  year: 2017
  ident: 10.1016/j.electacta.2020.137602_bib0006
  article-title: Al-doped CoP nanoarray: a durable water-splitting electrocatalyst with superhigh Activity
  publication-title: Nanoscale
  doi: 10.1039/C7NR00740J
– volume: 56
  start-page: 1041
  issue: 3
  year: 2017
  ident: 10.1016/j.electacta.2020.137602_bib0032
  article-title: Fe-doped Ni2P nanosheet array for high-efficiency electrochemical water oxidation
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b02808
– volume: 9
  start-page: 1375
  issue: 5
  year: 2018
  ident: 10.1016/j.electacta.2020.137602_bib0042
  article-title: Extraction of nickel from NiFe-LDH into Ni2P@NiFe hydroxide as a bifunctional electrocatalyst for efficient overall water splitting
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC04569G
– volume: 247
  start-page: 107
  year: 2019
  ident: 10.1016/j.electacta.2020.137602_bib0008
  article-title: Interface engineering of (Ni, Fe)S2@MoS2 heterostructures for synergetic electrochemical water splitting
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2019.01.094
– volume: 7
  start-page: 2255
  issue: 7
  year: 2014
  ident: 10.1016/j.electacta.2020.137602_bib0041
  article-title: New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE00440J
– volume: 819
  year: 2019
  ident: 10.1016/j.electacta.2020.137602_bib0007
  article-title: Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: a review
  publication-title: J Alloys Compd.
– volume: 10
  start-page: 670
  issue: 7
  year: 2018
  ident: 10.1016/j.electacta.2020.137602_bib0034
  article-title: Monodisperse Co9S8 nanoparticles in situ embedded within N, S-codoped honeycomb-structured porous carbon for bifunctional oxygen electrocatalyst in a rechargeable Zn-air battery
  publication-title: NPG Asia Mater.
  doi: 10.1038/s41427-018-0063-0
SSID ssj0007670
Score 2.4659152
Snippet •The ECSA is increased through producing heterogeneous interfaces.•The electron state of Ni, Co is modulated by introducing V and generating interfaces.•The...
Developing efficient and robust non-noble electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is desirable for future...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 137602
SubjectTerms Clean energy
Cobalt
Electrocatalysts
Heterostructure
Heterostructures
Hydrogen evolution reactions
Metal foams
Nickel
Nickel sulfide
Overall water splitting
Oxygen evolution reactions
Phosphating (coating)
Phosphides
Sulfidation
Transition metal dichalcogenides
Transition metal phosphides
Water splitting
Title Interface and composition engineering of vanadium doped cobalt nickel sulfide/phosphide heterostructure for efficient water splitting
URI https://dx.doi.org/10.1016/j.electacta.2020.137602
https://www.proquest.com/docview/2491200189
Volume 368
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iB_UgPvG55OC12m2TpvUmi7IqenLBW8iTXVnbZR968-b_dpKmriuCB6GHUpJQZjIzX8I3MwidFjSXWuQkYtpf3TAayVzKCIJhCnaZC2ld7vD9Q9btkdsn-rSEOk0ujKNVBt9f-3TvrcOX8yDN89Fg4HJ827AcIHKXiFNQ54cJYW6Xn73PaR4sY3HTxcCNXuB4-VYzAh44KCauBwTLwv3KLxHqh6_2Aeh6E20E5Igv65_bQkum3EarnaZh2zZa_1ZbcAd9-Ls-K5TBotTYUccDPwub-ThcWfzqeV-zF6yrkXEjpRhOcTkA-x7iyWxoBxpk0a8moz684b4j0FR13dnZ2GBAvdj4QhQQv_AbYNcxngC09YTqXdS7vnrsdKPQcyFSKUmnEcTrxCSAO5QuwDhl2zKq0kxl1rLEKkVjQalKYi1znRgIZQXVgqaSkcwyUuTpHlouq9LsIwyeQstYA0YxhLiTSypiaovCgtbawtIDlDVy5ioUJHd9MYa8YZ498y8FcacgXivoAMVfE0d1TY6_p1w0iuQL24tD5Ph78nGjeh4sfMLh2Np2fLS8OPzP2kdoLXEsGc8DP0bLoDxzAjBnKlt-H7fQyuXNXffhE4df_2A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5V5QB7QMAuWp7rw14j0iSOk72hCtQupacicbP8VItKUtGW_QX7v3fsOOUhJA4r5RBFHivyeGY-W9_MAPwsaSG1KLKIaX91w2gkCykjDIYp2mUhpHW5w7fjfHCX_b6n9x3ot7kwjlYZfH_j0723Dl8uwmpeLGYzl-Pbw-kQkbtEnJKiH95y1aloF7YuhzeD8cYhs5zFbSMDJ_CG5uW7zQh88KyYuDYQLA9XLB8EqXfu2seg6z3YDeCRXDb_tw8dUx3Adr_t2XYAX16VF_wKf_11nxXKEFFp4tjjgaJFzMs4Ulvy7Klf60ei64VxI6WYr0g1QxOfk-V6bmcal2NaLxdTfCNTx6Gpm9Kz6ydDEPgS42tRYAgjfxC-PpElolvPqf4Gd9dXk_4gCm0XIpVm6SrCkJ2YBKGH0iXap-xZRlWaq9xallilaCwoVUmsZaETg9GspFrQVLIstywri_QQulVdme9A0FloGWuEKSbL3OElFTG1ZWlRcT1h6RHk7TpzFWqSu9YYc96Szx74RkHcKYg3CjqCeCO4aMpyfC7yq1Ukf7PDOAaPz4VPW9XzYORLjifXnqOkFeXx_8z9A7YHk9sRHw3HNyewkzjSjKeFn0IXFWnOEPWs5HnY1f8APDMCIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interface+and+composition+engineering+of+vanadium+doped+cobalt+nickel+sulfide%2Fphosphide+heterostructure+for+efficient+water+splitting&rft.jtitle=Electrochimica+acta&rft.au=Suo%2C+Na&rft.au=Dou%2C+Zhiyu&rft.au=Cui%2C+Lili&rft.date=2021-02-01&rft.issn=0013-4686&rft.volume=368&rft.spage=137602&rft_id=info:doi/10.1016%2Fj.electacta.2020.137602&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_electacta_2020_137602
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon