Assessing forecasting performance of daily reference evapotranspiration: A comparative analysis of updated temperature penman-monteith and penman-monteith forecast models

•Updated PM model with temperature and sunshine duration-based solar radiation forecast methods for ET0 forecasting.•The most accurate method of ET0 forecasting was recommended for each climate region.•Using a temperature-based method to forecast solar radiation can greatly improve ET0 forecasting.•...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrology (Amsterdam) Vol. 626; p. 130317
Main Authors Lin, En, Qiu, Rangjian, Chen, Mengting, Xie, Hua, Khurshid, Bushra, Ma, Xinjuan, Quzhen, Suolang, Zheng, Shizong, Cui, Yuanlai, Luo, Yufeng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Updated PM model with temperature and sunshine duration-based solar radiation forecast methods for ET0 forecasting.•The most accurate method of ET0 forecasting was recommended for each climate region.•Using a temperature-based method to forecast solar radiation can greatly improve ET0 forecasting.•The updated PMT models outperformed than the PMF model in multiple climatic zones, but slightly less accurate in SMZ. Accurate forecast of reference evapotranspiration (ET0) is essential for effective water resource management and efficient irrigation scheduling. The Penman-Monteith model (PM) recommended by FAO56 is widely used as the standard method for ET0 forecasting, but PM model application is often limited by the absence of forecasted meteorological variables, especially solar radiation (Rs). Previous studies have proposed two types of models based on temperature and sunshine duration to estimate Rs. However, there is currently a lack of comprehensive comparative analysis research to evaluate the performance and applicability of these two types of models combined with weather forecast data for ET0 forecasting using the PM model. To address this issue, we selected China as the research area, which has complex climate zones and an uneven distribution of water resources. The forecasting results of Rs from temperature-based models (M1–M8) and a sunshine duration-based model (M9) are input independently into the PM model for ET0 forecasting. The updated PM model is named PMTM1–PMTM8 and PMF, respectively. We conducted a comprehensive and analytical assessment of the updated PMTM1–PMTM8 model, the PMF model and the Hargreaves-Samani (HS) model in different climate zones of China. The results showed that the accuracy of the M1–M8 and the M9 for forecasting Rs decreased as the forecasting period increased. The accuracy of the M9 was higher than that of M1–M8 in the overall accuracy in the subtropical monsoon climate (SMZ). Both the updated PMTM1–PMTM8 and PMF models were utilized to evaluate the ET0 forecasting performance in all five zones. The PMTM3 model exhibited the highest accuracy, with RMSE and MAE ranges of 0.671–1.572 mm d−1 and 0.532–1.365 mm d−1, respectively. In contrast, the PMF model displayed RMSE and MAE ranges of 0.690–1.590 mm d−1 and 0.641–1.437 mm d−1, respectively. Compared to the PMF model, the updated PMTM1–PMTM5 model showed higher accuracy in forecasting ET0 in the plateau mountain climate, temperate continental climate, temperate monsoon climate, and tropical monsoon climatic zones, but was slightly less accurate in the SMZ. Moreover, both models outperformed the Hargreaves-Samani (HS) model in terms of ET0 forecasting accuracy. Specifically, the updated PMTM1–PMTM5 model demonstrated improved accuracy compared to the temperature-based model HS model across various climate zones, with reductions in RMSE and MAE ranging from 0.117 mm d−1 to 0.616 mm d−1and 0.012 mm d−1 to 0.450 mm d−1, respectively. Overall, the updated PMTM3 model was better than the PMF and thus this model was recommended for daily ET0 forecasting for the near-future at all climate regions across China.
AbstractList Accurate forecast of reference evapotranspiration (ET₀) is essential for effective water resource management and efficient irrigation scheduling. The Penman-Monteith model (PM) recommended by FAO56 is widely used as the standard method for ET₀ forecasting, but PM model application is often limited by the absence of forecasted meteorological variables, especially solar radiation (Rs). Previous studies have proposed two types of models based on temperature and sunshine duration to estimate Rs. However, there is currently a lack of comprehensive comparative analysis research to evaluate the performance and applicability of these two types of models combined with weather forecast data for ET₀ forecasting using the PM model. To address this issue, we selected China as the research area, which has complex climate zones and an uneven distribution of water resources. The forecasting results of Rs from temperature-based models (M1–M8) and a sunshine duration-based model (M9) are input independently into the PM model for ET₀ forecasting. The updated PM model is named PMTM₁–PMTM₈ and PMF, respectively. We conducted a comprehensive and analytical assessment of the updated PMTM₁–PMTM₈ model, the PMF model and the Hargreaves-Samani (HS) model in different climate zones of China. The results showed that the accuracy of the M1–M8 and the M9 for forecasting Rs decreased as the forecasting period increased. The accuracy of the M9 was higher than that of M1–M8 in the overall accuracy in the subtropical monsoon climate (SMZ). Both the updated PMTM₁–PMTM₈ and PMF models were utilized to evaluate the ET₀ forecasting performance in all five zones. The PMTM₃ model exhibited the highest accuracy, with RMSE and MAE ranges of 0.671–1.572 mm d⁻¹ and 0.532–1.365 mm d⁻¹, respectively. In contrast, the PMF model displayed RMSE and MAE ranges of 0.690–1.590 mm d⁻¹ and 0.641–1.437 mm d⁻¹, respectively. Compared to the PMF model, the updated PMTM₁–PMTM₅ model showed higher accuracy in forecasting ET₀ in the plateau mountain climate, temperate continental climate, temperate monsoon climate, and tropical monsoon climatic zones, but was slightly less accurate in the SMZ. Moreover, both models outperformed the Hargreaves-Samani (HS) model in terms of ET₀ forecasting accuracy. Specifically, the updated PMTM₁–PMTM₅ model demonstrated improved accuracy compared to the temperature-based model HS model across various climate zones, with reductions in RMSE and MAE ranging from 0.117 mm d⁻¹ to 0.616 mm d⁻¹and 0.012 mm d⁻¹ to 0.450 mm d⁻¹, respectively. Overall, the updated PMTM₃ model was better than the PMF and thus this model was recommended for daily ET₀ forecasting for the near-future at all climate regions across China.
•Updated PM model with temperature and sunshine duration-based solar radiation forecast methods for ET0 forecasting.•The most accurate method of ET0 forecasting was recommended for each climate region.•Using a temperature-based method to forecast solar radiation can greatly improve ET0 forecasting.•The updated PMT models outperformed than the PMF model in multiple climatic zones, but slightly less accurate in SMZ. Accurate forecast of reference evapotranspiration (ET0) is essential for effective water resource management and efficient irrigation scheduling. The Penman-Monteith model (PM) recommended by FAO56 is widely used as the standard method for ET0 forecasting, but PM model application is often limited by the absence of forecasted meteorological variables, especially solar radiation (Rs). Previous studies have proposed two types of models based on temperature and sunshine duration to estimate Rs. However, there is currently a lack of comprehensive comparative analysis research to evaluate the performance and applicability of these two types of models combined with weather forecast data for ET0 forecasting using the PM model. To address this issue, we selected China as the research area, which has complex climate zones and an uneven distribution of water resources. The forecasting results of Rs from temperature-based models (M1–M8) and a sunshine duration-based model (M9) are input independently into the PM model for ET0 forecasting. The updated PM model is named PMTM1–PMTM8 and PMF, respectively. We conducted a comprehensive and analytical assessment of the updated PMTM1–PMTM8 model, the PMF model and the Hargreaves-Samani (HS) model in different climate zones of China. The results showed that the accuracy of the M1–M8 and the M9 for forecasting Rs decreased as the forecasting period increased. The accuracy of the M9 was higher than that of M1–M8 in the overall accuracy in the subtropical monsoon climate (SMZ). Both the updated PMTM1–PMTM8 and PMF models were utilized to evaluate the ET0 forecasting performance in all five zones. The PMTM3 model exhibited the highest accuracy, with RMSE and MAE ranges of 0.671–1.572 mm d−1 and 0.532–1.365 mm d−1, respectively. In contrast, the PMF model displayed RMSE and MAE ranges of 0.690–1.590 mm d−1 and 0.641–1.437 mm d−1, respectively. Compared to the PMF model, the updated PMTM1–PMTM5 model showed higher accuracy in forecasting ET0 in the plateau mountain climate, temperate continental climate, temperate monsoon climate, and tropical monsoon climatic zones, but was slightly less accurate in the SMZ. Moreover, both models outperformed the Hargreaves-Samani (HS) model in terms of ET0 forecasting accuracy. Specifically, the updated PMTM1–PMTM5 model demonstrated improved accuracy compared to the temperature-based model HS model across various climate zones, with reductions in RMSE and MAE ranging from 0.117 mm d−1 to 0.616 mm d−1and 0.012 mm d−1 to 0.450 mm d−1, respectively. Overall, the updated PMTM3 model was better than the PMF and thus this model was recommended for daily ET0 forecasting for the near-future at all climate regions across China.
ArticleNumber 130317
Author Qiu, Rangjian
Khurshid, Bushra
Luo, Yufeng
Chen, Mengting
Xie, Hua
Lin, En
Cui, Yuanlai
Ma, Xinjuan
Quzhen, Suolang
Zheng, Shizong
Author_xml – sequence: 1
  givenname: En
  surname: Lin
  fullname: Lin, En
  organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, China
– sequence: 2
  givenname: Rangjian
  orcidid: 0000-0003-0534-0496
  surname: Qiu
  fullname: Qiu, Rangjian
  organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, China
– sequence: 3
  givenname: Mengting
  surname: Chen
  fullname: Chen, Mengting
  organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, China
– sequence: 4
  givenname: Hua
  surname: Xie
  fullname: Xie, Hua
  organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, China
– sequence: 5
  givenname: Bushra
  surname: Khurshid
  fullname: Khurshid, Bushra
  organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, China
– sequence: 6
  givenname: Xinjuan
  surname: Ma
  fullname: Ma, Xinjuan
  organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, China
– sequence: 7
  givenname: Suolang
  surname: Quzhen
  fullname: Quzhen, Suolang
  organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, China
– sequence: 8
  givenname: Shizong
  surname: Zheng
  fullname: Zheng, Shizong
  organization: Rural Water Conservancy Research Institute, Zhejiang Institute of Hydraulics and Estuary, Hangzhou, Zhejiang 310020, China
– sequence: 9
  givenname: Yuanlai
  surname: Cui
  fullname: Cui, Yuanlai
  organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, China
– sequence: 10
  givenname: Yufeng
  surname: Luo
  fullname: Luo, Yufeng
  email: yfluo@whu.edu.cn
  organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, China
BookMark eNqFUctu2zAQ5CEF8mg-IQCPvcglubIttYfCCPoCAvTSngmKXCY0JFLl0gb8S_3KUnV6aQ_ZC3cXM7PEzDW7iCkiY3dSrKSQm7f71f7p5HIaV0ooWEkQILcX7EoIpRq56dtLdk20F7UA2iv2a0eERCE-cp8yWkNl6WfMdZxMtMiT586E8cQzesy4rPBo5lSyiTSHbEpI8R3fcZum2SzjEbmJZjxRoIV9mJ0p6HjBqeqacshYD8Sq3kwpFgzlqeLdf7u_H-JTcjjSa_bKm5Hw9vm9YT8-ffx-_6V5-Pb56_3uobHQqtJ4MYCHods4ZZUDs4bWg9r2feeVVzA45TetQNn30Npt77uhdYOyXliDIDsJN-zNWXfO6ecBqegpkMVxNBHTgTSIVsB6LbquQt-foTYnouqPtqH88aOaE0YthV5S0Xv9nIpeUtHnVCp7_Q97zmEy-fQi78OZV03BY8CsyYYlFxeqYUW7FF5Q-A2cwrSP
CitedBy_id crossref_primary_10_3390_cli12120205
crossref_primary_10_1002_joc_8776
crossref_primary_10_1016_j_ejrh_2025_102271
crossref_primary_10_1002_ird_3025
crossref_primary_10_3390_w16030507
crossref_primary_10_1016_j_jhydrol_2024_132101
crossref_primary_10_1016_j_agwat_2024_109268
crossref_primary_10_1016_j_jenvman_2024_121394
crossref_primary_10_26848_rbgf_v18_1_p018_037
crossref_primary_10_1016_j_jhydrol_2024_132516
crossref_primary_10_1016_j_agwat_2025_109299
Cites_doi 10.1016/j.jhydrol.2012.12.034
10.1016/j.enconman.2019.112236
10.1061/(ASCE)0733-9437(2008)134:1(1)
10.1016/S0168-1923(96)02366-0
10.1002/ird.98
10.1016/j.jhydrol.2013.02.025
10.1061/(ASCE)0733-9437(2000)126:4(265)
10.1016/j.renene.2011.11.002
10.1007/s11269-022-03362-3
10.1016/j.agwat.2020.106543
10.1016/j.rser.2015.08.035
10.1016/j.agwat.2021.107003
10.1016/j.agwat.2014.07.031
10.1016/j.agrformet.2014.03.014
10.1007/s11269-016-1385-8
10.1016/j.jhydrol.2020.125509
10.1016/j.agwat.2016.08.020
10.1016/j.agwat.2019.105755
10.13031/2013.26773
10.1016/j.agwat.2018.09.036
10.1016/j.agwat.2019.06.014
10.1016/j.jhydrol.2018.07.013
10.1088/1748-9326/6/3/034025
10.1016/j.agwat.2019.02.014
10.1016/j.apenergy.2016.07.006
10.1016/j.agwat.2014.01.006
10.1016/j.jhydrol.2020.125547
10.1016/j.agwat.2016.11.010
10.1016/j.agwat.2007.12.011
10.1016/j.energy.2010.09.009
10.1016/j.agwat.2017.08.003
10.1016/j.enconman.2013.03.004
10.1016/j.agrformet.2018.07.020
10.1016/j.jhydrol.2016.02.053
10.1016/j.enconman.2020.113111
10.1016/j.agrformet.2020.108200
10.1016/j.agrformet.2007.10.001
10.1016/j.solener.2015.08.015
10.1016/S0038-092X(01)00054-8
10.1016/j.agwat.2020.106210
10.1016/j.jhydrol.2015.07.054
10.1016/j.agrformet.2007.04.012
10.1061/(ASCE)0733-9437(1996)122:2(97)
10.1016/j.agrformet.2018.10.001
10.1016/j.renene.2013.05.033
10.1016/j.agrformet.2018.08.019
10.13031/2013.23153
10.1007/s11269-021-03009-9
10.1002/joc.3442
10.1016/j.jhydrol.2015.06.057
10.1007/s00704-017-2329-9
10.1016/j.rser.2022.112511
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2023.130317
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
ExternalDocumentID 10_1016_j_jhydrol_2023_130317
S0022169423012593
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXKI
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
ADVLN
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c342t-f0b3f3b86d2c2d3a534f327998f2f23bd2f640e19934c79f8b4db2cf0cae31813
IEDL.DBID .~1
ISSN 0022-1694
IngestDate Fri Aug 22 20:21:34 EDT 2025
Tue Jul 01 01:53:53 EDT 2025
Thu Apr 24 23:02:18 EDT 2025
Sat Sep 14 18:00:48 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Weather forecasts
Solar radiation
Reference crop evapotranspiration
Air temperature
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-f0b3f3b86d2c2d3a534f327998f2f23bd2f640e19934c79f8b4db2cf0cae31813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0534-0496
PQID 3040355088
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3040355088
crossref_citationtrail_10_1016_j_jhydrol_2023_130317
crossref_primary_10_1016_j_jhydrol_2023_130317
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2023_130317
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2023
2023-11-00
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: November 2023
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Celestin, Qi, Li, Yu, Cheng (b0040) 2020; 12
Almorox, Quej, Marti (b0025) 2015; 528
Paredes, Pereira, Almorox, Darouich (b0185) 2020; 240
Todorovic, Karic, Pereira (b0280) 2013; 481
Jiang, Liang, Cui, Zhao, Du, Hu, Feng, Guan, Feng (b0110) 2019; 216
Qiu, Li, Wu, Agathokleous, Liu, Zhang, Luo, Sun (b0230) 2022; 163
Song, Achberger, Linderholm (b0275) 2011; 6
Abraha, Savage (b0005) 2008; 148
Chen, Li (b0045) 2013; 33
Paredes, Fontes, Azevedo (b0180) 2018; 134
Hassan, Youssef, Mohamed, Ali, Hanafy (b0100) 2016; 179
Liu, Xu, Zhu, Jia, Zhu (b0155) 2013; 487
Senkal (b0270) 2010; 35
Yang, Luo, Wu, Zheng, Zhang, Cui, Sun, Wang (b0300) 2019; 222
Feng, Jia, Cui, Zhao, Li, Gong (b0070) 2017; 181
Roy, Sarkar, Kamar, Goswami (b0255) 2022; 12
Cai, Liu, Lei, Pereira (b0035) 2007; 145
Pillot, Muselli, Poggi, Dias (b0210) 2015; 120
Jiang, Liang, Cui, Zhao, Liu, Feng, Hu, Gong, Zou (b0115) 2020; 295
Gueymard (b0090) 2001; 71
Liu, Liu, Cui, Shao, Mao, Zhang, Khan, Luo (b0150) 2020; 590
Roy, Barzegar, Quilty, Adamowski (b0240) 2020; 591
Li, Tang, Wu, Liu (b0140) 2013; 70
Qiu, Katul, Wang, Xu, Kang, Liu, Zhang, Li, Cajucom (b0220) 2021; 298–299
Zhang, Q., Duan, A.W., G. Y., Shen, X.J. and Cai, H.J., 2015. Middle and Short Term Forecasting Models for Reference Evapotranspiration Based on Daily Weather forecasts. Transactions of the chinese society for agricultural machinery, 46(02): 104-109 (in Chinese).
Qiu, Li, Kang, Liu, Wang, Cajucom, Zhang, Agathokleous (b0225) 2021; 298–299
Luo, Li, Peng, Wang (b0160) 2013; 31
Feng, Jia, Zhang, Gong, Cui (b0075) 2018; 564
Yang, Cui, Bai, Luo, Dai, Wang, Luo (b0295) 2019; 211
Landeras, Ortiz-Barredo, Lopez (b0135) 2008; 95
Perera, Andrew, Bandara, Biju (b0205) 2014; 194
Roy, Lal, Sarker, Saha, Datta (b0245) 2021; 255
Liu, Y., Pereira, L.S., 2001. Calculation methods for reference evapotranspiration with limited weather data. J. Hydraul. 3 (2001), 11–17 (in Chinese).
Roy, Sarkar, Biswas, Datta (b0260) 2023; 37
Despotovic, Nedic, Despotovic, Cvetanovic (b0050) 2015; 52
Hargreaves, Samani (b0095) 1985; 1
Yang, Cui, Luo, Lyu, Traore, Khan, Wang (b0290) 2016; 177
Allen (b0010) 1996; 122
Fan, Yue, Wu, Zhang (b0055) 2018; 263
Zhao, Wang, Andre, Morwenna (b0310) 2019; 264
Ren, Martins, Qu, Paredes, Pereira (b0235) 2016; 30
Pereira, Allen, Smith, Raes (b0200) 2015; 147
Yan, Zhang, Gerrits, Acquah, Zhang, Wu, Zhao, Huang, Fu (b0285) 2018; 262
Almorox, Bocco, Willington (b0020) 2013; 60
Roy, Saha, Kamruzzaman, Biswas, Hossain (b0250) 2021; 35
Korachagaon, Bapat (b0130) 2012; 41
Gavilan, Estevez, Berengena (b0085) 2008; 134
Paredes, Trigo, de Bruin, Pereira, Simões (b0190) 2021; 248
Feng, Cui, Zhao, Hu, Gong (b0060) 2016; 536
Allen, Pereira, Raes, Smith (b0015) 1998; 56
Qiu, Liu, Cui, Wu, Wang, Li (b0215) 2019; 224
He, Liu, Xu, Zhang, Chen, Sun (b0105) 2020; 220
Kimball, Running, Nemani (b0120) 1997; 85
Pereira, Cai, Hann (bib311) 2003; 52
Feng, Cui, Gong, Zhang, Zhao (b0065) 2017; 193
Marti, Zarzo, Vanderlinden, Girona (b0170) 2015; 529
Luo, Chang, Peng, Khan (b0165) 2014; 136
Feng, Gong, Jiang, Zhao, Cui (b0080) 2020; 203
Moriasi, Arnold, Van Liew, Bingner, Harmel, Veith (b0175) 2007; 50
Samani (b0265) 2000; 126
Jiang (10.1016/j.jhydrol.2023.130317_b0110) 2019; 216
Allen (10.1016/j.jhydrol.2023.130317_b0015) 1998; 56
Fan (10.1016/j.jhydrol.2023.130317_b0055) 2018; 263
Qiu (10.1016/j.jhydrol.2023.130317_b0230) 2022; 163
Pillot (10.1016/j.jhydrol.2023.130317_b0210) 2015; 120
Gavilan (10.1016/j.jhydrol.2023.130317_b0085) 2008; 134
Senkal (10.1016/j.jhydrol.2023.130317_b0270) 2010; 35
Gueymard (10.1016/j.jhydrol.2023.130317_b0090) 2001; 71
Allen (10.1016/j.jhydrol.2023.130317_b0010) 1996; 122
Luo (10.1016/j.jhydrol.2023.130317_b0160) 2013; 31
Yan (10.1016/j.jhydrol.2023.130317_b0285) 2018; 262
Yang (10.1016/j.jhydrol.2023.130317_b0300) 2019; 222
Pereira (10.1016/j.jhydrol.2023.130317_bib311) 2003; 52
Celestin (10.1016/j.jhydrol.2023.130317_b0040) 2020; 12
Roy (10.1016/j.jhydrol.2023.130317_b0245) 2021; 255
He (10.1016/j.jhydrol.2023.130317_b0105) 2020; 220
Paredes (10.1016/j.jhydrol.2023.130317_b0185) 2020; 240
Feng (10.1016/j.jhydrol.2023.130317_b0070) 2017; 181
Feng (10.1016/j.jhydrol.2023.130317_b0060) 2016; 536
Korachagaon (10.1016/j.jhydrol.2023.130317_b0130) 2012; 41
Landeras (10.1016/j.jhydrol.2023.130317_b0135) 2008; 95
Samani (10.1016/j.jhydrol.2023.130317_b0265) 2000; 126
Moriasi (10.1016/j.jhydrol.2023.130317_b0175) 2007; 50
Roy (10.1016/j.jhydrol.2023.130317_b0255) 2022; 12
Abraha (10.1016/j.jhydrol.2023.130317_b0005) 2008; 148
Hassan (10.1016/j.jhydrol.2023.130317_b0100) 2016; 179
Almorox (10.1016/j.jhydrol.2023.130317_b0025) 2015; 528
Feng (10.1016/j.jhydrol.2023.130317_b0080) 2020; 203
Roy (10.1016/j.jhydrol.2023.130317_b0250) 2021; 35
Almorox (10.1016/j.jhydrol.2023.130317_b0020) 2013; 60
Song (10.1016/j.jhydrol.2023.130317_b0275) 2011; 6
Kimball (10.1016/j.jhydrol.2023.130317_b0120) 1997; 85
Roy (10.1016/j.jhydrol.2023.130317_b0240) 2020; 591
10.1016/j.jhydrol.2023.130317_b0305
Perera (10.1016/j.jhydrol.2023.130317_b0205) 2014; 194
Jiang (10.1016/j.jhydrol.2023.130317_b0115) 2020; 295
10.1016/j.jhydrol.2023.130317_b0145
Marti (10.1016/j.jhydrol.2023.130317_b0170) 2015; 529
Qiu (10.1016/j.jhydrol.2023.130317_b0220) 2021; 298–299
Li (10.1016/j.jhydrol.2023.130317_b0140) 2013; 70
Cai (10.1016/j.jhydrol.2023.130317_b0035) 2007; 145
Hargreaves (10.1016/j.jhydrol.2023.130317_b0095) 1985; 1
Despotovic (10.1016/j.jhydrol.2023.130317_b0050) 2015; 52
Todorovic (10.1016/j.jhydrol.2023.130317_b0280) 2013; 481
Paredes (10.1016/j.jhydrol.2023.130317_b0180) 2018; 134
Liu (10.1016/j.jhydrol.2023.130317_b0150) 2020; 590
Yang (10.1016/j.jhydrol.2023.130317_b0290) 2016; 177
Roy (10.1016/j.jhydrol.2023.130317_b0260) 2023; 37
Paredes (10.1016/j.jhydrol.2023.130317_b0190) 2021; 248
Liu (10.1016/j.jhydrol.2023.130317_b0155) 2013; 487
Ren (10.1016/j.jhydrol.2023.130317_b0235) 2016; 30
Luo (10.1016/j.jhydrol.2023.130317_b0165) 2014; 136
Yang (10.1016/j.jhydrol.2023.130317_b0295) 2019; 211
Zhao (10.1016/j.jhydrol.2023.130317_b0310) 2019; 264
Chen (10.1016/j.jhydrol.2023.130317_b0045) 2013; 33
Feng (10.1016/j.jhydrol.2023.130317_b0065) 2017; 193
Feng (10.1016/j.jhydrol.2023.130317_b0075) 2018; 564
Qiu (10.1016/j.jhydrol.2023.130317_b0215) 2019; 224
Qiu (10.1016/j.jhydrol.2023.130317_b0225) 2021; 298–299
Pereira (10.1016/j.jhydrol.2023.130317_b0200) 2015; 147
References_xml – volume: 216
  start-page: 365
  year: 2019
  end-page: 378
  ident: b0110
  article-title: Impacts of climatic variables on reference evapotranspiration during growing season in Southwest China
  publication-title: Agri. Water Manage.
– volume: 298–299
  year: 2021
  ident: b0225
  article-title: An improved method to estimate actual vapor pressure without relative humidity data
  publication-title: Agric. For. Meteorol.
– volume: 295
  year: 2020
  ident: b0115
  article-title: Water use efficiency and its drivers in four typical agroecosystems based on flux tower measurements
  publication-title: Agric. For. Meteorol.
– volume: 134
  start-page: 1115
  year: 2018
  end-page: 1133
  ident: b0180
  article-title: Daily reference crop evapotranspiration with reduced data sets in the humid environments of Azores islands using estimates of actual vapour pressure, solar radiation and wind speed
  publication-title: Theor. Appl. Climatol.
– volume: 529
  start-page: 1713
  year: 2015
  end-page: 1724
  ident: b0170
  article-title: Parametric expressions for the adjusted Hargreaves coefficient in Eastern Spain
  publication-title: J. Hydrol.
– volume: 181
  start-page: 1
  year: 2017
  end-page: 9
  ident: b0070
  article-title: Calibration of Hargreaves model for reference evapotranspiration estimation in Sichuan basin of southwest China
  publication-title: Agri. Water Manage.
– volume: 203
  year: 2020
  ident: b0080
  article-title: National-scale development and calibration of empirical models for predicting daily global solar radiation in China
  publication-title: Energ. Conver. Manage.
– volume: 12
  year: 2020
  ident: b0040
  article-title: Evaluation of 32 simple equations against the penman-monteith method to estimate the reference evapotranspiration in the hexi corridor
  publication-title: Northwest China. Water.
– volume: 41
  start-page: 394
  year: 2012
  end-page: 400
  ident: b0130
  article-title: General formula for the estimation of global solar radiation on earth's surface around the globe
  publication-title: Renew. Energy
– volume: 35
  start-page: 4795
  year: 2010
  end-page: 4801
  ident: b0270
  article-title: Modeling of solar radiation using remote sensing and artificial neural network in Turkey
  publication-title: Energy
– volume: 60
  start-page: 382
  year: 2013
  end-page: 387
  ident: b0020
  article-title: Estimation of daily global solar radiation from measured temperatures at Canada de Luque, Cordoba
  publication-title: Argentina. Renewable Energy.
– volume: 71
  start-page: 325
  year: 2001
  end-page: 346
  ident: b0090
  article-title: Parameterized transmittance model for direct beam and circumsolar spectral irradiance
  publication-title: Sol. Energy
– volume: 240
  year: 2020
  ident: b0185
  article-title: Reference grass evapotranspiration with reduced data sets: Parameterization of the FAO Penman-Monteith temperature approach and the Hargeaves-Samani equation using local climatic variables
  publication-title: Agri. Water Manage.
– volume: 52
  start-page: 1869
  year: 2015
  end-page: 1880
  ident: b0050
  article-title: Review and statistical analysis of different global solar radiation sunshine models
  publication-title: Renew. Sustain. Energy Rev.
– volume: 6
  year: 2011
  ident: b0275
  article-title: Rain-season trends in precipitation and their effect in different climate regions of China during 1961–2008
  publication-title: Environ. Res. Lett.
– volume: 50
  start-page: 885
  year: 2007
  end-page: 900
  ident: b0175
  article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
  publication-title: Trans. ASABE
– volume: 255
  year: 2021
  ident: b0245
  article-title: Optimization algorithms as training approaches for prediction of reference evapotranspiration using adaptive neuro fuzzy inference system
  publication-title: Agric. Water Manag.
– volume: 136
  start-page: 42
  year: 2014
  end-page: 51
  ident: b0165
  article-title: Short-term forecasting of daily reference evapotranspiration using the Hargreaves-Samani model and temperature forecast
  publication-title: Agri. Water Manage.
– volume: 220
  year: 2020
  ident: b0105
  article-title: Improving solar radiation estimation in China based on regional optimal combination of meteorological factors with machine learning methods
  publication-title: Energ. Conver. Manage.
– volume: 248
  year: 2021
  ident: b0190
  article-title: Daily grass reference evapotranspiration with meteosat second generation shortwave radiation and reference ET products
  publication-title: Agri. Water Manage.
– volume: 35
  start-page: 5383
  year: 2021
  end-page: 5407
  ident: b0250
  article-title: Hierarchical fuzzy systems integrated with particle swarm optimization for daily reference evapotranspiration prediction: a novel approach
  publication-title: Water Resour. Manag.
– volume: 85
  start-page: 87
  year: 1997
  end-page: 98
  ident: b0120
  article-title: An improved method for estimating surface humidity from daily minimum temperature
  publication-title: Agric. For. Meteorol.
– volume: 211
  start-page: 70
  year: 2019
  end-page: 80
  ident: b0295
  article-title: Short-term forecasting of daily reference evapotranspiration using the reduced-set Penman-Monteith model and public weather forecasts
  publication-title: Agri. Water Manage.
– volume: 122
  start-page: 97
  year: 1996
  end-page: 106
  ident: b0010
  article-title: Assessing integrity of weather data for reference evapotranspiration estimation
  publication-title: J. Irrigation Drainage Eng.-ASCE.
– volume: 298–299
  year: 2021
  ident: b0220
  article-title: Differential response of rice evapotranspiration to varying patterns of warming
  publication-title: Agric. For. Meteorol.
– volume: 37
  start-page: 193
  year: 2023
  end-page: 218
  ident: b0260
  article-title: Generalized daily reference evapotranspiration models based on a hybrid optimization algorithm tuned fuzzy tree approach
  publication-title: Water Resour. Manag.
– volume: 222
  start-page: 386
  year: 2019
  end-page: 399
  ident: b0300
  article-title: Evaluation of six equations for daily reference evapotranspiration estimating using public weather forecasts message for different climate regions across China
  publication-title: Agri. Water Manage.
– volume: 194
  start-page: 50
  year: 2014
  end-page: 63
  ident: b0205
  article-title: Forecasting daily reference evapotranspiration for Australia using numerical weather prediction outputs
  publication-title: Agric. For. Meteorol.
– volume: 31
  start-page: 987
  year: 2013
  end-page: 992
  ident: b0160
  article-title: Forecasting reference crop evapotranspiration based on temperature forecast and Hargreaves-Samani equation
  publication-title: J. Drainage Irrigation Machinery Eng.
– volume: 591
  year: 2020
  ident: b0240
  article-title: Using ensembles of adaptive neuro-fuzzy inference system and optimization algorithms to predict reference evapotranspiration in subtropical climatic zones
  publication-title: J. Hydrol.
– volume: 145
  start-page: 22
  year: 2007
  end-page: 35
  ident: b0035
  article-title: Estimating reference evapotranspiration with the FAO Penman-Monteith equation using daily weather forecast messages
  publication-title: Agric. For. Meteorol.
– reference: Zhang, Q., Duan, A.W., G. Y., Shen, X.J. and Cai, H.J., 2015. Middle and Short Term Forecasting Models for Reference Evapotranspiration Based on Daily Weather forecasts. Transactions of the chinese society for agricultural machinery, 46(02): 104-109 (in Chinese).
– volume: 487
  start-page: 24
  year: 2013
  end-page: 38
  ident: b0155
  article-title: Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin
  publication-title: China. J. Hydrol.
– volume: 33
  start-page: 487
  year: 2013
  end-page: 498
  ident: b0045
  article-title: Estimation of monthly average daily solar radiation from measured meteorological data in Yangtze River Basin in China
  publication-title: Int. J. Climatol.
– volume: 95
  start-page: 553
  year: 2008
  end-page: 565
  ident: b0135
  article-title: Comparison of artificial neuralnetwork models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain)
  publication-title: Agri. Water Manage.
– volume: 52
  start-page: 299
  year: 2003
  end-page: 317
  ident: bib311
  article-title: Farm water and soil management for improved water use in the North China Plain
  publication-title: Irrig. Drain.
– volume: 147
  start-page: 4
  year: 2015
  end-page: 20
  ident: b0200
  article-title: Crop evapotranspiration estimation with FAO56: past and future
  publication-title: Agri. Water Manage.
– volume: 12
  year: 2022
  ident: b0255
  article-title: Daily prediction and multi-step forward forecasting of reference evapotranspiration using LSTM and Bi-LSTM models
  publication-title: Agronomy-Basel
– volume: 564
  start-page: 314
  year: 2018
  end-page: 328
  ident: b0075
  article-title: National-scale assessment of pan evaporation models across different climatic zones of China
  publication-title: J. Hydrol.
– volume: 30
  start-page: 3793
  year: 2016
  end-page: 3814
  ident: b0235
  article-title: Daily reference evapotranspiration for hyper-arid to moist sub-humid climates in inner mongolia, china: II. trends of ET0 and weather variables and related spatial patterns
  publication-title: Water Resour. Manag.
– volume: 263
  start-page: 225
  year: 2018
  end-page: 241
  ident: b0055
  article-title: Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China
  publication-title: Agric. For. Meteorol.
– volume: 120
  start-page: 603
  year: 2015
  end-page: 619
  ident: b0210
  article-title: Satellite-based assessment and in situ validation of solar irradiation maps in the republic of djibouti
  publication-title: Sol. Energy
– volume: 193
  start-page: 163
  year: 2017
  end-page: 173
  ident: b0065
  article-title: Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling
  publication-title: Agri. Water Manage.
– volume: 224
  year: 2019
  ident: b0215
  article-title: Evapotranspiration estimation using a modified Priestley-Taylor model in a rice-wheat rotation system
  publication-title: Agri. Water Manage.
– volume: 481
  start-page: 166
  year: 2013
  end-page: 176
  ident: b0280
  article-title: Reference evapotranspiration estimate with limited weather data across a range of Mediterranean climates
  publication-title: J. Hydrol.
– volume: 148
  start-page: 401
  year: 2008
  end-page: 416
  ident: b0005
  article-title: Comparison of estimates of daily solar radiation from air temperature range for application in crop simulations
  publication-title: Agric. For. Meteorol.
– volume: 70
  start-page: 139
  year: 2013
  end-page: 148
  ident: b0140
  article-title: General models for estimating daily global solar radiation for different solar radiation zones in mainland China
  publication-title: Energ. Conver. Manage.
– volume: 1
  start-page: 96
  year: 1985
  end-page: 99
  ident: b0095
  article-title: Reference crop evapotranspiration from tem-perature
  publication-title: Appl. Eng. Agric.
– volume: 590
  year: 2020
  ident: b0150
  article-title: Assessing forecasting performance of daily reference evapotranspiration using public weather forecast and numerical weather prediction
  publication-title: J. Hydrol.
– volume: 163
  year: 2022
  ident: b0230
  article-title: Modeling daily global solar radiation using only temperature data: Past, development, and future
  publication-title: Renew. Sustain. Energy Rev.
– volume: 528
  start-page: 514
  year: 2015
  end-page: 522
  ident: b0025
  article-title: Global performance ranking of temperature-based approaches for evapotranspiration estimation considering Koppen climate classes
  publication-title: J. Hydrol.
– volume: 179
  start-page: 437
  year: 2016
  end-page: 450
  ident: b0100
  article-title: New temperature-based models for predicting global solar radiation
  publication-title: Appl. Energy
– volume: 262
  start-page: 370
  year: 2018
  end-page: 378
  ident: b0285
  article-title: Parametrization of aerodynamic and canopy resistances for modeling evapotranspiration of greenhouse cucumber
  publication-title: Agric. For. Meteorol.
– volume: 536
  start-page: 376
  year: 2016
  end-page: 383
  ident: b0060
  article-title: Comparison of ELM, GANN, WNN and empirical models for estimating reference evapotranspiration in humid region of Southwest China
  publication-title: J. Hydrol.
– volume: 134
  start-page: 1
  year: 2008
  end-page: 12
  ident: b0085
  article-title: Comparison of standardized reference evapotranspiration equations in Southern Spain
  publication-title: J. Irrig. Drain. Eng.
– volume: 264
  start-page: 114
  year: 2019
  end-page: 124
  ident: b0310
  article-title: Ensemble forecasting of monthly and seasonal reference crop evapotranspiration based on global climate model outputs
  publication-title: Agric. For. Meteorol.
– volume: 126
  start-page: 265
  year: 2000
  end-page: 267
  ident: b0265
  article-title: Estimating solar radiation and evapotranspiration using minimum climatological data
  publication-title: J. Irrig. Drain. Eng.
– volume: 56
  start-page: Rome, 300p
  year: 1998
  ident: b0015
  article-title: Crop evapotranspiration: guidelines for computing crop water requirements
  publication-title: FAO Irrigation and Drainage Paper
– reference: Liu, Y., Pereira, L.S., 2001. Calculation methods for reference evapotranspiration with limited weather data. J. Hydraul. 3 (2001), 11–17 (in Chinese).
– volume: 177
  start-page: 329
  year: 2016
  end-page: 339
  ident: b0290
  article-title: Short-term forecasting of daily reference evapotranspiration using the Penman-Monteith model and public weather forecasts
  publication-title: Agri. Water Manage.
– volume: 481
  start-page: 166
  year: 2013
  ident: 10.1016/j.jhydrol.2023.130317_b0280
  article-title: Reference evapotranspiration estimate with limited weather data across a range of Mediterranean climates
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.12.034
– volume: 203
  year: 2020
  ident: 10.1016/j.jhydrol.2023.130317_b0080
  article-title: National-scale development and calibration of empirical models for predicting daily global solar radiation in China
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2019.112236
– volume: 134
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.jhydrol.2023.130317_b0085
  article-title: Comparison of standardized reference evapotranspiration equations in Southern Spain
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)0733-9437(2008)134:1(1)
– volume: 85
  start-page: 87
  issue: 1–2
  year: 1997
  ident: 10.1016/j.jhydrol.2023.130317_b0120
  article-title: An improved method for estimating surface humidity from daily minimum temperature
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/S0168-1923(96)02366-0
– volume: 52
  start-page: 299
  issue: 4
  year: 2003
  ident: 10.1016/j.jhydrol.2023.130317_bib311
  article-title: Farm water and soil management for improved water use in the North China Plain
  publication-title: Irrig. Drain.
  doi: 10.1002/ird.98
– volume: 487
  start-page: 24
  year: 2013
  ident: 10.1016/j.jhydrol.2023.130317_b0155
  article-title: Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin
  publication-title: China. J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.02.025
– volume: 126
  start-page: 265
  issue: 4
  year: 2000
  ident: 10.1016/j.jhydrol.2023.130317_b0265
  article-title: Estimating solar radiation and evapotranspiration using minimum climatological data
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)0733-9437(2000)126:4(265)
– volume: 41
  start-page: 394
  year: 2012
  ident: 10.1016/j.jhydrol.2023.130317_b0130
  article-title: General formula for the estimation of global solar radiation on earth's surface around the globe
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2011.11.002
– volume: 37
  start-page: 193
  issue: 1
  year: 2023
  ident: 10.1016/j.jhydrol.2023.130317_b0260
  article-title: Generalized daily reference evapotranspiration models based on a hybrid optimization algorithm tuned fuzzy tree approach
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-022-03362-3
– volume: 248
  year: 2021
  ident: 10.1016/j.jhydrol.2023.130317_b0190
  article-title: Daily grass reference evapotranspiration with meteosat second generation shortwave radiation and reference ET products
  publication-title: Agri. Water Manage.
  doi: 10.1016/j.agwat.2020.106543
– volume: 52
  start-page: 1869
  year: 2015
  ident: 10.1016/j.jhydrol.2023.130317_b0050
  article-title: Review and statistical analysis of different global solar radiation sunshine models
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.08.035
– volume: 255
  year: 2021
  ident: 10.1016/j.jhydrol.2023.130317_b0245
  article-title: Optimization algorithms as training approaches for prediction of reference evapotranspiration using adaptive neuro fuzzy inference system
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2021.107003
– volume: 147
  start-page: 4
  year: 2015
  ident: 10.1016/j.jhydrol.2023.130317_b0200
  article-title: Crop evapotranspiration estimation with FAO56: past and future
  publication-title: Agri. Water Manage.
  doi: 10.1016/j.agwat.2014.07.031
– volume: 194
  start-page: 50
  year: 2014
  ident: 10.1016/j.jhydrol.2023.130317_b0205
  article-title: Forecasting daily reference evapotranspiration for Australia using numerical weather prediction outputs
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2014.03.014
– volume: 30
  start-page: 3793
  issue: 11
  year: 2016
  ident: 10.1016/j.jhydrol.2023.130317_b0235
  article-title: Daily reference evapotranspiration for hyper-arid to moist sub-humid climates in inner mongolia, china: II. trends of ET0 and weather variables and related spatial patterns
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-016-1385-8
– volume: 591
  year: 2020
  ident: 10.1016/j.jhydrol.2023.130317_b0240
  article-title: Using ensembles of adaptive neuro-fuzzy inference system and optimization algorithms to predict reference evapotranspiration in subtropical climatic zones
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125509
– volume: 177
  start-page: 329
  year: 2016
  ident: 10.1016/j.jhydrol.2023.130317_b0290
  article-title: Short-term forecasting of daily reference evapotranspiration using the Penman-Monteith model and public weather forecasts
  publication-title: Agri. Water Manage.
  doi: 10.1016/j.agwat.2016.08.020
– volume: 56
  start-page: Rome, 300p
  year: 1998
  ident: 10.1016/j.jhydrol.2023.130317_b0015
  article-title: Crop evapotranspiration: guidelines for computing crop water requirements
  publication-title: FAO Irrigation and Drainage Paper
– volume: 224
  year: 2019
  ident: 10.1016/j.jhydrol.2023.130317_b0215
  article-title: Evapotranspiration estimation using a modified Priestley-Taylor model in a rice-wheat rotation system
  publication-title: Agri. Water Manage.
  doi: 10.1016/j.agwat.2019.105755
– volume: 1
  start-page: 96
  year: 1985
  ident: 10.1016/j.jhydrol.2023.130317_b0095
  article-title: Reference crop evapotranspiration from tem-perature
  publication-title: Appl. Eng. Agric.
  doi: 10.13031/2013.26773
– volume: 211
  start-page: 70
  year: 2019
  ident: 10.1016/j.jhydrol.2023.130317_b0295
  article-title: Short-term forecasting of daily reference evapotranspiration using the reduced-set Penman-Monteith model and public weather forecasts
  publication-title: Agri. Water Manage.
  doi: 10.1016/j.agwat.2018.09.036
– volume: 298–299
  year: 2021
  ident: 10.1016/j.jhydrol.2023.130317_b0220
  article-title: Differential response of rice evapotranspiration to varying patterns of warming
  publication-title: Agric. For. Meteorol.
– volume: 222
  start-page: 386
  year: 2019
  ident: 10.1016/j.jhydrol.2023.130317_b0300
  article-title: Evaluation of six equations for daily reference evapotranspiration estimating using public weather forecasts message for different climate regions across China
  publication-title: Agri. Water Manage.
  doi: 10.1016/j.agwat.2019.06.014
– volume: 564
  start-page: 314
  year: 2018
  ident: 10.1016/j.jhydrol.2023.130317_b0075
  article-title: National-scale assessment of pan evaporation models across different climatic zones of China
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.07.013
– volume: 6
  issue: 3
  year: 2011
  ident: 10.1016/j.jhydrol.2023.130317_b0275
  article-title: Rain-season trends in precipitation and their effect in different climate regions of China during 1961–2008
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/6/3/034025
– volume: 31
  start-page: 987
  issue: 11
  year: 2013
  ident: 10.1016/j.jhydrol.2023.130317_b0160
  article-title: Forecasting reference crop evapotranspiration based on temperature forecast and Hargreaves-Samani equation
  publication-title: J. Drainage Irrigation Machinery Eng.
– volume: 216
  start-page: 365
  year: 2019
  ident: 10.1016/j.jhydrol.2023.130317_b0110
  article-title: Impacts of climatic variables on reference evapotranspiration during growing season in Southwest China
  publication-title: Agri. Water Manage.
  doi: 10.1016/j.agwat.2019.02.014
– volume: 179
  start-page: 437
  year: 2016
  ident: 10.1016/j.jhydrol.2023.130317_b0100
  article-title: New temperature-based models for predicting global solar radiation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.07.006
– volume: 136
  start-page: 42
  issue: 1
  year: 2014
  ident: 10.1016/j.jhydrol.2023.130317_b0165
  article-title: Short-term forecasting of daily reference evapotranspiration using the Hargreaves-Samani model and temperature forecast
  publication-title: Agri. Water Manage.
  doi: 10.1016/j.agwat.2014.01.006
– volume: 590
  year: 2020
  ident: 10.1016/j.jhydrol.2023.130317_b0150
  article-title: Assessing forecasting performance of daily reference evapotranspiration using public weather forecast and numerical weather prediction
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125547
– volume: 181
  start-page: 1
  year: 2017
  ident: 10.1016/j.jhydrol.2023.130317_b0070
  article-title: Calibration of Hargreaves model for reference evapotranspiration estimation in Sichuan basin of southwest China
  publication-title: Agri. Water Manage.
  doi: 10.1016/j.agwat.2016.11.010
– volume: 95
  start-page: 553
  issue: 5
  year: 2008
  ident: 10.1016/j.jhydrol.2023.130317_b0135
  article-title: Comparison of artificial neuralnetwork models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain)
  publication-title: Agri. Water Manage.
  doi: 10.1016/j.agwat.2007.12.011
– volume: 35
  start-page: 4795
  issue: 12
  year: 2010
  ident: 10.1016/j.jhydrol.2023.130317_b0270
  article-title: Modeling of solar radiation using remote sensing and artificial neural network in Turkey
  publication-title: Energy
  doi: 10.1016/j.energy.2010.09.009
– volume: 193
  start-page: 163
  year: 2017
  ident: 10.1016/j.jhydrol.2023.130317_b0065
  article-title: Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling
  publication-title: Agri. Water Manage.
  doi: 10.1016/j.agwat.2017.08.003
– volume: 70
  start-page: 139
  year: 2013
  ident: 10.1016/j.jhydrol.2023.130317_b0140
  article-title: General models for estimating daily global solar radiation for different solar radiation zones in mainland China
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2013.03.004
– volume: 262
  start-page: 370
  year: 2018
  ident: 10.1016/j.jhydrol.2023.130317_b0285
  article-title: Parametrization of aerodynamic and canopy resistances for modeling evapotranspiration of greenhouse cucumber
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2018.07.020
– volume: 536
  start-page: 376
  year: 2016
  ident: 10.1016/j.jhydrol.2023.130317_b0060
  article-title: Comparison of ELM, GANN, WNN and empirical models for estimating reference evapotranspiration in humid region of Southwest China
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.02.053
– volume: 12
  issue: 3
  year: 2022
  ident: 10.1016/j.jhydrol.2023.130317_b0255
  article-title: Daily prediction and multi-step forward forecasting of reference evapotranspiration using LSTM and Bi-LSTM models
  publication-title: Agronomy-Basel
– volume: 220
  year: 2020
  ident: 10.1016/j.jhydrol.2023.130317_b0105
  article-title: Improving solar radiation estimation in China based on regional optimal combination of meteorological factors with machine learning methods
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2020.113111
– volume: 295
  year: 2020
  ident: 10.1016/j.jhydrol.2023.130317_b0115
  article-title: Water use efficiency and its drivers in four typical agroecosystems based on flux tower measurements
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2020.108200
– volume: 298–299
  year: 2021
  ident: 10.1016/j.jhydrol.2023.130317_b0225
  article-title: An improved method to estimate actual vapor pressure without relative humidity data
  publication-title: Agric. For. Meteorol.
– volume: 148
  start-page: 401
  issue: 3
  year: 2008
  ident: 10.1016/j.jhydrol.2023.130317_b0005
  article-title: Comparison of estimates of daily solar radiation from air temperature range for application in crop simulations
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2007.10.001
– volume: 12
  issue: 10
  year: 2020
  ident: 10.1016/j.jhydrol.2023.130317_b0040
  article-title: Evaluation of 32 simple equations against the penman-monteith method to estimate the reference evapotranspiration in the hexi corridor
  publication-title: Northwest China. Water.
– volume: 120
  start-page: 603
  year: 2015
  ident: 10.1016/j.jhydrol.2023.130317_b0210
  article-title: Satellite-based assessment and in situ validation of solar irradiation maps in the republic of djibouti
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2015.08.015
– volume: 71
  start-page: 325
  year: 2001
  ident: 10.1016/j.jhydrol.2023.130317_b0090
  article-title: Parameterized transmittance model for direct beam and circumsolar spectral irradiance
  publication-title: Sol. Energy
  doi: 10.1016/S0038-092X(01)00054-8
– volume: 240
  year: 2020
  ident: 10.1016/j.jhydrol.2023.130317_b0185
  article-title: Reference grass evapotranspiration with reduced data sets: Parameterization of the FAO Penman-Monteith temperature approach and the Hargeaves-Samani equation using local climatic variables
  publication-title: Agri. Water Manage.
  doi: 10.1016/j.agwat.2020.106210
– volume: 529
  start-page: 1713
  year: 2015
  ident: 10.1016/j.jhydrol.2023.130317_b0170
  article-title: Parametric expressions for the adjusted Hargreaves coefficient in Eastern Spain
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.07.054
– volume: 145
  start-page: 22
  issue: 1
  year: 2007
  ident: 10.1016/j.jhydrol.2023.130317_b0035
  article-title: Estimating reference evapotranspiration with the FAO Penman-Monteith equation using daily weather forecast messages
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2007.04.012
– ident: 10.1016/j.jhydrol.2023.130317_b0145
– volume: 122
  start-page: 97
  issue: 2
  year: 1996
  ident: 10.1016/j.jhydrol.2023.130317_b0010
  article-title: Assessing integrity of weather data for reference evapotranspiration estimation
  publication-title: J. Irrigation Drainage Eng.-ASCE.
  doi: 10.1061/(ASCE)0733-9437(1996)122:2(97)
– volume: 264
  start-page: 114
  year: 2019
  ident: 10.1016/j.jhydrol.2023.130317_b0310
  article-title: Ensemble forecasting of monthly and seasonal reference crop evapotranspiration based on global climate model outputs
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2018.10.001
– volume: 60
  start-page: 382
  year: 2013
  ident: 10.1016/j.jhydrol.2023.130317_b0020
  article-title: Estimation of daily global solar radiation from measured temperatures at Canada de Luque, Cordoba
  publication-title: Argentina. Renewable Energy.
  doi: 10.1016/j.renene.2013.05.033
– volume: 263
  start-page: 225
  year: 2018
  ident: 10.1016/j.jhydrol.2023.130317_b0055
  article-title: Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2018.08.019
– volume: 50
  start-page: 885
  issue: 3
  year: 2007
  ident: 10.1016/j.jhydrol.2023.130317_b0175
  article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
  publication-title: Trans. ASABE
  doi: 10.13031/2013.23153
– ident: 10.1016/j.jhydrol.2023.130317_b0305
– volume: 35
  start-page: 5383
  issue: 15
  year: 2021
  ident: 10.1016/j.jhydrol.2023.130317_b0250
  article-title: Hierarchical fuzzy systems integrated with particle swarm optimization for daily reference evapotranspiration prediction: a novel approach
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-021-03009-9
– volume: 33
  start-page: 487
  issue: 2
  year: 2013
  ident: 10.1016/j.jhydrol.2023.130317_b0045
  article-title: Estimation of monthly average daily solar radiation from measured meteorological data in Yangtze River Basin in China
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.3442
– volume: 528
  start-page: 514
  year: 2015
  ident: 10.1016/j.jhydrol.2023.130317_b0025
  article-title: Global performance ranking of temperature-based approaches for evapotranspiration estimation considering Koppen climate classes
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.06.057
– volume: 134
  start-page: 1115
  issue: 2018
  year: 2018
  ident: 10.1016/j.jhydrol.2023.130317_b0180
  article-title: Daily reference crop evapotranspiration with reduced data sets in the humid environments of Azores islands using estimates of actual vapour pressure, solar radiation and wind speed
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-017-2329-9
– volume: 163
  year: 2022
  ident: 10.1016/j.jhydrol.2023.130317_b0230
  article-title: Modeling daily global solar radiation using only temperature data: Past, development, and future
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2022.112511
SSID ssj0000334
Score 2.4872465
Snippet •Updated PM model with temperature and sunshine duration-based solar radiation forecast methods for ET0 forecasting.•The most accurate method of ET0...
Accurate forecast of reference evapotranspiration (ET₀) is essential for effective water resource management and efficient irrigation scheduling. The...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 130317
SubjectTerms Air temperature
China
continental climates
evapotranspiration
irrigation
monsoon season
Reference crop evapotranspiration
Solar radiation
temperature
water management
weather forecasting
Weather forecasts
Title Assessing forecasting performance of daily reference evapotranspiration: A comparative analysis of updated temperature penman-monteith and penman-monteith forecast models
URI https://dx.doi.org/10.1016/j.jhydrol.2023.130317
https://www.proquest.com/docview/3040355088
Volume 626
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBYhPTSX0Fdo0jao0OvasiTvrnMzocZtaU4N5Cb0xGvS3cVeB3zJD8qvzMyu1qYPCOS4QqMVmtHMSJr5hpAvBtjqwNTBFs9YIrVgicmFS0LKJrkLDEwcJjj_vErn1_L7zfjmgFz2uTAYVhl1f6fTW20dW4ZxNYd1UWCOL-ejdAL-ACjZ8QQRP6XMUMoH9_swDyaE7BHDsfc-i2e4HCwXW7eq8AWCC6yLLNq6Zf-1T39p6tb8zF6R4-g30mk3tdfkwJdvyMtYwnyxfUseuudbsEQU_FBv9RoDmmm9TwygVaBOF7dbuqstQv2drqumBTgvOlm4oFNq95DgVEfUEqTe1Hg_4CjiWUUwZvhBCaMnvxHlqmgW0N_909ZPiLZ1d9bvyPXs66_LeRILMSRWSN4kgRkRhMlTxy13Qo-FDIJncFILPHBhHA-pZB5jAaXNJiE30hluA7Mar1hH4oQcllXp3xPKzDhkqR057rHqcZpb4wMc2XKrZZbrcEpkv_zKRpRyLJZxq_pwtKWKXFPINdVx7ZQMdmR1B9PxFEHe81b9IW8KTMlTpJ97WVCwF_GBRZe-2qyVAI0Iwg2K--z5w38gR_jV5Tt-JIfNauM_gePTmPNWss_Ji-m3H_OrR99DCHE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4ikKBYwEx-x6bW-SReJQAdWWPk6t1JvxU5tVm0TdLNVe-EFc-YPMJE5XPKRKSL06GSfyjGf8mPk-Qt4aUKuDUAdTPGOJ1IIlJhcuCSmb5C4wCHFY4Hx0nE5P5Zez8dkG-dnXwmBaZfT9nU9vvXVsGcbRHNZFgTW-nI_SCawHwMmOJz2D9YFfXcG-bfFh_xMo-R3ne59PPk6TSC2QWCF5kwRmRBAmTx233Ak9FjIInsHeI_DAhXE8pJJ5zG6TNpuE3EhnuA3Majw0HAno9w65K8FdIG3C4Ps6r4QJIXuIcvy9ddnQcD6Yz1bussIrDy6QiFm0RGn_DIh_hIY23u09IPfjQpXudmPxkGz48hHZipzps9Vj8qO7L4bQR2Hh661eYAY1rdeVCLQK1OnifEWvyUyo_6brqmkR1YvO-N7TXWrXGORUR5gUlF7WeCDhKAJoRfRn-EAJvScXCKtVNDN43_3V1v8QbYl-Fk_I6a2o5ynZLKvSPyOUmXHIUjty3CPNcppb4wPsEXOrZZbrsE1kP_zKRlh0ZOc4V33-21xFrSnUmuq0tk0G12J1hwtyk0De61b9ZuAKYtdNom96W1Aw-fFGR5e-Wi6UABcMswkixfP_7_412ZqeHB2qw_3jgxfkHj7pii13yGZzufQvYdXVmFetlVPy9ban1S8IVkQ1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+forecasting+performance+of+daily+reference+evapotranspiration%3A+A+comparative+analysis+of+updated+temperature+penman-monteith+and+penman-monteith+forecast+models&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Lin%2C+En&rft.au=Qiu%2C+Rangjian&rft.au=Chen%2C+Mengting&rft.au=Xie%2C+Hua&rft.date=2023-11-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.volume=626&rft_id=info:doi/10.1016%2Fj.jhydrol.2023.130317&rft.externalDocID=S0022169423012593
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon