Significance of magnetic field and Darcy–Forchheimer law on dynamics of Casson-Sutterby nanofluid subject to a stretching circular cylinder

This article analyzes the time-independent performance of two-dimensional non-Newtonian nanofluid flow on a circular stretching cylinder. The Casson-Sutterby nanofluid is considered under the application of magnetic effects acting in the direction normal to the flow. Impacts of Brownian motion and t...

Full description

Saved in:
Bibliographic Details
Published inInternational communications in heat and mass transfer Vol. 139; p. 106399
Main Authors Awan, Aziz Ullah, Ahammad, N. Ameer, Shatanawi, Wasfi, Allahyani, Seham Ayesh, Tag-ElDin, ElSayed M., Abbas, Nadeem, Ali, Bagh
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article analyzes the time-independent performance of two-dimensional non-Newtonian nanofluid flow on a circular stretching cylinder. The Casson-Sutterby nanofluid is considered under the application of magnetic effects acting in the direction normal to the flow. Impacts of Brownian motion and thermophoresis are accounted for in this study. The governing PDEs are transformed into ODEs by invoking an adequate similarity transformation. The solution of reduced equations is obtained by applying the numerical technique bvp4c. A detailed graphical examination of the fluid flow is provided, and the dependence of velocity, temperature, and concentration profiles on different critical physical constraints is studied. The flow's velocity increases with increasing curvature values and Sutterby nanofluid parameters. However, it has an opposite reaction for magnetic, thermophoresis, sponginess, and Darcy resistance parameters. The flow temperature decreases with increasing curvature, magnetic field, and Sutterby nanofluid parameters, while it enhances the values of thermophoresis, sponginess, Darcy resistance, thermal relaxation time, and Brownian motion parameters. These findings play a significant role in industrial implementations like paper manufacturing, natural products, polymer industry, heating and cooling systems, 3D printer, biomedical flows, and mining industries.
AbstractList This article analyzes the time-independent performance of two-dimensional non-Newtonian nanofluid flow on a circular stretching cylinder. The Casson-Sutterby nanofluid is considered under the application of magnetic effects acting in the direction normal to the flow. Impacts of Brownian motion and thermophoresis are accounted for in this study. The governing PDEs are transformed into ODEs by invoking an adequate similarity transformation. The solution of reduced equations is obtained by applying the numerical technique bvp4c. A detailed graphical examination of the fluid flow is provided, and the dependence of velocity, temperature, and concentration profiles on different critical physical constraints is studied. The flow's velocity increases with increasing curvature values and Sutterby nanofluid parameters. However, it has an opposite reaction for magnetic, thermophoresis, sponginess, and Darcy resistance parameters. The flow temperature decreases with increasing curvature, magnetic field, and Sutterby nanofluid parameters, while it enhances the values of thermophoresis, sponginess, Darcy resistance, thermal relaxation time, and Brownian motion parameters. These findings play a significant role in industrial implementations like paper manufacturing, natural products, polymer industry, heating and cooling systems, 3D printer, biomedical flows, and mining industries.
ArticleNumber 106399
Author Awan, Aziz Ullah
Tag-ElDin, ElSayed M.
Shatanawi, Wasfi
Ali, Bagh
Ahammad, N. Ameer
Abbas, Nadeem
Allahyani, Seham Ayesh
Author_xml – sequence: 1
  givenname: Aziz Ullah
  surname: Awan
  fullname: Awan, Aziz Ullah
  email: aziz.math@pu.edu.pk
  organization: Department of Mathematics, University of the Punjab, Lahore 54590, Pakistan
– sequence: 2
  givenname: N. Ameer
  surname: Ahammad
  fullname: Ahammad, N. Ameer
  organization: Department of Mathematics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
– sequence: 3
  givenname: Wasfi
  surname: Shatanawi
  fullname: Shatanawi, Wasfi
  email: wshatanawi@psu.edu.sa
  organization: Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
– sequence: 4
  givenname: Seham Ayesh
  surname: Allahyani
  fullname: Allahyani, Seham Ayesh
  organization: Department of Mathematics, Jamoum University College, Umm Al-Qura University, Mecca 24382, Saudi Arabia
– sequence: 5
  givenname: ElSayed M.
  surname: Tag-ElDin
  fullname: Tag-ElDin, ElSayed M.
  organization: Faculty of Engineering and Technology, Future University in Egypt, New Cairo 11835, Egypt
– sequence: 6
  givenname: Nadeem
  surname: Abbas
  fullname: Abbas, Nadeem
  organization: Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
– sequence: 7
  givenname: Bagh
  surname: Ali
  fullname: Ali, Bagh
  organization: Department of Applied Mathematics, Northwestern Polytechnical University, Xian 710072, China
BookMark eNqVkbGO1DAQhi10SOwdvINLmix2EidxB1rYg9NJFHd9NDu2d2eV2Mj2gtLxAlfxhjwJXi0VNFBN8Ws-_fPNNbvywVvGXkuxlkJ2b45rwoOFPENKOYJPzsZ1Leq6xF2j9TO2kkOvKyH74YqtRN-oSuqmecGuUzoKIeQghxV7eqC9J0cIHi0Pjs-w9zYTckd2Mhy84e8h4vLz-49tiHg4WJpt5BN848Fzs3iYCdN5c1OaBF89nHK2cbdwDz646USGp9PuaDHzHDjw0tZmPJDfc6SIpwkix2Uib2x8yZ47mJJ99XvesMfth8fNx-r-8-2nzbv7Cpu2zpVrsdUd1LXSfQ_YCaUQxNBqJ62SrRh0q_RguhadFDtlnFK9HpwC1zgA1dyw7QWLMaQUrRuRMmQKvpikaZRiPDsej-Pfjsez4_HiuIDe_gH6EmmGuPwP4u6CsOXer1TShGTLMwzF4mw0gf4d9gs5Aq60
CitedBy_id crossref_primary_10_1007_s43452_024_01010_8
crossref_primary_10_1615_JPorMedia_2023050040
crossref_primary_10_3390_axioms12060527
crossref_primary_10_1002_zamm_202300704
crossref_primary_10_1016_j_enconman_2024_118410
crossref_primary_10_1142_S0217984924504931
crossref_primary_10_1016_j_applthermaleng_2024_123742
crossref_primary_10_1016_j_csite_2023_103663
crossref_primary_10_1016_j_rinp_2023_106676
crossref_primary_10_1142_S0217984924500854
crossref_primary_10_1515_phys_2024_0013
crossref_primary_10_1016_j_heliyon_2023_e22427
crossref_primary_10_1080_10255842_2023_2245520
crossref_primary_10_1016_j_csite_2024_104980
crossref_primary_10_1080_10407782_2024_2363505
crossref_primary_10_1002_zamm_202300452
crossref_primary_10_1016_j_jrras_2025_101314
crossref_primary_10_1142_S0217984924500088
crossref_primary_10_1016_j_heliyon_2024_e24188
crossref_primary_10_1016_j_tsep_2023_102259
crossref_primary_10_1142_S0217984924502300
crossref_primary_10_1016_j_asej_2024_102833
crossref_primary_10_1016_j_csite_2023_103398
crossref_primary_10_1080_10407790_2023_2256970
crossref_primary_10_1615_SpecialTopicsRevPorousMedia_2023048627
crossref_primary_10_1016_j_rineng_2024_103031
crossref_primary_10_1016_j_csite_2024_104253
crossref_primary_10_1016_j_csite_2024_104210
crossref_primary_10_1016_j_csite_2023_103760
crossref_primary_10_1155_2024_6750201
crossref_primary_10_1016_j_padiff_2024_100646
crossref_primary_10_1016_j_csite_2023_103529
crossref_primary_10_3390_math11020326
crossref_primary_10_1016_j_ijft_2024_100703
crossref_primary_10_1080_10407790_2024_2386584
crossref_primary_10_1142_S0217984924504554
crossref_primary_10_1016_j_cjph_2023_10_002
crossref_primary_10_1002_zamm_202400005
crossref_primary_10_1016_j_csite_2024_104378
crossref_primary_10_1016_j_csite_2023_103690
crossref_primary_10_1615_InterJFluidMechRes_2024052375
crossref_primary_10_1016_j_csite_2024_104123
crossref_primary_10_1016_j_csite_2023_103494
crossref_primary_10_1007_s40819_024_01747_z
crossref_primary_10_1007_s10973_024_12975_2
crossref_primary_10_1016_j_padiff_2023_100570
crossref_primary_10_1002_zamm_202300483
crossref_primary_10_1016_j_aej_2024_08_064
crossref_primary_10_1142_S0217979223503150
crossref_primary_10_1515_phys_2024_0043
crossref_primary_10_1016_j_ijheatfluidflow_2024_109464
crossref_primary_10_1016_j_aej_2023_02_038
crossref_primary_10_1016_j_rinp_2024_107635
Cites_doi 10.2118/9447-PA
10.1016/j.asej.2021.01.034
10.3390/nano12091512
10.1016/j.icheatmasstransfer.2021.105736
10.3390/nano12111791
10.1016/j.physa.2019.124088
10.3390/nano12132174
10.1108/HFF-04-2019-0346
10.1016/j.camwa.2022.01.009
10.1177/1687814020971881
10.1016/j.cnsns.2011.05.009
10.1002/zamm.19890691115
10.1016/j.icheatmasstransfer.2022.106299
10.1016/j.icheatmasstransfer.2022.106311
10.1016/j.icheatmasstransfer.2010.11.019
10.1007/s00231-012-1087-6
10.1016/j.icheatmasstransfer.2022.105893
10.1007/s10973-020-09698-5
10.3390/app7010048
10.1016/j.csite.2021.101301
10.1016/j.jmrt.2022.06.043
10.3390/math10152592
