Fatigue and damage tolerance assessment of induction hardened S38C axles under different foreign objects
•Various types of FODs were created by cubical projectiles and damage mechanism was studied.•Influences of FODs on fatigue strength of S38C axles were explored.•Fatigue properties of S38C axle specimens with FODs were analyzed using K–T diagram.•Damage tolerance of S38C axles was assessed based on t...
Saved in:
Published in | International journal of fatigue Vol. 149; p. 106276 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.08.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Various types of FODs were created by cubical projectiles and damage mechanism was studied.•Influences of FODs on fatigue strength of S38C axles were explored.•Fatigue properties of S38C axle specimens with FODs were analyzed using K–T diagram.•Damage tolerance of S38C axles was assessed based on the damage depth.
Surface damages caused by the impact of flying objects are important factors responsible for fatigue performance degradation of high-speed railway axles, both qualitative and quantitative assessment of these damages are necessary for the maintenance of these axles. In this paper, cubical projectiles were used to reproduce actual damages on S38C axle specimens by a compressed-gas gun at varying velocities. Morphologies of simulated impact damages were characterized, and fatigue strengths of specimens under different impact damages were determined by the step-loading method. Results show that fatigue strength of impacted specimens reduces with the increase of damage depth; besides, other factors, including damage orientation, damage shape, and microstructural damage also exert their contributions. Finally, evaluation on fatigue strength reduction has been performed based on the damage tolerance philosophy. |
---|---|
AbstractList | Surface damages caused by the impact of flying objects are important factors responsible for fatigue performance degradation of high-speed railway axles, both qualitative and quantitative assessment of these damages are necessary for the maintenance of these axles. In this paper, cubical projectiles were used to reproduce actual damages on S38C axle specimens by a compressed-gas gun at varying velocities. Morphologies of simulated impact damages were characterized, and fatigue strengths of specimens under different impact damages were determined by the step-loading method. Results show that fatigue strength of impacted specimens reduces with the increase of damage depth; besides, other factors, including damage orientation, damage shape, and microstructural damage also exert their contributions. Finally, evaluation on fatigue strength reduction has been performed based on the damage tolerance philosophy. •Various types of FODs were created by cubical projectiles and damage mechanism was studied.•Influences of FODs on fatigue strength of S38C axles were explored.•Fatigue properties of S38C axle specimens with FODs were analyzed using K–T diagram.•Damage tolerance of S38C axles was assessed based on the damage depth. Surface damages caused by the impact of flying objects are important factors responsible for fatigue performance degradation of high-speed railway axles, both qualitative and quantitative assessment of these damages are necessary for the maintenance of these axles. In this paper, cubical projectiles were used to reproduce actual damages on S38C axle specimens by a compressed-gas gun at varying velocities. Morphologies of simulated impact damages were characterized, and fatigue strengths of specimens under different impact damages were determined by the step-loading method. Results show that fatigue strength of impacted specimens reduces with the increase of damage depth; besides, other factors, including damage orientation, damage shape, and microstructural damage also exert their contributions. Finally, evaluation on fatigue strength reduction has been performed based on the damage tolerance philosophy. |
ArticleNumber | 106276 |
Author | Liao, Ding Lesiuk, Grzegorz Gao, Jie-Wei Correia, José A.F.O. Yu, Ming-Hua De Jesus, Abílio M.P. Zhu, Shun-Peng Han, Jing |
