Artificial Intelligence in Obsessive-Compulsive Disorder: A Systematic Review
Purpose of Review Obsessive-compulsive disorder (OCD) is a chronic and disabling condition, often leading to significant functional impairments. Despite its early onset, there is an average delay of 17 years from symptom onset to diagnosis and treatment, resulting in poorer outcomes. This systematic...
Saved in:
Published in | Current treatment options in psychiatry Vol. 12; no. 1; p. 23 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.01.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2196-3061 2196-3061 |
DOI | 10.1007/s40501-025-00359-8 |
Cover
Loading…
Abstract | Purpose of Review
Obsessive-compulsive disorder (OCD) is a chronic and disabling condition, often leading to significant functional impairments. Despite its early onset, there is an average delay of 17 years from symptom onset to diagnosis and treatment, resulting in poorer outcomes. This systematic review aims to synthesize current findings on the application of AI in OCD, highlighting opportunities for early symptom detection, scalable therapy training, clinical decision support, novel therapeutics, computer vision-based approaches, and multimodal biomarker discovery.
Recent Findings
While previous reviews focused on biomarker-based OCD detection and treatment using machine learning (ML), the findings of the current review add information about novel applications of deep learning technology, specifically generative artificial intelligence (GenAI) and natural language processing (NLP). Among the included 13 articles, most studies (84.6%) utilized secondary data analyses, primarily through GenAI/NLP. Nearly 77% of these studies were published in the past two years, with high quality of evidence. The primary focus areas were enhancing treatment and management, and timely OCD detection (both 38.5%); followed by AI tool development for broader mental health applications.
Summary
AI technologies offer transformative potential for improvements related to OCD if diagnosis occurs earlier after onset; thereby lessening the consequential economic burden. Prioritizing investment in ethically sound AI research could significantly improve OCD outcomes in mental health care. |
---|---|
AbstractList | Purpose of Review
Obsessive-compulsive disorder (OCD) is a chronic and disabling condition, often leading to significant functional impairments. Despite its early onset, there is an average delay of 17 years from symptom onset to diagnosis and treatment, resulting in poorer outcomes. This systematic review aims to synthesize current findings on the application of AI in OCD, highlighting opportunities for early symptom detection, scalable therapy training, clinical decision support, novel therapeutics, computer vision-based approaches, and multimodal biomarker discovery.
Recent Findings
While previous reviews focused on biomarker-based OCD detection and treatment using machine learning (ML), the findings of the current review add information about novel applications of deep learning technology, specifically generative artificial intelligence (GenAI) and natural language processing (NLP). Among the included 13 articles, most studies (84.6%) utilized secondary data analyses, primarily through GenAI/NLP. Nearly 77% of these studies were published in the past two years, with high quality of evidence. The primary focus areas were enhancing treatment and management, and timely OCD detection (both 38.5%); followed by AI tool development for broader mental health applications.
Summary
AI technologies offer transformative potential for improvements related to OCD if diagnosis occurs earlier after onset; thereby lessening the consequential economic burden. Prioritizing investment in ethically sound AI research could significantly improve OCD outcomes in mental health care. Purpose of ReviewObsessive-compulsive disorder (OCD) is a chronic and disabling condition, often leading to significant functional impairments. Despite its early onset, there is an average delay of 17 years from symptom onset to diagnosis and treatment, resulting in poorer outcomes. This systematic review aims to synthesize current findings on the application of AI in OCD, highlighting opportunities for early symptom detection, scalable therapy training, clinical decision support, novel therapeutics, computer vision-based approaches, and multimodal biomarker discovery.Recent FindingsWhile previous reviews focused on biomarker-based OCD detection and treatment using machine learning (ML), the findings of the current review add information about novel applications of deep learning technology, specifically generative artificial intelligence (GenAI) and natural language processing (NLP). Among the included 13 articles, most studies (84.6%) utilized secondary data analyses, primarily through GenAI/NLP. Nearly 77% of these studies were published in the past two years, with high quality of evidence. The primary focus areas were enhancing treatment and management, and timely OCD detection (both 38.5%); followed by AI tool development for broader mental health applications.SummaryAI technologies offer transformative potential for improvements related to OCD if diagnosis occurs earlier after onset; thereby lessening the consequential economic burden. Prioritizing investment in ethically sound AI research could significantly improve OCD outcomes in mental health care. Obsessive-compulsive disorder (OCD) is a chronic and disabling condition, often leading to significant functional impairments. Despite its early onset, there is an average delay of 17 years from symptom onset to diagnosis and treatment, resulting in poorer outcomes. This systematic review aims to synthesize current findings on the application of AI in OCD, highlighting opportunities for early symptom detection, scalable therapy training, clinical decision support, novel therapeutics, computer vision-based approaches, and multimodal biomarker discovery. While previous reviews focused on biomarker-based OCD detection and treatment using machine learning (ML), the findings of the current review add information about novel applications of deep learning technology, specifically generative artificial intelligence (GenAI) and natural language processing (NLP). Among the included 13 articles, most studies (84.6%) utilized secondary data analyses, primarily through GenAI/NLP. Nearly 77% of these studies were published in the past two years, with high quality of evidence. The primary focus areas were enhancing treatment and management, and timely OCD detection (both 38.5%); followed by AI tool development for broader mental health applications. AI technologies offer transformative potential for improvements related to OCD if diagnosis occurs earlier after onset; thereby lessening the consequential economic burden. Prioritizing investment in ethically sound AI research could significantly improve OCD outcomes in mental health care. The online version contains supplementary material available at 10.1007/s40501-025-00359-8. Obsessive-compulsive disorder (OCD) is a chronic and disabling condition, often leading to significant functional impairments. Despite its early onset, there is an average delay of 17 years from symptom onset to diagnosis and treatment, resulting in poorer outcomes. This systematic review aims to synthesize current findings on the application of AI in OCD, highlighting opportunities for early symptom detection, scalable therapy training, clinical decision support, novel therapeutics, computer vision-based approaches, and multimodal biomarker discovery.Purpose of ReviewObsessive-compulsive disorder (OCD) is a chronic and disabling condition, often leading to significant functional impairments. Despite its early onset, there is an average delay of 17 years from symptom onset to diagnosis and treatment, resulting in poorer outcomes. This systematic review aims to synthesize current findings on the application of AI in OCD, highlighting opportunities for early symptom detection, scalable therapy training, clinical decision support, novel therapeutics, computer vision-based approaches, and multimodal biomarker discovery.While previous reviews focused on biomarker-based OCD detection and treatment using machine learning (ML), the findings of the current review add information about novel applications of deep learning technology, specifically generative artificial intelligence (GenAI) and natural language processing (NLP). Among the included 13 articles, most studies (84.6%) utilized secondary data analyses, primarily through GenAI/NLP. Nearly 77% of these studies were published in the past two years, with high quality of evidence. The primary focus areas were enhancing treatment and management, and timely OCD detection (both 38.5%); followed by AI tool development for broader mental health applications.Recent FindingsWhile previous reviews focused on biomarker-based OCD detection and treatment using machine learning (ML), the findings of the current review add information about novel applications of deep learning technology, specifically generative artificial intelligence (GenAI) and natural language processing (NLP). Among the included 13 articles, most studies (84.6%) utilized secondary data analyses, primarily through GenAI/NLP. Nearly 77% of these studies were published in the past two years, with high quality of evidence. The primary focus areas were enhancing treatment and management, and timely OCD detection (both 38.5%); followed by AI tool development for broader mental health applications.AI technologies offer transformative potential for improvements related to OCD if diagnosis occurs earlier after onset; thereby lessening the consequential economic burden. Prioritizing investment in ethically sound AI research could significantly improve OCD outcomes in mental health care.SummaryAI technologies offer transformative potential for improvements related to OCD if diagnosis occurs earlier after onset; thereby lessening the consequential economic burden. Prioritizing investment in ethically sound AI research could significantly improve OCD outcomes in mental health care.The online version contains supplementary material available at 10.1007/s40501-025-00359-8.Supplementary InformationThe online version contains supplementary material available at 10.1007/s40501-025-00359-8. |
ArticleNumber | 23 |
Author | Kuhn, Eric Kim, Jiyeong Kim, Jane Paik Pacheco, Juan Pablo Gonzalez van Roessel, Peter Adeli, Ehsan Pohl, Kilian M. Avanesyan, Tatevik Golden, Ashleigh Stirman, Shannon Wiltsey Supekar, Kaustubh Gandhi, Aayushi Saggar, Manish Xue, Haopeng Aboujaoude, Elias Mukunda, Pavithra Rodriguez, Carolyn I. |
Author_xml | – sequence: 1 givenname: Jiyeong surname: Kim fullname: Kim, Jiyeong email: jykim3@stanford.edu organization: Stanford Center for Digital Health, Stanford School of Medicine – sequence: 2 givenname: Juan Pablo Gonzalez surname: Pacheco fullname: Pacheco, Juan Pablo Gonzalez organization: Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine – sequence: 3 givenname: Ashleigh surname: Golden fullname: Golden, Ashleigh organization: Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine – sequence: 4 givenname: Elias surname: Aboujaoude fullname: Aboujaoude, Elias organization: Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Program in Internet, Health and Society, Cedars-Sinai Medical Center – sequence: 5 givenname: Peter surname: van Roessel fullname: van Roessel, Peter organization: Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine – sequence: 6 givenname: Aayushi surname: Gandhi fullname: Gandhi, Aayushi organization: Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine – sequence: 7 givenname: Pavithra surname: Mukunda fullname: Mukunda, Pavithra organization: Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine – sequence: 8 givenname: Tatevik surname: Avanesyan fullname: Avanesyan, Tatevik organization: Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine – sequence: 9 givenname: Haopeng surname: Xue fullname: Xue, Haopeng organization: Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Artificial Intelligence for Mental Health Initiative (AI4MH), Department of Psychiatry and Behavioral Sciences, Stanford University – sequence: 10 givenname: Ehsan surname: Adeli fullname: Adeli, Ehsan organization: Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Artificial Intelligence for Mental Health Initiative (AI4MH), Department of Psychiatry and Behavioral Sciences, Stanford University, Department of Computer Science, Stanford University, Department of Biomedical Data Science, Stanford School of Medicine – sequence: 11 givenname: Jane Paik surname: Kim fullname: Kim, Jane Paik organization: Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Artificial Intelligence for Mental Health Initiative (AI4MH), Department of Psychiatry and Behavioral Sciences, Stanford University – sequence: 12 givenname: Manish surname: Saggar fullname: Saggar, Manish organization: Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Artificial Intelligence for Mental Health Initiative (AI4MH), Department of Psychiatry and Behavioral Sciences, Stanford University – sequence: 13 givenname: Shannon Wiltsey surname: Stirman fullname: Stirman, Shannon Wiltsey organization: Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Artificial Intelligence for Mental Health Initiative (AI4MH), Department of Psychiatry and Behavioral Sciences, Stanford University, Dissemination and Training Division, National Center for PTSD, VA Palo Alto Health Care System, Veterans Affairs Palo Alto Health Care System – sequence: 14 givenname: Eric surname: Kuhn fullname: Kuhn, Eric organization: Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Artificial Intelligence for Mental Health Initiative (AI4MH), Department of Psychiatry and Behavioral Sciences, Stanford University, Dissemination and Training Division, National Center for PTSD, VA Palo Alto Health Care System, Veterans Affairs Palo Alto Health Care System – sequence: 15 givenname: Kaustubh surname: Supekar fullname: Supekar, Kaustubh organization: Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Artificial Intelligence for Mental Health Initiative (AI4MH), Department of Psychiatry and Behavioral Sciences, Stanford University – sequence: 16 givenname: Kilian M. surname: Pohl fullname: Pohl, Kilian M. organization: Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Artificial Intelligence for Mental Health Initiative (AI4MH), Department of Psychiatry and Behavioral Sciences, Stanford University, Department of Electrical Engineering, Stanford University – sequence: 17 givenname: Carolyn I. surname: Rodriguez fullname: Rodriguez, Carolyn I. email: carolynrodriguez@stanford.edu organization: Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Artificial Intelligence for Mental Health Initiative (AI4MH), Department of Psychiatry and Behavioral Sciences, Stanford University, Veterans Affairs Palo Alto Health Care System |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40524733$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtP3DAUhS1EBZTyB1hUkbphk_baTuKkm2o09IFEhdTH2vLY14NRYg92Moh_X6dDKWXRla_k75z7OC_Jvg8eCTml8JYCiHepghpoCawuAXjdle0eOWK0a0oODd1_Uh-Sk5RuAIDSCihvD8hh1rJKcH5Evi7i6KzTTvXFhR-x790avcbC-eJqlTAlt8VyGYbN1M9lce5SiAbj-2JRfL9PIw5qdLr4hluHd6_IC6v6hCcP7zH5-enjj-WX8vLq88VycVlqXvG2tDY3rzrerCx0BpVoGqOrTmHVtqIzmjFlmGKGadsh1CvTVRywFtbYhqMBfkw-7Hw302pAo9GPUfVyE92g4r0Mysl_f7y7luuwlZTRRjAxO5w9OMRwO2Ea5eCSzusrj2FKkufzcVZzQTP65hl6E6bo834z1YqcQz0bvn460uMsf06dAbYDdAwpRbSPCAU5Ryp3kcocqfwdqWyziO9EKcN-jfFv7_-ofgEeA6M8 |
Cites_doi | 10.7717/peerj-cs.2395 10.3389/fpsyt.2023.1162800 10.48550/arXiv.2406.01662 10.1001/jamainternmed.2023.2909 10.1016/j.comppsych.2022.152352 10.1038/s41386-022-01353-x 10.31219/osf.io/wx93m 10.1186/s12888-023-05299-2 10.2196/39613 10.1007/s10916-018-0934-5 10.1192/bjp.2022.13 10.2196/62963 10.1016/j.pnpbp.2015.06.009 10.1177/20552076211053690 10.1007/s11414-023-09838-3 10.48550/arXiv.1705.07874 10.1093/med:psych/9780195335286.003.0007 10.1038/s41380-023-02392-6 10.1038/s41746-024-01181-x 10.1371/journal.pone.0153846 10.1176/appi.ajp.2020.20030250 10.1001/jamanetworkopen.2023.38050 10.1038/s44184-024-00056-z 10.1038/s41746-023-00751-9 10.1016/j.nicl.2021.102640 10.48550/arXiv.2503.11384 10.1038/s41586-021-03819-2 10.1002/hbm.25833 10.1002/aur.3094 10.4088/JCP.v67n0503 10.31234/osf.io/8zqhw_v2 10.1073/pnas.1716686115 10.1038/s41586-025-08866-7 10.1073/pnas.2310012121 10.1038/s41537-024-00481-1 10.1038/nn.4478 10.1038/s41398-020-01013-y 10.1007/s10608-020-10125-0 10.48550/arXiv.2407.00028 10.1038/s41586-023-06291-2 10.1523/ENEURO.0384-19.2019 10.1056/AIoa2400590 10.1093/jamia/ocaa085 10.1038/s41591-024-03434-4 10.1101/2024.09.10.612309 10.1038/s41380-024-02495-8 10.1016/j.pnpbp.2018.08.005 10.1016/j.euroneuro.2019.02.002 10.1007/978-3-030-28954-6_1 10.2196/25482 10.12720/jait.15.7.798-811 10.1136/bmjebm-2022-112111 10.2147/PRBM.S75106 10.1016/j.neuron.2024.01.004 10.1038/s41398-024-03053-0 10.1177/20552076231186064 10.1038/mp.2008.94 10.1007/s11920-016-0729-7 10.1016/j.beth.2025.02.005 10.1080/15265161.2020.1827695 10.1034/j.1600-0447.2002.01221.x 10.1038/s41598-020-69250-1 10.1136/bmj.l6927 10.1017/neu.2024.42 10.7554/eLife.85082 10.1038/s44184-024-00100-y 10.3390/jpm13101453 10.1017/S0269888900008122 10.1016/j.heliyon.2024.e40136 10.1007/s11682-020-00358-8 10.1080/15265161.2021.2013977 10.1038/s41380-023-02077-0 |
ContentType | Journal Article |
Copyright | This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2025 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2025. Copyright Springer Nature B.V. Dec 2025 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2025 2025 |
Copyright_xml | – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2025 – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2025. – notice: Copyright Springer Nature B.V. Dec 2025 – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2025 2025 |
DBID | C6C AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1007/s40501-025-00359-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2196-3061 |
ExternalDocumentID | PMC12167270 40524733 10_1007_s40501_025_00359_8 |
Genre | Journal Article Review |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GrantInformation_xml | – fundername: National Institutes of Health grantid: K01MH137386; LM014597; R01MH133553 funderid: https://doi.org/10.13039/100000002 |
GroupedDBID | 0R~ 203 406 AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAZMS ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACSTC ACZOJ ADHHG ADKNI ADKPE ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFOHR AFQWF AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHPBZ AHWEU AHYZX AIAKS AIGIU AILAN AITGF AIXLP AJRNO AJZVZ AKLTO AKMHD ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG ATHPR AUKKA AVXWI AXYYD AYFIA C6C CSCUP DNIVK DPUIP EBLON EBS EIOEI FEDTE FERAY FIGPU FNLPD FRRFC GGCAI GGRSB GJIRD GQ7 HQYDN HRMNR HVGLF I0C IKXTQ IWAJR IXD J-C JBSCW JCJTX JZLTJ KOV LLZTM NB0 NPVJJ NQJWS O93 O9G O9J PT4 RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG U9L UG4 UOJIU UTJUX UZXMN VFIZW W48 ZMTXR ZOVNA AAYXX CITATION AAAVM AAYTO AEBTG AHSBF AJBLW BGNMA EJD FINBP FSGXE M4Y NPM NU0 ABRTQ 7X8 5PM |
ID | FETCH-LOGICAL-c3438-ff4734936bf09dea766dc49ae48879dc22ad2a2d2cf9e05bd9430e57fdf63ed03 |
IEDL.DBID | AGYKE |
ISSN | 2196-3061 |
IngestDate | Thu Aug 21 18:27:42 EDT 2025 Fri Jul 11 17:03:56 EDT 2025 Fri Jul 25 09:23:47 EDT 2025 Thu Jun 19 02:16:15 EDT 2025 Thu Jul 03 08:18:40 EDT 2025 Sun Jun 15 01:13:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | AI OCD Obsessive-compulsive disorder Treatment Diagnosis Mental health |
Language | English |
License | This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3438-ff4734936bf09dea766dc49ae48879dc22ad2a2d2cf9e05bd9430e57fdf63ed03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s40501-025-00359-8 |
PMID | 40524733 |
PQID | 3218705050 |
PQPubID | 6420650 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_12167270 proquest_miscellaneous_3219325371 proquest_journals_3218705050 pubmed_primary_40524733 crossref_primary_10_1007_s40501_025_00359_8 springer_journals_10_1007_s40501_025_00359_8 |
PublicationCentury | 2000 |
PublicationDate | 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 1 year: 2025 text: 20250101 day: 1 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Switzerland – name: Heidelberg |
PublicationTitle | Current treatment options in psychiatry |
PublicationTitleAbbrev | Curr Treat Options Psych |
PublicationTitleAlternate | Curr Treat Options Psychiatry |
PublicationYear | 2025 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | LM Koran (359_CR2) 2007; 164 NG Mil (359_CR17) 2025; 37 S Ryali (359_CR61) 2024; 121 DW Joyce (359_CR78) 2023; 6 EE Bernstein (359_CR29) 2025 S Han (359_CR74) 2022; 43 K Supekar (359_CR59) 2024; 29 S Rutherford (359_CR58) 2023; 12 359_CR30 J Jumper (359_CR43) 2021; 596 MD McCradden (359_CR46) 2022; 22 359_CR77 AG Hertz (359_CR8) 2023; 50 M Khazaneha (359_CR18) 2024; 10 359_CR38 A Golden (359_CR49) 2024; 23 359_CR34 S Brandsen (359_CR25) 2024; 17 359_CR35 359_CR7 359_CR36 M Srividya (359_CR22) 2018; 42 WB Bruin (359_CR63) 2020; 10 MD McCradden (359_CR48) 2020; 27 R Goodwin (359_CR9) 2002; 106 I Frydman (359_CR56) 2016; 18 B-G Kim (359_CR64) 2024; 29 N Reggente (359_CR70) 2018; 115 MJ Sheller (359_CR79) 2020; 10 PJ van Roessel (359_CR44) 2023; 120 AM Ruscio (359_CR3) 2010; 15 F Perris (359_CR6) 2023; 13 A Golden (359_CR27) 2024; 8 J-Y Yun (359_CR69) 2015; 63 359_CR66 MG Wheaton (359_CR39) 2021; 45 359_CR28 S Koltcov (359_CR26) 2024; 10 J O’Neill (359_CR10) 2015; 8 359_CR68 Z Ruan (359_CR20) 2023 L Xie (359_CR15) 2024; 14 M Neary (359_CR50) 2021; 7 K Supekar (359_CR60) 2022; 220 A Pinto (359_CR4) 2006; 67 W Bruin (359_CR62) 2019; 91 M Sallam (359_CR33) 2023; 11 LC Liebrand (359_CR73) 2021; 30 359_CR54 NA Fineberg (359_CR5) 2019; 29 359_CR55 K Singhal (359_CR32) 2023; 620 A Grzenda (359_CR13) 2021; 178 D Char (359_CR47) 2020; 20 WB Bruin (359_CR65) 2023; 28 359_CR51 359_CR16 E Strong (359_CR31) 2023; 183 JD Feusner (359_CR19) 2021; 23 M Wooldridge (359_CR11) 1995; 10 359_CR1 D Cao (359_CR42) 2024; 112 L Plank (359_CR23) 2024; 10 AS De Nadai (359_CR75) 2023; 48 W Samek (359_CR76) 2019 359_CR80 S Mas (359_CR72) 2016; 11 K Zhang (359_CR41) 2025; 31 C-W Woo (359_CR57) 2017; 20 LKH Clemmensen (359_CR21) 2022; 11 W Dai (359_CR53) 2025; 2 S Vollmer (359_CR45) 2020; 368 D Rangaprakash (359_CR71) 2021; 15 359_CR40 J Kim (359_CR12) 2024; 3 F-F Huang (359_CR67) 2023; 23 J Kim (359_CR14) 2023; 6 L Tang (359_CR52) 2023; 9 J Kim (359_CR24) 2024; 7 EC Stade (359_CR37) 2024; 3 |
References_xml | – volume: 10 start-page: e2395 year: 2024 ident: 359_CR26 publication-title: PeerJ Comput Sci doi: 10.7717/peerj-cs.2395 – year: 2023 ident: 359_CR20 publication-title: Front Psychiatry doi: 10.3389/fpsyt.2023.1162800 – ident: 359_CR54 doi: 10.48550/arXiv.2406.01662 – volume: 183 start-page: 1028 year: 2023 ident: 359_CR31 publication-title: JAMA Intern Med doi: 10.1001/jamainternmed.2023.2909 – volume: 120 start-page: 152352 year: 2023 ident: 359_CR44 publication-title: Compr Psychiatry doi: 10.1016/j.comppsych.2022.152352 – volume: 48 start-page: 402 year: 2023 ident: 359_CR75 publication-title: Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol doi: 10.1038/s41386-022-01353-x – ident: 359_CR38 doi: 10.31219/osf.io/wx93m – volume: 23 start-page: 792 year: 2023 ident: 359_CR67 publication-title: BMC Psychiatry doi: 10.1186/s12888-023-05299-2 – volume: 11 start-page: e39613 year: 2022 ident: 359_CR21 publication-title: JMIR Res Protoc doi: 10.2196/39613 – ident: 359_CR1 – volume: 42 start-page: 88 year: 2018 ident: 359_CR22 publication-title: J Med Syst doi: 10.1007/s10916-018-0934-5 – volume: 220 start-page: 202 year: 2022 ident: 359_CR60 publication-title: Br J Psychiatry J Ment Sci doi: 10.1192/bjp.2022.13 – volume: 8 start-page: e62963 year: 2024 ident: 359_CR27 publication-title: JMIR Form Res doi: 10.2196/62963 – ident: 359_CR30 – volume: 63 start-page: 126 year: 2015 ident: 359_CR69 publication-title: Prog Neuropsychopharmacol Biol Psychiatry doi: 10.1016/j.pnpbp.2015.06.009 – volume: 7 start-page: 205520762110536 year: 2021 ident: 359_CR50 publication-title: Digit Health doi: 10.1177/20552076211053690 – volume: 50 start-page: 514 year: 2023 ident: 359_CR8 publication-title: J Behav Health Serv Res doi: 10.1007/s11414-023-09838-3 – ident: 359_CR77 doi: 10.48550/arXiv.1705.07874 – ident: 359_CR7 doi: 10.1093/med:psych/9780195335286.003.0007 – volume: 29 start-page: 1063 year: 2024 ident: 359_CR64 publication-title: Mol Psychiatry doi: 10.1038/s41380-023-02392-6 – volume: 164 start-page: 5 year: 2007 ident: 359_CR2 publication-title: Am J Psychiatry – volume: 7 start-page: 193 year: 2024 ident: 359_CR24 publication-title: NPJ Digit Med doi: 10.1038/s41746-024-01181-x – volume: 11 start-page: e0153846 year: 2016 ident: 359_CR72 publication-title: PLoS ONE doi: 10.1371/journal.pone.0153846 – volume: 178 start-page: 715 year: 2021 ident: 359_CR13 publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.2020.20030250 – volume: 6 start-page: e2338050 year: 2023 ident: 359_CR14 publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2023.38050 – ident: 359_CR35 – volume: 3 start-page: 1 year: 2024 ident: 359_CR37 publication-title: Npj Ment Health Res doi: 10.1038/s44184-024-00056-z – volume: 6 start-page: 1 year: 2023 ident: 359_CR78 publication-title: Npj Digit Med doi: 10.1038/s41746-023-00751-9 – volume: 30 start-page: 102640 year: 2021 ident: 359_CR73 publication-title: NeuroImage Clin doi: 10.1016/j.nicl.2021.102640 – ident: 359_CR36 doi: 10.48550/arXiv.2503.11384 – volume: 596 start-page: 583 year: 2021 ident: 359_CR43 publication-title: Nature doi: 10.1038/s41586-021-03819-2 – volume: 43 start-page: 3037 year: 2022 ident: 359_CR74 publication-title: Hum Brain Mapp doi: 10.1002/hbm.25833 – volume: 17 start-page: 234 year: 2024 ident: 359_CR25 publication-title: Autism Res doi: 10.1002/aur.3094 – volume: 67 start-page: 703 year: 2006 ident: 359_CR4 publication-title: J Clin Psychiatry doi: 10.4088/JCP.v67n0503 – ident: 359_CR40 doi: 10.31234/osf.io/8zqhw_v2 – volume: 115 start-page: 2222 year: 2018 ident: 359_CR70 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1716686115 – ident: 359_CR34 doi: 10.1038/s41586-025-08866-7 – volume: 121 start-page: e2310012121 year: 2024 ident: 359_CR61 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.2310012121 – volume: 10 start-page: 1 year: 2024 ident: 359_CR23 publication-title: Schizophrenia doi: 10.1038/s41537-024-00481-1 – volume: 20 start-page: 365 year: 2017 ident: 359_CR57 publication-title: Nat Neurosci doi: 10.1038/nn.4478 – volume: 10 start-page: 1 year: 2020 ident: 359_CR63 publication-title: Transl Psychiatry doi: 10.1038/s41398-020-01013-y – volume: 45 start-page: 236 year: 2021 ident: 359_CR39 publication-title: Cogn Ther Res doi: 10.1007/s10608-020-10125-0 – ident: 359_CR68 doi: 10.48550/arXiv.2407.00028 – volume: 620 start-page: 172 year: 2023 ident: 359_CR32 publication-title: Nature doi: 10.1038/s41586-023-06291-2 – ident: 359_CR55 doi: 10.1523/ENEURO.0384-19.2019 – ident: 359_CR80 – volume: 2 start-page: AIoa2400590 year: 2025 ident: 359_CR53 publication-title: NEJM AI doi: 10.1056/AIoa2400590 – volume: 27 start-page: 2024 year: 2020 ident: 359_CR48 publication-title: J Am Med Inf Assoc JAMIA doi: 10.1093/jamia/ocaa085 – volume: 31 start-page: 45 year: 2025 ident: 359_CR41 publication-title: Nat Med doi: 10.1038/s41591-024-03434-4 – ident: 359_CR66 doi: 10.1101/2024.09.10.612309 – ident: 359_CR51 – volume: 29 start-page: 2951 year: 2024 ident: 359_CR59 publication-title: Mol Psychiatry doi: 10.1038/s41380-024-02495-8 – volume: 91 start-page: 49 year: 2019 ident: 359_CR62 publication-title: Prog Neuropsychopharmacol Biol Psychiatry doi: 10.1016/j.pnpbp.2018.08.005 – volume: 29 start-page: 549 year: 2019 ident: 359_CR5 publication-title: Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol doi: 10.1016/j.euroneuro.2019.02.002 – start-page: 5 volume-title: Explain. AI interpret. Explain. Vis. Deep learn year: 2019 ident: 359_CR76 doi: 10.1007/978-3-030-28954-6_1 – volume: 23 start-page: e25482 year: 2021 ident: 359_CR19 publication-title: J Med Internet Res doi: 10.2196/25482 – volume: 11 start-page: 887 year: 2023 ident: 359_CR33 publication-title: Healthc Basel Switz – ident: 359_CR28 doi: 10.12720/jait.15.7.798-811 – ident: 359_CR16 doi: 10.1136/bmjebm-2022-112111 – volume: 8 start-page: 211 year: 2015 ident: 359_CR10 publication-title: Psychol Res Behav Manag doi: 10.2147/PRBM.S75106 – volume: 112 start-page: 526 year: 2024 ident: 359_CR42 publication-title: Neuron doi: 10.1016/j.neuron.2024.01.004 – volume: 14 start-page: 1 year: 2024 ident: 359_CR15 publication-title: Transl Psychiatry doi: 10.1038/s41398-024-03053-0 – volume: 9 start-page: 205520762311860 year: 2023 ident: 359_CR52 publication-title: Digit Health doi: 10.1177/20552076231186064 – volume: 15 start-page: 53 year: 2010 ident: 359_CR3 publication-title: Mol Psychiatry doi: 10.1038/mp.2008.94 – volume: 18 start-page: 90 year: 2016 ident: 359_CR56 publication-title: Curr Psychiatry Rep doi: 10.1007/s11920-016-0729-7 – year: 2025 ident: 359_CR29 publication-title: Behav Ther doi: 10.1016/j.beth.2025.02.005 – volume: 20 start-page: W6 year: 2020 ident: 359_CR47 publication-title: Am J Bioeth AJOB doi: 10.1080/15265161.2020.1827695 – volume: 106 start-page: 143 year: 2002 ident: 359_CR9 publication-title: Acta Psychiatr Scand doi: 10.1034/j.1600-0447.2002.01221.x – volume: 10 start-page: 12598 year: 2020 ident: 359_CR79 publication-title: Sci Rep doi: 10.1038/s41598-020-69250-1 – volume: 368 start-page: l6927 year: 2020 ident: 359_CR45 publication-title: BMJ doi: 10.1136/bmj.l6927 – volume: 37 start-page: e45 year: 2025 ident: 359_CR17 publication-title: Acta Neuropsychiatr doi: 10.1017/neu.2024.42 – volume: 23 start-page: 444 year: 2024 ident: 359_CR49 publication-title: World Psychiatry Off J World Psychiatr Assoc WPA – volume: 12 start-page: e85082 year: 2023 ident: 359_CR58 publication-title: eLife doi: 10.7554/eLife.85082 – volume: 3 start-page: 54 year: 2024 ident: 359_CR12 publication-title: Npj Ment Health Res doi: 10.1038/s44184-024-00100-y – volume: 13 start-page: 1453 year: 2023 ident: 359_CR6 publication-title: J Pers Med doi: 10.3390/jpm13101453 – volume: 10 start-page: 115 year: 1995 ident: 359_CR11 publication-title: Knowl Eng Rev doi: 10.1017/S0269888900008122 – volume: 10 start-page: e40136 year: 2024 ident: 359_CR18 publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e40136 – volume: 15 start-page: 1622 year: 2021 ident: 359_CR71 publication-title: Brain Imaging Behav doi: 10.1007/s11682-020-00358-8 – volume: 22 start-page: 8 year: 2022 ident: 359_CR46 publication-title: Am J Bioeth AJOB doi: 10.1080/15265161.2021.2013977 – volume: 28 start-page: 4307 year: 2023 ident: 359_CR65 publication-title: Mol Psychiatry doi: 10.1038/s41380-023-02077-0 |
SSID | ssj0001140138 |
Score | 2.2788267 |
SecondaryResourceType | review_article |
Snippet | Purpose of Review
Obsessive-compulsive disorder (OCD) is a chronic and disabling condition, often leading to significant functional impairments. Despite its... Obsessive-compulsive disorder (OCD) is a chronic and disabling condition, often leading to significant functional impairments. Despite its early onset, there... Purpose of ReviewObsessive-compulsive disorder (OCD) is a chronic and disabling condition, often leading to significant functional impairments. Despite its... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 23 |
SubjectTerms | Algorithms Artificial intelligence Behavior Biomarkers Bipolar disorder Clinical outcomes Comorbidity Drug therapy Electroconvulsive therapy Human subjects Language Medicine Medicine & Public Health Mental health care Natural language processing Neurology Neuroses Obsessive compulsive disorder Physiology Psychiatry Review Schizoaffective disorder Schizophrenia Side effects Social networks Systematic review Topical Collection on AI in Mental Health Care |
Title | Artificial Intelligence in Obsessive-Compulsive Disorder: A Systematic Review |
URI | https://link.springer.com/article/10.1007/s40501-025-00359-8 https://www.ncbi.nlm.nih.gov/pubmed/40524733 https://www.proquest.com/docview/3218705050 https://www.proquest.com/docview/3219325371 https://pubmed.ncbi.nlm.nih.gov/PMC12167270 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BKyEW3o9AQUZig6DESRyHraooBVQYoBJMURw7AoECou3Cr-fsPOgDBrZIdnQ-38Nnn-8zwDHNEowLFBqSvkKDGsJtzpXEXSvnQrJIRExXI_dvWW_gXz8Gj2VR2LC67V6lJI2nrovdMLTQW18a2AZ3zuaL0EQ6jt-AZvvy6WbibMXsGnhZI_P7z9Pr0FxwOX9HciZRataf7ioMqpEX105ez8YjcZZ-zYA6_pe1NVgpA1LSLjRoHRZUvgFL_TLlvgl93VLATJCrCfxO8pKTO6EzxugvbfM4xJv-JBWe5zlpk_saJ5oUSYgtGHQvHjo9u3yDwU49H31hlvmh50ceE5kTSZWEjMnUjxKFYg0jmVKaSJpQSdMsUk4gpIZzV0GYyYx5SjreNjTy91ztAhE-KoVUjqLC8VP0JS7LgtAVGDEg-yKx4KSSSPxRQG3ENaiymaEYZyg2MxRzC1qV0OLS7IaxhwFLqN_mcyw4qpvRYHQWJMnV-9j0wZg18ELXgp1CxjU5pEKRX88CPiX9uoMG455uyV-eDSi3S12d1EbCp5WMf8b1Nxt7_-u-D8vUqIk-A2pBY_Q5VgcYFY3EYWkEh7DYYZ1vsR0Euw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8QgEJ7omqgX49v6xMSbNrbQUupts3GzPlYPauKNlALRxFSj7v93oN3q-jh4awIN7TcDzPDBB8ABtQXGBQY7kttCgx4iQiGMxqxVCKV5rnLuTiMPr_jgLjm_T-8bmRx3FuYbf3_8hgGFS3hpGnq1uVBMw0yCmbLbvtfjvc_1FJ8piOZczO-vTs49PwLKn_siv5Gjfs7pL8JCEyySbm3dJZgy1TLMDhs6fAWGrqSWgCBnX7Q1yWNFrpVjc3EsC_3FDU_ukYy1Nk9Il9y0Gs6kJghW4a5_etsbhM39CGHJEhynrE0yluSMKxvl2hQZ57pM8sIg5FmuS0oLTQuqaWlzE6VKO6l1k2ZWW86MjtgadKrnymwAUQip0SYyVEVJif085jbNYoWzOYKoigAOx8jJl1oGQ7aCxx5niThLj7MUAWyPwZVNl3iTDIOJzN2bFwWw3xajMzuGoqjM88jXwXgyZVkcwHpti7Y5bIXi_7IAxISV2gpOKHuypHp88ILZMY0d4YwNH40N-vldf__G5v-q78Hc4HZ4KS_Pri62YJ56x3NrNdvQeX8dmR2MXt7VrnfbD52n5as |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50BfEivq2uGsGbFtu0TVNvy-ria1dBBW-laRJckK7o-v-dpI_d9XHwVkhCmplJMpMv8wXgiOoM_QKFE8lcoUEL4S7nSmLUyrmQLBEJM9nI_QG7fAqvn6PnqSx-e9u9hiTLnAbD0lSMT9-kPm0S39DNMGEwjVzLQefyeVjASMUCtV3WnZyy2PiBV9kyvzed3ZF-uJk_b0t-g0ztTtRbgeXKhSSdUuerMKeKNVjsVyD5OvRNSUkMQa6mGDfJsCB3wmC8uMK59jmHV_NJagbOM9IhDw2zMylhgw146l08di_d6tUENw9CXL20DuMgTAImtJdIlcWMyTxMMoWKiBOZU5pJmlFJc50oLxLSELCrKNZSs0BJL9iEVjEq1DYQEaIapfIUFV6Y4-z3mY5iX-Aej0IUmQPHteTSt5IcI21okK2cU5RzauWccgfatXDTaqJ8pAG6GLF5Tc9z4LApRhM3uEVWqNGnrYNeZhTEvgNbpS6a7rAXiuMNHOAzWmoqGPrs2ZJi-GJptH3qGxgaOz6pFTr5r7-HsfO_6geweH_eS2-vBje7sESt3ZkDnDa0xu-fag9dmrHYt1b7BW8I7fI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+in+Obsessive-Compulsive+Disorder%3A+A+Systematic+Review&rft.jtitle=Current+treatment+options+in+psychiatry&rft.au=Kim%2C+Jiyeong&rft.au=Pacheco%2C+Juan+Pablo+Gonzalez&rft.au=Golden%2C+Ashleigh&rft.au=Aboujaoude%2C+Elias&rft.date=2025-01-01&rft.issn=2196-3061&rft.eissn=2196-3061&rft.volume=12&rft.issue=1&rft.spage=23&rft_id=info:doi/10.1007%2Fs40501-025-00359-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-3061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-3061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-3061&client=summon |