An application of the direct strength method to the design of castellated beams subject to flexure
•A comprehensive numerical study of castellated beams is proposed.•Eigenvalue and fully nonlinear FEA with geometric imperfections are conducted.•An approach based on the Direct Strength Method is proposed and equations derived.•The method is then compared with current standards procedures showing g...
Saved in:
Published in | Engineering structures Vol. 243; p. 112646 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
15.09.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A comprehensive numerical study of castellated beams is proposed.•Eigenvalue and fully nonlinear FEA with geometric imperfections are conducted.•An approach based on the Direct Strength Method is proposed and equations derived.•The method is then compared with current standards procedures showing good results.
The aim of this research is to investigate the instability of castellated beams and the interaction between lateral-torsional and compression tee local buckling modes. Firstly, a comprehensive study of 197 simply supported Litzka castellated beams under pure bending is carried out. The study involves eigenvalue and fully nonlinear finite element analyses, e.g. including both material nonlinearity and geometric imperfections. After computing the critical moments associated to local and global modes and the ultimate moments, an approach based on the Direct Strength Method is proposed using regression techniques to derive strength prediction equations. The developed method is then compared with current standards procedures. The results show that the proposed equation predicts better strength values in all cases, especially those in which local and/or interaction failure modes dominate the behavior of the beam. The results also show that some of the procedures suggested in standards and guides for the design of castellated beams under flexure, either underestimate or overestimate the failure moment when considering the interaction between global buckling mode and plastification. |
---|---|
AbstractList | •A comprehensive numerical study of castellated beams is proposed.•Eigenvalue and fully nonlinear FEA with geometric imperfections are conducted.•An approach based on the Direct Strength Method is proposed and equations derived.•The method is then compared with current standards procedures showing good results.
The aim of this research is to investigate the instability of castellated beams and the interaction between lateral-torsional and compression tee local buckling modes. Firstly, a comprehensive study of 197 simply supported Litzka castellated beams under pure bending is carried out. The study involves eigenvalue and fully nonlinear finite element analyses, e.g. including both material nonlinearity and geometric imperfections. After computing the critical moments associated to local and global modes and the ultimate moments, an approach based on the Direct Strength Method is proposed using regression techniques to derive strength prediction equations. The developed method is then compared with current standards procedures. The results show that the proposed equation predicts better strength values in all cases, especially those in which local and/or interaction failure modes dominate the behavior of the beam. The results also show that some of the procedures suggested in standards and guides for the design of castellated beams under flexure, either underestimate or overestimate the failure moment when considering the interaction between global buckling mode and plastification. The aim of this research is to investigate the instability of castellated beams and the interaction between lateral-torsional and compression tee local buckling modes. Firstly, a comprehensive study of 197 simply supported Litzka castellated beams under pure bending is carried out. The study involves eigenvalue and fully nonlinear finite element analyses, e.g. including both material nonlinearity and geometric imperfections. After computing the critical moments associated to local and global modes and the ultimate moments, an approach based on the Direct Strength Method is proposed using regression techniques to derive strength prediction equations. The developed method is then compared with current standards procedures. The results show that the proposed equation predicts better strength values in all cases, especially those in which local and/or interaction failure modes dominate the behavior of the beam. The results also show that some of the procedures suggested in standards and guides for the design of castellated beams under flexure, either underestimate or overestimate the failure moment when considering the interaction between global buckling mode and plastification. |
ArticleNumber | 112646 |
Author | Weidlich, Christovam M. Sotelino, Elisa D. Cardoso, Daniel C.T. |
Author_xml | – sequence: 1 givenname: Christovam M. surname: Weidlich fullname: Weidlich, Christovam M. – sequence: 2 givenname: Elisa D. surname: Sotelino fullname: Sotelino, Elisa D. email: sotelino@puc-rio.br – sequence: 3 givenname: Daniel C.T. surname: Cardoso fullname: Cardoso, Daniel C.T. |
BookMark | eNqNkD1PwzAQhi0EEm3hN2CJOcF2HCcZGKqKL6kSC8yWY19aR2lcbAfBvydtEAMLTDfc-7yne-botHc9IHRFSUoJFTdtCv0mRD_omDLCaEopE1ycoBktiywpMpadohmhnCaEVeIczUNoCSGsLMkM1cseq_2-s1pF63rsGhy3gI31oCMea8fyuMU7iFtncHTTFoLdHLNahQhdpyIYXIPaBRyGuj2gY7Tp4GPwcIHOGtUFuPyeC_R6f_eyekzWzw9Pq-U60RnPYsLyooFcC55rzg0vqCG1ErSsS6MEyQjXBatoxaqqELXK67JWIIyqtDHlCKlsga6n3r13bwOEKFs3-H48KVkuOC1yluVj6nZKae9C8NBIbePx9-iV7SQl8qBVtvJHqzxolZPWkS9-8Xtvd8p__oNcTiSMEt4teBm0hV7DJFsaZ__s-ALINJq7 |
CitedBy_id | crossref_primary_10_1016_j_istruc_2022_11_074 crossref_primary_10_1016_j_tws_2022_109196 crossref_primary_10_48175_IJARSCT_9011 crossref_primary_10_21605_cukurovaumfd_1273712 crossref_primary_10_1016_j_tws_2022_110513 crossref_primary_10_1016_j_istruc_2022_11_027 crossref_primary_10_1016_j_engstruct_2024_117579 crossref_primary_10_1016_j_tws_2022_109959 crossref_primary_10_3390_buildings13030808 crossref_primary_10_53600_ajesa_1177628 crossref_primary_10_5937_GRMK2400011R crossref_primary_10_17714_gumusfenbil_1262258 |
Cites_doi | 10.1016/j.tws.2013.01.016 10.1016/0143-974X(94)90009-4 10.1016/j.jcsr.2014.11.003 10.1016/j.tws.2019.03.001 10.1016/j.engstruct.2016.11.034 10.1016/j.jcsr.2011.10.016 10.1016/j.engstruct.2019.02.034 10.1016/j.jcsr.2006.01.004 10.1016/j.jcsr.2010.12.012 10.1061/(ASCE)0733-9445(1998)124:10(1202) 10.1016/S0143-974X(03)00030-0 10.1016/0143-974X(84)90004-X 10.1016/S0065-2156(08)70030-9 10.1016/j.compstruc.2017.03.017 10.1016/B978-0-08-100160-8.00004-9 10.1016/0022-5096(67)90003-8 10.1016/j.tws.2014.10.013 10.1016/j.compstruc.2017.03.016 10.1680/stbu.12.00049 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Sep 15, 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Sep 15, 2021 |
DBID | AAYXX CITATION 7SR 7ST 8BQ 8FD C1K FR3 JG9 KR7 SOI |
DOI | 10.1016/j.engstruct.2021.112646 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Engineering Research Database Environment Abstracts METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7323 |
ExternalDocumentID | 10_1016_j_engstruct_2021_112646 S0141029621007963 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACIWK ACLVX ACRLP ACSBN ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSE SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SET SEW SSH VH1 WUQ ZY4 7SR 7ST 8BQ 8FD C1K EFKBS FR3 JG9 KR7 SOI |
ID | FETCH-LOGICAL-c343t-257fe5c645c44d471d0ba618b8da60304c7291929976ba5b8bae6da9cdd8645a3 |
IEDL.DBID | .~1 |
ISSN | 0141-0296 |
IngestDate | Wed Aug 13 09:02:26 EDT 2025 Tue Jul 01 03:02:21 EDT 2025 Thu Apr 24 22:53:33 EDT 2025 Fri Feb 23 02:37:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Castellated beams Local buckling Direct Strength Method Computational modeling Buckling interaction Global buckling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-257fe5c645c44d471d0ba618b8da60304c7291929976ba5b8bae6da9cdd8645a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2564175235 |
PQPubID | 2045481 |
ParticipantIDs | proquest_journals_2564175235 crossref_citationtrail_10_1016_j_engstruct_2021_112646 crossref_primary_10_1016_j_engstruct_2021_112646 elsevier_sciencedirect_doi_10_1016_j_engstruct_2021_112646 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-15 |
PublicationDateYYYYMMDD | 2021-09-15 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Engineering structures |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Zirakian, Showkati (b0045) 2006; 62 Camotim, Dinis, Martins (b0095) 2016; 3 Budiansky B. Theory of buckling and post-buckling behavior of elastic structures. In: Advances in applied mechanics. Elsevier, 1974. p. 1–65. Young, Silvestre, Camotim (b0100) 2013; 139 Landesmann, Camotim (b0105) 2013; 67 Sonck, Belis (b0025) 2015; 105 Kerdal, Nethercot (b0005) 1984; 4 Boissonade, Nseir, Lo, Somja (b0020) 2014; 167 Ellobody (b0050) 2011; 67 Liu, Chung (b0015) 2003; 59 Schafer, Peköz (b0085) 1998 Young, Dinis, Camotim (b0125) 2018; 207 Fares, Coulson, Dinehart (b0065) 2016 Dinis, Camotim, Young, Batista (b0120) 2018; 207 The Math Works, Inc., MATLAB, version R2020a. Sonck, Belis (b0030) 2017; 143 Landesmann, Camotim, Dinis, Cruz (b0115) 2017; 132 Redwood, Demirdjian (b0010) 1998; 124 Hancock, Kwon, Bernard (b0075) 1994; 31 Peköz (b0080) 1986; 1986 Soltani, Bouchaïr, Mimoune (b0035) 2012; 70 Chilver (b0055) 1967; 15 Linhares DA. Mapping of Failure Modes and Resistance of Castellated Beams under Flexure. 2018. Master thesis, Department of civil engineering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro; 2018. Oliveira, Cardoso, Sotelino (b0040) 2019; 186 Schafer (b0090) 2019; 140 Manual, Abaqus Users. Version 6.10. ABAQUS Inc; 2010. Dinis, Camotim (b0110) 2015; 87 AISC (b0070) 2016 Hancock (10.1016/j.engstruct.2021.112646_b0075) 1994; 31 Ellobody (10.1016/j.engstruct.2021.112646_b0050) 2011; 67 Schafer (10.1016/j.engstruct.2021.112646_b0085) 1998 10.1016/j.engstruct.2021.112646_b0135 Oliveira (10.1016/j.engstruct.2021.112646_b0040) 2019; 186 Landesmann (10.1016/j.engstruct.2021.112646_b0105) 2013; 67 Liu (10.1016/j.engstruct.2021.112646_b0015) 2003; 59 Sonck (10.1016/j.engstruct.2021.112646_b0030) 2017; 143 Young (10.1016/j.engstruct.2021.112646_b0125) 2018; 207 Soltani (10.1016/j.engstruct.2021.112646_b0035) 2012; 70 Dinis (10.1016/j.engstruct.2021.112646_b0120) 2018; 207 AISC (10.1016/j.engstruct.2021.112646_b0070) 2016 10.1016/j.engstruct.2021.112646_b0140 Chilver (10.1016/j.engstruct.2021.112646_b0055) 1967; 15 Redwood (10.1016/j.engstruct.2021.112646_b0010) 1998; 124 10.1016/j.engstruct.2021.112646_b0060 Sonck (10.1016/j.engstruct.2021.112646_b0025) 2015; 105 Fares (10.1016/j.engstruct.2021.112646_b0065) 2016 Boissonade (10.1016/j.engstruct.2021.112646_b0020) 2014; 167 Zirakian (10.1016/j.engstruct.2021.112646_b0045) 2006; 62 Camotim (10.1016/j.engstruct.2021.112646_b0095) 2016; 3 Young (10.1016/j.engstruct.2021.112646_b0100) 2013; 139 Schafer (10.1016/j.engstruct.2021.112646_b0090) 2019; 140 Kerdal (10.1016/j.engstruct.2021.112646_b0005) 1984; 4 Landesmann (10.1016/j.engstruct.2021.112646_b0115) 2017; 132 Dinis (10.1016/j.engstruct.2021.112646_b0110) 2015; 87 10.1016/j.engstruct.2021.112646_b0130 Peköz (10.1016/j.engstruct.2021.112646_b0080) 1986; 1986 |
References_xml | – volume: 1986 start-page: 77 year: 1986 end-page: 84 ident: b0080 article-title: Development of a unified approach to the design of cold-formed steel members publication-title: AISI-Spec Des Cold-Formed Steel Struct Memb – volume: 67 start-page: 814 year: 2011 end-page: 825 ident: b0050 article-title: Interaction of buckling modes in castellated steel beams publication-title: J Constr Steel Res – reference: Manual, Abaqus Users. Version 6.10. ABAQUS Inc; 2010. – reference: The Math Works, Inc., MATLAB, version R2020a. – volume: 59 start-page: 1159 year: 2003 end-page: 1176 ident: b0015 article-title: Steel beams with large web openings of various shapes and sizes: finite element investigation publication-title: J Constr Steel Res – volume: 87 start-page: 158 year: 2015 end-page: 182 ident: b0110 article-title: A novel DSM-based approach for the rational design of fixed-ended and pin-ended short-to-intermediate thin-walled angle columns publication-title: Thin-Walled Struct – start-page: 69 year: 1998 end-page: 76 ident: b0085 article-title: Direct strength prediction of cold-formed steel members using numerical elastic buckling solutions publication-title: International specialty conference on cold-formed steel structures: recent research and developments in cold-formed steel design and construction – volume: 143 start-page: 1 year: 2017 end-page: 9 ident: b0030 article-title: Lateral-torsional buckling resistance of castellated beams publication-title: J Struct Eng (United States) – year: 2016 ident: b0065 article-title: Steel design guide 31 - castellated and cellular beam design publication-title: Am Inst Steel Constr – volume: 207 start-page: 200 year: 2018 end-page: 218 ident: b0120 article-title: FS lipped channel columns affected by L-D-G interaction. Part II: Numerical simulations and design considerations publication-title: Comput Struct – volume: 4 start-page: 295 year: 1984 end-page: 315 ident: b0005 article-title: Failure modes for castellated beams publication-title: J Constr Steel Res – volume: 186 start-page: 436 year: 2019 end-page: 445 ident: b0040 article-title: Elastic flexural local buckling of Litzka castellated beams: explicit equations and FE parametric study publication-title: Eng Struct – volume: 132 start-page: 471 year: 2017 end-page: 493 ident: b0115 article-title: Short-to-intermediate slender pin-ended cold-formed steel equal-leg angle columns: experimental investigation, numerical simulations and DSM design publication-title: Eng Struct – volume: 15 start-page: 15 year: 1967 end-page: 28 ident: b0055 article-title: Coupled modes of elastic buckling publication-title: J Mech Phys Solids – volume: 62 start-page: 863 year: 2006 end-page: 871 ident: b0045 article-title: Distortional buckling of castellated beams publication-title: J Constr Steel Res – volume: 31 start-page: 169 year: 1994 end-page: 186 ident: b0075 article-title: Strength design curves for thin-walled sections undergoing distortional buckling publication-title: J Constr Steel Res – volume: 167 start-page: 436 year: 2014 end-page: 444 ident: b0020 article-title: Design of cellular beams against lateral torsional buckling publication-title: Proc Inst Civil Eng-Struct Build – volume: 140 start-page: 533 year: 2019 end-page: 541 ident: b0090 article-title: Advances in the Direct Strength Method of cold-formed steel design publication-title: Thin-Walled Struct – start-page: 676 year: 2016 ident: b0070 article-title: ANSI / AISC 360–16, Specification for Structural Steel Buildings publication-title: Am Inst Steel Constr – volume: 70 start-page: 101 year: 2012 end-page: 114 ident: b0035 article-title: Nonlinear FE analysis of the ultimate behavior of steel castellated beams publication-title: J Constr Steel Res – volume: 67 start-page: 168 year: 2013 end-page: 187 ident: b0105 article-title: On the Direct Strength Method (DSM) design of cold-formed steel columns against distortional failure publication-title: Thin-Walled Struct – reference: Linhares DA. Mapping of Failure Modes and Resistance of Castellated Beams under Flexure. 2018. Master thesis, Department of civil engineering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro; 2018. – volume: 139 start-page: 1059 year: 2013 end-page: 1074 ident: b0100 article-title: Cold-formed steel lipped channel columns influenced by local-distortional interaction: Strength and DSM design publication-title: J Struct Eng (United States) – volume: 207 start-page: 219 year: 2018 end-page: 232 ident: b0125 article-title: CFS lipped channel columns affected by L-D-G interaction. Part I: Experimental investigation publication-title: Comput Struct – volume: 105 start-page: 119 year: 2015 end-page: 128 ident: b0025 article-title: Lateral-torsional buckling resistance of cellular beams publication-title: J Constr Steel Res – volume: 3 year: 2016 ident: b0095 article-title: Direct strength method-a general approach for the design of cold-formed steel structures publication-title: Recent Trends Cold-Formed Steel Constr Elsevier Ltd – reference: Budiansky B. Theory of buckling and post-buckling behavior of elastic structures. In: Advances in applied mechanics. Elsevier, 1974. p. 1–65. – volume: 124 start-page: 1202 year: 1998 end-page: 1207 ident: b0010 article-title: Castellated beam web buckling in shear publication-title: J Struct Eng – volume: 67 start-page: 168 year: 2013 ident: 10.1016/j.engstruct.2021.112646_b0105 article-title: On the Direct Strength Method (DSM) design of cold-formed steel columns against distortional failure publication-title: Thin-Walled Struct doi: 10.1016/j.tws.2013.01.016 – volume: 31 start-page: 169 issue: 2–3 year: 1994 ident: 10.1016/j.engstruct.2021.112646_b0075 article-title: Strength design curves for thin-walled sections undergoing distortional buckling publication-title: J Constr Steel Res doi: 10.1016/0143-974X(94)90009-4 – ident: 10.1016/j.engstruct.2021.112646_b0135 – volume: 105 start-page: 119 year: 2015 ident: 10.1016/j.engstruct.2021.112646_b0025 article-title: Lateral-torsional buckling resistance of cellular beams publication-title: J Constr Steel Res doi: 10.1016/j.jcsr.2014.11.003 – volume: 140 start-page: 533 issue: 2018 year: 2019 ident: 10.1016/j.engstruct.2021.112646_b0090 article-title: Advances in the Direct Strength Method of cold-formed steel design publication-title: Thin-Walled Struct doi: 10.1016/j.tws.2019.03.001 – volume: 132 start-page: 471 year: 2017 ident: 10.1016/j.engstruct.2021.112646_b0115 article-title: Short-to-intermediate slender pin-ended cold-formed steel equal-leg angle columns: experimental investigation, numerical simulations and DSM design publication-title: Eng Struct doi: 10.1016/j.engstruct.2016.11.034 – volume: 70 start-page: 101 year: 2012 ident: 10.1016/j.engstruct.2021.112646_b0035 article-title: Nonlinear FE analysis of the ultimate behavior of steel castellated beams publication-title: J Constr Steel Res doi: 10.1016/j.jcsr.2011.10.016 – volume: 186 start-page: 436 issue: November 2018 year: 2019 ident: 10.1016/j.engstruct.2021.112646_b0040 article-title: Elastic flexural local buckling of Litzka castellated beams: explicit equations and FE parametric study publication-title: Eng Struct doi: 10.1016/j.engstruct.2019.02.034 – volume: 143 start-page: 1 issue: 3 year: 2017 ident: 10.1016/j.engstruct.2021.112646_b0030 article-title: Lateral-torsional buckling resistance of castellated beams publication-title: J Struct Eng (United States) – volume: 62 start-page: 863 issue: 9 year: 2006 ident: 10.1016/j.engstruct.2021.112646_b0045 article-title: Distortional buckling of castellated beams publication-title: J Constr Steel Res doi: 10.1016/j.jcsr.2006.01.004 – ident: 10.1016/j.engstruct.2021.112646_b0140 – year: 2016 ident: 10.1016/j.engstruct.2021.112646_b0065 article-title: Steel design guide 31 - castellated and cellular beam design publication-title: Am Inst Steel Constr – start-page: 69 year: 1998 ident: 10.1016/j.engstruct.2021.112646_b0085 article-title: Direct strength prediction of cold-formed steel members using numerical elastic buckling solutions – volume: 67 start-page: 814 issue: 5 year: 2011 ident: 10.1016/j.engstruct.2021.112646_b0050 article-title: Interaction of buckling modes in castellated steel beams publication-title: J Constr Steel Res doi: 10.1016/j.jcsr.2010.12.012 – volume: 124 start-page: 1202 year: 1998 ident: 10.1016/j.engstruct.2021.112646_b0010 article-title: Castellated beam web buckling in shear publication-title: J Struct Eng doi: 10.1061/(ASCE)0733-9445(1998)124:10(1202) – volume: 59 start-page: 1159 year: 2003 ident: 10.1016/j.engstruct.2021.112646_b0015 article-title: Steel beams with large web openings of various shapes and sizes: finite element investigation publication-title: J Constr Steel Res doi: 10.1016/S0143-974X(03)00030-0 – volume: 4 start-page: 295 year: 1984 ident: 10.1016/j.engstruct.2021.112646_b0005 article-title: Failure modes for castellated beams publication-title: J Constr Steel Res doi: 10.1016/0143-974X(84)90004-X – ident: 10.1016/j.engstruct.2021.112646_b0060 doi: 10.1016/S0065-2156(08)70030-9 – volume: 207 start-page: 200 year: 2018 ident: 10.1016/j.engstruct.2021.112646_b0120 article-title: FS lipped channel columns affected by L-D-G interaction. Part II: Numerical simulations and design considerations publication-title: Comput Struct doi: 10.1016/j.compstruc.2017.03.017 – volume: 139 start-page: 1059 issue: 6 year: 2013 ident: 10.1016/j.engstruct.2021.112646_b0100 article-title: Cold-formed steel lipped channel columns influenced by local-distortional interaction: Strength and DSM design publication-title: J Struct Eng (United States) – ident: 10.1016/j.engstruct.2021.112646_b0130 – volume: 1986 start-page: 77 issue: May year: 1986 ident: 10.1016/j.engstruct.2021.112646_b0080 article-title: Development of a unified approach to the design of cold-formed steel members publication-title: AISI-Spec Des Cold-Formed Steel Struct Memb – start-page: 676 year: 2016 ident: 10.1016/j.engstruct.2021.112646_b0070 article-title: ANSI / AISC 360–16, Specification for Structural Steel Buildings publication-title: Am Inst Steel Constr – volume: 3 year: 2016 ident: 10.1016/j.engstruct.2021.112646_b0095 article-title: Direct strength method-a general approach for the design of cold-formed steel structures publication-title: Recent Trends Cold-Formed Steel Constr Elsevier Ltd doi: 10.1016/B978-0-08-100160-8.00004-9 – volume: 15 start-page: 15 issue: 1 year: 1967 ident: 10.1016/j.engstruct.2021.112646_b0055 article-title: Coupled modes of elastic buckling publication-title: J Mech Phys Solids doi: 10.1016/0022-5096(67)90003-8 – volume: 87 start-page: 158 year: 2015 ident: 10.1016/j.engstruct.2021.112646_b0110 article-title: A novel DSM-based approach for the rational design of fixed-ended and pin-ended short-to-intermediate thin-walled angle columns publication-title: Thin-Walled Struct doi: 10.1016/j.tws.2014.10.013 – volume: 207 start-page: 219 year: 2018 ident: 10.1016/j.engstruct.2021.112646_b0125 article-title: CFS lipped channel columns affected by L-D-G interaction. Part I: Experimental investigation publication-title: Comput Struct doi: 10.1016/j.compstruc.2017.03.016 – volume: 167 start-page: 436 issue: 7 year: 2014 ident: 10.1016/j.engstruct.2021.112646_b0020 article-title: Design of cellular beams against lateral torsional buckling publication-title: Proc Inst Civil Eng-Struct Build doi: 10.1680/stbu.12.00049 |
SSID | ssj0002880 |
Score | 2.3885827 |
Snippet | •A comprehensive numerical study of castellated beams is proposed.•Eigenvalue and fully nonlinear FEA with geometric imperfections are conducted.•An approach... The aim of this research is to investigate the instability of castellated beams and the interaction between lateral-torsional and compression tee local... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 112646 |
SubjectTerms | Buckling Buckling interaction Castellated beams Compression Computational modeling Direct Strength Method Eigenvalues Failure modes Finite element method Flexing Global buckling Lateral stability Local buckling Nonlinear systems Nonlinearity |
Title | An application of the direct strength method to the design of castellated beams subject to flexure |
URI | https://dx.doi.org/10.1016/j.engstruct.2021.112646 https://www.proquest.com/docview/2564175235 |
Volume | 243 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4QvOjB-Iwokj14rZR22269ESJBjVyUhNtmX0UMFiIl8eRvd6YPFGPCwWPbmaadnZ35dncehFwFCTO-ipgDzkg5jLvGiSOYV1yajpdgCyONicKPw3AwYvfjYFwjvSoXBsMqS9tf2PTcWpd32qU024vptP2Uhyh6cejhQT_oEWawswi1_PrzO8zD43n3NCR2kHojxsumk6JMKywUvU6eToNI-G8P9ctW5w6of0D2S-RIu8XHHZKaTY_I3o96gsdEdVP640SazhMK-I4Wv0gxLSSdZC-06BpNs3nxNI_hQFotl5hTAujTUGXl25IuVwr3aZA0mdmP1bs9IaP-7XNv4JRNFBztMz9zYEomNtAhCzRjBlyRcZUMO1xxI0M8F9UArwHmxYBLlAwUV9KGRsbaGA5M0j8l9XSe2jNCA83Re_kRM5zBulBikisLtVWRdVWiGiSsBCd0WWEcG13MRBVK9irWEhcocVFIvEHcNeOiKLKxneWmGhmxoS8CXMF25mY1lqKcsksB2I8BlvL84Pw_774gu3iFISWdoEnqQGAvAbdkqpUrZovsdO8eBsMv-inuwQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BOQAHxCqWAj5wjdomduJwqypQy9ILIHGzvIVFJa1okfh8ZrJUgJB64BrPRMnYnnn2bABnIuMuMgkP0BiZgMu2C9IE95XUrhNm1MLIUqLw7TDuP_CrR_G4BL06F4bCKivdX-r0QltXT1qVNFuTl5fWXRGiGKZxSI5-XEfLsELVqUQDVrqD6_5wrpBDWTRQI_qAGH6Eefn8qazUimfFsFNk1BAY_ttI_VLXhQ263ISNCjyybvl9W7Dk821Y_1ZScAdMN2ffnNJsnDGEeKz8S0aZIfnT7JmVjaPZbFyOFmEcRGv1lNJKEIA6Zrx-m7Lph6GrGiLNRv7z493vwsPlxX2vH1R9FAIb8WgW4K7MvLAxF5Zzh9bItY2OO9JIp2NyjVpE2Ij0UoQmRgsjjfax06l1TiKTjvagkY9zvw9MWEkGLEq4kxyPhpryXHlsvUl822TmAOJacMpWRcap18VI1dFkr2oucUUSV6XED6A9Z5yUdTYWs5zXM6N-LBmF1mAxc7OeS1Xt2qlC-McRToWROPzPu09htX9_e6NuBsPrI1ijEYow6YgmNJDYHyOMmZmTapl-ASdp8XI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+application+of+the+direct+strength+method+to+the+design+of+castellated+beams+subject+to+flexure&rft.jtitle=Engineering+structures&rft.au=Weidlich%2C+Christovam+M.&rft.au=Sotelino%2C+Elisa+D.&rft.au=Cardoso%2C+Daniel+C.T.&rft.date=2021-09-15&rft.pub=Elsevier+Ltd&rft.issn=0141-0296&rft.eissn=1873-7323&rft.volume=243&rft_id=info:doi/10.1016%2Fj.engstruct.2021.112646&rft.externalDocID=S0141029621007963 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon |