Theranostic‐guided corneal cross‐linking: Preclinical evidence on a new treatment paradigm for keratoconus
Theranostics is an emerging therapeutic paradigm of personalized medicine; the term refers to the simultaneous integration of therapy and diagnostics. In this work, theranostic‐guided corneal cross‐linking was performed on 10 human sclero‐corneal tissues. The samples were soaked with 0.22% riboflavi...
Saved in:
Published in | Journal of biophotonics Vol. 15; no. 12; pp. e202200218 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY‐VCH Verlag GmbH & Co. KGaA
01.12.2022
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Theranostics is an emerging therapeutic paradigm of personalized medicine; the term refers to the simultaneous integration of therapy and diagnostics. In this work, theranostic‐guided corneal cross‐linking was performed on 10 human sclero‐corneal tissues. The samples were soaked with 0.22% riboflavin formulation and underwent 9 minutes UV‐A irradiance at 10 mW/cm2 using theranostic device, which provided both a measure of corneal riboflavin concentration and a theranostic score estimating treatment efficacy in real time. A three‐element viscoelastic model was developed to fit the deformation response of the cornea to air‐puff excitation of dynamic tonometry and to calculate the mean corneal stiffness parameter before and after treatment. Significant correlation was found between the theranostic score and the increase in mean corneal stiffness (R = 0.80; P < .001). Accuracy and precision of the theranostic score in predicting the induced corneal tissue stiffening were both 90%. The riboflavin concentration prior to starting the UV‐A photo‐therapy phase was the most important variable to allow corneal cross‐linking to be effective. Theranostic UV‐A light mediated imaging and therapy enables the operator to adopt a precise approach for achieving highly predictable biomechanical strengthening on individual corneas.
Theranostics is an emerging therapeutic paradigm of personalized and precision medicine that performs therapy guided by molecular diagnostic imaging. The technology was implemented in a UV‐A medical device and showed to efficiently drive the operator in performing personalized riboflavin/UV‐A corneal cross‐linking for treatment of corneal disorders with high accuracy and precision through light activated image‐guided drug therapy. |
---|---|
AbstractList | Abstract
Theranostics is an emerging therapeutic paradigm of personalized medicine; the term refers to the simultaneous integration of therapy and diagnostics. In this work, theranostic‐guided corneal cross‐linking was performed on 10 human sclero‐corneal tissues. The samples were soaked with 0.22% riboflavin formulation and underwent 9 minutes UV‐A irradiance at 10 mW/cm
2
using theranostic device, which provided both a measure of corneal riboflavin concentration and a
theranostic score
estimating treatment efficacy in real time. A three‐element viscoelastic model was developed to fit the deformation response of the cornea to air‐puff excitation of dynamic tonometry and to calculate the mean corneal stiffness parameter before and after treatment. Significant correlation was found between the
theranostic score
and the increase in mean corneal stiffness (R = 0.80;
P
< .001). Accuracy and precision of the
theranostic score
in predicting the induced corneal tissue stiffening were both 90%. The riboflavin concentration prior to starting the UV‐A photo‐therapy phase was the most important variable to allow corneal cross‐linking to be effective. Theranostic UV‐A light mediated imaging and therapy enables the operator to adopt a precise approach for achieving highly predictable biomechanical strengthening on individual corneas. Theranostics is an emerging therapeutic paradigm of personalized medicine; the term refers to the simultaneous integration of therapy and diagnostics. In this work, theranostic‐guided corneal cross‐linking was performed on 10 human sclero‐corneal tissues. The samples were soaked with 0.22% riboflavin formulation and underwent 9 minutes UV‐A irradiance at 10 mW/cm2 using theranostic device, which provided both a measure of corneal riboflavin concentration and a theranostic score estimating treatment efficacy in real time. A three‐element viscoelastic model was developed to fit the deformation response of the cornea to air‐puff excitation of dynamic tonometry and to calculate the mean corneal stiffness parameter before and after treatment. Significant correlation was found between the theranostic score and the increase in mean corneal stiffness (R = 0.80; P < .001). Accuracy and precision of the theranostic score in predicting the induced corneal tissue stiffening were both 90%. The riboflavin concentration prior to starting the UV‐A photo‐therapy phase was the most important variable to allow corneal cross‐linking to be effective. Theranostic UV‐A light mediated imaging and therapy enables the operator to adopt a precise approach for achieving highly predictable biomechanical strengthening on individual corneas. Theranostics is an emerging therapeutic paradigm of personalized medicine; the term refers to the simultaneous integration of therapy and diagnostics. In this work, theranostic‐guided corneal cross‐linking was performed on 10 human sclero‐corneal tissues. The samples were soaked with 0.22% riboflavin formulation and underwent 9 minutes UV‐A irradiance at 10 mW/cm2 using theranostic device, which provided both a measure of corneal riboflavin concentration and a theranostic score estimating treatment efficacy in real time. A three‐element viscoelastic model was developed to fit the deformation response of the cornea to air‐puff excitation of dynamic tonometry and to calculate the mean corneal stiffness parameter before and after treatment. Significant correlation was found between the theranostic score and the increase in mean corneal stiffness (R = 0.80; P < .001). Accuracy and precision of the theranostic score in predicting the induced corneal tissue stiffening were both 90%. The riboflavin concentration prior to starting the UV‐A photo‐therapy phase was the most important variable to allow corneal cross‐linking to be effective. Theranostic UV‐A light mediated imaging and therapy enables the operator to adopt a precise approach for achieving highly predictable biomechanical strengthening on individual corneas. Theranostics is an emerging therapeutic paradigm of personalized and precision medicine that performs therapy guided by molecular diagnostic imaging. The technology was implemented in a UV‐A medical device and showed to efficiently drive the operator in performing personalized riboflavin/UV‐A corneal cross‐linking for treatment of corneal disorders with high accuracy and precision through light activated image‐guided drug therapy. Theranostics is an emerging therapeutic paradigm of personalized medicine; the term refers to the simultaneous integration of therapy and diagnostics. In this work, theranostic-guided corneal cross-linking was performed on 10 human sclero-corneal tissues. The samples were soaked with 0.22% riboflavin formulation and underwent 9 minutes UV-A irradiance at 10 mW/cm using theranostic device, which provided both a measure of corneal riboflavin concentration and a theranostic score estimating treatment efficacy in real time. A three-element viscoelastic model was developed to fit the deformation response of the cornea to air-puff excitation of dynamic tonometry and to calculate the mean corneal stiffness parameter before and after treatment. Significant correlation was found between the theranostic score and the increase in mean corneal stiffness (R = 0.80; P < .001). Accuracy and precision of the theranostic score in predicting the induced corneal tissue stiffening were both 90%. The riboflavin concentration prior to starting the UV-A photo-therapy phase was the most important variable to allow corneal cross-linking to be effective. Theranostic UV-A light mediated imaging and therapy enables the operator to adopt a precise approach for achieving highly predictable biomechanical strengthening on individual corneas. |
Author | Bernava, Giuseppe Massimo Lombardo, Marco Lombardo, Giuseppe Serrao, Sebastiano |
Author_xml | – sequence: 1 givenname: Giuseppe orcidid: 0000-0002-9416-967X surname: Lombardo fullname: Lombardo, Giuseppe email: giuseppe.lombardo@cnr.it organization: Vision Engineering Italy srl – sequence: 2 givenname: Giuseppe Massimo orcidid: 0000-0001-8024-1338 surname: Bernava fullname: Bernava, Giuseppe Massimo organization: CNR‐IPCF, Istituto per i Processi Chimico‐Fisici, Viale F – sequence: 3 givenname: Sebastiano surname: Serrao fullname: Serrao, Sebastiano organization: Studio Italiano di Oftalmologia – sequence: 4 givenname: Marco orcidid: 0000-0001-8842-7102 surname: Lombardo fullname: Lombardo, Marco email: mlombardo@visioeng.it organization: Studio Italiano di Oftalmologia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36059083$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1OGzEUha0K1EDabZeVpW66SfDP2ONhVxCUoEjpgkrdjTyeO6nDjB3smSJ2PALP2CfBIRAkNqx8r-_nc61zDtGe8w4Q-kLJlBLCjlaV9VNGGEsNVR_QAVUymxCZqb1dzf-M0GGMK0Ik4YJ_RCMuiSiI4gfIXf2FoJ2PvTX_7x-Wg62hxsYHB7rFJvgY03Vr3bV1y2P8K4BJjTVpCP8S6wxg77DGDm5xH0D3Hbger3XQtV12uPEBX6cNvTfeDfET2m90G-Hz8zlGv8_Prk4vJvPFz9npj_nE8IyrSc4rSvIaBFGV4CAqlWWaMqaFaWhtjBacU9kAE7VWTSGJaSRXzPC8qlReV3yMvm9118HfDBD7srPRQNtqB36IJctJUVBKWZbQb2_QlR-CS79LlJCS5oIXiZpuqSdLAjTlOthOh7uSknKTRLlJotwlkR58fZYdqg7qHf5ifQKKLXBrW7h7R668PJktXsUfAdvtmhw |
CitedBy_id | crossref_primary_10_1002_jbio_202400068 crossref_primary_10_1007_s10792_022_02628_4 crossref_primary_10_1007_s00417_024_06451_8 crossref_primary_10_1097_ICO_0000000000003377 crossref_primary_10_1097_j_jcrs_0000000000001163 |
Cites_doi | 10.1016/j.jcrs.2018.07.062 10.1016/j.jcrs.2014.02.032 10.1007/s10792-021-02019-1 10.1111/cxo.12025 10.3109/02713683.2010.506969 10.1016/j.ophtha.2021.04.019 10.1155/2015/795738 10.1167/iovs.07-1321 10.1007/s00417-019-04595-6 10.3928/1081597X-20160512-02 10.1016/j.exer.2015.05.018 10.1016/j.jcrs.2017.10.012 10.1167/iovs.11-9385 10.1167/iovs.15-18651 10.1179/1351000213Y.0000000076 10.1097/OPX.0000000000000486 10.1016/j.jcrs.2016.01.040 10.1371/journal.pone.0121486 10.1016/j.ajo.2021.05.009 10.1016/j.jcrs.2009.01.009 10.3390/jcm10122626 10.1167/iovs.11-7585 10.1074/jbc.M110.169813 10.3928/1081597X-20191010-03 10.1080/09273948.2018.1501491 10.1167/iovs.09-4524 10.7150/thno.16088 10.1016/j.jcrs.2015.11.007 10.1016/j.jmbbm.2015.04.010 10.1016/j.jcrs.2014.12.013 10.1021/ja01469a022 10.3109/02713683.2015.1133831 10.1167/iovs.14-13975 10.1167/tvst.5.5.12 10.1080/21681163.2014.959137 10.1167/iovs.09-3738 10.1002/jbio.201800028 10.1007/s11043-018-9390-3 10.1002/jbio.201500235 10.3389/fbioe.2018.00210 10.1016/j.jmbbm.2015.07.030 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by Wiley‐VCH GmbH. 2022 The Authors. Journal of Biophotonics published by Wiley-VCH GmbH. 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by Wiley‐VCH GmbH. – notice: 2022 The Authors. Journal of Biophotonics published by Wiley-VCH GmbH. – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7SP 7SR 7U5 8FD FR3 JG9 K9. L7M P64 7X8 |
DOI | 10.1002/jbio.202200218 |
DatabaseName | Open Access: Wiley-Blackwell Open Access Journals Wiley Free Archive Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database Engineered Materials Abstracts Biotechnology Research Abstracts Technology Research Database Electronics & Communications Abstracts ProQuest Health & Medical Complete (Alumni) Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Open Access: Wiley-Blackwell Open Access Journals url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1864-0648 |
EndPage | n/a |
ExternalDocumentID | 10_1002_jbio_202200218 36059083 JBIO202200218 |
Genre | researchArticle Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Lazio Innova funderid: A0114‐2017‐13715 |
GroupedDBID | --- 05W 0R~ 1OC 24P 31~ 33P 3SF 4.4 52U 52V 53G 5DZ 5GY 66C 8-0 8-1 A00 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABJNI ABLJU ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DR2 DRFUL DRMAN DRSTM EBD EBS EJD EMOBN F5P FEDTE FUBAC G-S GODZA HGLYW HVGLF HZ~ IX1 KBYEO LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ NNB O9- OIG P2W P4E PQQKQ ROL SUPJJ SV3 W99 WBKPD WIH WIJ WIK WIN WOHZO WXSBR WYJ XV2 ZZTAW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7SP 7SR 7U5 8FD FR3 JG9 K9. L7M P64 7X8 |
ID | FETCH-LOGICAL-c3438-73b107de508b53e5b844a122a5cf1dcca53316fe25da8f960cf6382c37bb87db3 |
IEDL.DBID | DR2 |
ISSN | 1864-063X |
IngestDate | Fri Aug 16 23:51:21 EDT 2024 Thu Oct 10 18:39:58 EDT 2024 Fri Aug 23 01:07:40 EDT 2024 Sat Sep 28 08:19:37 EDT 2024 Sat Aug 24 01:02:34 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | theranostics keratoconus riboflavin corneal cross-linking |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2022 The Authors. Journal of Biophotonics published by Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3438-73b107de508b53e5b844a122a5cf1dcca53316fe25da8f960cf6382c37bb87db3 |
Notes | Funding information Lazio Innova, Grant/Award Number: A0114‐2017‐13715 Giuseppe Lombardo and Marco Lombardo contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9416-967X 0000-0001-8024-1338 0000-0001-8842-7102 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbio.202200218 |
PMID | 36059083 |
PQID | 2756617539 |
PQPubID | 1006377 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2709911124 proquest_journals_2756617539 crossref_primary_10_1002_jbio_202200218 pubmed_primary_36059083 wiley_primary_10_1002_jbio_202200218_JBIO202200218 |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 20221201 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany – name: Jena |
PublicationTitle | Journal of biophotonics |
PublicationTitleAlternate | J Biophotonics |
PublicationYear | 2022 |
Publisher | WILEY‐VCH Verlag GmbH & Co. KGaA Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY‐VCH Verlag GmbH & Co. KGaA – name: Wiley Subscription Services, Inc |
References | 2019; 6 2010; 35 2015; 92 2021; 128 2019; 35 2017; 43 2021; 229 2015; 10 2016; 32 2011; 52 2019; 18 2022; 42 2014; 40 2016; 58 2016; 57 2012; 53 2016; 5 2016; 6 2015; 48 2009; 35 2021; 10 2014; 5 2015; 137 2015; 41 2019; 45 2019; 23 2008; 49 2013; 96 2015; 2015 2020; 258 2019; 27 2016; 42 2016; 41 1961; 83 2014; 13 2016 2014; 19 2018; 11 2010; 51 2016; 9 2014; 55 2011; 286 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_43_1 e_1_2_10_42_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_40_1 Koprowski R. (e_1_2_10_22_1) 2014; 13 Qin X. (e_1_2_10_26_1) 2019; 18 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 |
References_xml | – volume: 53 start-page: 2360 year: 2012 publication-title: Invest Ophthalmol. Vis. Sci. – volume: 2015 year: 2015 publication-title: Biomed. Res. Int. – volume: 19 start-page: 72.79 year: 2014 publication-title: Redox Rep. – volume: 42 start-page: 337 issue: 1 year: 2022 publication-title: Int. Ophthalmol. – volume: 96 start-page: 188 issue: 2 year: 2013 publication-title: Clin. Exp. Optom. – volume: 229 start-page: 274 year: 2021 publication-title: Am. J. Ophthalmol. – volume: 35 start-page: 1040 issue: 11 year: 2010 publication-title: Curr. Eye. Res. – volume: 43 start-page: 1271 issue: 10 year: 2017 publication-title: J. Cataract Refract. Surg. – volume: 45 start-page: 80 year: 2019 publication-title: J. Cataract Refract. Surg. – volume: 10 start-page: 2626 issue: 12 year: 2021 publication-title: J. Clin. Med. – volume: 83 start-page: 1867 year: 1961 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 1127 year: 2019 publication-title: Ocular Immunol. Inflammation. – volume: 23 start-page: 373 year: 2019 publication-title: Mech. Time‐Depend. Mater. – volume: 58 start-page: 75 year: 2016 publication-title: J. Mech. Behav. Biomed. Mater. – volume: 11 year: 2018 publication-title: J. Biophotonics – volume: 48 start-page: 173 year: 2015 publication-title: J. Mech. Behav. Biomed. Mater. – volume: 137 start-page: 11 year: 2015 publication-title: Exp. Eye Res. – volume: 5 start-page: 12 issue: 5 year: 2016 publication-title: Trans. Vis. Sci. Tech. – volume: 52 start-page: 6363 year: 2011 publication-title: Invest Ophthalmol. Vis. Sci. – volume: 13 start-page: 150 year: 2014 publication-title: J. Geophys. Res. Planets – volume: 9 start-page: 436 issue: 5 year: 2016 publication-title: J. Biophotonics – volume: 35 start-page: 730 issue: 11 year: 2019 publication-title: J. Refract. Surg. – year: 2016 – volume: 32 start-page: 486 issue: 7 year: 2016 publication-title: J. Refract. Surg. – volume: 35 start-page: 893 year: 2009 publication-title: J. Cataract Refract. Surg. – volume: 6 start-page: 210 year: 2019 publication-title: Front. Bioeng. Biotechnol. – volume: 128 start-page: 1516 issue: 11 year: 2021 publication-title: Ophthalmology – volume: 286 start-page: 13011 year: 2011 publication-title: J. Biol. Chem. – volume: 6 start-page: 2439 issue: 13 year: 2016 publication-title: Theranostics – volume: 57 start-page: 476 year: 2016 publication-title: Invest Opthalmol. Vis. Sci. – volume: 92 start-page: 329 year: 2015 publication-title: Optom. Vis. Sci. – volume: 51 start-page: 3929 year: 2010 publication-title: Invest Ophthalmol. Vis. Sci. – volume: 49 start-page: 3919 issue: 9 year: 2008 publication-title: Invest Ophthalmol. Vis. Sci. – volume: 258 start-page: 829 issue: 4 year: 2020 publication-title: Graefes. Arch. Clin. Exp. Ophthalmol. – volume: 40 start-page: 888 issue: 6 year: 2014 publication-title: J. Cataract Refract. Surg. – volume: 51 start-page: 129 year: 2010 publication-title: Invest Ophthalmol. Vis. Sci. – volume: 41 start-page: 1419 issue: 11 year: 2016 publication-title: Curr. Eye. Res. – volume: 42 start-page: 596 year: 2016 publication-title: J. Cataract Refract. Surg. – volume: 41 start-page: 446 year: 2015 publication-title: J. Cataract Refract. Surg. – volume: 18 start-page: 42 year: 2019 publication-title: J. Geophys. Res. Planets – volume: 55 start-page: 2476 year: 2014 publication-title: Invest Ophthalmol. Vis. Sci. – volume: 5 start-page: 27 year: 2014 publication-title: Comput. Methods Biomech. Biomed Imaging Vis. – volume: 10 issue: 3 year: 2015 publication-title: PLoS ONE – volume: 41 start-page: 2283 year: 2015 publication-title: J. Cataract Refract. Surg. – ident: e_1_2_10_19_1 doi: 10.1016/j.jcrs.2018.07.062 – ident: e_1_2_10_37_1 doi: 10.1016/j.jcrs.2014.02.032 – ident: e_1_2_10_4_1 doi: 10.1007/s10792-021-02019-1 – ident: e_1_2_10_7_1 doi: 10.1111/cxo.12025 – volume: 13 start-page: 150 year: 2014 ident: e_1_2_10_22_1 publication-title: J. Geophys. Res. Planets contributor: fullname: Koprowski R. – ident: e_1_2_10_43_1 doi: 10.3109/02713683.2010.506969 – ident: e_1_2_10_3_1 doi: 10.1016/j.ophtha.2021.04.019 – ident: e_1_2_10_6_1 doi: 10.1155/2015/795738 – ident: e_1_2_10_30_1 doi: 10.1167/iovs.07-1321 – ident: e_1_2_10_20_1 doi: 10.1007/s00417-019-04595-6 – ident: e_1_2_10_34_1 doi: 10.3928/1081597X-20160512-02 – ident: e_1_2_10_39_1 doi: 10.1016/j.exer.2015.05.018 – ident: e_1_2_10_35_1 doi: 10.1016/j.jcrs.2017.10.012 – ident: e_1_2_10_17_1 doi: 10.1167/iovs.11-9385 – ident: e_1_2_10_9_1 doi: 10.1167/iovs.15-18651 – ident: e_1_2_10_15_1 doi: 10.1179/1351000213Y.0000000076 – ident: e_1_2_10_27_1 – ident: e_1_2_10_42_1 doi: 10.1097/OPX.0000000000000486 – ident: e_1_2_10_41_1 doi: 10.1016/j.jcrs.2016.01.040 – ident: e_1_2_10_38_1 doi: 10.1371/journal.pone.0121486 – ident: e_1_2_10_2_1 doi: 10.1016/j.ajo.2021.05.009 – volume: 18 start-page: 42 year: 2019 ident: e_1_2_10_26_1 publication-title: J. Geophys. Res. Planets contributor: fullname: Qin X. – ident: e_1_2_10_10_1 doi: 10.1016/j.jcrs.2009.01.009 – ident: e_1_2_10_5_1 doi: 10.3390/jcm10122626 – ident: e_1_2_10_12_1 doi: 10.1167/iovs.11-7585 – ident: e_1_2_10_13_1 doi: 10.1074/jbc.M110.169813 – ident: e_1_2_10_25_1 doi: 10.3928/1081597X-20191010-03 – ident: e_1_2_10_31_1 doi: 10.1080/09273948.2018.1501491 – ident: e_1_2_10_44_1 doi: 10.1167/iovs.09-4524 – ident: e_1_2_10_21_1 doi: 10.7150/thno.16088 – ident: e_1_2_10_11_1 doi: 10.1016/j.jcrs.2015.11.007 – ident: e_1_2_10_29_1 doi: 10.1016/j.jmbbm.2015.04.010 – ident: e_1_2_10_8_1 doi: 10.1016/j.jcrs.2014.12.013 – ident: e_1_2_10_14_1 doi: 10.1021/ja01469a022 – ident: e_1_2_10_36_1 doi: 10.3109/02713683.2015.1133831 – ident: e_1_2_10_45_1 doi: 10.1167/iovs.14-13975 – ident: e_1_2_10_28_1 doi: 10.1167/tvst.5.5.12 – ident: e_1_2_10_23_1 doi: 10.1080/21681163.2014.959137 – ident: e_1_2_10_16_1 doi: 10.1167/iovs.09-3738 – ident: e_1_2_10_18_1 doi: 10.1002/jbio.201800028 – ident: e_1_2_10_32_1 doi: 10.1007/s11043-018-9390-3 – ident: e_1_2_10_24_1 doi: 10.1002/jbio.201500235 – ident: e_1_2_10_40_1 doi: 10.3389/fbioe.2018.00210 – ident: e_1_2_10_33_1 doi: 10.1016/j.jmbbm.2015.07.030 |
SSID | ssj0060353 |
Score | 2.3954635 |
Snippet | Theranostics is an emerging therapeutic paradigm of personalized medicine; the term refers to the simultaneous integration of therapy and diagnostics. In this... Abstract Theranostics is an emerging therapeutic paradigm of personalized medicine; the term refers to the simultaneous integration of therapy and diagnostics.... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e202200218 |
SubjectTerms | Biomechanics Cornea Cornea - diagnostic imaging Corneal Cross-Linking Cross-Linking Reagents Human performance Humans Irradiance Keratoconus Keratoconus - diagnostic imaging Keratoconus - drug therapy Photosensitizing Agents - pharmacology Photosensitizing Agents - therapeutic use Precision Medicine Riboflavin Riboflavin - pharmacology Riboflavin - therapeutic use Stiffening Stiffness theranostics Therapy Ultraviolet Rays Viscoelasticity Vitamin B |
Title | Theranostic‐guided corneal cross‐linking: Preclinical evidence on a new treatment paradigm for keratoconus |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbio.202200218 https://www.ncbi.nlm.nih.gov/pubmed/36059083 https://www.proquest.com/docview/2756617539 https://search.proquest.com/docview/2709911124 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtRAEC2RnOAACavJokaKlJOTcS-24UYCUYhEiFAizc3qdTSJsBEzvuSUT-Ab-RKq2h6TCQckcvMqd3dVdb9yV70C2HGSj4RXKpVGm1QGQdUArUp9TmRZwodRzOP-fJofX8iTsRrfyuLv-CGGH25kGXG-JgPXZrb_hzT00kwpeY_HKAPK9s1EQTFdH74O_FH5SEQayqzMZYpr8XjB2jji-8uvL69Kf0HNZeQal56jJ6AXje4iTq722rnZs9d3-Bzv06s1eNzjUva-U6R1eODrp_DoFlvhM6jPKVerbojZ-dfNz0k7dd4x9F5rBJssdgwv98UY3rEznEv7tEvm-9qlrKmZZojk2RDgzoh83E0n3xjCZ3ZFHM8N-ujt7DlcHH08PzxO-3INqRUSp81CGPQlnUfIZxTK35RS6oxzrWzIHGoKIsssD54rp8uAnpMNaPzcisKYsnBGvIDVuqn9K2CI-yziVmVVQTuV3khVBqF1MM4GhBQJ7C7EVX3vWDmqjn-ZVzSC1TCCCWwupFn11jmriPI-J4rStwm8GW6jXdFmia5909IziJ1xIeAygZedFgyfEnksFS8S4FGW_2hDdXLw6ctw9vp_XtqAh3TcxdFswur8R-u3EA3NzTascHm2HfX-N6EsBLA |
link.rule.ids | 315,783,787,1378,11576,27938,27939,46066,46308,46490,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTtxAEC0l5EA4kBVwQkgjIeVkmOnF43DLhoY9QoPEzXJvaEDYCMYXTnxCvjFfQlV7CRMOkcLRbbfcS1X3q-6qVwBrVvKecErFUuc6ll5QNkCjYpcQWZZwvhfiuPcPkuGx3DlRrTchxcLU_BDdgRtpRlivScHpQHrjD2vomR5T9B4PbgbpU3iGOi8oicH3o45BKumJQETZTxMZ42580vI29vjGdP3pfekB2JzGrmHz2XoBum127XNyvl5N9Lq5-YvR8VH9egnzDTRlX2pZegVPXPEa5u4RFr6BYkThWkVJ5M6_b3-dVmPrLEMDtkC8yULPsLjJx7DJfuJy2kReMtekL2VlwXKGYJ51Pu6M-Mft-PSCIYJm50TzXKKZXl2_heOtH6Nvw7jJ2BAbIXHlHAiN5qR1iPq0QhHQqZR5n_NcGd-3KCwILvuJd1zZPPVoPBmP-s-NGGidDqwWCzBTlIVbAobQzyB0VUYN6LLSaalSL_Lca2s8oooIPrXzlV3WxBxZTcHMMxrBrBvBCJbb6cwaBb3OiPU-IZbSzxGsdq9Rtei-JC9cWdE3CJ9xL-AygsVaDLpfiSRkixcR8DCZ_2hDtvN1-7B7evc_lT7C7HC0v5ftbR_svofnVF671SzDzOSqch8QHE30ShD_O7ijB_M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9VAEJ4gJEYfBC9oFXRNTHwq9Oylp_iGwgmgIjGQnLdmr-RIbImcvvjkT-A38kuY2fYUjj6Y6GO33bS7O7PzTXfmG4A3TvJMeKVSabRJZRBUDdCq1OdEliV8yGIe9-fDfO9EHozV-FYWf8sP0f9wI82I-zUp-LkLmzekod_MhJL3eIwyKO7AksxFRkFdO197Aqk8E5GHclDkMkVjPJ7RNmZ8c77_vFn6A2vOQ9doe0bLoGdf3YacnG00U7Nhf_5G6Pg_w1qBBx0wZdutJD2EBV89gvu36AofQ3VMyVpVTdTOV78uT5uJ846h-1oh2mRxYNjcVWN4x45wM-3yLpnvipeyumKaIZRnfYQ7I_ZxNzn9zhA_szMiea7RSW8unsDJaPf4w17a1WtIrZC4bw6FQWfSecR8RqEAmEJKPeBcKxsGDkUFoeUgD54rp4uArpMNqP3ciqExxdAZsQqLVV35Z8AQ-FkErsqqIR1VeiNVEYTWwTgbEFMk8Ha2XOV5S8tRtgTMvKQZLPsZTGBttpplp54XJXHe58RRupXA6_42KhadlujK1w09g-AZLQGXCTxtpaB_lchjrXiRAI9r-ZdvKA_e73_pr57_S6dXcPdoZ1R-2j_8-ALuUXMbU7MGi9MfjV9HZDQ1L6PwXwOd-Qai |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theranostic-guided+corneal+cross-linking%3A+Preclinical+evidence+on+a+new+treatment+paradigm+for+keratoconus&rft.jtitle=Journal+of+biophotonics&rft.au=Lombardo%2C+Giuseppe&rft.au=Bernava%2C+Giuseppe+Massimo&rft.au=Serrao%2C+Sebastiano&rft.au=Lombardo%2C+Marco&rft.date=2022-12-01&rft.eissn=1864-0648&rft.volume=15&rft.issue=12&rft.spage=e202200218&rft.epage=e202200218&rft_id=info:doi/10.1002%2Fjbio.202200218&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-063X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-063X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-063X&client=summon |