Artificial Intelligence in Obsessive-Compulsive Disorder: A Systematic Review

Purpose of Review Obsessive-compulsive disorder (OCD) is a chronic and disabling condition, often leading to significant functional impairments. Despite its early onset, there is an average delay of 17 years from symptom onset to diagnosis and treatment, resulting in poorer outcomes. This systematic...

Full description

Saved in:
Bibliographic Details
Published inCurrent treatment options in psychiatry Vol. 12; no. 1; p. 23
Main Authors Kim, Jiyeong, Pacheco, Juan Pablo Gonzalez, Golden, Ashleigh, Aboujaoude, Elias, van Roessel, Peter, Gandhi, Aayushi, Mukunda, Pavithra, Avanesyan, Tatevik, Xue, Haopeng, Adeli, Ehsan, Kim, Jane Paik, Saggar, Manish, Stirman, Shannon Wiltsey, Kuhn, Eric, Supekar, Kaustubh, Pohl, Kilian M., Rodriguez, Carolyn I.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.01.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2196-3061
2196-3061
DOI10.1007/s40501-025-00359-8

Cover

Loading…
Abstract Purpose of Review Obsessive-compulsive disorder (OCD) is a chronic and disabling condition, often leading to significant functional impairments. Despite its early onset, there is an average delay of 17 years from symptom onset to diagnosis and treatment, resulting in poorer outcomes. This systematic review aims to synthesize current findings on the application of AI in OCD, highlighting opportunities for early symptom detection, scalable therapy training, clinical decision support, novel therapeutics, computer vision-based approaches, and multimodal biomarker discovery. Recent Findings While previous reviews focused on biomarker-based OCD detection and treatment using machine learning (ML), the findings of the current review add information about novel applications of deep learning technology, specifically generative artificial intelligence (GenAI) and natural language processing (NLP). Among the included 13 articles, most studies (84.6%) utilized secondary data analyses, primarily through GenAI/NLP. Nearly 77% of these studies were published in the past two years, with high quality of evidence. The primary focus areas were enhancing treatment and management, and timely OCD detection (both 38.5%); followed by AI tool development for broader mental health applications. Summary AI technologies offer transformative potential for improvements related to OCD if diagnosis occurs earlier after onset; thereby lessening the consequential economic burden. Prioritizing investment in ethically sound AI research could significantly improve OCD outcomes in mental health care.
AbstractList Purpose of Review Obsessive-compulsive disorder (OCD) is a chronic and disabling condition, often leading to significant functional impairments. Despite its early onset, there is an average delay of 17 years from symptom onset to diagnosis and treatment, resulting in poorer outcomes. This systematic review aims to synthesize current findings on the application of AI in OCD, highlighting opportunities for early symptom detection, scalable therapy training, clinical decision support, novel therapeutics, computer vision-based approaches, and multimodal biomarker discovery. Recent Findings While previous reviews focused on biomarker-based OCD detection and treatment using machine learning (ML), the findings of the current review add information about novel applications of deep learning technology, specifically generative artificial intelligence (GenAI) and natural language processing (NLP). Among the included 13 articles, most studies (84.6%) utilized secondary data analyses, primarily through GenAI/NLP. Nearly 77% of these studies were published in the past two years, with high quality of evidence. The primary focus areas were enhancing treatment and management, and timely OCD detection (both 38.5%); followed by AI tool development for broader mental health applications. Summary AI technologies offer transformative potential for improvements related to OCD if diagnosis occurs earlier after onset; thereby lessening the consequential economic burden. Prioritizing investment in ethically sound AI research could significantly improve OCD outcomes in mental health care.
Purpose of ReviewObsessive-compulsive disorder (OCD) is a chronic and disabling condition, often leading to significant functional impairments. Despite its early onset, there is an average delay of 17 years from symptom onset to diagnosis and treatment, resulting in poorer outcomes. This systematic review aims to synthesize current findings on the application of AI in OCD, highlighting opportunities for early symptom detection, scalable therapy training, clinical decision support, novel therapeutics, computer vision-based approaches, and multimodal biomarker discovery.Recent FindingsWhile previous reviews focused on biomarker-based OCD detection and treatment using machine learning (ML), the findings of the current review add information about novel applications of deep learning technology, specifically generative artificial intelligence (GenAI) and natural language processing (NLP). Among the included 13 articles, most studies (84.6%) utilized secondary data analyses, primarily through GenAI/NLP. Nearly 77% of these studies were published in the past two years, with high quality of evidence. The primary focus areas were enhancing treatment and management, and timely OCD detection (both 38.5%); followed by AI tool development for broader mental health applications.SummaryAI technologies offer transformative potential for improvements related to OCD if diagnosis occurs earlier after onset; thereby lessening the consequential economic burden. Prioritizing investment in ethically sound AI research could significantly improve OCD outcomes in mental health care.
Obsessive-compulsive disorder (OCD) is a chronic and disabling condition, often leading to significant functional impairments. Despite its early onset, there is an average delay of 17 years from symptom onset to diagnosis and treatment, resulting in poorer outcomes. This systematic review aims to synthesize current findings on the application of AI in OCD, highlighting opportunities for early symptom detection, scalable therapy training, clinical decision support, novel therapeutics, computer vision-based approaches, and multimodal biomarker discovery. While previous reviews focused on biomarker-based OCD detection and treatment using machine learning (ML), the findings of the current review add information about novel applications of deep learning technology, specifically generative artificial intelligence (GenAI) and natural language processing (NLP). Among the included 13 articles, most studies (84.6%) utilized secondary data analyses, primarily through GenAI/NLP. Nearly 77% of these studies were published in the past two years, with high quality of evidence. The primary focus areas were enhancing treatment and management, and timely OCD detection (both 38.5%); followed by AI tool development for broader mental health applications. AI technologies offer transformative potential for improvements related to OCD if diagnosis occurs earlier after onset; thereby lessening the consequential economic burden. Prioritizing investment in ethically sound AI research could significantly improve OCD outcomes in mental health care. The online version contains supplementary material available at 10.1007/s40501-025-00359-8.
Obsessive-compulsive disorder (OCD) is a chronic and disabling condition, often leading to significant functional impairments. Despite its early onset, there is an average delay of 17 years from symptom onset to diagnosis and treatment, resulting in poorer outcomes. This systematic review aims to synthesize current findings on the application of AI in OCD, highlighting opportunities for early symptom detection, scalable therapy training, clinical decision support, novel therapeutics, computer vision-based approaches, and multimodal biomarker discovery.Purpose of ReviewObsessive-compulsive disorder (OCD) is a chronic and disabling condition, often leading to significant functional impairments. Despite its early onset, there is an average delay of 17 years from symptom onset to diagnosis and treatment, resulting in poorer outcomes. This systematic review aims to synthesize current findings on the application of AI in OCD, highlighting opportunities for early symptom detection, scalable therapy training, clinical decision support, novel therapeutics, computer vision-based approaches, and multimodal biomarker discovery.While previous reviews focused on biomarker-based OCD detection and treatment using machine learning (ML), the findings of the current review add information about novel applications of deep learning technology, specifically generative artificial intelligence (GenAI) and natural language processing (NLP). Among the included 13 articles, most studies (84.6%) utilized secondary data analyses, primarily through GenAI/NLP. Nearly 77% of these studies were published in the past two years, with high quality of evidence. The primary focus areas were enhancing treatment and management, and timely OCD detection (both 38.5%); followed by AI tool development for broader mental health applications.Recent FindingsWhile previous reviews focused on biomarker-based OCD detection and treatment using machine learning (ML), the findings of the current review add information about novel applications of deep learning technology, specifically generative artificial intelligence (GenAI) and natural language processing (NLP). Among the included 13 articles, most studies (84.6%) utilized secondary data analyses, primarily through GenAI/NLP. Nearly 77% of these studies were published in the past two years, with high quality of evidence. The primary focus areas were enhancing treatment and management, and timely OCD detection (both 38.5%); followed by AI tool development for broader mental health applications.AI technologies offer transformative potential for improvements related to OCD if diagnosis occurs earlier after onset; thereby lessening the consequential economic burden. Prioritizing investment in ethically sound AI research could significantly improve OCD outcomes in mental health care.SummaryAI technologies offer transformative potential for improvements related to OCD if diagnosis occurs earlier after onset; thereby lessening the consequential economic burden. Prioritizing investment in ethically sound AI research could significantly improve OCD outcomes in mental health care.The online version contains supplementary material available at 10.1007/s40501-025-00359-8.Supplementary InformationThe online version contains supplementary material available at 10.1007/s40501-025-00359-8.
ArticleNumber 23
Author Kuhn, Eric
Kim, Jiyeong
Kim, Jane Paik
Pacheco, Juan Pablo Gonzalez
van Roessel, Peter
Adeli, Ehsan
Pohl, Kilian M.
Avanesyan, Tatevik
Golden, Ashleigh
Stirman, Shannon Wiltsey
Supekar, Kaustubh
Gandhi, Aayushi
Saggar, Manish
Xue, Haopeng
Aboujaoude, Elias
Mukunda, Pavithra
Rodriguez, Carolyn I.
Author_xml – sequence: 1
  givenname: Jiyeong
  surname: Kim
  fullname: Kim, Jiyeong
  email: jykim3@stanford.edu
  organization: Stanford Center for Digital Health, Stanford School of Medicine
– sequence: 2
  givenname: Juan Pablo Gonzalez
  surname: Pacheco
  fullname: Pacheco, Juan Pablo Gonzalez
  organization: Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine
– sequence: 3
  givenname: Ashleigh
  surname: Golden
  fullname: Golden, Ashleigh
  organization: Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine
– sequence: 4
  givenname: Elias
  surname: Aboujaoude
  fullname: Aboujaoude, Elias
  organization: Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Program in Internet, Health and Society, Cedars-Sinai Medical Center
– sequence: 5
  givenname: Peter
  surname: van Roessel
  fullname: van Roessel, Peter
  organization: Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine
– sequence: 6
  givenname: Aayushi
  surname: Gandhi
  fullname: Gandhi, Aayushi
  organization: Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine
– sequence: 7
  givenname: Pavithra
  surname: Mukunda
  fullname: Mukunda, Pavithra
  organization: Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine
– sequence: 8
  givenname: Tatevik
  surname: Avanesyan
  fullname: Avanesyan, Tatevik
  organization: Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine
– sequence: 9
  givenname: Haopeng
  surname: Xue
  fullname: Xue, Haopeng
  organization: Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Artificial Intelligence for Mental Health Initiative (AI4MH), Department of Psychiatry and Behavioral Sciences, Stanford University
– sequence: 10
  givenname: Ehsan
  surname: Adeli
  fullname: Adeli, Ehsan
  organization: Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Artificial Intelligence for Mental Health Initiative (AI4MH), Department of Psychiatry and Behavioral Sciences, Stanford University, Department of Computer Science, Stanford University, Department of Biomedical Data Science, Stanford School of Medicine
– sequence: 11
  givenname: Jane Paik
  surname: Kim
  fullname: Kim, Jane Paik
  organization: Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Artificial Intelligence for Mental Health Initiative (AI4MH), Department of Psychiatry and Behavioral Sciences, Stanford University
– sequence: 12
  givenname: Manish
  surname: Saggar
  fullname: Saggar, Manish
  organization: Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Artificial Intelligence for Mental Health Initiative (AI4MH), Department of Psychiatry and Behavioral Sciences, Stanford University
– sequence: 13
  givenname: Shannon Wiltsey
  surname: Stirman
  fullname: Stirman, Shannon Wiltsey
  organization: Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Artificial Intelligence for Mental Health Initiative (AI4MH), Department of Psychiatry and Behavioral Sciences, Stanford University, Dissemination and Training Division, National Center for PTSD, VA Palo Alto Health Care System, Veterans Affairs Palo Alto Health Care System
– sequence: 14
  givenname: Eric
  surname: Kuhn
  fullname: Kuhn, Eric
  organization: Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Artificial Intelligence for Mental Health Initiative (AI4MH), Department of Psychiatry and Behavioral Sciences, Stanford University, Dissemination and Training Division, National Center for PTSD, VA Palo Alto Health Care System, Veterans Affairs Palo Alto Health Care System
– sequence: 15
  givenname: Kaustubh
  surname: Supekar
  fullname: Supekar, Kaustubh
  organization: Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Artificial Intelligence for Mental Health Initiative (AI4MH), Department of Psychiatry and Behavioral Sciences, Stanford University
– sequence: 16
  givenname: Kilian M.
  surname: Pohl
  fullname: Pohl, Kilian M.
  organization: Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Artificial Intelligence for Mental Health Initiative (AI4MH), Department of Psychiatry and Behavioral Sciences, Stanford University, Department of Electrical Engineering, Stanford University
– sequence: 17
  givenname: Carolyn I.
  surname: Rodriguez
  fullname: Rodriguez, Carolyn I.
  email: carolynrodriguez@stanford.edu
  organization: Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Artificial Intelligence for Mental Health Initiative (AI4MH), Department of Psychiatry and Behavioral Sciences, Stanford University, Veterans Affairs Palo Alto Health Care System
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40524733$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtP3DAUhS1EBZTyB1hUkbphk_baTuKkm2o09IFEhdTH2vLY14NRYg92Moh_X6dDKWXRla_k75z7OC_Jvg8eCTml8JYCiHepghpoCawuAXjdle0eOWK0a0oODd1_Uh-Sk5RuAIDSCihvD8hh1rJKcH5Evi7i6KzTTvXFhR-x790avcbC-eJqlTAlt8VyGYbN1M9lce5SiAbj-2JRfL9PIw5qdLr4hluHd6_IC6v6hCcP7zH5-enjj-WX8vLq88VycVlqXvG2tDY3rzrerCx0BpVoGqOrTmHVtqIzmjFlmGKGadsh1CvTVRywFtbYhqMBfkw-7Hw302pAo9GPUfVyE92g4r0Mysl_f7y7luuwlZTRRjAxO5w9OMRwO2Ea5eCSzusrj2FKkufzcVZzQTP65hl6E6bo834z1YqcQz0bvn460uMsf06dAbYDdAwpRbSPCAU5Ryp3kcocqfwdqWyziO9EKcN-jfFv7_-ofgEeA6M8
Cites_doi 10.7717/peerj-cs.2395
10.3389/fpsyt.2023.1162800
10.48550/arXiv.2406.01662
10.1001/jamainternmed.2023.2909
10.1016/j.comppsych.2022.152352
10.1038/s41386-022-01353-x
10.31219/osf.io/wx93m
10.1186/s12888-023-05299-2
10.2196/39613
10.1007/s10916-018-0934-5
10.1192/bjp.2022.13
10.2196/62963
10.1016/j.pnpbp.2015.06.009
10.1177/20552076211053690
10.1007/s11414-023-09838-3
10.48550/arXiv.1705.07874
10.1093/med:psych/9780195335286.003.0007
10.1038/s41380-023-02392-6
10.1038/s41746-024-01181-x
10.1371/journal.pone.0153846
10.1176/appi.ajp.2020.20030250
10.1001/jamanetworkopen.2023.38050
10.1038/s44184-024-00056-z
10.1038/s41746-023-00751-9
10.1016/j.nicl.2021.102640
10.48550/arXiv.2503.11384
10.1038/s41586-021-03819-2
10.1002/hbm.25833
10.1002/aur.3094
10.4088/JCP.v67n0503
10.31234/osf.io/8zqhw_v2
10.1073/pnas.1716686115
10.1038/s41586-025-08866-7
10.1073/pnas.2310012121
10.1038/s41537-024-00481-1
10.1038/nn.4478
10.1038/s41398-020-01013-y
10.1007/s10608-020-10125-0
10.48550/arXiv.2407.00028
10.1038/s41586-023-06291-2
10.1523/ENEURO.0384-19.2019
10.1056/AIoa2400590
10.1093/jamia/ocaa085
10.1038/s41591-024-03434-4
10.1101/2024.09.10.612309
10.1038/s41380-024-02495-8
10.1016/j.pnpbp.2018.08.005
10.1016/j.euroneuro.2019.02.002
10.1007/978-3-030-28954-6_1
10.2196/25482
10.12720/jait.15.7.798-811
10.1136/bmjebm-2022-112111
10.2147/PRBM.S75106
10.1016/j.neuron.2024.01.004
10.1038/s41398-024-03053-0
10.1177/20552076231186064
10.1038/mp.2008.94
10.1007/s11920-016-0729-7
10.1016/j.beth.2025.02.005
10.1080/15265161.2020.1827695
10.1034/j.1600-0447.2002.01221.x
10.1038/s41598-020-69250-1
10.1136/bmj.l6927
10.1017/neu.2024.42
10.7554/eLife.85082
10.1038/s44184-024-00100-y
10.3390/jpm13101453
10.1017/S0269888900008122
10.1016/j.heliyon.2024.e40136
10.1007/s11682-020-00358-8
10.1080/15265161.2021.2013977
10.1038/s41380-023-02077-0
ContentType Journal Article
Copyright This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2025
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2025.
Copyright Springer Nature B.V. Dec 2025
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2025 2025
Copyright_xml – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2025
– notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2025.
– notice: Copyright Springer Nature B.V. Dec 2025
– notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2025 2025
DBID C6C
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1007/s40501-025-00359-8
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2196-3061
ExternalDocumentID PMC12167270
40524733
10_1007_s40501_025_00359_8
Genre Journal Article
Review
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: National Institutes of Health
  grantid: K01MH137386; LM014597; R01MH133553
  funderid: https://doi.org/10.13039/100000002
GroupedDBID 0R~
203
406
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAZMS
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADHHG
ADKNI
ADKPE
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFQWF
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
AKLTO
AKMHD
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
ATHPR
AUKKA
AVXWI
AXYYD
AYFIA
C6C
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
FEDTE
FERAY
FIGPU
FNLPD
FRRFC
GGCAI
GGRSB
GJIRD
GQ7
HQYDN
HRMNR
HVGLF
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
NB0
NPVJJ
NQJWS
O93
O9G
O9J
PT4
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
U9L
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
ZMTXR
ZOVNA
AAYXX
CITATION
AAAVM
AAYTO
AEBTG
AHSBF
AJBLW
BGNMA
EJD
FINBP
FSGXE
M4Y
NPM
NU0
ABRTQ
7X8
5PM
ID FETCH-LOGICAL-c3438-ff4734936bf09dea766dc49ae48879dc22ad2a2d2cf9e05bd9430e57fdf63ed03
IEDL.DBID AGYKE
ISSN 2196-3061
IngestDate Thu Aug 21 18:27:42 EDT 2025
Fri Jul 11 17:03:56 EDT 2025
Fri Jul 25 09:23:47 EDT 2025
Thu Jun 19 02:16:15 EDT 2025
Thu Jul 03 08:18:40 EDT 2025
Sun Jun 15 01:13:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords AI
OCD
Obsessive-compulsive disorder
Treatment
Diagnosis
Mental health
Language English
License This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2025.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3438-ff4734936bf09dea766dc49ae48879dc22ad2a2d2cf9e05bd9430e57fdf63ed03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s40501-025-00359-8
PMID 40524733
PQID 3218705050
PQPubID 6420650
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12167270
proquest_miscellaneous_3219325371
proquest_journals_3218705050
pubmed_primary_40524733
crossref_primary_10_1007_s40501_025_00359_8
springer_journals_10_1007_s40501_025_00359_8
PublicationCentury 2000
PublicationDate 20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 1
  year: 2025
  text: 20250101
  day: 1
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Switzerland
– name: Heidelberg
PublicationTitle Current treatment options in psychiatry
PublicationTitleAbbrev Curr Treat Options Psych
PublicationTitleAlternate Curr Treat Options Psychiatry
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References LM Koran (359_CR2) 2007; 164
NG Mil (359_CR17) 2025; 37
S Ryali (359_CR61) 2024; 121
DW Joyce (359_CR78) 2023; 6
EE Bernstein (359_CR29) 2025
S Han (359_CR74) 2022; 43
K Supekar (359_CR59) 2024; 29
S Rutherford (359_CR58) 2023; 12
359_CR30
J Jumper (359_CR43) 2021; 596
MD McCradden (359_CR46) 2022; 22
359_CR77
AG Hertz (359_CR8) 2023; 50
M Khazaneha (359_CR18) 2024; 10
359_CR38
A Golden (359_CR49) 2024; 23
359_CR34
S Brandsen (359_CR25) 2024; 17
359_CR35
359_CR7
359_CR36
M Srividya (359_CR22) 2018; 42
WB Bruin (359_CR63) 2020; 10
MD McCradden (359_CR48) 2020; 27
R Goodwin (359_CR9) 2002; 106
I Frydman (359_CR56) 2016; 18
B-G Kim (359_CR64) 2024; 29
N Reggente (359_CR70) 2018; 115
MJ Sheller (359_CR79) 2020; 10
PJ van Roessel (359_CR44) 2023; 120
AM Ruscio (359_CR3) 2010; 15
F Perris (359_CR6) 2023; 13
A Golden (359_CR27) 2024; 8
J-Y Yun (359_CR69) 2015; 63
359_CR66
MG Wheaton (359_CR39) 2021; 45
359_CR28
S Koltcov (359_CR26) 2024; 10
J O’Neill (359_CR10) 2015; 8
359_CR68
Z Ruan (359_CR20) 2023
L Xie (359_CR15) 2024; 14
M Neary (359_CR50) 2021; 7
K Supekar (359_CR60) 2022; 220
A Pinto (359_CR4) 2006; 67
W Bruin (359_CR62) 2019; 91
M Sallam (359_CR33) 2023; 11
LC Liebrand (359_CR73) 2021; 30
359_CR54
NA Fineberg (359_CR5) 2019; 29
359_CR55
K Singhal (359_CR32) 2023; 620
A Grzenda (359_CR13) 2021; 178
D Char (359_CR47) 2020; 20
WB Bruin (359_CR65) 2023; 28
359_CR51
359_CR16
E Strong (359_CR31) 2023; 183
JD Feusner (359_CR19) 2021; 23
M Wooldridge (359_CR11) 1995; 10
359_CR1
D Cao (359_CR42) 2024; 112
L Plank (359_CR23) 2024; 10
AS De Nadai (359_CR75) 2023; 48
W Samek (359_CR76) 2019
359_CR80
S Mas (359_CR72) 2016; 11
K Zhang (359_CR41) 2025; 31
C-W Woo (359_CR57) 2017; 20
LKH Clemmensen (359_CR21) 2022; 11
W Dai (359_CR53) 2025; 2
S Vollmer (359_CR45) 2020; 368
D Rangaprakash (359_CR71) 2021; 15
359_CR40
J Kim (359_CR12) 2024; 3
F-F Huang (359_CR67) 2023; 23
J Kim (359_CR14) 2023; 6
L Tang (359_CR52) 2023; 9
J Kim (359_CR24) 2024; 7
EC Stade (359_CR37) 2024; 3
References_xml – volume: 10
  start-page: e2395
  year: 2024
  ident: 359_CR26
  publication-title: PeerJ Comput Sci
  doi: 10.7717/peerj-cs.2395
– year: 2023
  ident: 359_CR20
  publication-title: Front Psychiatry
  doi: 10.3389/fpsyt.2023.1162800
– ident: 359_CR54
  doi: 10.48550/arXiv.2406.01662
– volume: 183
  start-page: 1028
  year: 2023
  ident: 359_CR31
  publication-title: JAMA Intern Med
  doi: 10.1001/jamainternmed.2023.2909
– volume: 120
  start-page: 152352
  year: 2023
  ident: 359_CR44
  publication-title: Compr Psychiatry
  doi: 10.1016/j.comppsych.2022.152352
– volume: 48
  start-page: 402
  year: 2023
  ident: 359_CR75
  publication-title: Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol
  doi: 10.1038/s41386-022-01353-x
– ident: 359_CR38
  doi: 10.31219/osf.io/wx93m
– volume: 23
  start-page: 792
  year: 2023
  ident: 359_CR67
  publication-title: BMC Psychiatry
  doi: 10.1186/s12888-023-05299-2
– volume: 11
  start-page: e39613
  year: 2022
  ident: 359_CR21
  publication-title: JMIR Res Protoc
  doi: 10.2196/39613
– ident: 359_CR1
– volume: 42
  start-page: 88
  year: 2018
  ident: 359_CR22
  publication-title: J Med Syst
  doi: 10.1007/s10916-018-0934-5
– volume: 220
  start-page: 202
  year: 2022
  ident: 359_CR60
  publication-title: Br J Psychiatry J Ment Sci
  doi: 10.1192/bjp.2022.13
– volume: 8
  start-page: e62963
  year: 2024
  ident: 359_CR27
  publication-title: JMIR Form Res
  doi: 10.2196/62963
– ident: 359_CR30
– volume: 63
  start-page: 126
  year: 2015
  ident: 359_CR69
  publication-title: Prog Neuropsychopharmacol Biol Psychiatry
  doi: 10.1016/j.pnpbp.2015.06.009
– volume: 7
  start-page: 205520762110536
  year: 2021
  ident: 359_CR50
  publication-title: Digit Health
  doi: 10.1177/20552076211053690
– volume: 50
  start-page: 514
  year: 2023
  ident: 359_CR8
  publication-title: J Behav Health Serv Res
  doi: 10.1007/s11414-023-09838-3
– ident: 359_CR77
  doi: 10.48550/arXiv.1705.07874
– ident: 359_CR7
  doi: 10.1093/med:psych/9780195335286.003.0007
– volume: 29
  start-page: 1063
  year: 2024
  ident: 359_CR64
  publication-title: Mol Psychiatry
  doi: 10.1038/s41380-023-02392-6
– volume: 164
  start-page: 5
  year: 2007
  ident: 359_CR2
  publication-title: Am J Psychiatry
– volume: 7
  start-page: 193
  year: 2024
  ident: 359_CR24
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-024-01181-x
– volume: 11
  start-page: e0153846
  year: 2016
  ident: 359_CR72
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0153846
– volume: 178
  start-page: 715
  year: 2021
  ident: 359_CR13
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.2020.20030250
– volume: 6
  start-page: e2338050
  year: 2023
  ident: 359_CR14
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2023.38050
– ident: 359_CR35
– volume: 3
  start-page: 1
  year: 2024
  ident: 359_CR37
  publication-title: Npj Ment Health Res
  doi: 10.1038/s44184-024-00056-z
– volume: 6
  start-page: 1
  year: 2023
  ident: 359_CR78
  publication-title: Npj Digit Med
  doi: 10.1038/s41746-023-00751-9
– volume: 30
  start-page: 102640
  year: 2021
  ident: 359_CR73
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2021.102640
– ident: 359_CR36
  doi: 10.48550/arXiv.2503.11384
– volume: 596
  start-page: 583
  year: 2021
  ident: 359_CR43
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
– volume: 43
  start-page: 3037
  year: 2022
  ident: 359_CR74
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.25833
– volume: 17
  start-page: 234
  year: 2024
  ident: 359_CR25
  publication-title: Autism Res
  doi: 10.1002/aur.3094
– volume: 67
  start-page: 703
  year: 2006
  ident: 359_CR4
  publication-title: J Clin Psychiatry
  doi: 10.4088/JCP.v67n0503
– ident: 359_CR40
  doi: 10.31234/osf.io/8zqhw_v2
– volume: 115
  start-page: 2222
  year: 2018
  ident: 359_CR70
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1716686115
– ident: 359_CR34
  doi: 10.1038/s41586-025-08866-7
– volume: 121
  start-page: e2310012121
  year: 2024
  ident: 359_CR61
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2310012121
– volume: 10
  start-page: 1
  year: 2024
  ident: 359_CR23
  publication-title: Schizophrenia
  doi: 10.1038/s41537-024-00481-1
– volume: 20
  start-page: 365
  year: 2017
  ident: 359_CR57
  publication-title: Nat Neurosci
  doi: 10.1038/nn.4478
– volume: 10
  start-page: 1
  year: 2020
  ident: 359_CR63
  publication-title: Transl Psychiatry
  doi: 10.1038/s41398-020-01013-y
– volume: 45
  start-page: 236
  year: 2021
  ident: 359_CR39
  publication-title: Cogn Ther Res
  doi: 10.1007/s10608-020-10125-0
– ident: 359_CR68
  doi: 10.48550/arXiv.2407.00028
– volume: 620
  start-page: 172
  year: 2023
  ident: 359_CR32
  publication-title: Nature
  doi: 10.1038/s41586-023-06291-2
– ident: 359_CR55
  doi: 10.1523/ENEURO.0384-19.2019
– ident: 359_CR80
– volume: 2
  start-page: AIoa2400590
  year: 2025
  ident: 359_CR53
  publication-title: NEJM AI
  doi: 10.1056/AIoa2400590
– volume: 27
  start-page: 2024
  year: 2020
  ident: 359_CR48
  publication-title: J Am Med Inf Assoc JAMIA
  doi: 10.1093/jamia/ocaa085
– volume: 31
  start-page: 45
  year: 2025
  ident: 359_CR41
  publication-title: Nat Med
  doi: 10.1038/s41591-024-03434-4
– ident: 359_CR66
  doi: 10.1101/2024.09.10.612309
– ident: 359_CR51
– volume: 29
  start-page: 2951
  year: 2024
  ident: 359_CR59
  publication-title: Mol Psychiatry
  doi: 10.1038/s41380-024-02495-8
– volume: 91
  start-page: 49
  year: 2019
  ident: 359_CR62
  publication-title: Prog Neuropsychopharmacol Biol Psychiatry
  doi: 10.1016/j.pnpbp.2018.08.005
– volume: 29
  start-page: 549
  year: 2019
  ident: 359_CR5
  publication-title: Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol
  doi: 10.1016/j.euroneuro.2019.02.002
– start-page: 5
  volume-title: Explain. AI interpret. Explain. Vis. Deep learn
  year: 2019
  ident: 359_CR76
  doi: 10.1007/978-3-030-28954-6_1
– volume: 23
  start-page: e25482
  year: 2021
  ident: 359_CR19
  publication-title: J Med Internet Res
  doi: 10.2196/25482
– volume: 11
  start-page: 887
  year: 2023
  ident: 359_CR33
  publication-title: Healthc Basel Switz
– ident: 359_CR28
  doi: 10.12720/jait.15.7.798-811
– ident: 359_CR16
  doi: 10.1136/bmjebm-2022-112111
– volume: 8
  start-page: 211
  year: 2015
  ident: 359_CR10
  publication-title: Psychol Res Behav Manag
  doi: 10.2147/PRBM.S75106
– volume: 112
  start-page: 526
  year: 2024
  ident: 359_CR42
  publication-title: Neuron
  doi: 10.1016/j.neuron.2024.01.004
– volume: 14
  start-page: 1
  year: 2024
  ident: 359_CR15
  publication-title: Transl Psychiatry
  doi: 10.1038/s41398-024-03053-0
– volume: 9
  start-page: 205520762311860
  year: 2023
  ident: 359_CR52
  publication-title: Digit Health
  doi: 10.1177/20552076231186064
– volume: 15
  start-page: 53
  year: 2010
  ident: 359_CR3
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2008.94
– volume: 18
  start-page: 90
  year: 2016
  ident: 359_CR56
  publication-title: Curr Psychiatry Rep
  doi: 10.1007/s11920-016-0729-7
– year: 2025
  ident: 359_CR29
  publication-title: Behav Ther
  doi: 10.1016/j.beth.2025.02.005
– volume: 20
  start-page: W6
  year: 2020
  ident: 359_CR47
  publication-title: Am J Bioeth AJOB
  doi: 10.1080/15265161.2020.1827695
– volume: 106
  start-page: 143
  year: 2002
  ident: 359_CR9
  publication-title: Acta Psychiatr Scand
  doi: 10.1034/j.1600-0447.2002.01221.x
– volume: 10
  start-page: 12598
  year: 2020
  ident: 359_CR79
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-69250-1
– volume: 368
  start-page: l6927
  year: 2020
  ident: 359_CR45
  publication-title: BMJ
  doi: 10.1136/bmj.l6927
– volume: 37
  start-page: e45
  year: 2025
  ident: 359_CR17
  publication-title: Acta Neuropsychiatr
  doi: 10.1017/neu.2024.42
– volume: 23
  start-page: 444
  year: 2024
  ident: 359_CR49
  publication-title: World Psychiatry Off J World Psychiatr Assoc WPA
– volume: 12
  start-page: e85082
  year: 2023
  ident: 359_CR58
  publication-title: eLife
  doi: 10.7554/eLife.85082
– volume: 3
  start-page: 54
  year: 2024
  ident: 359_CR12
  publication-title: Npj Ment Health Res
  doi: 10.1038/s44184-024-00100-y
– volume: 13
  start-page: 1453
  year: 2023
  ident: 359_CR6
  publication-title: J Pers Med
  doi: 10.3390/jpm13101453
– volume: 10
  start-page: 115
  year: 1995
  ident: 359_CR11
  publication-title: Knowl Eng Rev
  doi: 10.1017/S0269888900008122
– volume: 10
  start-page: e40136
  year: 2024
  ident: 359_CR18
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e40136
– volume: 15
  start-page: 1622
  year: 2021
  ident: 359_CR71
  publication-title: Brain Imaging Behav
  doi: 10.1007/s11682-020-00358-8
– volume: 22
  start-page: 8
  year: 2022
  ident: 359_CR46
  publication-title: Am J Bioeth AJOB
  doi: 10.1080/15265161.2021.2013977
– volume: 28
  start-page: 4307
  year: 2023
  ident: 359_CR65
  publication-title: Mol Psychiatry
  doi: 10.1038/s41380-023-02077-0
SSID ssj0001140138
Score 2.2788267
SecondaryResourceType review_article
Snippet Purpose of Review Obsessive-compulsive disorder (OCD) is a chronic and disabling condition, often leading to significant functional impairments. Despite its...
Obsessive-compulsive disorder (OCD) is a chronic and disabling condition, often leading to significant functional impairments. Despite its early onset, there...
Purpose of ReviewObsessive-compulsive disorder (OCD) is a chronic and disabling condition, often leading to significant functional impairments. Despite its...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 23
SubjectTerms Algorithms
Artificial intelligence
Behavior
Biomarkers
Bipolar disorder
Clinical outcomes
Comorbidity
Drug therapy
Electroconvulsive therapy
Human subjects
Language
Medicine
Medicine & Public Health
Mental health care
Natural language processing
Neurology
Neuroses
Obsessive compulsive disorder
Physiology
Psychiatry
Review
Schizoaffective disorder
Schizophrenia
Side effects
Social networks
Systematic review
Topical Collection on AI in Mental Health Care
Title Artificial Intelligence in Obsessive-Compulsive Disorder: A Systematic Review
URI https://link.springer.com/article/10.1007/s40501-025-00359-8
https://www.ncbi.nlm.nih.gov/pubmed/40524733
https://www.proquest.com/docview/3218705050
https://www.proquest.com/docview/3219325371
https://pubmed.ncbi.nlm.nih.gov/PMC12167270
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BKyEW3o9AQUZig6DESRyHraooBVQYoBJMURw7AoECou3Cr-fsPOgDBrZIdnQ-38Nnn-8zwDHNEowLFBqSvkKDGsJtzpXEXSvnQrJIRExXI_dvWW_gXz8Gj2VR2LC67V6lJI2nrovdMLTQW18a2AZ3zuaL0EQ6jt-AZvvy6WbibMXsGnhZI_P7z9Pr0FxwOX9HciZRataf7ioMqpEX105ez8YjcZZ-zYA6_pe1NVgpA1LSLjRoHRZUvgFL_TLlvgl93VLATJCrCfxO8pKTO6EzxugvbfM4xJv-JBWe5zlpk_saJ5oUSYgtGHQvHjo9u3yDwU49H31hlvmh50ceE5kTSZWEjMnUjxKFYg0jmVKaSJpQSdMsUk4gpIZzV0GYyYx5SjreNjTy91ztAhE-KoVUjqLC8VP0JS7LgtAVGDEg-yKx4KSSSPxRQG3ENaiymaEYZyg2MxRzC1qV0OLS7IaxhwFLqN_mcyw4qpvRYHQWJMnV-9j0wZg18ELXgp1CxjU5pEKRX88CPiX9uoMG455uyV-eDSi3S12d1EbCp5WMf8b1Nxt7_-u-D8vUqIk-A2pBY_Q5VgcYFY3EYWkEh7DYYZ1vsR0Euw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8QgEJ7omqgX49v6xMSbNrbQUupts3GzPlYPauKNlALRxFSj7v93oN3q-jh4awIN7TcDzPDBB8ABtQXGBQY7kttCgx4iQiGMxqxVCKV5rnLuTiMPr_jgLjm_T-8bmRx3FuYbf3_8hgGFS3hpGnq1uVBMw0yCmbLbvtfjvc_1FJ8piOZczO-vTs49PwLKn_siv5Gjfs7pL8JCEyySbm3dJZgy1TLMDhs6fAWGrqSWgCBnX7Q1yWNFrpVjc3EsC_3FDU_ukYy1Nk9Il9y0Gs6kJghW4a5_etsbhM39CGHJEhynrE0yluSMKxvl2hQZ57pM8sIg5FmuS0oLTQuqaWlzE6VKO6l1k2ZWW86MjtgadKrnymwAUQip0SYyVEVJif085jbNYoWzOYKoigAOx8jJl1oGQ7aCxx5niThLj7MUAWyPwZVNl3iTDIOJzN2bFwWw3xajMzuGoqjM88jXwXgyZVkcwHpti7Y5bIXi_7IAxISV2gpOKHuypHp88ILZMY0d4YwNH40N-vldf__G5v-q78Hc4HZ4KS_Pri62YJ56x3NrNdvQeX8dmR2MXt7VrnfbD52n5as
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50BfEivq2uGsGbFtu0TVNvy-ria1dBBW-laRJckK7o-v-dpI_d9XHwVkhCmplJMpMv8wXgiOoM_QKFE8lcoUEL4S7nSmLUyrmQLBEJM9nI_QG7fAqvn6PnqSx-e9u9hiTLnAbD0lSMT9-kPm0S39DNMGEwjVzLQefyeVjASMUCtV3WnZyy2PiBV9kyvzed3ZF-uJk_b0t-g0ztTtRbgeXKhSSdUuerMKeKNVjsVyD5OvRNSUkMQa6mGDfJsCB3wmC8uMK59jmHV_NJagbOM9IhDw2zMylhgw146l08di_d6tUENw9CXL20DuMgTAImtJdIlcWMyTxMMoWKiBOZU5pJmlFJc50oLxLSELCrKNZSs0BJL9iEVjEq1DYQEaIapfIUFV6Y4-z3mY5iX-Aej0IUmQPHteTSt5IcI21okK2cU5RzauWccgfatXDTaqJ8pAG6GLF5Tc9z4LApRhM3uEVWqNGnrYNeZhTEvgNbpS6a7rAXiuMNHOAzWmoqGPrs2ZJi-GJptH3qGxgaOz6pFTr5r7-HsfO_6geweH_eS2-vBje7sESt3ZkDnDa0xu-fag9dmrHYt1b7BW8I7fI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+in+Obsessive-Compulsive+Disorder%3A+A+Systematic+Review&rft.jtitle=Current+treatment+options+in+psychiatry&rft.au=Kim%2C+Jiyeong&rft.au=Pacheco%2C+Juan+Pablo+Gonzalez&rft.au=Golden%2C+Ashleigh&rft.au=Aboujaoude%2C+Elias&rft.date=2025-01-01&rft.issn=2196-3061&rft.eissn=2196-3061&rft.volume=12&rft.issue=1&rft.spage=23&rft_id=info:doi/10.1007%2Fs40501-025-00359-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-3061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-3061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-3061&client=summon