Efficient Estimation of Longitudinal Data Additive Varying Coefficient Regression Models
We consider a longitudinal data additive varying coefficient regression model, in which the coef- ficients of some factors (covariates) are additive functions of other factors, so that the interactions between different factors can be taken into account effectively. By considering within-subject cor...
Saved in:
Published in | Acta Mathematicae Applicatae Sinica Vol. 33; no. 2; pp. 529 - 550 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2017
Springer Nature B.V |
Edition | English series |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider a longitudinal data additive varying coefficient regression model, in which the coef- ficients of some factors (covariates) are additive functions of other factors, so that the interactions between different factors can be taken into account effectively. By considering within-subject correlation among repeated measurements over time and additive structure, we propose a feasible weighted two-stage local quasi-likelihood estimation. In the first stage, we construct initial estimators of the additive component functions by B-spline se- ries approximation. With the initial estimators, we transform the additive varying coefficients regression model into a varying coefficients regression model and further apply the local weighted quasi-likelihood method to estimate the varying coefficient functions in the second stage. The resulting second stage estimators are com- putationally expedient and intuitively appealing. They also have the advantages of higher asymptotic efficiency than those neglecting the correlation structure, and an oracle property in the sense that the asymptotic property of each additive component is the same as if the other components were known with certainty. Simulation studies are conducted to demonstrate finite sample behaviors of the proposed estimators, and a real data example is given to illustrate the usefulness of the proposed methodology. |
---|---|
AbstractList | We consider a longitudinal data additive varying coefficient regression model, in which the coef- ficients of some factors (covariates) are additive functions of other factors, so that the interactions between different factors can be taken into account effectively. By considering within-subject correlation among repeated measurements over time and additive structure, we propose a feasible weighted two-stage local quasi-likelihood estimation. In the first stage, we construct initial estimators of the additive component functions by B-spline se- ries approximation. With the initial estimators, we transform the additive varying coefficients regression model into a varying coefficients regression model and further apply the local weighted quasi-likelihood method to estimate the varying coefficient functions in the second stage. The resulting second stage estimators are com- putationally expedient and intuitively appealing. They also have the advantages of higher asymptotic efficiency than those neglecting the correlation structure, and an oracle property in the sense that the asymptotic property of each additive component is the same as if the other components were known with certainty. Simulation studies are conducted to demonstrate finite sample behaviors of the proposed estimators, and a real data example is given to illustrate the usefulness of the proposed methodology. We consider a longitudinal data additive varying coefficient regression model, in which the coefficients of some factors (covariates) are additive functions of other factors, so that the interactions between different factors can be taken into account effectively. By considering within-subject correlation among repeated measurements over time and additive structure, we propose a feasible weighted two-stage local quasi-likelihood estimation. In the first stage, we construct initial estimators of the additive component functions by B-spline series approximation. With the initial estimators, we transform the additive varying coefficients regression model into a varying coefficients regression model and further apply the local weighted quasi-likelihood method to estimate the varying coefficient functions in the second stage. The resulting second stage estimators are computationally expedient and intuitively appealing. They also have the advantages of higher asymptotic efficiency than those neglecting the correlation structure, and an oracle property in the sense that the asymptotic property of each additive component is the same as if the other components were known with certainty. Simulation studies are conducted to demonstrate finite sample behaviors of the proposed estimators, and a real data example is given to illustrate the usefulness of the proposed methodology. |
Author | Shu LIU |
AuthorAffiliation | School of Statistics and Information, Shanghai University of International Business and Economics, Shanghai 201620, China School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai 200433, China |
Author_xml | – sequence: 1 givenname: Shu surname: Liu fullname: Liu, Shu email: liu2008shu@126.com organization: School of Statistics and Information, Shanghai University of International Business and Economics, School of Statistics and Management, Shanghai University of Finance and Economics |
BookMark | eNp9kE1LAzEQhoNUsK3-AG-LnlczyW6yeyy1fkBFEBVvIbvJril10yap0H9v6pYiHjzN5X3mnXlGaNDZTiN0DvgKMObXHjDJ8xQDTzErICVHaAgMipSWlAzQEAMr0pJxeoJG3i9wDFLGh-h91jSmNroLycwH8ymDsV1im2Ruu9aEjTKdXCY3MshkopQJ5ksnb9JtTdcmU6sP8LNunfZ-Bz9apZf-FB03cun12X6O0evt7GV6n86f7h6mk3la04yGFHhGQHNeEKZZBaCaklVEV1JJySucKV6Uda5ynWsJQBVVkjU5rViR5Rjjio7RZb935ex6o30QC7tx8WgvoCjzrCyLrIwp3qdqZ713uhG1CT-_BifNUgAWO42i1yiiHbHTKEgk4Q-5clGT2_7LkJ7xMdu12v266R_oYl_0EdWvI3doYhw4xyQK-wZew5JE |
CitedBy_id | crossref_primary_10_1007_s10651_022_00535_6 |
Cites_doi | 10.1198/jasa.2009.tm08485 10.1093/biomet/asq080 10.1198/016214504000000629 10.2307/2532783 10.1093/biomet/73.1.13 10.1080/01621459.2013.763726 10.1198/016214504000001060 10.1093/biomet/85.4.809 10.1093/oxfordhb/9780199934898.013.0018 10.1111/j.1467-9868.2012.01038.x 10.1093/biomet/92.1.59 10.1214/12-AOS1056 10.1093/biomet/86.3.677 10.1093/biomet/asp015 10.1214/aos/1017939140 10.1111/j.1541-0420.2005.00490.x 10.1111/1467-9868.00233 10.1016/j.jspi.2004.11.003 10.1198/016214507000000095 10.1017/S0266466609090604 10.1080/01621459.1998.10473800 10.1093/biomet/85.3.645 10.1111/j.2517-6161.1993.tb01939.x 10.1201/9781420011579 |
ContentType | Journal Article |
Copyright | Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017 Copyright Springer Science & Business Media 2017 |
Copyright_xml | – notice: Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017 – notice: Copyright Springer Science & Business Media 2017 |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION |
DOI | 10.1007/s10255-017-0681-2 |
DatabaseName | 中文科技期刊数据库 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
DocumentTitleAlternate | Efficient Estimation of Longitudinal Data Additive Varying Coefficient Regression Models |
EISSN | 1618-3932 |
Edition | English series |
EndPage | 550 |
ExternalDocumentID | 10_1007_s10255_017_0681_2 671770234 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 23M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2RA 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5QI 5VR 5VS 6NX 8TC 8UJ 92L 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEOHA AEPOP AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFLOW AFMKY AFNRJ AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGPAZ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD B-. BA0 BAPOH BBWZM BDATZ BGNMA CAG CCEZO CCVFK CHBEP COF CQIGP CS3 CSCUP CW9 DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG6 HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I REI RHV RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCL SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR ZMTXR ZWQNP ~A9 ~EX ~WA -SA -S~ 5XA 5XB AACDK AAJBT AASML AAXDM AAYZH ABAKF ABQSL ACDTI ACPIV AEFQL AEMSY AGQEE AGRTI AIGIU BSONS CAJEA H13 Q-- U1G U5K AAPKM AAYXX ABBRH ABDBE ADHKG AFDZB AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION TGP ABRTQ |
ID | FETCH-LOGICAL-c343t-17421e77826e6b11df96b2ebadaa7b04d789c5d5e5ea113d3da6f53b6845000b3 |
IEDL.DBID | U2A |
ISSN | 0168-9673 |
IngestDate | Fri Jul 25 11:07:00 EDT 2025 Tue Jul 01 04:36:57 EDT 2025 Thu Apr 24 22:59:03 EDT 2025 Fri Feb 21 02:33:56 EST 2025 Wed Feb 14 10:03:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | additive vary-coefficient model 62G08 within-subject correlation 62G20 62F12 62H12 longitudinal data modified Cholesky decomposition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-17421e77826e6b11df96b2ebadaa7b04d789c5d5e5ea113d3da6f53b6845000b3 |
Notes | We consider a longitudinal data additive varying coefficient regression model, in which the coef- ficients of some factors (covariates) are additive functions of other factors, so that the interactions between different factors can be taken into account effectively. By considering within-subject correlation among repeated measurements over time and additive structure, we propose a feasible weighted two-stage local quasi-likelihood estimation. In the first stage, we construct initial estimators of the additive component functions by B-spline se- ries approximation. With the initial estimators, we transform the additive varying coefficients regression model into a varying coefficients regression model and further apply the local weighted quasi-likelihood method to estimate the varying coefficient functions in the second stage. The resulting second stage estimators are com- putationally expedient and intuitively appealing. They also have the advantages of higher asymptotic efficiency than those neglecting the correlation structure, and an oracle property in the sense that the asymptotic property of each additive component is the same as if the other components were known with certainty. Simulation studies are conducted to demonstrate finite sample behaviors of the proposed estimators, and a real data example is given to illustrate the usefulness of the proposed methodology. 11-2041/O1 additive vary-coefficient model; longitudinal data; modified Cholesky decomposition; withinsubject correlation ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1895499849 |
PQPubID | 2043978 |
PageCount | 22 |
ParticipantIDs | proquest_journals_1895499849 crossref_citationtrail_10_1007_s10255_017_0681_2 crossref_primary_10_1007_s10255_017_0681_2 springer_journals_10_1007_s10255_017_0681_2 chongqing_primary_671770234 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-01 |
PublicationDateYYYYMMDD | 2017-04-01 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Acta Mathematicae Applicatae Sinica |
PublicationTitleAbbrev | Acta Math. Appl. Sin. Engl. Ser |
PublicationTitleAlternate | Acta Mathematicae Applicatae Sinica |
PublicationYear | 2017 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Wang, Carroll, Lin (CR22) 2005; 100 Fan, Zhang (CR7) 2000; 62 Pourahmadi (CR19) 1999; 86 Wu, Chiang, Hoover (CR23) 1998; 93 Liang, Zeger (CR14) 1986; 73 Qu, Li (CR20) 2006; 62 Wang, Yang (CR21) 2007; 35 Leng, Zhang, Pan (CR11) 2010; 105 Liang, Härdle, Carroll (CR13) 1999; 27 Ma (CR17) 2012; 40 Diggle, Heagerty, Liang, Zeger (CR3) 2013 Hastie, Tibshirani (CR9) 1993; 55 Xue, Yang (CR27) 2006; 136 Fan, Li (CR5) 2004; 99 Xia, Li (CR25) 1999; 9 Noh, Park (CR18) 2010; 20 Li (CR12) 2011; 98 Carroll, Maity, Mammen, Yu (CR1) 2009; 96 Fan, Huang, Li (CR4) 2007; 102 Zeger, Diggle (CR29) 1994; 50 Chen, Jin (CR2) 2005; 92 Hoover, Rice, Wu, Yang (CR10) 1998; 85 Liu, Yang, Härdle (CR16) 2013; 108 Fan, Yao (CR6) 1998; 85 Fitzmaurice, Davidian, Verbeke, Molenberghs (CR8) 2008 Wu, Tian, Kai (CR24) 2013 Liu, Yang (CR15) 2010; 26 Yao, Li (CR28) 2013; 75 Xue, Yang (CR26) 2006; 16 R.J. Carroll (681_CR1) 2009; 96 C.O. Wu (681_CR24) 2013 H. Liang (681_CR13) 1999; 27 M. Pourahmadi (681_CR19) 1999; 86 Y. Xia (681_CR25) 1999; 9 N. Wang (681_CR22) 2005; 100 L. Xue (681_CR26) 2006; 16 C. Leng (681_CR11) 2010; 105 Y. Li (681_CR12) 2011; 98 C.O. Wu (681_CR23) 1998; 93 S. Ma (681_CR17) 2012; 40 R. Liu (681_CR15) 2010; 26 W. Yao (681_CR28) 2013; 75 S. Zeger (681_CR29) 1994; 50 K. Chen (681_CR2) 2005; 92 J. Fan (681_CR7) 2000; 62 G. Fitzmaurice (681_CR8) 2008 D.R. Hoover (681_CR10) 1998; 85 T. Hastie (681_CR9) 1993; 55 J. Fan (681_CR4) 2007; 102 H. Noh (681_CR18) 2010; 20 P. Diggle (681_CR3) 2013 J. Fan (681_CR6) 1998; 85 R. Liu (681_CR16) 2013; 108 J. Fan (681_CR5) 2004; 99 L. Wang (681_CR21) 2007; 35 K.Y. Liang (681_CR14) 1986; 73 A. Qu (681_CR20) 2006; 62 L. Xue (681_CR27) 2006; 136 |
References_xml | – volume: 105 start-page: 181 year: 2010 end-page: 193 ident: CR11 article-title: Semiparametric meanccovariance regression analysis for longitudinal data publication-title: Journal of the American Statistical Association doi: 10.1198/jasa.2009.tm08485 – volume: 98 start-page: 355 year: 2011 end-page: 370 ident: CR12 article-title: Efficient semiparametric regression for longitudinal data with nonparametric covariance estimation publication-title: Biometrika doi: 10.1093/biomet/asq080 – volume: 100 start-page: 147 year: 2005 end-page: 157 ident: CR22 article-title: Efficient semiparametric marginal estimation for longitudinal/clustered data publication-title: Journal of the American Statistical Association doi: 10.1198/016214504000000629 – volume: 50 start-page: 689 year: 1994 end-page: 699 ident: CR29 article-title: Semi-parametric models for longitudinal data with application to cd4 cell numbers in hiv seroconverters publication-title: Biometrics doi: 10.2307/2532783 – volume: 73 start-page: 13 year: 1986 end-page: 22 ident: CR14 article-title: Longitudinal data analysis using generalized linear models publication-title: Biometrika doi: 10.1093/biomet/73.1.13 – year: 2008 ident: CR8 publication-title: Longitudinal data analysis – volume: 108 start-page: 619 year: 2013 end-page: 631 ident: CR16 article-title: Oracally efficient two-step estimation of generalized additive model publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2013.763726 – volume: 9 start-page: 735 year: 1999 end-page: 757 ident: CR25 article-title: On the estimation and testing of functional-coefficient linear models publication-title: Statistica Sinica – volume: 99 start-page: 710 year: 2004 end-page: 723 ident: CR5 article-title: New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis publication-title: Journal of the American Statistical Association doi: 10.1198/016214504000001060 – volume: 85 start-page: 809 year: 1998 end-page: 822 ident: CR10 article-title: Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data publication-title: Biometrika doi: 10.1093/biomet/85.4.809 – year: 2013 ident: CR24 publication-title: Nonparametric regression models for the analysis of longitudinal data doi: 10.1093/oxfordhb/9780199934898.013.0018 – volume: 75 start-page: 123 year: 2013 end-page: 138 ident: CR28 article-title: New local estimation procedure for a non-parametric regression function for longitudinal data publication-title: Journal of the Royal Statistical Society: Series B doi: 10.1111/j.1467-9868.2012.01038.x – volume: 20 start-page: 1183 year: 2010 end-page: 1202 ident: CR18 article-title: Sparse varying coefficient models for longitudinal data publication-title: Statistica Sinica – volume: 92 start-page: 59 year: 2005 end-page: 74 ident: CR2 article-title: Lcoal polynomial regression analysis of clustered data publication-title: Biometrika doi: 10.1093/biomet/92.1.59 – volume: 55 start-page: 757 year: 1993 end-page: 796 ident: CR9 article-title: Varying-coefficient models publication-title: Journal of the Royal Statistical Society: Series B – volume: 40 start-page: 2943 year: 2012 end-page: 2972 ident: CR17 article-title: Two-step spline estimating equations for generalized additive partially linear models with large cluster sizes publication-title: The Annals of Statistics doi: 10.1214/12-AOS1056 – volume: 86 start-page: 677 year: 1999 end-page: 690 ident: CR19 article-title: Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation publication-title: Biometrika doi: 10.1093/biomet/86.3.677 – volume: 35 start-page: 24740 year: 2007 end-page: 2503 ident: CR21 article-title: Spline-backfitted kernel smoothing of nonlinear additive autoregression model publication-title: The Annals of Statistics – volume: 16 start-page: 1423 year: 2006 end-page: 1446 ident: CR26 article-title: Additive coefficient modeling via polynomial spline publication-title: Statistica Sinica – volume: 96 start-page: 383 year: 2009 end-page: 398 ident: CR1 article-title: Nonparametric additive regression for repeatedly measured data publication-title: Biometrika doi: 10.1093/biomet/asp015 – volume: 27 start-page: 1519 year: 1999 end-page: 1535 ident: CR13 article-title: Estimation in a semiparametric partially linear errors-in-variables model publication-title: The Annals of Statistics doi: 10.1214/aos/1017939140 – volume: 62 start-page: 379 year: 2006 end-page: 391 ident: CR20 article-title: Quadratic inference functions for varying-coefficient models with longitudinal data publication-title: Biometrics doi: 10.1111/j.1541-0420.2005.00490.x – volume: 62 start-page: 303 year: 2000 end-page: 322 ident: CR7 article-title: Two-step estimation of functional linear models with applications to longitudinal data publication-title: Journal of the Royal Statistical Society: Series B doi: 10.1111/1467-9868.00233 – volume: 136 start-page: 2506 year: 2006 end-page: 2534 ident: CR27 article-title: Estimation of semi-parametric additive coefficient model publication-title: Journal of Statistical Planning and Inference doi: 10.1016/j.jspi.2004.11.003 – year: 2013 ident: CR3 publication-title: Analysis of longitudinal data – volume: 102 start-page: 632 year: 2007 end-page: 641 ident: CR4 article-title: Analysis of longitudinal data with semiparametric estimation of covariance function publication-title: Journal of the American Statistical Association doi: 10.1198/016214507000000095 – volume: 26 start-page: 29 year: 2010 end-page: 59 ident: CR15 article-title: Spline-backfitted kernel smoothing of additive coefficient model publication-title: Econometric Theory doi: 10.1017/S0266466609090604 – volume: 93 start-page: 1388 year: 1998 end-page: 1402 ident: CR23 article-title: Asymptotic confidence regions for kernel smoothing of a varyingcoefficient model with longitudinal data publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1998.10473800 – volume: 85 start-page: 645 year: 1998 end-page: 660 ident: CR6 article-title: Efficient estimation of conditional variance functions in stochastic regression publication-title: Biometrika doi: 10.1093/biomet/85.3.645 – volume: 96 start-page: 383 year: 2009 ident: 681_CR1 publication-title: Biometrika doi: 10.1093/biomet/asp015 – volume: 16 start-page: 1423 year: 2006 ident: 681_CR26 publication-title: Statistica Sinica – volume: 92 start-page: 59 year: 2005 ident: 681_CR2 publication-title: Biometrika doi: 10.1093/biomet/92.1.59 – volume: 99 start-page: 710 year: 2004 ident: 681_CR5 publication-title: Journal of the American Statistical Association doi: 10.1198/016214504000001060 – volume-title: Nonparametric regression models for the analysis of longitudinal data year: 2013 ident: 681_CR24 doi: 10.1093/oxfordhb/9780199934898.013.0018 – volume: 26 start-page: 29 year: 2010 ident: 681_CR15 publication-title: Econometric Theory doi: 10.1017/S0266466609090604 – volume: 50 start-page: 689 year: 1994 ident: 681_CR29 publication-title: Biometrics doi: 10.2307/2532783 – volume: 20 start-page: 1183 year: 2010 ident: 681_CR18 publication-title: Statistica Sinica – volume: 62 start-page: 303 year: 2000 ident: 681_CR7 publication-title: Journal of the Royal Statistical Society: Series B doi: 10.1111/1467-9868.00233 – volume: 35 start-page: 24740 year: 2007 ident: 681_CR21 publication-title: The Annals of Statistics – volume: 102 start-page: 632 year: 2007 ident: 681_CR4 publication-title: Journal of the American Statistical Association doi: 10.1198/016214507000000095 – volume: 105 start-page: 181 year: 2010 ident: 681_CR11 publication-title: Journal of the American Statistical Association doi: 10.1198/jasa.2009.tm08485 – volume: 98 start-page: 355 year: 2011 ident: 681_CR12 publication-title: Biometrika doi: 10.1093/biomet/asq080 – volume: 136 start-page: 2506 year: 2006 ident: 681_CR27 publication-title: Journal of Statistical Planning and Inference doi: 10.1016/j.jspi.2004.11.003 – volume: 86 start-page: 677 year: 1999 ident: 681_CR19 publication-title: Biometrika doi: 10.1093/biomet/86.3.677 – volume: 75 start-page: 123 year: 2013 ident: 681_CR28 publication-title: Journal of the Royal Statistical Society: Series B doi: 10.1111/j.1467-9868.2012.01038.x – volume: 85 start-page: 645 year: 1998 ident: 681_CR6 publication-title: Biometrika doi: 10.1093/biomet/85.3.645 – volume: 27 start-page: 1519 year: 1999 ident: 681_CR13 publication-title: The Annals of Statistics doi: 10.1214/aos/1017939140 – volume: 108 start-page: 619 year: 2013 ident: 681_CR16 publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2013.763726 – volume: 73 start-page: 13 year: 1986 ident: 681_CR14 publication-title: Biometrika doi: 10.1093/biomet/73.1.13 – volume: 93 start-page: 1388 year: 1998 ident: 681_CR23 publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1998.10473800 – volume: 55 start-page: 757 year: 1993 ident: 681_CR9 publication-title: Journal of the Royal Statistical Society: Series B doi: 10.1111/j.2517-6161.1993.tb01939.x – volume-title: Longitudinal data analysis year: 2008 ident: 681_CR8 doi: 10.1201/9781420011579 – volume-title: Analysis of longitudinal data year: 2013 ident: 681_CR3 – volume: 40 start-page: 2943 year: 2012 ident: 681_CR17 publication-title: The Annals of Statistics doi: 10.1214/12-AOS1056 – volume: 100 start-page: 147 year: 2005 ident: 681_CR22 publication-title: Journal of the American Statistical Association doi: 10.1198/016214504000000629 – volume: 62 start-page: 379 year: 2006 ident: 681_CR20 publication-title: Biometrics doi: 10.1111/j.1541-0420.2005.00490.x – volume: 85 start-page: 809 year: 1998 ident: 681_CR10 publication-title: Biometrika doi: 10.1093/biomet/85.4.809 – volume: 9 start-page: 735 year: 1999 ident: 681_CR25 publication-title: Statistica Sinica |
SSID | ssj0017367 |
Score | 2.0487452 |
Snippet | We consider a longitudinal data additive varying coefficient regression model, in which the coef- ficients of some factors (covariates) are additive functions... We consider a longitudinal data additive varying coefficient regression model, in which the coefficients of some factors (covariates) are additive functions of... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 529 |
SubjectTerms | Applications of Mathematics Asymptotic properties Coefficients Estimators Math Applications in Computer Science Mathematical and Computational Physics Mathematics Mathematics and Statistics Regression models Theoretical |
Title | Efficient Estimation of Longitudinal Data Additive Varying Coefficient Regression Models |
URI | http://lib.cqvip.com/qk/85829X/201702/671770234.html https://link.springer.com/article/10.1007/s10255-017-0681-2 https://www.proquest.com/docview/1895499849 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQu8CAeIrSUnlgAllqYsexxwq1VKAyUalMVhw7ZagSaFp-P-e8WhAgMcd2JH_ne-juvkPoWscisFEiSWR0RJgUMRFMagKWPraJplIUbPvTJz6ZsYd5MK_6uPO62r1OSRaaeqfZDdxf4rTqgAuPgN5tBy50ByGe-cMmdRBSXvZIc3jJPKR1KvOnIxyhwmuWLt7hd18N09bb_JYgLezO-AgdVg4jHpYIH6M9m56gg2nDtpqfovmo4IEA84EdZ0bZjIizBC8zN41oY9zkK-xqQbErH3IKDn9EK9fghOPMNptXdlFWxaa4GJCTn6HZePR8NyHVxAQSU0bXBMIL37MhWH1uufY8k0iufasjE0WhHjATChkHJrCAj-dRQ03Ek4BqLpgbjKDpOWqlWWovEAZFKBizAWyDoCbxpa8Ng9gIrBej1ks6qNtcnXormTEUh-AwBC-AddCgvkwVV2TjbubFUm1pkh0WCrBQDgvld9BNs6U-74_FvRohVT26XHnC5SwlyFoH3dao7Xz-7bDLf63uon2_kCBXvdNDrfVqY6_AMVnrPmoP718eR_1CID8BA_fa1w |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQDMCAeIrQAh6YQJaa2HGcsUKtCrSdWqmbFcdOGaoEmpbfzzmvFgRIzLEdyd_5Hrq77xC6U7HwTZSEJNIqIiwUMREsVAQsfWwSRUNRsO2PxnwwZc8zf1b1ced1tXudkiw09VazG7i_xGrVDhcuAb27B76AsHVcU6_bpA4CysseaQ4vmQe0TmX-dIQlVHjN0vk7_O6rYdp4m98SpIXd6R-jo8phxN0S4RO0Y9JTdDhq2FbzMzTrFTwQYD6w5cwomxFxluBFZqcRrbWdfIVtLSi25UNWweGPaGkbnHCcmWbz0szLqtgUFwNy8nM07fcmjwNSTUwgMWV0RSC88FwTgNXnhivX1UnIlWdUpKMoUB2mAxHGvvYN4OO6VFMd8cSnigtmByMoeoF20yw1lwiDIhSMGR-2QVCTeKGnNIPYCKwXo8ZNHNRqrk6-lcwYkkNwGIAXwBzUqS9TxhXZuJ15sZAbmmSLhQQspMVCeg66b7bU5_2xuF0jJKtHl0tX2JxlCLLmoIcata3Pvx129a_Vt2h_MBkN5fBp_NJCB14hTbaSp412V8u1uQYnZaVuCqH8BJr93DY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iIHoQn7iujxw8KcFNk6bpcVEX33hwYW-haVI9LK3urv5-Z_rygQqem6S032QezMw3hBzaVIc-yWKWOJswGeuUaRlbBpY-9ZkVsS7Z9m_v1MVQXo3CUT3ndNpUuzcpyaqnAVma8tnJs8tOPjW-gSvMUMP2lOYMdPACaGOOYj0M-m0aIRKq6pdWcKtVJJq05k9HILnCU5E_vsCrvxqpD8_zW7K0tEGDVbJSO4-0X6G9RuZ8vk6Wb1vm1ekGGZ2XnBDwKRT5M6rGRFpkdFzgZKJXh1OwKNaFUiwlQmVH35IJNjvRtPDt5ol_rCpkc1oOy5lukuHg_OH0gtXTE1gqpJgxCDUC7iPwAJRXlnOXxcoG3iYuSSLbky7ScRq60ANWnAsnXKKyUFilJQ5JsGKLzOdF7rcJBaWopfQhbIMAJwviwDoJcRJYMik8zzqk2_4681yxZBgFgWIEHoHskF7zM01aE4_j_Iux-aBMRiwMYGEQCxN0yFG7pTnvj8W7DUKmvoBTwzXmL2OQuw45blD79Pi3w3b-tfqALN6fDczN5d11lywFpTBhUc8umZ9NXv0e-Cszu1_K5Dt61eBy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+estimation+of+longitudinal+data+additive+varying+coefficient+regression+models&rft.jtitle=Acta+Mathematicae+Applicatae+Sinica&rft.au=Liu%2C+Shu&rft.date=2017-04-01&rft.issn=0168-9673&rft.eissn=1618-3932&rft.volume=33&rft.issue=2&rft.spage=529&rft.epage=550&rft_id=info:doi/10.1007%2Fs10255-017-0681-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10255_017_0681_2 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85829X%2F85829X.jpg |