Author_xml | – sequence: 1 givenname: Jie-Wei surname: Gao fullname: Gao, Jie-Wei organization: School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China – sequence: 2 givenname: Ming-Hua surname: Yu fullname: Yu, Ming-Hua organization: School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China – sequence: 3 givenname: Ding surname: Liao fullname: Liao, Ding organization: School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China – sequence: 4 givenname: Shun-Peng surname: Zhu fullname: Zhu, Shun-Peng email: zspeng2007@uestc.edu.cn organization: School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China – sequence: 5 givenname: Jing surname: Han fullname: Han, Jing organization: School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China – sequence: 6 givenname: Grzegorz surname: Lesiuk fullname: Lesiuk, Grzegorz organization: Wroclaw University of Science and Technology, Department of Mechanics, Materials Science and Engineering, 50-370 Wroclaw, Poland – sequence: 7 givenname: José A.F.O. surname: Correia fullname: Correia, José A.F.O. organization: INEGI, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal – sequence: 8 givenname: Abílio M.P. surname: De Jesus fullname: De Jesus, Abílio M.P. organization: INEGI, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal |
BookMark | eNqNkDtrHDEURkVwIGsnvyEC17PRa6SZwoVZYidgcBH3QiNdrTXsSo6kCfG_t5YxLtLE1YWPe-7jnKOzmCIg9JWSLSVUfpu3Yfamhv0CW0YYbalkSn5AGzqoseOiZ2doQ6hgHaWMf0LnpcyEkJGofoMeb1YUm-iwM0ezB1zTAbKJtoWlQClHiBUnj0N0i60hRfxosoMIDv_iww6bvwcoeIkOMnbBe8gnwKcMYR9xmmawtXxGH705FPjyWi_Qw833h92P7u7-9ufu-q6zXPDaMdKuZgOhkzDCKzGQSUo3jsxIYW0_Ku4HmEavDOOKKyGM5HZizEoCsh_4Bbpcxz7l9HuBUvWclhzbRs16MSomBWOt62rtsjmVksFrG6o5vVazCQdNiT651bN-c6tPbvXqtvHqH_4ph6PJz-8gr1cSmoM_AbIuNkBz7UJumrRL4b8zXgDlzZsJ |
CitedBy_id | crossref_primary_10_1007_s11661_024_07352_5 crossref_primary_10_1016_j_engfracmech_2024_110267 crossref_primary_10_1016_j_ijfatigue_2022_107317 crossref_primary_10_1016_j_engfailanal_2022_106757 crossref_primary_10_1016_j_engfailanal_2021_105961 crossref_primary_10_1016_j_engfailanal_2022_106656 crossref_primary_10_1016_j_ijfatigue_2023_107974 crossref_primary_10_1111_ffe_14109 crossref_primary_10_1016_j_ijfatigue_2022_106842 crossref_primary_10_1016_j_ijfatigue_2022_107296 crossref_primary_10_1111_ffe_13859 crossref_primary_10_1016_j_engfracmech_2023_109269 crossref_primary_10_1016_j_engfracmech_2022_108831 crossref_primary_10_1016_j_engfailanal_2022_106782 crossref_primary_10_1016_j_engfailanal_2024_109255 crossref_primary_10_1016_j_engfailanal_2022_106445 crossref_primary_10_1016_j_engfracmech_2025_110993 crossref_primary_10_1016_j_engfracmech_2023_109660 crossref_primary_10_1016_j_measurement_2023_113866 crossref_primary_10_1108_IJSI_04_2022_0061 crossref_primary_10_1016_j_ijfatigue_2021_106559 crossref_primary_10_1016_j_engfailanal_2021_105973 crossref_primary_10_1016_j_ijfatigue_2022_106772 crossref_primary_10_1016_j_ijfatigue_2024_108336 crossref_primary_10_1016_j_ijfatigue_2022_107446 crossref_primary_10_1016_j_engfailanal_2022_106916 crossref_primary_10_1016_j_jmrt_2023_09_192 crossref_primary_10_1016_j_ijfatigue_2022_107184 |
Cites_doi | 10.1016/j.engfailanal.2010.06.001 10.1016/j.ijmecsci.2020.105685 10.1016/j.ijfatigue.2019.105421 10.1016/j.engfracmech.2010.03.013 10.1016/j.engfailanal.2016.04.009 10.1016/j.engfailanal.2019.01.054 10.1115/1.3443647 10.1016/j.ijfatigue.2019.105377 10.1016/j.ijfatigue.2019.05.005 10.1016/j.ijfatigue.2006.10.020 10.1016/j.engfailanal.2017.06.054 10.1016/S0734-743X(00)00044-0 10.1023/A:1009976418553 10.1016/j.matdes.2020.109095 10.1016/j.msea.2017.05.104 10.1016/0142-1123(89)90055-8 10.1016/S0921-5093(03)00002-9 10.1016/j.ijfatigue.2006.10.014 10.1016/j.ijfatigue.2006.02.042 10.1016/j.engfracmech.2019.106844 10.1016/0142-1123(89)90054-6 10.1016/j.engfailanal.2012.11.008 10.1016/j.ijfatigue.2010.11.011 10.1016/j.engfracmech.2009.12.013 10.1016/j.engfracmech.2020.107150 10.1111/ffe.13195 10.1016/j.engfracmech.2012.09.029 10.1016/j.ijfatigue.2009.04.016 10.1016/S0921-5093(02)00543-9 10.1016/j.ijfatigue.2015.09.022 10.1016/j.engfailanal.2019.01.055 10.1016/j.engfracmech.2017.09.032 10.1016/j.engfailanal.2019.01.034 10.1016/j.ijfatigue.2018.08.011 10.1016/j.engfailanal.2015.05.011 10.1016/j.ijfatigue.2020.105746 10.1016/S0167-6636(01)00064-3 10.1016/j.msea.2017.11.044 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Aug 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Aug 2021 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.ijfatigue.2021.106276 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3452 |
ExternalDocumentID | 10_1016_j_ijfatigue_2021_106276 S0142112321001365 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABCJ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K T9H TN5 VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 8BQ 8FD EFKBS JG9 |
ID | FETCH-LOGICAL-c343t-201872801b4a4f7480b66d992a64cc5973f8eb9f7a2373744a63cb22c60e6583 |
IEDL.DBID | .~1 |
ISSN | 0142-1123 |
IngestDate | Fri Jul 25 06:27:41 EDT 2025 Thu Apr 24 23:02:22 EDT 2025 Tue Jul 01 01:54:39 EDT 2025 Fri Feb 23 02:43:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cubical projectile Railway axle Fatigue strength S38C steel Impact damage |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-201872801b4a4f7480b66d992a64cc5973f8eb9f7a2373744a63cb22c60e6583 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2549726422 |
PQPubID | 2045465 |
ParticipantIDs | proquest_journals_2549726422 crossref_citationtrail_10_1016_j_ijfatigue_2021_106276 crossref_primary_10_1016_j_ijfatigue_2021_106276 elsevier_sciencedirect_doi_10_1016_j_ijfatigue_2021_106276 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2021 2021-08-00 20210801 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
PublicationDecade | 2020 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | International journal of fatigue |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Zerbst, Madia, Klinger, Bettge, Murakami (b0135) 2019; 97 Zhu, He, Liao, Wang, Liu (b0155) 2020; 196 Wu, Chi, Gao (b0010) 2016; 66 Liao, Zhu, Correia, De Jesus, Berto (b0185) 2020; 43 Zerbst, Beretta, Köhler, Lawton, Vormwald, Beier (b0005) 2013; 98 Gürer, Gür (b0020) 2018; 84 Simunek, Leitner, Rieger, Pippan, Gänser, Weber (b0050) 2020; 133 Maierhofer, Kolitsch, Pippan, Gänser, Madia, Zerbst (b0195) 2018; 198 Makino, Kato, Hirakawa (b0125) 2011; 78 Ding, Hall, Byrne, Tong (b0095) 2007; 29 Boyce, Chen, Peters, Hutchinson, Ritchie (b0080) 2003; 349 Lin (bib196) 2018; 711 Zerbst, Madia, Klinger, Bettge, Murakami (b0145) 2019; 97 Zhao, Yang, Feng, Wang (b0030) 2009; 31 Nicholas (b0120) 2006 Liao, Zhu, Keshtegar, Qian, Wang (b0160) 2020; 181 Boyce, Chen, Hutchinson, Ritchie (b0075) 2001; 33 Luke, Burdack, Moroz, Varfolomeev (b0040) 2016; 86 Zerbst, Madia, Klinger, Bettge, Murakami (b0140) 2019; 98 Liu (bib197) 2021 Odanovic, Ristivojevic, Milosevic-Mitic (b0025) 2015; 55 Bache, Bradshaw, Voice (b0085) 2003; 354 Murakami, Beretta (b0115) 1999; 2 Zhang, Xie, Jiang, Zhang, Sun, Hong (b0175) 2017; 700 Haddad, Smith, Topper (b0170) 1979; 101 Maierhofer, Gänser, Simunek, Leitner, Pippan, Luke (b0045) 2020; 132 Zerbst, Beretta (b0055) 2011; 18 Ding, Hall, Byrne, Tong (b0090) 2007; 29 Ai, Zhu, Liao, Correia, Souto, De Jesus (b0190) 2019; 126 Klinger, Bettge (b0015) 2013; 35 Gao, Pan, Han, Zhu, Liao, Li (b0105) 2020; 139 Murakami, Kodama, Konuma (b0110) 1989; 11 Zhao (b0035) 2012; 35 Murakami, Usuki (b0165) 1989; 11 He, Zhu, Liao, Niu (b0180) 2020; 235 Zerbst, Schödel, Beier (b0060) 2011; 78 Ruschau, Nicholas, Thompson (b0130) 2001; 25 Wu, Luo, Shen, Zhou, Zhang, Kang (b0070) 2020; 225 Oakley, Nowell (b0100) 2007; 29 Zhu, Ai, Liao, Correia, De Jesus, Wang (b0150) 2021 Wu, Xu, Kang, He (b0065) 2018; 117 Zerbst (10.1016/j.ijfatigue.2021.106276_b0060) 2011; 78 Haddad (10.1016/j.ijfatigue.2021.106276_b0170) 1979; 101 Murakami (10.1016/j.ijfatigue.2021.106276_b0165) 1989; 11 Zerbst (10.1016/j.ijfatigue.2021.106276_b0140) 2019; 98 Murakami (10.1016/j.ijfatigue.2021.106276_b0115) 1999; 2 Odanovic (10.1016/j.ijfatigue.2021.106276_b0025) 2015; 55 Murakami (10.1016/j.ijfatigue.2021.106276_b0110) 1989; 11 Maierhofer (10.1016/j.ijfatigue.2021.106276_b0195) 2018; 198 Ai (10.1016/j.ijfatigue.2021.106276_b0190) 2019; 126 Bache (10.1016/j.ijfatigue.2021.106276_b0085) 2003; 354 Ruschau (10.1016/j.ijfatigue.2021.106276_b0130) 2001; 25 Liu (10.1016/j.ijfatigue.2021.106276_bib197) 2021 Ding (10.1016/j.ijfatigue.2021.106276_b0095) 2007; 29 Makino (10.1016/j.ijfatigue.2021.106276_b0125) 2011; 78 Wu (10.1016/j.ijfatigue.2021.106276_b0070) 2020; 225 Zhu (10.1016/j.ijfatigue.2021.106276_b0155) 2020; 196 Gao (10.1016/j.ijfatigue.2021.106276_b0105) 2020; 139 Zerbst (10.1016/j.ijfatigue.2021.106276_b0055) 2011; 18 Zhao (10.1016/j.ijfatigue.2021.106276_b0035) 2012; 35 Zerbst (10.1016/j.ijfatigue.2021.106276_b0005) 2013; 98 Maierhofer (10.1016/j.ijfatigue.2021.106276_b0045) 2020; 132 Ding (10.1016/j.ijfatigue.2021.106276_b0090) 2007; 29 Klinger (10.1016/j.ijfatigue.2021.106276_b0015) 2013; 35 Zerbst (10.1016/j.ijfatigue.2021.106276_b0135) 2019; 97 He (10.1016/j.ijfatigue.2021.106276_b0180) 2020; 235 Boyce (10.1016/j.ijfatigue.2021.106276_b0075) 2001; 33 Nicholas (10.1016/j.ijfatigue.2021.106276_b0120) 2006 Wu (10.1016/j.ijfatigue.2021.106276_b0065) 2018; 117 Oakley (10.1016/j.ijfatigue.2021.106276_b0100) 2007; 29 Zhu (10.1016/j.ijfatigue.2021.106276_b0150) 2021 Liao (10.1016/j.ijfatigue.2021.106276_b0185) 2020; 43 Wu (10.1016/j.ijfatigue.2021.106276_b0010) 2016; 66 Boyce (10.1016/j.ijfatigue.2021.106276_b0080) 2003; 349 Liao (10.1016/j.ijfatigue.2021.106276_b0160) 2020; 181 Zhao (10.1016/j.ijfatigue.2021.106276_b0030) 2009; 31 Zhang (10.1016/j.ijfatigue.2021.106276_b0175) 2017; 700 Luke (10.1016/j.ijfatigue.2021.106276_b0040) 2016; 86 Simunek (10.1016/j.ijfatigue.2021.106276_b0050) 2020; 133 Zerbst (10.1016/j.ijfatigue.2021.106276_b0145) 2019; 97 Gürer (10.1016/j.ijfatigue.2021.106276_b0020) 2018; 84 Lin (10.1016/j.ijfatigue.2021.106276_bib196) 2018; 711 |
References_xml | – volume: 78 start-page: 810 year: 2011 end-page: 825 ident: b0125 article-title: Review of the fatigue damage tolerance of high-speed railway axles in Japan publication-title: Eng Fract Mech – volume: 711 start-page: 293 year: 2018 end-page: 302 ident: bib196 article-title: Effects of initial microstructures on hot tensile deformation behaviors and fracture characteristics of Ti-6Al-4V alloy publication-title: Mater Sci Eng A – volume: 66 start-page: 44 year: 2016 end-page: 59 ident: b0010 article-title: Damage tolerances of a railway axle in the presence of wheel polygonalizations publication-title: Eng Fail Anal – volume: 196 year: 2020 ident: b0155 article-title: The effect of notch size on critical distance and fatigue life predictions publication-title: Mater Des – volume: 349 start-page: 48 year: 2003 end-page: 58 ident: b0080 article-title: Mechanical relaxation of localized residual stresses associated with foreign object damage publication-title: Mater Sci Eng, A – year: 2006 ident: b0120 article-title: Chapter 7 - Foreign Object Damage – volume: 25 start-page: 233 year: 2001 end-page: 250 ident: b0130 article-title: Influence of foreign object damage (FOD) on the fatigue life of simulated Ti-6Al-4V airfoils publication-title: Int J Impact Eng – volume: 354 start-page: 199 year: 2003 end-page: 206 ident: b0085 article-title: Characterisation of foreign object damage and fatigue strength in titanium based aerofoil alloys publication-title: Mater Sci Eng, A – volume: 198 start-page: 45 year: 2018 end-page: 64 ident: b0195 article-title: The cyclic R-curve – Determination, problems, limitations and application publication-title: Eng Fract Mech – year: 2021 ident: bib197 article-title: The role of tension-compression asymmetrical microcrack evolution in the ignition of polymer bonded explosives under low velocity impact publication-title: J Appl Phys – volume: 181 year: 2020 ident: b0160 article-title: Probabilistic framework for fatigue life assessment of notched components under size effects publication-title: Int J Mech Sci – volume: 132 year: 2020 ident: b0045 article-title: Fatigue crack growth model including load sequence effects – Model development and calibration for railway axle steels publication-title: Int J Fatigue – volume: 18 start-page: 534 year: 2011 end-page: 542 ident: b0055 article-title: Failure and damage tolerance aspects of railway components publication-title: Eng Fail Anal – volume: 29 start-page: 1350 year: 2007 end-page: 1358 ident: b0095 article-title: Fatigue crack growth from foreign object damage under combined low and high cycle loading. Part II: A two-parameter predictive approach publication-title: Int J Fatigue – year: 2021 ident: b0150 article-title: Recent advances on size effect in metal fatigue under defects: a review publication-title: Int J Fract – volume: 235 year: 2020 ident: b0180 article-title: Probabilistic fatigue assessment of notched components under size effect using critical distance theory publication-title: Eng Fract Mech – volume: 35 start-page: 79 year: 2012 end-page: 90 ident: b0035 article-title: A fatigue reliability analysis method including super long life regime publication-title: Int J Fatigue – volume: 35 start-page: 66 year: 2013 end-page: 81 ident: b0015 article-title: Axle fracture of an ICE3 high speed train publication-title: Eng Fail Anal – volume: 31 start-page: 1550 year: 2009 end-page: 1558 ident: b0030 article-title: Probabilistic fatigue S-N curves including the super-long life regime of a railway axle steel publication-title: Int J Fatigue – volume: 97 start-page: 759 year: 2019 end-page: 776 ident: b0135 article-title: Defects as a root cause of fatigue failure of metallic components. III: Cavities, dents, corrosion pits, scratches publication-title: Eng Fail Anal – volume: 98 start-page: 214 year: 2013 end-page: 271 ident: b0005 article-title: Safe life and damage tolerance aspects of railway axles – A review publication-title: Eng Fract Mech – volume: 11 start-page: 299 year: 1989 end-page: 307 ident: b0165 article-title: Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. II: Fatigue limit evaluation based on statistics for extreme values of inclusion size publication-title: Int J Fatigue – volume: 84 start-page: 151 year: 2018 end-page: 166 ident: b0020 article-title: Failure analysis of fretting fatigue initiation and growth on railway axle press-fits publication-title: Eng Fail Anal – volume: 29 start-page: 1339 year: 2007 end-page: 1349 ident: b0090 article-title: Fatigue crack growth from foreign object damage under combined low and high cycle loading. Part I: Experimental studies publication-title: Int J Fatigue – volume: 139 year: 2020 ident: b0105 article-title: Influence of artificial defects on fatigue strength of induction hardened S38C axles publication-title: Int J Fatigue – volume: 33 start-page: 441 year: 2001 end-page: 454 ident: b0075 article-title: The residual stress state due to a spherical hard-body impact publication-title: Mech Mater – volume: 11 start-page: 291 year: 1989 end-page: 298 ident: b0110 article-title: Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: Basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions publication-title: Int J Fatigue – volume: 98 start-page: 228 year: 2019 end-page: 239 ident: b0140 article-title: Defects as a root cause of fatigue failure of metallic components. II: Non-metallic inclusions publication-title: Eng Fail Anal – volume: 86 start-page: 24 year: 2016 end-page: 33 ident: b0040 article-title: Experimental and numerical study on crack initiation under fretting fatigue loading publication-title: Int J Fatigue – volume: 29 start-page: 69 year: 2007 end-page: 80 ident: b0100 article-title: Prediction of the combined high- and low-cycle fatigue performance of gas turbine blades after foreign object damage publication-title: Int J Fatigue – volume: 101 start-page: 42 year: 1979 end-page: 46 ident: b0170 article-title: Fatigue crack propagation of short cracks publication-title: J Eng Mater Technol – volume: 117 start-page: 90 year: 2018 end-page: 100 ident: b0065 article-title: Probabilistic fatigue assessment for high-speed railway axles due to foreign object damages publication-title: Int J Fatigue – volume: 126 start-page: 165 year: 2019 end-page: 173 ident: b0190 article-title: Probabilistic modeling of fatigue life distribution and size effect of components with random defects publication-title: Int J Fatigue – volume: 225 year: 2020 ident: b0070 article-title: Collaborative crack initiation mechanism of 25CrMo4 alloy steels subjected to foreign object damages publication-title: Eng Fract Mech – volume: 43 start-page: 637 year: 2020 end-page: 659 ident: b0185 article-title: Recent advances on notch effects in metal fatigue: a review publication-title: Fatigue Fract Eng Mater Struct – volume: 97 start-page: 777 year: 2019 end-page: 792 ident: b0145 article-title: Defects as a root cause of fatigue failure of metallic components. I: Basic aspects publication-title: Eng Fail Anal – volume: 78 start-page: 793 year: 2011 end-page: 809 ident: b0060 article-title: Parameters affecting the damage tolerance behaviour of railway axles publication-title: Eng Fract Mech – volume: 2 start-page: 123 year: 1999 end-page: 147 ident: b0115 article-title: Small Defects and Inhomogeneities in Fatigue Strength: Experiments, Models and Statistical Implications publication-title: Extremes – volume: 55 start-page: 169 year: 2015 end-page: 181 ident: b0025 article-title: Investigation into the causes of fracture in railway freight car axle publication-title: Eng Fail Anal – volume: 700 start-page: 66 year: 2017 end-page: 74 ident: b0175 article-title: Fatigue crack growth behavior in gradient microstructure of hardened surface layer for an axle steel publication-title: Mater Sci Eng, A – volume: 133 year: 2020 ident: b0050 article-title: Fatigue crack growth in railway axle specimens – Transferability and model validation publication-title: Int J Fatigue – volume: 18 start-page: 534 year: 2011 ident: 10.1016/j.ijfatigue.2021.106276_b0055 article-title: Failure and damage tolerance aspects of railway components publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2010.06.001 – year: 2021 ident: 10.1016/j.ijfatigue.2021.106276_bib197 article-title: The role of tension-compression asymmetrical microcrack evolution in the ignition of polymer bonded explosives under low velocity impact publication-title: J Appl Phys – volume: 181 year: 2020 ident: 10.1016/j.ijfatigue.2021.106276_b0160 article-title: Probabilistic framework for fatigue life assessment of notched components under size effects publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2020.105685 – volume: 133 year: 2020 ident: 10.1016/j.ijfatigue.2021.106276_b0050 article-title: Fatigue crack growth in railway axle specimens – Transferability and model validation publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2019.105421 – volume: 78 start-page: 793 year: 2011 ident: 10.1016/j.ijfatigue.2021.106276_b0060 article-title: Parameters affecting the damage tolerance behaviour of railway axles publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2010.03.013 – volume: 66 start-page: 44 year: 2016 ident: 10.1016/j.ijfatigue.2021.106276_b0010 article-title: Damage tolerances of a railway axle in the presence of wheel polygonalizations publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2016.04.009 – volume: 98 start-page: 228 year: 2019 ident: 10.1016/j.ijfatigue.2021.106276_b0140 article-title: Defects as a root cause of fatigue failure of metallic components. II: Non-metallic inclusions publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2019.01.054 – volume: 101 start-page: 42 year: 1979 ident: 10.1016/j.ijfatigue.2021.106276_b0170 article-title: Fatigue crack propagation of short cracks publication-title: J Eng Mater Technol doi: 10.1115/1.3443647 – volume: 132 year: 2020 ident: 10.1016/j.ijfatigue.2021.106276_b0045 article-title: Fatigue crack growth model including load sequence effects – Model development and calibration for railway axle steels publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2019.105377 – volume: 126 start-page: 165 year: 2019 ident: 10.1016/j.ijfatigue.2021.106276_b0190 article-title: Probabilistic modeling of fatigue life distribution and size effect of components with random defects publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2019.05.005 – volume: 29 start-page: 1339 year: 2007 ident: 10.1016/j.ijfatigue.2021.106276_b0090 article-title: Fatigue crack growth from foreign object damage under combined low and high cycle loading. Part I: Experimental studies publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2006.10.020 – volume: 84 start-page: 151 year: 2018 ident: 10.1016/j.ijfatigue.2021.106276_b0020 article-title: Failure analysis of fretting fatigue initiation and growth on railway axle press-fits publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2017.06.054 – volume: 25 start-page: 233 year: 2001 ident: 10.1016/j.ijfatigue.2021.106276_b0130 article-title: Influence of foreign object damage (FOD) on the fatigue life of simulated Ti-6Al-4V airfoils publication-title: Int J Impact Eng doi: 10.1016/S0734-743X(00)00044-0 – volume: 2 start-page: 123 year: 1999 ident: 10.1016/j.ijfatigue.2021.106276_b0115 article-title: Small Defects and Inhomogeneities in Fatigue Strength: Experiments, Models and Statistical Implications publication-title: Extremes doi: 10.1023/A:1009976418553 – volume: 196 year: 2020 ident: 10.1016/j.ijfatigue.2021.106276_b0155 article-title: The effect of notch size on critical distance and fatigue life predictions publication-title: Mater Des doi: 10.1016/j.matdes.2020.109095 – volume: 700 start-page: 66 year: 2017 ident: 10.1016/j.ijfatigue.2021.106276_b0175 article-title: Fatigue crack growth behavior in gradient microstructure of hardened surface layer for an axle steel publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2017.05.104 – volume: 11 start-page: 299 year: 1989 ident: 10.1016/j.ijfatigue.2021.106276_b0165 article-title: Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. II: Fatigue limit evaluation based on statistics for extreme values of inclusion size publication-title: Int J Fatigue doi: 10.1016/0142-1123(89)90055-8 – volume: 354 start-page: 199 year: 2003 ident: 10.1016/j.ijfatigue.2021.106276_b0085 article-title: Characterisation of foreign object damage and fatigue strength in titanium based aerofoil alloys publication-title: Mater Sci Eng, A doi: 10.1016/S0921-5093(03)00002-9 – volume: 29 start-page: 1350 year: 2007 ident: 10.1016/j.ijfatigue.2021.106276_b0095 article-title: Fatigue crack growth from foreign object damage under combined low and high cycle loading. Part II: A two-parameter predictive approach publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2006.10.014 – volume: 29 start-page: 69 year: 2007 ident: 10.1016/j.ijfatigue.2021.106276_b0100 article-title: Prediction of the combined high- and low-cycle fatigue performance of gas turbine blades after foreign object damage publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2006.02.042 – volume: 225 year: 2020 ident: 10.1016/j.ijfatigue.2021.106276_b0070 article-title: Collaborative crack initiation mechanism of 25CrMo4 alloy steels subjected to foreign object damages publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2019.106844 – volume: 11 start-page: 291 year: 1989 ident: 10.1016/j.ijfatigue.2021.106276_b0110 article-title: Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: Basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions publication-title: Int J Fatigue doi: 10.1016/0142-1123(89)90054-6 – volume: 35 start-page: 66 year: 2013 ident: 10.1016/j.ijfatigue.2021.106276_b0015 article-title: Axle fracture of an ICE3 high speed train publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2012.11.008 – volume: 35 start-page: 79 year: 2012 ident: 10.1016/j.ijfatigue.2021.106276_b0035 article-title: A fatigue reliability analysis method including super long life regime publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2010.11.011 – volume: 78 start-page: 810 year: 2011 ident: 10.1016/j.ijfatigue.2021.106276_b0125 article-title: Review of the fatigue damage tolerance of high-speed railway axles in Japan publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2009.12.013 – volume: 235 year: 2020 ident: 10.1016/j.ijfatigue.2021.106276_b0180 article-title: Probabilistic fatigue assessment of notched components under size effect using critical distance theory publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2020.107150 – year: 2006 ident: 10.1016/j.ijfatigue.2021.106276_b0120 – volume: 43 start-page: 637 year: 2020 ident: 10.1016/j.ijfatigue.2021.106276_b0185 article-title: Recent advances on notch effects in metal fatigue: a review publication-title: Fatigue Fract Eng Mater Struct doi: 10.1111/ffe.13195 – volume: 98 start-page: 214 year: 2013 ident: 10.1016/j.ijfatigue.2021.106276_b0005 article-title: Safe life and damage tolerance aspects of railway axles – A review publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2012.09.029 – volume: 31 start-page: 1550 year: 2009 ident: 10.1016/j.ijfatigue.2021.106276_b0030 article-title: Probabilistic fatigue S-N curves including the super-long life regime of a railway axle steel publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2009.04.016 – volume: 349 start-page: 48 year: 2003 ident: 10.1016/j.ijfatigue.2021.106276_b0080 article-title: Mechanical relaxation of localized residual stresses associated with foreign object damage publication-title: Mater Sci Eng, A doi: 10.1016/S0921-5093(02)00543-9 – volume: 86 start-page: 24 year: 2016 ident: 10.1016/j.ijfatigue.2021.106276_b0040 article-title: Experimental and numerical study on crack initiation under fretting fatigue loading publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2015.09.022 – volume: 97 start-page: 777 year: 2019 ident: 10.1016/j.ijfatigue.2021.106276_b0145 article-title: Defects as a root cause of fatigue failure of metallic components. I: Basic aspects publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2019.01.055 – year: 2021 ident: 10.1016/j.ijfatigue.2021.106276_b0150 article-title: Recent advances on size effect in metal fatigue under defects: a review publication-title: Int J Fract – volume: 198 start-page: 45 year: 2018 ident: 10.1016/j.ijfatigue.2021.106276_b0195 article-title: The cyclic R-curve – Determination, problems, limitations and application publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2017.09.032 – volume: 97 start-page: 759 year: 2019 ident: 10.1016/j.ijfatigue.2021.106276_b0135 article-title: Defects as a root cause of fatigue failure of metallic components. III: Cavities, dents, corrosion pits, scratches publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2019.01.034 – volume: 117 start-page: 90 year: 2018 ident: 10.1016/j.ijfatigue.2021.106276_b0065 article-title: Probabilistic fatigue assessment for high-speed railway axles due to foreign object damages publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2018.08.011 – volume: 55 start-page: 169 year: 2015 ident: 10.1016/j.ijfatigue.2021.106276_b0025 article-title: Investigation into the causes of fracture in railway freight car axle publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2015.05.011 – volume: 139 year: 2020 ident: 10.1016/j.ijfatigue.2021.106276_b0105 article-title: Influence of artificial defects on fatigue strength of induction hardened S38C axles publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2020.105746 – volume: 33 start-page: 441 year: 2001 ident: 10.1016/j.ijfatigue.2021.106276_b0075 article-title: The residual stress state due to a spherical hard-body impact publication-title: Mech Mater doi: 10.1016/S0167-6636(01)00064-3 – volume: 711 start-page: 293 year: 2018 ident: 10.1016/j.ijfatigue.2021.106276_bib196 article-title: Effects of initial microstructures on hot tensile deformation behaviors and fracture characteristics of Ti-6Al-4V alloy publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2017.11.044 |
SSID | ssj0009075 |
Score | 2.4818392 |
Snippet | •Various types of FODs were created by cubical projectiles and damage mechanism was studied.•Influences of FODs on fatigue strength of S38C axles were... Surface damages caused by the impact of flying objects are important factors responsible for fatigue performance degradation of high-speed railway axles, both... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 106276 |
SubjectTerms | Compressed gas Cubical projectile Damage assessment Damage tolerance Fatigue failure Fatigue strength Gas guns High speed rail Impact damage Induction hardening Materials fatigue Morphology Performance degradation Projectiles Railway axle S38C steel Shafts (machine elements) |
Title | Fatigue and damage tolerance assessment of induction hardened S38C axles under different foreign objects |
URI | https://dx.doi.org/10.1016/j.ijfatigue.2021.106276 https://www.proquest.com/docview/2549726422 |
Volume | 149 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIpCqTywhqa26yRsVUVVQHShSN0sJ7FFq9JUbZCY-O3cxUl5CKkDY06-JD7b97DuviPkCrwIwyJhPPRGPRHGqRch7q3xja9DHQR-URT2OJLDZ3E_6U5qpF_VwmBaZan7nU4vtHVJaZfSbC-n0zamJUH0wrAIBYHHsNBciAB3-fXHV5pH5MB2cbCHo3_keE1nFuaPVyQMbB1QJUPwkb8t1C9dXRigwQHZLz1H2nM_d0hqZnFE9r7hCR6Tl4H7DtWLlKb6FXQFzbO5weYZQNyAcNLMUojFHXAsxbor0HgpfeJhn-r3uVlTLC1b0ap7Sk6t6-BJsxjvbdYnZDy4HfeHXtlKwUu44DmchU6Ijag6sdDCBiL0YynTKGJaiiSBoILb0MSRDTTjAQ-E0JInMWOJ9A34KPyU1BfZwpwRarW0qbUdK5JUIPa-4SbtAmPIDQznDSIr6amkhBnHbhdzVeWTzdRG7ArFrpzYG8TfMC4d0sZ2lptqedSPTaPAHmxnblYLqspzu1YYLgfgIzJ2_p93X5BdfHKJgk1Sz1dv5hKclzxuFbuzRXZ6dw_D0SdTMu7v |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgOwAHxFO8yYFrtS7J0pYbmpgGe1wYErcobRMxNDbEisTPx17a8RASB65p3FZO8tmO7M8AF-hFWJ5IG5A3Gsg4zYOEeG9taEMTmygKF0Vhg6Hq3svbh9bDCrSrWhhKqyyx32P6Aq3LkUapzcbLeNygtCSMXjgVoRDxWGsV6sRO1apB_eqm1x1-cu96vl2aH5DAtzSv8ZNDFdAtCUdzh6OKE__I70bqB1wvbFBnCzZL55Fd-f_bhhU73YGNL5SCu_DY8d9hZpqz3DwjXLBiNrHUPwMHlzycbOYYhuOeO5ZR6RWCXs7uRNxm5n1i54yqy15Z1UClYM438WSzlK5u5nsw6lyP2t2g7KYQZEKKAo9DM6ZeVM1UGukiGYepUnmScKNklmFcIVxs08RFhotIRFIaJbKU80yFFt0UsQ-16WxqD4A5o1zuXNPJLJdEv2-FzVsoGAuL08UhqEp7OiuZxqnhxURXKWVPeql2TWrXXu2HEC4FXzzZxt8il9Xy6G_7RqNJ-Fv4pFpQXR7duaaIOUI3kfOj_7z7HNa6o0Ff92-GvWNYpyc-b_AEasXrmz1FX6ZIz8q9-gGCa_Gg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fatigue+and+damage+tolerance+assessment+of+induction+hardened+S38C+axles+under+different+foreign+objects&rft.jtitle=International+journal+of+fatigue&rft.au=Gao%2C+Jie-Wei&rft.au=Yu%2C+Ming-Hua&rft.au=Liao%2C+Ding&rft.au=Zhu%2C+Shun-Peng&rft.date=2021-08-01&rft.pub=Elsevier+BV&rft.issn=0142-1123&rft.eissn=1879-3452&rft.volume=149&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ijfatigue.2021.106276&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-1123&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-1123&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-1123&client=summon |