10.1016/j.cjph.2022.04.002
10.3390/e6030304
10.3390/nano12121998
10.3390/nano12050868
10.1016/j.rinp.2020.103233
10.1016/j.icheatmasstransfer.2022.106084
10.1016/j.aej.2017.03.025
10.3389/fphy.2022.964653
10.3390/nano12071207
10.1016/j.aej.2020.05.008
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.icheatmasstransfer.2022.106399
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-0178
ExternalDocumentID 10_1016_j_icheatmasstransfer_2022_106399
S0735193322005218
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
WUQ
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c342t-f4c496a225977ac6055ca0849f1e5140894598d64cf10b5df55798f5af3faa53
IEDL.DBID .~1
ISSN 0735-1933
IngestDate Tue Jul 01 04:24:45 EDT 2025
Thu Apr 24 23:07:06 EDT 2025
Fri Feb 23 02:37:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Casson-Sutterby fluid
Thermal management
Bvp4c
Nanofluid
Stretching cylinder
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-f4c496a225977ac6055ca0849f1e5140894598d64cf10b5df55798f5af3faa53
ParticipantIDs crossref_citationtrail_10_1016_j_icheatmasstransfer_2022_106399
crossref_primary_10_1016_j_icheatmasstransfer_2022_106399
elsevier_sciencedirect_doi_10_1016_j_icheatmasstransfer_2022_106399
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle International communications in heat and mass transfer
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Iyoho, Azar (bb0005) 1981; 21
Sohail, Naz (bb0170) 2020; 549
Beg, Zohra, Uddin, Ismail, Sathasivam (bb0090) 2021; 24
Khan, Eze, Lau, Ali, Ahmad, Ni, Zhao (bb0160) 2022; 132
Uddin, Sohail, Beg, Ismail (bb0095) 2018; 57
Awan, Abid, Ullah, Nadeem (bb0130) 2020; 18
Wang, Mustafa, Siddique, Ajmal, Jaradat, Rehman, Ali (bb0045) 2022; 12
Awan, Shah, Ali (bb0015) 2022; 77
Shah, Awan (bb0075) 2022; 135
Awan, Abid, Abbas (bb0100) 2020; 12
Nadeem, Akhtar, Abbas (bb0125) 2020; 59
Awan, Akbar, Hamam, Gamaoun, Tag-ElDin, Rahman (bb0030) 2022; 10
Darwish, Zubar, Kanafyey, Zhou, Trukhanaova, Trukhanov, Henaish (bb0070) 2022; 12
Shah, Ahammad, Ali, Guedri, Awan, Gamaoun, Tag-ElDin (bb0155) 2022; 137
Wang (bb0175) 1989; 69
Abdelmalek, Khan, Waqas, Al-Khaled, Tlili (bb0145) 2021; 144
Rana, Bhargava (bb0055) 2012; 17
Idrees, Shah, Ahmad, Ali, Mahmood (bb0150) 2022; 138
Li, Duraihem, F., Awan, A. U., Al-Zubaidi, A, Abbas, N., & Ahmad, D. (bb0020) 2022; 12
Ali, Ali, Abd Allah, Hammouch, Hussain, Siddique, Huang (bb0040) 2022; 19
Ahmed, Nadeem, Saleem, Ellahi (bb0110) 2019; 29
Awan, Ahammad, Majeed, Gamaoun, Ali (bb0050) 2022; 135
Ling, He, Tao, Fang, Gao, Zhang (bb0080) 2017; 7
Bilal, Saeed, Selim, Gul, Ali, Kumam (bb0025) 2021; 27
Zeeshan, Mehmood, Mabood, Alzahrani (bb0035) 2022; 130
Wei, Rehman, Fatima, Ali, Ali, Chung, Shah (bb0140) 2022; 12
Hojjat, Etemad, Bagheri, Thibault (bb0065) 2011; 38
Ashorynejad, Sheikholeslami, Pop, Ganji (bb0060) 2013; 49
Abbas, Nadeem, Issakhov (bb0120) 2021; 12
Shah, Ahammad, Tag-ElDin, Gamaoun, Awan, Ali (bb0115) 2022; 12
Trukhanov, Tishkevich, Podgornaya, Kaniukov, Darwish, Zubar, Trukhanov (bb0085) 2022; 12
Haider, Butt, Muhammad, Ali, Li, Naqvi, Qaiser (bb0105) 2019
Ali, Ali, Ghori (bb0135) 2022; 109
Ashraf, Rehman, Farid, Hussein, Ali, Shah, Weera (bb0165) 2022; 10
Yilbas, Yürüsoy, Pakdemirli (bb0010) 2004; 6
Shah (10.1016/j.icheatmasstransfer.2022.106399_bb0155) 2022; 137
Iyoho (10.1016/j.icheatmasstransfer.2022.106399_bb0005) 1981; 21
Wang (10.1016/j.icheatmasstransfer.2022.106399_bb0045) 2022; 12
Awan (10.1016/j.icheatmasstransfer.2022.106399_bb0100) 2020; 12
Wang (10.1016/j.icheatmasstransfer.2022.106399_bb0175) 1989; 69
Shah (10.1016/j.icheatmasstransfer.2022.106399_bb0075) 2022; 135
Awan (10.1016/j.icheatmasstransfer.2022.106399_bb0030) 2022; 10
Ali (10.1016/j.icheatmasstransfer.2022.106399_bb0040) 2022; 19
Ling (10.1016/j.icheatmasstransfer.2022.106399_bb0080) 2017; 7
Abbas (10.1016/j.icheatmasstransfer.2022.106399_bb0120) 2021; 12
Idrees (10.1016/j.icheatmasstransfer.2022.106399_bb0150) 2022; 138
Beg (10.1016/j.icheatmasstransfer.2022.106399_bb0090) 2021; 24
Ashorynejad (10.1016/j.icheatmasstransfer.2022.106399_bb0060) 2013; 49
Ali (10.1016/j.icheatmasstransfer.2022.106399_bb0135) 2022; 109
Yilbas (10.1016/j.icheatmasstransfer.2022.106399_bb0010) 2004; 6
Bilal (10.1016/j.icheatmasstransfer.2022.106399_bb0025) 2021; 27
Li (10.1016/j.icheatmasstransfer.2022.106399_bb0020) 2022; 12
Wei (10.1016/j.icheatmasstransfer.2022.106399_bb0140) 2022; 12
Awan (10.1016/j.icheatmasstransfer.2022.106399_bb0015) 2022; 77
Rana (10.1016/j.icheatmasstransfer.2022.106399_bb0055) 2012; 17
Shah (10.1016/j.icheatmasstransfer.2022.106399_bb0115) 2022; 12
Zeeshan (10.1016/j.icheatmasstransfer.2022.106399_bb0035) 2022; 130
Ahmed (10.1016/j.icheatmasstransfer.2022.106399_bb0110) 2019; 29
Trukhanov (10.1016/j.icheatmasstransfer.2022.106399_bb0085) 2022; 12
Nadeem (10.1016/j.icheatmasstransfer.2022.106399_bb0125) 2020; 59
Darwish (10.1016/j.icheatmasstransfer.2022.106399_bb0070) 2022; 12
Haider (10.1016/j.icheatmasstransfer.2022.106399_bb0105) 2019
Awan (10.1016/j.icheatmasstransfer.2022.106399_bb0050) 2022; 135
Uddin (10.1016/j.icheatmasstransfer.2022.106399_bb0095) 2018; 57
Sohail (10.1016/j.icheatmasstransfer.2022.106399_bb0170) 2020; 549
Abdelmalek (10.1016/j.icheatmasstransfer.2022.106399_bb0145) 2021; 144
Hojjat (10.1016/j.icheatmasstransfer.2022.106399_bb0065) 2011; 38
Ashraf (10.1016/j.icheatmasstransfer.2022.106399_bb0165) 2022; 10
Awan (10.1016/j.icheatmasstransfer.2022.106399_bb0130) 2020; 18
Khan (10.1016/j.icheatmasstransfer.2022.106399_bb0160) 2022; 132
References_xml – volume: 29
  start-page: 4607
  year: 2019
  end-page: 4623
  ident: bb0110
  article-title: Numerical study of unsteady flow and heat transfer CNT-based MHD nanofluid with variable viscosity over a permeable shrinking surface
  publication-title: Int. J. Num. Methods Heat Fluid Flow
– volume: 21
  start-page: 565
  year: 1981
  end-page: 572
  ident: bb0005
  article-title: An accurate slot-flow model for non-Newtonian fluid flow through eccentric annuli
  publication-title: Soc. Pet. Eng. J.
– volume: 38
  start-page: 144
  year: 2011
  end-page: 148
  ident: bb0065
  article-title: Rhelogical characteristics of non-Newtonian nanofluids: experimental investigation
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 12
  year: 2020
  ident: bb0100
  article-title: Theoretical study of unsteady oblique stagnation point based Jeffrey nanofluid flow over an oscillatory stretching sheet
  publication-title: Adv. Mech. Eng.
– volume: 12
  start-page: 1998
  year: 2022
  ident: bb0070
  article-title: Combined effect of microstructure, surface energy, and adhesion forces on the friction of PVA/ferrite spinel nanocomposites
  publication-title: Nanomaterials
– volume: 12
  start-page: 1512
  year: 2022
  ident: bb0140
  article-title: Significance of dust particles, nanoparticles radius, Coriolis and Lorentz forces: the case of Maxwell dusty fluid
  publication-title: Nanomaterials
– volume: 6
  start-page: 304
  year: 2004
  end-page: 315
  ident: bb0010
  article-title: Entropy analysis for non-Newtonian fluid flow in annular pipe: constant viscosity case
  publication-title: Entropy
– volume: 12
  start-page: 868
  year: 2022
  ident: bb0085
  article-title: Impact of the nanocarbon on magnetic and electrodynamic properties of the ferrite/polymer composites
  publication-title: Nanomaterials
– volume: 137
  year: 2022
  ident: bb0155
  article-title: Significance of bio-convection, MHD, thermal radiation and activation energy across Prandtl nanofluid flow: a case of stretching cylinder
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 109
  start-page: 260
  year: 2022
  end-page: 269
  ident: bb0135
  article-title: Melting effect on Cattaneo–Christov and thermal radiation features for aligned MHD nanofluid flow comprising microorganisms to leading edge: FEM approach
  publication-title: Comput. Math. Appl.
– volume: 59
  start-page: 1847
  year: 2020
  end-page: 1856
  ident: bb0125
  article-title: Heat transfer of Maxwell base fluid flow of nanomaterial with MHD over a vertical moving surface
  publication-title: Alexandria Eng. J.
– volume: 135
  year: 2022
  ident: bb0075
  article-title: Significance of magnetized Darcy –Forchheimer stratified rotating Williamson hybrid nanofluid flow: a case of 3D sheet
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 10
  year: 2022
  ident: bb0030
  article-title: Characterization of the induced magnetic field on the third-grade micropolar fluid flow across an exponentially stretched sheet
  publication-title: Front. Phys.
– volume: 12
  start-page: 1207
  year: 2022
  ident: bb0020
  article-title: Heat transfer of hybrid nanomaterial base Maxwell Micropolar fluid flow over an exponentially stretching surface
  publication-title: Nanomaterials
– volume: 27
  year: 2021
  ident: bb0025
  article-title: Comparative numerical analysis of Maxwell’s time-dependent thermo-diffusive flow through a stretching cylinder
  publication-title: Case Studies Thermal Eng.
– volume: 135
  year: 2022
  ident: bb0050
  article-title: Significance of hybrid nanoparticles, Lorentz and Coriolis forces on the dynamics of water based flow
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 12
  start-page: 2174
  year: 2022
  ident: bb0115
  article-title: Bio-convection effects on Prandtl hybrid nanofluid flow with chemical reaction and motile micro-organism over a stretched sheet
  publication-title: Nanomaterials
– volume: 7
  start-page: 48
  year: 2017
  ident: bb0080
  article-title: Experimental and numerical investigation on non-Newtonian nanofluids flowing in shell side of helical baffled heat exchanger combined with elliptic tubes
  publication-title: Appl. Sci.
– volume: 49
  start-page: 427
  year: 2013
  end-page: 436
  ident: bb0060
  article-title: Nanofluid flow and heat transfer due to a stretching cylinder in the presence of magnetic field
  publication-title: Heat Mass Transf.
– volume: 144
  start-page: 1639
  year: 2021
  end-page: 1654
  ident: bb0145
  article-title: A proposed unsteady bioconvection model for transient thin film flow of rate-type nanoparticles configured by rotating disk
  publication-title: J. Therm. Anal. Calorim.
– volume: 132
  year: 2022
  ident: bb0160
  article-title: Study on the novel suppression of heat transfer deterioration of supercritical water flowing in vertical tube through the suspension of alumina nanoparticles
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 10
  start-page: 2592
  year: 2022
  ident: bb0165
  article-title: Insight into significance of bioconvection on mhd tangent hyperbolic nanofluid flow of irregular thickness across a slender elastic surface
  publication-title: Mathematics
– volume: 17
  start-page: 212
  year: 2012
  end-page: 226
  ident: bb0055
  article-title: Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: a numerical study
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 18
  start-page: 103233
  year: 2020
  ident: bb0130
  article-title: Magnetohydrodynamic oblique stagnation point flow of second grade fluid over an oscillatory stretching surface
  publication-title: Results in Physics
– volume: 130
  year: 2022
  ident: bb0035
  article-title: Numerical analysis of hydromagnetic transport of Casson nanofluid over permeable linearly stretched cylinder with Arrhenius activation energy
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 549
  year: 2020
  ident: bb0170
  article-title: Modified heat and mass transmission models in the magnetohydrodynamic flow of Sutterby nanofluid in stretching cylinder
  publication-title: Physica A: Stat. Mech. Appl.
– volume: 12
  start-page: 1791
  year: 2022
  ident: bb0045
  article-title: Computational analysis for bioconvection of microorganisms in Prandtl nanofluid Darcy–Forchheimer flow across an inclined sheet
  publication-title: Nanomaterials
– volume: 69
  start-page: 418
  year: 1989
  end-page: 420
  ident: bb0175
  article-title: Free convection on a vertical stretching surface
  publication-title: ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik
– volume: 24
  year: 2021
  ident: bb0090
  article-title: Energy conservation of nanofluids from biomagnetic needle in the presence of Stefan blowing: lie symmetry and numerical simulation
  publication-title: Case Studies Thermal Eng.
– volume: 57
  start-page: 2455
  year: 2018
  end-page: 2464
  ident: bb0095
  article-title: Numerical solution of MHD slip flow of a nanofluid past a radiating plate with Newtonian heating: A lie group approach
  publication-title: Alexandria Eng. J.
– volume: 138
  year: 2022
  ident: bb0150
  article-title: New insights into the heat transfer dynamics of a hybrid (SWCNT-MWCNT) nanofluid: a case of 3D rotational flow
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 19
  start-page: 4209
  year: 2022
  end-page: 4219
  ident: bb0040
  article-title: Insight into significance of thermal stratification and radiation on dynamics of micropolar water based TiO2 nanoparticle via finite element simulation
  publication-title: J. Mate. Res. Technol.
– year: 2019
  ident: bb0105
  article-title: Impact of nano-particles shapes on Al2O3-water nano-fluid flow due to a stretching cylinder
  publication-title: Int. J. Num. Methods Heat Fluid Flow.
– volume: 77
  start-page: 2795
  year: 2022
  end-page: 2810
  ident: bb0015
  article-title: Bio –convection effects on Williamson nanofluid flow with exponential heat source and motile microorganism over a stretching sheet
  publication-title: Chin. J. Phys.
– volume: 12
  start-page: 3967
  year: 2021
  end-page: 3973
  ident: bb0120
  article-title: Transportation of modified nanofluid flow with time dependent viscosity over a Riga plate: exponentially stretching
  publication-title: Ain Shams Eng. J.
– volume: 21
  start-page: 565
  issue: 05
  year: 1981
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0005
  article-title: An accurate slot-flow model for non-Newtonian fluid flow through eccentric annuli
  publication-title: Soc. Pet. Eng. J.
  doi: 10.2118/9447-PA
– volume: 12
  start-page: 3967
  issue: 4
  year: 2021
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0120
  article-title: Transportation of modified nanofluid flow with time dependent viscosity over a Riga plate: exponentially stretching
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2021.01.034
– volume: 12
  start-page: 1512
  issue: 9
  year: 2022
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0140
  article-title: Significance of dust particles, nanoparticles radius, Coriolis and Lorentz forces: the case of Maxwell dusty fluid
  publication-title: Nanomaterials
  doi: 10.3390/nano12091512
– volume: 130
  year: 2022
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0035
  article-title: Numerical analysis of hydromagnetic transport of Casson nanofluid over permeable linearly stretched cylinder with Arrhenius activation energy
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2021.105736
– volume: 12
  start-page: 1791
  issue: 11
  year: 2022
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0045
  article-title: Computational analysis for bioconvection of microorganisms in Prandtl nanofluid Darcy–Forchheimer flow across an inclined sheet
  publication-title: Nanomaterials
  doi: 10.3390/nano12111791
– volume: 549
  year: 2020
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0170
  article-title: Modified heat and mass transmission models in the magnetohydrodynamic flow of Sutterby nanofluid in stretching cylinder
  publication-title: Physica A: Stat. Mech. Appl.
  doi: 10.1016/j.physa.2019.124088
– volume: 12
  start-page: 2174
  year: 2022
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0115
  article-title: Bio-convection effects on Prandtl hybrid nanofluid flow with chemical reaction and motile micro-organism over a stretched sheet
  publication-title: Nanomaterials
  doi: 10.3390/nano12132174
– volume: 135
  year: 2022
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0075
  article-title: Significance of magnetized Darcy –Forchheimer stratified rotating Williamson hybrid nanofluid flow: a case of 3D sheet
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 24
  year: 2021
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0090
  article-title: Energy conservation of nanofluids from biomagnetic needle in the presence of Stefan blowing: lie symmetry and numerical simulation
  publication-title: Case Studies Thermal Eng.
– volume: 29
  start-page: 4607
  issue: 12
  year: 2019
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0110
  article-title: Numerical study of unsteady flow and heat transfer CNT-based MHD nanofluid with variable viscosity over a permeable shrinking surface
  publication-title: Int. J. Num. Methods Heat Fluid Flow
  doi: 10.1108/HFF-04-2019-0346
– volume: 109
  start-page: 260
  year: 2022
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0135
  article-title: Melting effect on Cattaneo–Christov and thermal radiation features for aligned MHD nanofluid flow comprising microorganisms to leading edge: FEM approach
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2022.01.009
– volume: 12
  issue: 11
  year: 2020
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0100
  article-title: Theoretical study of unsteady oblique stagnation point based Jeffrey nanofluid flow over an oscillatory stretching sheet
  publication-title: Adv. Mech. Eng.
  doi: 10.1177/1687814020971881
– volume: 17
  start-page: 212
  issue: 1
  year: 2012
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0055
  article-title: Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: a numerical study
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2011.05.009
– volume: 69
  start-page: 418
  issue: 11
  year: 1989
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0175
  article-title: Free convection on a vertical stretching surface
  publication-title: ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik
  doi: 10.1002/zamm.19890691115
– volume: 137
  year: 2022
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0155
  article-title: Significance of bio-convection, MHD, thermal radiation and activation energy across Prandtl nanofluid flow: a case of stretching cylinder
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2022.106299
– volume: 138
  year: 2022
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0150
  article-title: New insights into the heat transfer dynamics of a hybrid (SWCNT-MWCNT) nanofluid: a case of 3D rotational flow
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2022.106311
– volume: 38
  start-page: 144
  issue: 2
  year: 2011
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0065
  article-title: Rhelogical characteristics of non-Newtonian nanofluids: experimental investigation
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2010.11.019
– year: 2019
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0105
  article-title: Impact of nano-particles shapes on Al2O3-water nano-fluid flow due to a stretching cylinder
  publication-title: Int. J. Num. Methods Heat Fluid Flow.
– volume: 49
  start-page: 427
  issue: 3
  year: 2013
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0060
  article-title: Nanofluid flow and heat transfer due to a stretching cylinder in the presence of magnetic field
  publication-title: Heat Mass Transf.
  doi: 10.1007/s00231-012-1087-6
– volume: 132
  year: 2022
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0160
  article-title: Study on the novel suppression of heat transfer deterioration of supercritical water flowing in vertical tube through the suspension of alumina nanoparticles
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2022.105893
– volume: 144
  start-page: 1639
  issue: 5
  year: 2021
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0145
  article-title: A proposed unsteady bioconvection model for transient thin film flow of rate-type nanoparticles configured by rotating disk
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-020-09698-5
– volume: 7
  start-page: 48
  issue: 1
  year: 2017
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0080
  article-title: Experimental and numerical investigation on non-Newtonian nanofluids flowing in shell side of helical baffled heat exchanger combined with elliptic tubes
  publication-title: Appl. Sci.
  doi: 10.3390/app7010048
– volume: 27
  year: 2021
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0025
  article-title: Comparative numerical analysis of Maxwell’s time-dependent thermo-diffusive flow through a stretching cylinder
  publication-title: Case Studies Thermal Eng.
  doi: 10.1016/j.csite.2021.101301
– volume: 19
  start-page: 4209
  year: 2022
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0040
  article-title: Insight into significance of thermal stratification and radiation on dynamics of micropolar water based TiO2 nanoparticle via finite element simulation
  publication-title: J. Mate. Res. Technol.
  doi: 10.1016/j.jmrt.2022.06.043
– volume: 10
  start-page: 2592
  issue: 15
  year: 2022
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0165
  article-title: Insight into significance of bioconvection on mhd tangent hyperbolic nanofluid flow of irregular thickness across a slender elastic surface
  publication-title: Mathematics
  doi: 10.3390/math10152592
– volume: 77
  start-page: 2795
  year: 2022
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0015
  article-title: Bio –convection effects on Williamson nanofluid flow with exponential heat source and motile microorganism over a stretching sheet
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2022.04.002
– volume: 6
  start-page: 304
  issue: 3
  year: 2004
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0010
  article-title: Entropy analysis for non-Newtonian fluid flow in annular pipe: constant viscosity case
  publication-title: Entropy
  doi: 10.3390/e6030304
– volume: 12
  start-page: 1998
  issue: 12
  year: 2022
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0070
  article-title: Combined effect of microstructure, surface energy, and adhesion forces on the friction of PVA/ferrite spinel nanocomposites
  publication-title: Nanomaterials
  doi: 10.3390/nano12121998
– volume: 12
  start-page: 868
  issue: 5
  year: 2022
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0085
  article-title: Impact of the nanocarbon on magnetic and electrodynamic properties of the ferrite/polymer composites
  publication-title: Nanomaterials
  doi: 10.3390/nano12050868
– volume: 18
  start-page: 103233
  year: 2020
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0130
  article-title: Magnetohydrodynamic oblique stagnation point flow of second grade fluid over an oscillatory stretching surface
  publication-title: Results in Physics
  doi: 10.1016/j.rinp.2020.103233
– volume: 135
  year: 2022
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0050
  article-title: Significance of hybrid nanoparticles, Lorentz and Coriolis forces on the dynamics of water based flow
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2022.106084
– volume: 57
  start-page: 2455
  issue: 4
  year: 2018
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0095
  article-title: Numerical solution of MHD slip flow of a nanofluid past a radiating plate with Newtonian heating: A lie group approach
  publication-title: Alexandria Eng. J.
  doi: 10.1016/j.aej.2017.03.025
– volume: 10
  year: 2022
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0030
  article-title: Characterization of the induced magnetic field on the third-grade micropolar fluid flow across an exponentially stretched sheet
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2022.964653
– volume: 12
  start-page: 1207
  issue: 7
  year: 2022
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0020
  article-title: Heat transfer of hybrid nanomaterial base Maxwell Micropolar fluid flow over an exponentially stretching surface
  publication-title: Nanomaterials
  doi: 10.3390/nano12071207
– volume: 59
  start-page: 1847
  issue: 3
  year: 2020
  ident: 10.1016/j.icheatmasstransfer.2022.106399_bb0125
  article-title: Heat transfer of Maxwell base fluid flow of nanomaterial with MHD over a vertical moving surface
  publication-title: Alexandria Eng. J.
  doi: 10.1016/j.aej.2020.05.008
SSID ssj0001818
Score 2.5552857
Snippet This article analyzes the time-independent performance of two-dimensional non-Newtonian nanofluid flow on a circular stretching cylinder. The Casson-Sutterby...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106399
SubjectTerms Bvp4c
Casson-Sutterby fluid
Nanofluid
Stretching cylinder
Thermal management
Title Significance of magnetic field and Darcy–Forchheimer law on dynamics of Casson-Sutterby nanofluid subject to a stretching circular cylinder
URI https://dx.doi.org/10.1016/j.icheatmasstransfer.2022.106399
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5VRUVwQLSAKNDKBw5czObHzs8JVUtXC1V72SL1FjmOXVLtOtVuVmgvVV-AE2_YJ-mMk6VFcACJYxLbsjyTmc-jb2YA3uqwNHFlYi6sklzoVHFVJhVXkUV3lIU6thSHPD5Jxl_E5zN5tgHDdS4M0Sp729_ZdG-t-zeD_jQHl3U9mKByEvxAjaTYZkgJv0KkpOXvr-5oHujBvDXGwZxGP4R3dxwvYluqdoYwtfUw0VCF0CjCz-S4_-yq7rmf0VN40uNGdtBtbRs2jNuBx_eqCe7Almdz6sUz-D6pzx1xgEikrLFsps4dZSsyT1hjylXsI2r46ub6x6hBTf9q6pmZs6n6xhrHqq5L_YJmDnHXjeMT38-6XDGnXGOny7pii2VJMRzWNkwxSjlpPS2T6Xruua1Mr6ZUi3H-HE5Hh6fDMe_7LnAdi6jlVmiRJwr_dASHSuOFR2oVZCK3oUF8FWS5kHlWJULbMChlZaVM88xKZWOrlIxfwKZrnHkJTAgZqCwwIomsKBE5oejxfpVrglFpGu7Ch_UJF7qvSU6tMabFmnx2Ufwuo4JkVHQy2oX85wqXXX2Of5g7XAu1-EXnCnQnf73Kq_-yymt4RE8dUeYNbLbzpdlDuNOW-16f9-HBwaej8ckt2-EHdQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB6VVrwOFRQQLRR84MDFZB_2ZveEUGgUoO0lQept5fXa7aLEWyUboVwQf4BT_yG_hBnvpi0qB5C4-iXLM575bH0zA_BKh4WJSxNzYZXkQvcVV0VSchVZdEdpqGNL_5BHx8nos_h4Ik82YLCOhSFaZWf7W5vurXXX0utOs3deVb0xKifBD9RI-tsM01uwJfD6UhmDN9-ueB7owrw5xtGcht-B11ckL6JbqmaGOLXxONFQitAowm7y3H_2Vdf8z_ABbHfAkb1r9_YQNozbgfvX0gnuwG1P59SLR_BjXJ06IgGRTFlt2UydOgpXZJ6xxpQr2XtU8dXP7xfDGlX9zFQzM2dT9ZXVjpVtmfoFzRzgrmvHx76gdbFiTrnaTpdVyRbLgj5xWFMzxSjmpPG8TKaruSe3Mr2aUjLG-WOYDA8mgxHvCi9wHYuo4VZokSUKrzqiQ6XxxSO1ClKR2dAgwArSTMgsLROhbRgUsrRS9rPUSmVjq5SMn8Cmq515CkwIGag0MCKJrCgQOqHs8YGVacJR_X64C2_XJ5zrLik51caY5mv22Zf8poxyklHeymgXsssVztsEHf8wd7AWav6b0uXoT_56lb3_sspLuDuaHB3mhx-OPz2De9TTsmaew2YzX5p9xD5N8cLr9i_EaAkD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Significance+of+magnetic+field+and+Darcy%E2%80%93Forchheimer+law+on+dynamics+of+Casson-Sutterby+nanofluid+subject+to+a+stretching+circular+cylinder&rft.jtitle=International+communications+in+heat+and+mass+transfer&rft.au=Awan%2C+Aziz+Ullah&rft.au=Ahammad%2C+N.+Ameer&rft.au=Shatanawi%2C+Wasfi&rft.au=Allahyani%2C+Seham+Ayesh&rft.date=2022-12-01&rft.pub=Elsevier+Ltd&rft.issn=0735-1933&rft.eissn=1879-0178&rft.volume=139&rft_id=info:doi/10.1016%2Fj.icheatmasstransfer.2022.106399&rft.externalDocID=S0735193322005218
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0735-1933&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0735-1933&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0735-1933&client=summon