An application of the direct strength method to the design of castellated beams subject to flexure

•A comprehensive numerical study of castellated beams is proposed.•Eigenvalue and fully nonlinear FEA with geometric imperfections are conducted.•An approach based on the Direct Strength Method is proposed and equations derived.•The method is then compared with current standards procedures showing g...

Full description

Saved in:
Bibliographic Details
Published inEngineering structures Vol. 243; p. 112646
Main Authors Weidlich, Christovam M., Sotelino, Elisa D., Cardoso, Daniel C.T.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 15.09.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A comprehensive numerical study of castellated beams is proposed.•Eigenvalue and fully nonlinear FEA with geometric imperfections are conducted.•An approach based on the Direct Strength Method is proposed and equations derived.•The method is then compared with current standards procedures showing good results. The aim of this research is to investigate the instability of castellated beams and the interaction between lateral-torsional and compression tee local buckling modes. Firstly, a comprehensive study of 197 simply supported Litzka castellated beams under pure bending is carried out. The study involves eigenvalue and fully nonlinear finite element analyses, e.g. including both material nonlinearity and geometric imperfections. After computing the critical moments associated to local and global modes and the ultimate moments, an approach based on the Direct Strength Method is proposed using regression techniques to derive strength prediction equations. The developed method is then compared with current standards procedures. The results show that the proposed equation predicts better strength values in all cases, especially those in which local and/or interaction failure modes dominate the behavior of the beam. The results also show that some of the procedures suggested in standards and guides for the design of castellated beams under flexure, either underestimate or overestimate the failure moment when considering the interaction between global buckling mode and plastification.
AbstractList •A comprehensive numerical study of castellated beams is proposed.•Eigenvalue and fully nonlinear FEA with geometric imperfections are conducted.•An approach based on the Direct Strength Method is proposed and equations derived.•The method is then compared with current standards procedures showing good results. The aim of this research is to investigate the instability of castellated beams and the interaction between lateral-torsional and compression tee local buckling modes. Firstly, a comprehensive study of 197 simply supported Litzka castellated beams under pure bending is carried out. The study involves eigenvalue and fully nonlinear finite element analyses, e.g. including both material nonlinearity and geometric imperfections. After computing the critical moments associated to local and global modes and the ultimate moments, an approach based on the Direct Strength Method is proposed using regression techniques to derive strength prediction equations. The developed method is then compared with current standards procedures. The results show that the proposed equation predicts better strength values in all cases, especially those in which local and/or interaction failure modes dominate the behavior of the beam. The results also show that some of the procedures suggested in standards and guides for the design of castellated beams under flexure, either underestimate or overestimate the failure moment when considering the interaction between global buckling mode and plastification.
The aim of this research is to investigate the instability of castellated beams and the interaction between lateral-torsional and compression tee local buckling modes. Firstly, a comprehensive study of 197 simply supported Litzka castellated beams under pure bending is carried out. The study involves eigenvalue and fully nonlinear finite element analyses, e.g. including both material nonlinearity and geometric imperfections. After computing the critical moments associated to local and global modes and the ultimate moments, an approach based on the Direct Strength Method is proposed using regression techniques to derive strength prediction equations. The developed method is then compared with current standards procedures. The results show that the proposed equation predicts better strength values in all cases, especially those in which local and/or interaction failure modes dominate the behavior of the beam. The results also show that some of the procedures suggested in standards and guides for the design of castellated beams under flexure, either underestimate or overestimate the failure moment when considering the interaction between global buckling mode and plastification.
ArticleNumber 112646
Author Weidlich, Christovam M.
Sotelino, Elisa D.
Cardoso, Daniel C.T.
Author_xml – sequence: 1
  givenname: Christovam M.
  surname: Weidlich
  fullname: Weidlich, Christovam M.
– sequence: 2
  givenname: Elisa D.
  surname: Sotelino
  fullname: Sotelino, Elisa D.
  email: sotelino@puc-rio.br
– sequence: 3
  givenname: Daniel C.T.
  surname: Cardoso
  fullname: Cardoso, Daniel C.T.
BookMark eNqNkD1PwzAQhi0EEm3hN2CJOcF2HCcZGKqKL6kSC8yWY19aR2lcbAfBvydtEAMLTDfc-7yne-botHc9IHRFSUoJFTdtCv0mRD_omDLCaEopE1ycoBktiywpMpadohmhnCaEVeIczUNoCSGsLMkM1cseq_2-s1pF63rsGhy3gI31oCMea8fyuMU7iFtncHTTFoLdHLNahQhdpyIYXIPaBRyGuj2gY7Tp4GPwcIHOGtUFuPyeC_R6f_eyekzWzw9Pq-U60RnPYsLyooFcC55rzg0vqCG1ErSsS6MEyQjXBatoxaqqELXK67JWIIyqtDHlCKlsga6n3r13bwOEKFs3-H48KVkuOC1yluVj6nZKae9C8NBIbePx9-iV7SQl8qBVtvJHqzxolZPWkS9-8Xtvd8p__oNcTiSMEt4teBm0hV7DJFsaZ__s-ALINJq7
CitedBy_id crossref_primary_10_1016_j_istruc_2022_11_074
crossref_primary_10_1016_j_tws_2022_109196
crossref_primary_10_48175_IJARSCT_9011
crossref_primary_10_21605_cukurovaumfd_1273712
crossref_primary_10_1016_j_tws_2022_110513
crossref_primary_10_1016_j_istruc_2022_11_027
crossref_primary_10_1016_j_engstruct_2024_117579
crossref_primary_10_1016_j_tws_2022_109959
crossref_primary_10_3390_buildings13030808
crossref_primary_10_53600_ajesa_1177628
crossref_primary_10_5937_GRMK2400011R
crossref_primary_10_17714_gumusfenbil_1262258
Cites_doi 10.1016/j.tws.2013.01.016
10.1016/0143-974X(94)90009-4
10.1016/j.jcsr.2014.11.003
10.1016/j.tws.2019.03.001
10.1016/j.engstruct.2016.11.034
10.1016/j.jcsr.2011.10.016
10.1016/j.engstruct.2019.02.034
10.1016/j.jcsr.2006.01.004
10.1016/j.jcsr.2010.12.012
10.1061/(ASCE)0733-9445(1998)124:10(1202)
10.1016/S0143-974X(03)00030-0
10.1016/0143-974X(84)90004-X
10.1016/S0065-2156(08)70030-9
10.1016/j.compstruc.2017.03.017
10.1016/B978-0-08-100160-8.00004-9
10.1016/0022-5096(67)90003-8
10.1016/j.tws.2014.10.013
10.1016/j.compstruc.2017.03.016
10.1680/stbu.12.00049
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Sep 15, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Sep 15, 2021
DBID AAYXX
CITATION
7SR
7ST
8BQ
8FD
C1K
FR3
JG9
KR7
SOI
DOI 10.1016/j.engstruct.2021.112646
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Engineering Research Database
Environment Abstracts
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7323
ExternalDocumentID 10_1016_j_engstruct_2021_112646
S0141029621007963
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SET
SEW
SSH
VH1
WUQ
ZY4
7SR
7ST
8BQ
8FD
C1K
EFKBS
FR3
JG9
KR7
SOI
ID FETCH-LOGICAL-c343t-257fe5c645c44d471d0ba618b8da60304c7291929976ba5b8bae6da9cdd8645a3
IEDL.DBID .~1
ISSN 0141-0296
IngestDate Wed Aug 13 09:02:26 EDT 2025
Tue Jul 01 03:02:21 EDT 2025
Thu Apr 24 22:53:33 EDT 2025
Fri Feb 23 02:37:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Castellated beams
Local buckling
Direct Strength Method
Computational modeling
Buckling interaction
Global buckling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-257fe5c645c44d471d0ba618b8da60304c7291929976ba5b8bae6da9cdd8645a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2564175235
PQPubID 2045481
ParticipantIDs proquest_journals_2564175235
crossref_citationtrail_10_1016_j_engstruct_2021_112646
crossref_primary_10_1016_j_engstruct_2021_112646
elsevier_sciencedirect_doi_10_1016_j_engstruct_2021_112646
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-15
PublicationDateYYYYMMDD 2021-09-15
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-15
  day: 15
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Engineering structures
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Zirakian, Showkati (b0045) 2006; 62
Camotim, Dinis, Martins (b0095) 2016; 3
Budiansky B. Theory of buckling and post-buckling behavior of elastic structures. In: Advances in applied mechanics. Elsevier, 1974. p. 1–65.
Young, Silvestre, Camotim (b0100) 2013; 139
Landesmann, Camotim (b0105) 2013; 67
Sonck, Belis (b0025) 2015; 105
Kerdal, Nethercot (b0005) 1984; 4
Boissonade, Nseir, Lo, Somja (b0020) 2014; 167
Ellobody (b0050) 2011; 67
Liu, Chung (b0015) 2003; 59
Schafer, Peköz (b0085) 1998
Young, Dinis, Camotim (b0125) 2018; 207
Fares, Coulson, Dinehart (b0065) 2016
Dinis, Camotim, Young, Batista (b0120) 2018; 207
The Math Works, Inc., MATLAB, version R2020a.
Sonck, Belis (b0030) 2017; 143
Landesmann, Camotim, Dinis, Cruz (b0115) 2017; 132
Redwood, Demirdjian (b0010) 1998; 124
Hancock, Kwon, Bernard (b0075) 1994; 31
Peköz (b0080) 1986; 1986
Soltani, Bouchaïr, Mimoune (b0035) 2012; 70
Chilver (b0055) 1967; 15
Linhares DA. Mapping of Failure Modes and Resistance of Castellated Beams under Flexure. 2018. Master thesis, Department of civil engineering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro; 2018.
Oliveira, Cardoso, Sotelino (b0040) 2019; 186
Schafer (b0090) 2019; 140
Manual, Abaqus Users. Version 6.10. ABAQUS Inc; 2010.
Dinis, Camotim (b0110) 2015; 87
AISC (b0070) 2016
Hancock (10.1016/j.engstruct.2021.112646_b0075) 1994; 31
Ellobody (10.1016/j.engstruct.2021.112646_b0050) 2011; 67
Schafer (10.1016/j.engstruct.2021.112646_b0085) 1998
10.1016/j.engstruct.2021.112646_b0135
Oliveira (10.1016/j.engstruct.2021.112646_b0040) 2019; 186
Landesmann (10.1016/j.engstruct.2021.112646_b0105) 2013; 67
Liu (10.1016/j.engstruct.2021.112646_b0015) 2003; 59
Sonck (10.1016/j.engstruct.2021.112646_b0030) 2017; 143
Young (10.1016/j.engstruct.2021.112646_b0125) 2018; 207
Soltani (10.1016/j.engstruct.2021.112646_b0035) 2012; 70
Dinis (10.1016/j.engstruct.2021.112646_b0120) 2018; 207
AISC (10.1016/j.engstruct.2021.112646_b0070) 2016
10.1016/j.engstruct.2021.112646_b0140
Chilver (10.1016/j.engstruct.2021.112646_b0055) 1967; 15
Redwood (10.1016/j.engstruct.2021.112646_b0010) 1998; 124
10.1016/j.engstruct.2021.112646_b0060
Sonck (10.1016/j.engstruct.2021.112646_b0025) 2015; 105
Fares (10.1016/j.engstruct.2021.112646_b0065) 2016
Boissonade (10.1016/j.engstruct.2021.112646_b0020) 2014; 167
Zirakian (10.1016/j.engstruct.2021.112646_b0045) 2006; 62
Camotim (10.1016/j.engstruct.2021.112646_b0095) 2016; 3
Young (10.1016/j.engstruct.2021.112646_b0100) 2013; 139
Schafer (10.1016/j.engstruct.2021.112646_b0090) 2019; 140
Kerdal (10.1016/j.engstruct.2021.112646_b0005) 1984; 4
Landesmann (10.1016/j.engstruct.2021.112646_b0115) 2017; 132
Dinis (10.1016/j.engstruct.2021.112646_b0110) 2015; 87
10.1016/j.engstruct.2021.112646_b0130
Peköz (10.1016/j.engstruct.2021.112646_b0080) 1986; 1986
References_xml – volume: 1986
  start-page: 77
  year: 1986
  end-page: 84
  ident: b0080
  article-title: Development of a unified approach to the design of cold-formed steel members
  publication-title: AISI-Spec Des Cold-Formed Steel Struct Memb
– volume: 67
  start-page: 814
  year: 2011
  end-page: 825
  ident: b0050
  article-title: Interaction of buckling modes in castellated steel beams
  publication-title: J Constr Steel Res
– reference: Manual, Abaqus Users. Version 6.10. ABAQUS Inc; 2010.
– reference: The Math Works, Inc., MATLAB, version R2020a.
– volume: 59
  start-page: 1159
  year: 2003
  end-page: 1176
  ident: b0015
  article-title: Steel beams with large web openings of various shapes and sizes: finite element investigation
  publication-title: J Constr Steel Res
– volume: 87
  start-page: 158
  year: 2015
  end-page: 182
  ident: b0110
  article-title: A novel DSM-based approach for the rational design of fixed-ended and pin-ended short-to-intermediate thin-walled angle columns
  publication-title: Thin-Walled Struct
– start-page: 69
  year: 1998
  end-page: 76
  ident: b0085
  article-title: Direct strength prediction of cold-formed steel members using numerical elastic buckling solutions
  publication-title: International specialty conference on cold-formed steel structures: recent research and developments in cold-formed steel design and construction
– volume: 143
  start-page: 1
  year: 2017
  end-page: 9
  ident: b0030
  article-title: Lateral-torsional buckling resistance of castellated beams
  publication-title: J Struct Eng (United States)
– year: 2016
  ident: b0065
  article-title: Steel design guide 31 - castellated and cellular beam design
  publication-title: Am Inst Steel Constr
– volume: 207
  start-page: 200
  year: 2018
  end-page: 218
  ident: b0120
  article-title: FS lipped channel columns affected by L-D-G interaction. Part II: Numerical simulations and design considerations
  publication-title: Comput Struct
– volume: 4
  start-page: 295
  year: 1984
  end-page: 315
  ident: b0005
  article-title: Failure modes for castellated beams
  publication-title: J Constr Steel Res
– volume: 186
  start-page: 436
  year: 2019
  end-page: 445
  ident: b0040
  article-title: Elastic flexural local buckling of Litzka castellated beams: explicit equations and FE parametric study
  publication-title: Eng Struct
– volume: 132
  start-page: 471
  year: 2017
  end-page: 493
  ident: b0115
  article-title: Short-to-intermediate slender pin-ended cold-formed steel equal-leg angle columns: experimental investigation, numerical simulations and DSM design
  publication-title: Eng Struct
– volume: 15
  start-page: 15
  year: 1967
  end-page: 28
  ident: b0055
  article-title: Coupled modes of elastic buckling
  publication-title: J Mech Phys Solids
– volume: 62
  start-page: 863
  year: 2006
  end-page: 871
  ident: b0045
  article-title: Distortional buckling of castellated beams
  publication-title: J Constr Steel Res
– volume: 31
  start-page: 169
  year: 1994
  end-page: 186
  ident: b0075
  article-title: Strength design curves for thin-walled sections undergoing distortional buckling
  publication-title: J Constr Steel Res
– volume: 167
  start-page: 436
  year: 2014
  end-page: 444
  ident: b0020
  article-title: Design of cellular beams against lateral torsional buckling
  publication-title: Proc Inst Civil Eng-Struct Build
– volume: 140
  start-page: 533
  year: 2019
  end-page: 541
  ident: b0090
  article-title: Advances in the Direct Strength Method of cold-formed steel design
  publication-title: Thin-Walled Struct
– start-page: 676
  year: 2016
  ident: b0070
  article-title: ANSI / AISC 360–16, Specification for Structural Steel Buildings
  publication-title: Am Inst Steel Constr
– volume: 70
  start-page: 101
  year: 2012
  end-page: 114
  ident: b0035
  article-title: Nonlinear FE analysis of the ultimate behavior of steel castellated beams
  publication-title: J Constr Steel Res
– volume: 67
  start-page: 168
  year: 2013
  end-page: 187
  ident: b0105
  article-title: On the Direct Strength Method (DSM) design of cold-formed steel columns against distortional failure
  publication-title: Thin-Walled Struct
– reference: Linhares DA. Mapping of Failure Modes and Resistance of Castellated Beams under Flexure. 2018. Master thesis, Department of civil engineering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro; 2018.
– volume: 139
  start-page: 1059
  year: 2013
  end-page: 1074
  ident: b0100
  article-title: Cold-formed steel lipped channel columns influenced by local-distortional interaction: Strength and DSM design
  publication-title: J Struct Eng (United States)
– volume: 207
  start-page: 219
  year: 2018
  end-page: 232
  ident: b0125
  article-title: CFS lipped channel columns affected by L-D-G interaction. Part I: Experimental investigation
  publication-title: Comput Struct
– volume: 105
  start-page: 119
  year: 2015
  end-page: 128
  ident: b0025
  article-title: Lateral-torsional buckling resistance of cellular beams
  publication-title: J Constr Steel Res
– volume: 3
  year: 2016
  ident: b0095
  article-title: Direct strength method-a general approach for the design of cold-formed steel structures
  publication-title: Recent Trends Cold-Formed Steel Constr Elsevier Ltd
– reference: Budiansky B. Theory of buckling and post-buckling behavior of elastic structures. In: Advances in applied mechanics. Elsevier, 1974. p. 1–65.
– volume: 124
  start-page: 1202
  year: 1998
  end-page: 1207
  ident: b0010
  article-title: Castellated beam web buckling in shear
  publication-title: J Struct Eng
– volume: 67
  start-page: 168
  year: 2013
  ident: 10.1016/j.engstruct.2021.112646_b0105
  article-title: On the Direct Strength Method (DSM) design of cold-formed steel columns against distortional failure
  publication-title: Thin-Walled Struct
  doi: 10.1016/j.tws.2013.01.016
– volume: 31
  start-page: 169
  issue: 2–3
  year: 1994
  ident: 10.1016/j.engstruct.2021.112646_b0075
  article-title: Strength design curves for thin-walled sections undergoing distortional buckling
  publication-title: J Constr Steel Res
  doi: 10.1016/0143-974X(94)90009-4
– ident: 10.1016/j.engstruct.2021.112646_b0135
– volume: 105
  start-page: 119
  year: 2015
  ident: 10.1016/j.engstruct.2021.112646_b0025
  article-title: Lateral-torsional buckling resistance of cellular beams
  publication-title: J Constr Steel Res
  doi: 10.1016/j.jcsr.2014.11.003
– volume: 140
  start-page: 533
  issue: 2018
  year: 2019
  ident: 10.1016/j.engstruct.2021.112646_b0090
  article-title: Advances in the Direct Strength Method of cold-formed steel design
  publication-title: Thin-Walled Struct
  doi: 10.1016/j.tws.2019.03.001
– volume: 132
  start-page: 471
  year: 2017
  ident: 10.1016/j.engstruct.2021.112646_b0115
  article-title: Short-to-intermediate slender pin-ended cold-formed steel equal-leg angle columns: experimental investigation, numerical simulations and DSM design
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2016.11.034
– volume: 70
  start-page: 101
  year: 2012
  ident: 10.1016/j.engstruct.2021.112646_b0035
  article-title: Nonlinear FE analysis of the ultimate behavior of steel castellated beams
  publication-title: J Constr Steel Res
  doi: 10.1016/j.jcsr.2011.10.016
– volume: 186
  start-page: 436
  issue: November 2018
  year: 2019
  ident: 10.1016/j.engstruct.2021.112646_b0040
  article-title: Elastic flexural local buckling of Litzka castellated beams: explicit equations and FE parametric study
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2019.02.034
– volume: 143
  start-page: 1
  issue: 3
  year: 2017
  ident: 10.1016/j.engstruct.2021.112646_b0030
  article-title: Lateral-torsional buckling resistance of castellated beams
  publication-title: J Struct Eng (United States)
– volume: 62
  start-page: 863
  issue: 9
  year: 2006
  ident: 10.1016/j.engstruct.2021.112646_b0045
  article-title: Distortional buckling of castellated beams
  publication-title: J Constr Steel Res
  doi: 10.1016/j.jcsr.2006.01.004
– ident: 10.1016/j.engstruct.2021.112646_b0140
– year: 2016
  ident: 10.1016/j.engstruct.2021.112646_b0065
  article-title: Steel design guide 31 - castellated and cellular beam design
  publication-title: Am Inst Steel Constr
– start-page: 69
  year: 1998
  ident: 10.1016/j.engstruct.2021.112646_b0085
  article-title: Direct strength prediction of cold-formed steel members using numerical elastic buckling solutions
– volume: 67
  start-page: 814
  issue: 5
  year: 2011
  ident: 10.1016/j.engstruct.2021.112646_b0050
  article-title: Interaction of buckling modes in castellated steel beams
  publication-title: J Constr Steel Res
  doi: 10.1016/j.jcsr.2010.12.012
– volume: 124
  start-page: 1202
  year: 1998
  ident: 10.1016/j.engstruct.2021.112646_b0010
  article-title: Castellated beam web buckling in shear
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(1998)124:10(1202)
– volume: 59
  start-page: 1159
  year: 2003
  ident: 10.1016/j.engstruct.2021.112646_b0015
  article-title: Steel beams with large web openings of various shapes and sizes: finite element investigation
  publication-title: J Constr Steel Res
  doi: 10.1016/S0143-974X(03)00030-0
– volume: 4
  start-page: 295
  year: 1984
  ident: 10.1016/j.engstruct.2021.112646_b0005
  article-title: Failure modes for castellated beams
  publication-title: J Constr Steel Res
  doi: 10.1016/0143-974X(84)90004-X
– ident: 10.1016/j.engstruct.2021.112646_b0060
  doi: 10.1016/S0065-2156(08)70030-9
– volume: 207
  start-page: 200
  year: 2018
  ident: 10.1016/j.engstruct.2021.112646_b0120
  article-title: FS lipped channel columns affected by L-D-G interaction. Part II: Numerical simulations and design considerations
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2017.03.017
– volume: 139
  start-page: 1059
  issue: 6
  year: 2013
  ident: 10.1016/j.engstruct.2021.112646_b0100
  article-title: Cold-formed steel lipped channel columns influenced by local-distortional interaction: Strength and DSM design
  publication-title: J Struct Eng (United States)
– ident: 10.1016/j.engstruct.2021.112646_b0130
– volume: 1986
  start-page: 77
  issue: May
  year: 1986
  ident: 10.1016/j.engstruct.2021.112646_b0080
  article-title: Development of a unified approach to the design of cold-formed steel members
  publication-title: AISI-Spec Des Cold-Formed Steel Struct Memb
– start-page: 676
  year: 2016
  ident: 10.1016/j.engstruct.2021.112646_b0070
  article-title: ANSI / AISC 360–16, Specification for Structural Steel Buildings
  publication-title: Am Inst Steel Constr
– volume: 3
  year: 2016
  ident: 10.1016/j.engstruct.2021.112646_b0095
  article-title: Direct strength method-a general approach for the design of cold-formed steel structures
  publication-title: Recent Trends Cold-Formed Steel Constr Elsevier Ltd
  doi: 10.1016/B978-0-08-100160-8.00004-9
– volume: 15
  start-page: 15
  issue: 1
  year: 1967
  ident: 10.1016/j.engstruct.2021.112646_b0055
  article-title: Coupled modes of elastic buckling
  publication-title: J Mech Phys Solids
  doi: 10.1016/0022-5096(67)90003-8
– volume: 87
  start-page: 158
  year: 2015
  ident: 10.1016/j.engstruct.2021.112646_b0110
  article-title: A novel DSM-based approach for the rational design of fixed-ended and pin-ended short-to-intermediate thin-walled angle columns
  publication-title: Thin-Walled Struct
  doi: 10.1016/j.tws.2014.10.013
– volume: 207
  start-page: 219
  year: 2018
  ident: 10.1016/j.engstruct.2021.112646_b0125
  article-title: CFS lipped channel columns affected by L-D-G interaction. Part I: Experimental investigation
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2017.03.016
– volume: 167
  start-page: 436
  issue: 7
  year: 2014
  ident: 10.1016/j.engstruct.2021.112646_b0020
  article-title: Design of cellular beams against lateral torsional buckling
  publication-title: Proc Inst Civil Eng-Struct Build
  doi: 10.1680/stbu.12.00049
SSID ssj0002880
Score 2.3885827
Snippet •A comprehensive numerical study of castellated beams is proposed.•Eigenvalue and fully nonlinear FEA with geometric imperfections are conducted.•An approach...
The aim of this research is to investigate the instability of castellated beams and the interaction between lateral-torsional and compression tee local...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112646
SubjectTerms Buckling
Buckling interaction
Castellated beams
Compression
Computational modeling
Direct Strength Method
Eigenvalues
Failure modes
Finite element method
Flexing
Global buckling
Lateral stability
Local buckling
Nonlinear systems
Nonlinearity
Title An application of the direct strength method to the design of castellated beams subject to flexure
URI https://dx.doi.org/10.1016/j.engstruct.2021.112646
https://www.proquest.com/docview/2564175235
Volume 243
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4QvOjB-Iwokj14rZR22269ESJBjVyUhNtmX0UMFiIl8eRvd6YPFGPCwWPbmaadnZ35dncehFwFCTO-ipgDzkg5jLvGiSOYV1yajpdgCyONicKPw3AwYvfjYFwjvSoXBsMqS9tf2PTcWpd32qU024vptP2Uhyh6cejhQT_oEWawswi1_PrzO8zD43n3NCR2kHojxsumk6JMKywUvU6eToNI-G8P9ctW5w6of0D2S-RIu8XHHZKaTY_I3o96gsdEdVP640SazhMK-I4Wv0gxLSSdZC-06BpNs3nxNI_hQFotl5hTAujTUGXl25IuVwr3aZA0mdmP1bs9IaP-7XNv4JRNFBztMz9zYEomNtAhCzRjBlyRcZUMO1xxI0M8F9UArwHmxYBLlAwUV9KGRsbaGA5M0j8l9XSe2jNCA83Re_kRM5zBulBikisLtVWRdVWiGiSsBCd0WWEcG13MRBVK9irWEhcocVFIvEHcNeOiKLKxneWmGhmxoS8CXMF25mY1lqKcsksB2I8BlvL84Pw_774gu3iFISWdoEnqQGAvAbdkqpUrZovsdO8eBsMv-inuwQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BOQAHxCqWAj5wjdomduJwqypQy9ILIHGzvIVFJa1okfh8ZrJUgJB64BrPRMnYnnn2bABnIuMuMgkP0BiZgMu2C9IE95XUrhNm1MLIUqLw7TDuP_CrR_G4BL06F4bCKivdX-r0QltXT1qVNFuTl5fWXRGiGKZxSI5-XEfLsELVqUQDVrqD6_5wrpBDWTRQI_qAGH6Eefn8qazUimfFsFNk1BAY_ttI_VLXhQ263ISNCjyybvl9W7Dk821Y_1ZScAdMN2ffnNJsnDGEeKz8S0aZIfnT7JmVjaPZbFyOFmEcRGv1lNJKEIA6Zrx-m7Lph6GrGiLNRv7z493vwsPlxX2vH1R9FAIb8WgW4K7MvLAxF5Zzh9bItY2OO9JIp2NyjVpE2Ij0UoQmRgsjjfax06l1TiKTjvagkY9zvw9MWEkGLEq4kxyPhpryXHlsvUl822TmAOJacMpWRcap18VI1dFkr2oucUUSV6XED6A9Z5yUdTYWs5zXM6N-LBmF1mAxc7OeS1Xt2qlC-McRToWROPzPu09htX9_e6NuBsPrI1ijEYow6YgmNJDYHyOMmZmTapl-ASdp8XI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+application+of+the+direct+strength+method+to+the+design+of+castellated+beams+subject+to+flexure&rft.jtitle=Engineering+structures&rft.au=Weidlich%2C+Christovam+M.&rft.au=Sotelino%2C+Elisa+D.&rft.au=Cardoso%2C+Daniel+C.T.&rft.date=2021-09-15&rft.pub=Elsevier+Ltd&rft.issn=0141-0296&rft.eissn=1873-7323&rft.volume=243&rft_id=info:doi/10.1016%2Fj.engstruct.2021.112646&rft.externalDocID=S0141029621007963
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon