Assessing forecasting performance of daily reference evapotranspiration: A comparative analysis of updated temperature penman-monteith and penman-monteith forecast models
•Updated PM model with temperature and sunshine duration-based solar radiation forecast methods for ET0 forecasting.•The most accurate method of ET0 forecasting was recommended for each climate region.•Using a temperature-based method to forecast solar radiation can greatly improve ET0 forecasting.•...
Saved in:
Published in | Journal of hydrology (Amsterdam) Vol. 626; p. 130317 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Updated PM model with temperature and sunshine duration-based solar radiation forecast methods for ET0 forecasting.•The most accurate method of ET0 forecasting was recommended for each climate region.•Using a temperature-based method to forecast solar radiation can greatly improve ET0 forecasting.•The updated PMT models outperformed than the PMF model in multiple climatic zones, but slightly less accurate in SMZ.
Accurate forecast of reference evapotranspiration (ET0) is essential for effective water resource management and efficient irrigation scheduling. The Penman-Monteith model (PM) recommended by FAO56 is widely used as the standard method for ET0 forecasting, but PM model application is often limited by the absence of forecasted meteorological variables, especially solar radiation (Rs). Previous studies have proposed two types of models based on temperature and sunshine duration to estimate Rs. However, there is currently a lack of comprehensive comparative analysis research to evaluate the performance and applicability of these two types of models combined with weather forecast data for ET0 forecasting using the PM model. To address this issue, we selected China as the research area, which has complex climate zones and an uneven distribution of water resources. The forecasting results of Rs from temperature-based models (M1–M8) and a sunshine duration-based model (M9) are input independently into the PM model for ET0 forecasting. The updated PM model is named PMTM1–PMTM8 and PMF, respectively. We conducted a comprehensive and analytical assessment of the updated PMTM1–PMTM8 model, the PMF model and the Hargreaves-Samani (HS) model in different climate zones of China. The results showed that the accuracy of the M1–M8 and the M9 for forecasting Rs decreased as the forecasting period increased. The accuracy of the M9 was higher than that of M1–M8 in the overall accuracy in the subtropical monsoon climate (SMZ). Both the updated PMTM1–PMTM8 and PMF models were utilized to evaluate the ET0 forecasting performance in all five zones. The PMTM3 model exhibited the highest accuracy, with RMSE and MAE ranges of 0.671–1.572 mm d−1 and 0.532–1.365 mm d−1, respectively. In contrast, the PMF model displayed RMSE and MAE ranges of 0.690–1.590 mm d−1 and 0.641–1.437 mm d−1, respectively. Compared to the PMF model, the updated PMTM1–PMTM5 model showed higher accuracy in forecasting ET0 in the plateau mountain climate, temperate continental climate, temperate monsoon climate, and tropical monsoon climatic zones, but was slightly less accurate in the SMZ. Moreover, both models outperformed the Hargreaves-Samani (HS) model in terms of ET0 forecasting accuracy. Specifically, the updated PMTM1–PMTM5 model demonstrated improved accuracy compared to the temperature-based model HS model across various climate zones, with reductions in RMSE and MAE ranging from 0.117 mm d−1 to 0.616 mm d−1and 0.012 mm d−1 to 0.450 mm d−1, respectively. Overall, the updated PMTM3 model was better than the PMF and thus this model was recommended for daily ET0 forecasting for the near-future at all climate regions across China. |
---|---|
AbstractList | Accurate forecast of reference evapotranspiration (ET₀) is essential for effective water resource management and efficient irrigation scheduling. The Penman-Monteith model (PM) recommended by FAO56 is widely used as the standard method for ET₀ forecasting, but PM model application is often limited by the absence of forecasted meteorological variables, especially solar radiation (Rs). Previous studies have proposed two types of models based on temperature and sunshine duration to estimate Rs. However, there is currently a lack of comprehensive comparative analysis research to evaluate the performance and applicability of these two types of models combined with weather forecast data for ET₀ forecasting using the PM model. To address this issue, we selected China as the research area, which has complex climate zones and an uneven distribution of water resources. The forecasting results of Rs from temperature-based models (M1–M8) and a sunshine duration-based model (M9) are input independently into the PM model for ET₀ forecasting. The updated PM model is named PMTM₁–PMTM₈ and PMF, respectively. We conducted a comprehensive and analytical assessment of the updated PMTM₁–PMTM₈ model, the PMF model and the Hargreaves-Samani (HS) model in different climate zones of China. The results showed that the accuracy of the M1–M8 and the M9 for forecasting Rs decreased as the forecasting period increased. The accuracy of the M9 was higher than that of M1–M8 in the overall accuracy in the subtropical monsoon climate (SMZ). Both the updated PMTM₁–PMTM₈ and PMF models were utilized to evaluate the ET₀ forecasting performance in all five zones. The PMTM₃ model exhibited the highest accuracy, with RMSE and MAE ranges of 0.671–1.572 mm d⁻¹ and 0.532–1.365 mm d⁻¹, respectively. In contrast, the PMF model displayed RMSE and MAE ranges of 0.690–1.590 mm d⁻¹ and 0.641–1.437 mm d⁻¹, respectively. Compared to the PMF model, the updated PMTM₁–PMTM₅ model showed higher accuracy in forecasting ET₀ in the plateau mountain climate, temperate continental climate, temperate monsoon climate, and tropical monsoon climatic zones, but was slightly less accurate in the SMZ. Moreover, both models outperformed the Hargreaves-Samani (HS) model in terms of ET₀ forecasting accuracy. Specifically, the updated PMTM₁–PMTM₅ model demonstrated improved accuracy compared to the temperature-based model HS model across various climate zones, with reductions in RMSE and MAE ranging from 0.117 mm d⁻¹ to 0.616 mm d⁻¹and 0.012 mm d⁻¹ to 0.450 mm d⁻¹, respectively. Overall, the updated PMTM₃ model was better than the PMF and thus this model was recommended for daily ET₀ forecasting for the near-future at all climate regions across China. •Updated PM model with temperature and sunshine duration-based solar radiation forecast methods for ET0 forecasting.•The most accurate method of ET0 forecasting was recommended for each climate region.•Using a temperature-based method to forecast solar radiation can greatly improve ET0 forecasting.•The updated PMT models outperformed than the PMF model in multiple climatic zones, but slightly less accurate in SMZ. Accurate forecast of reference evapotranspiration (ET0) is essential for effective water resource management and efficient irrigation scheduling. The Penman-Monteith model (PM) recommended by FAO56 is widely used as the standard method for ET0 forecasting, but PM model application is often limited by the absence of forecasted meteorological variables, especially solar radiation (Rs). Previous studies have proposed two types of models based on temperature and sunshine duration to estimate Rs. However, there is currently a lack of comprehensive comparative analysis research to evaluate the performance and applicability of these two types of models combined with weather forecast data for ET0 forecasting using the PM model. To address this issue, we selected China as the research area, which has complex climate zones and an uneven distribution of water resources. The forecasting results of Rs from temperature-based models (M1–M8) and a sunshine duration-based model (M9) are input independently into the PM model for ET0 forecasting. The updated PM model is named PMTM1–PMTM8 and PMF, respectively. We conducted a comprehensive and analytical assessment of the updated PMTM1–PMTM8 model, the PMF model and the Hargreaves-Samani (HS) model in different climate zones of China. The results showed that the accuracy of the M1–M8 and the M9 for forecasting Rs decreased as the forecasting period increased. The accuracy of the M9 was higher than that of M1–M8 in the overall accuracy in the subtropical monsoon climate (SMZ). Both the updated PMTM1–PMTM8 and PMF models were utilized to evaluate the ET0 forecasting performance in all five zones. The PMTM3 model exhibited the highest accuracy, with RMSE and MAE ranges of 0.671–1.572 mm d−1 and 0.532–1.365 mm d−1, respectively. In contrast, the PMF model displayed RMSE and MAE ranges of 0.690–1.590 mm d−1 and 0.641–1.437 mm d−1, respectively. Compared to the PMF model, the updated PMTM1–PMTM5 model showed higher accuracy in forecasting ET0 in the plateau mountain climate, temperate continental climate, temperate monsoon climate, and tropical monsoon climatic zones, but was slightly less accurate in the SMZ. Moreover, both models outperformed the Hargreaves-Samani (HS) model in terms of ET0 forecasting accuracy. Specifically, the updated PMTM1–PMTM5 model demonstrated improved accuracy compared to the temperature-based model HS model across various climate zones, with reductions in RMSE and MAE ranging from 0.117 mm d−1 to 0.616 mm d−1and 0.012 mm d−1 to 0.450 mm d−1, respectively. Overall, the updated PMTM3 model was better than the PMF and thus this model was recommended for daily ET0 forecasting for the near-future at all climate regions across China. |
ArticleNumber | 130317 |
Author | Qiu, Rangjian Khurshid, Bushra Luo, Yufeng Chen, Mengting Xie, Hua Lin, En Cui, Yuanlai Ma, Xinjuan Quzhen, Suolang Zheng, Shizong |
Author_xml | – sequence: 1 givenname: En surname: Lin fullname: Lin, En organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, China – sequence: 2 givenname: Rangjian orcidid: 0000-0003-0534-0496 surname: Qiu fullname: Qiu, Rangjian organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, China – sequence: 3 givenname: Mengting surname: Chen fullname: Chen, Mengting organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, China – sequence: 4 givenname: Hua surname: Xie fullname: Xie, Hua organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, China – sequence: 5 givenname: Bushra surname: Khurshid fullname: Khurshid, Bushra organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, China – sequence: 6 givenname: Xinjuan surname: Ma fullname: Ma, Xinjuan organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, China – sequence: 7 givenname: Suolang surname: Quzhen fullname: Quzhen, Suolang organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, China – sequence: 8 givenname: Shizong surname: Zheng fullname: Zheng, Shizong organization: Rural Water Conservancy Research Institute, Zhejiang Institute of Hydraulics and Estuary, Hangzhou, Zhejiang 310020, China – sequence: 9 givenname: Yuanlai surname: Cui fullname: Cui, Yuanlai organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, China – sequence: 10 givenname: Yufeng surname: Luo fullname: Luo, Yufeng email: yfluo@whu.edu.cn organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, China |
BookMark | eNqFUctu2zAQ5CEF8mg-IQCPvcglubIttYfCCPoCAvTSngmKXCY0JFLl0gb8S_3KUnV6aQ_ZC3cXM7PEzDW7iCkiY3dSrKSQm7f71f7p5HIaV0ooWEkQILcX7EoIpRq56dtLdk20F7UA2iv2a0eERCE-cp8yWkNl6WfMdZxMtMiT586E8cQzesy4rPBo5lSyiTSHbEpI8R3fcZum2SzjEbmJZjxRoIV9mJ0p6HjBqeqacshYD8Sq3kwpFgzlqeLdf7u_H-JTcjjSa_bKm5Hw9vm9YT8-ffx-_6V5-Pb56_3uobHQqtJ4MYCHods4ZZUDs4bWg9r2feeVVzA45TetQNn30Npt77uhdYOyXliDIDsJN-zNWXfO6ecBqegpkMVxNBHTgTSIVsB6LbquQt-foTYnouqPtqH88aOaE0YthV5S0Xv9nIpeUtHnVCp7_Q97zmEy-fQi78OZV03BY8CsyYYlFxeqYUW7FF5Q-A2cwrSP |
CitedBy_id | crossref_primary_10_3390_cli12120205 crossref_primary_10_1002_joc_8776 crossref_primary_10_1016_j_ejrh_2025_102271 crossref_primary_10_1002_ird_3025 crossref_primary_10_3390_w16030507 crossref_primary_10_1016_j_jhydrol_2024_132101 crossref_primary_10_1016_j_agwat_2024_109268 crossref_primary_10_1016_j_jenvman_2024_121394 crossref_primary_10_26848_rbgf_v18_1_p018_037 crossref_primary_10_1016_j_jhydrol_2024_132516 crossref_primary_10_1016_j_agwat_2025_109299 |
Cites_doi | 10.1016/j.jhydrol.2012.12.034 10.1016/j.enconman.2019.112236 10.1061/(ASCE)0733-9437(2008)134:1(1) 10.1016/S0168-1923(96)02366-0 10.1002/ird.98 10.1016/j.jhydrol.2013.02.025 10.1061/(ASCE)0733-9437(2000)126:4(265) 10.1016/j.renene.2011.11.002 10.1007/s11269-022-03362-3 10.1016/j.agwat.2020.106543 10.1016/j.rser.2015.08.035 10.1016/j.agwat.2021.107003 10.1016/j.agwat.2014.07.031 10.1016/j.agrformet.2014.03.014 10.1007/s11269-016-1385-8 10.1016/j.jhydrol.2020.125509 10.1016/j.agwat.2016.08.020 10.1016/j.agwat.2019.105755 10.13031/2013.26773 10.1016/j.agwat.2018.09.036 10.1016/j.agwat.2019.06.014 10.1016/j.jhydrol.2018.07.013 10.1088/1748-9326/6/3/034025 10.1016/j.agwat.2019.02.014 10.1016/j.apenergy.2016.07.006 10.1016/j.agwat.2014.01.006 10.1016/j.jhydrol.2020.125547 10.1016/j.agwat.2016.11.010 10.1016/j.agwat.2007.12.011 10.1016/j.energy.2010.09.009 10.1016/j.agwat.2017.08.003 10.1016/j.enconman.2013.03.004 10.1016/j.agrformet.2018.07.020 10.1016/j.jhydrol.2016.02.053 10.1016/j.enconman.2020.113111 10.1016/j.agrformet.2020.108200 10.1016/j.agrformet.2007.10.001 10.1016/j.solener.2015.08.015 10.1016/S0038-092X(01)00054-8 10.1016/j.agwat.2020.106210 10.1016/j.jhydrol.2015.07.054 10.1016/j.agrformet.2007.04.012 10.1061/(ASCE)0733-9437(1996)122:2(97) 10.1016/j.agrformet.2018.10.001 10.1016/j.renene.2013.05.033 10.1016/j.agrformet.2018.08.019 10.13031/2013.23153 10.1007/s11269-021-03009-9 10.1002/joc.3442 10.1016/j.jhydrol.2015.06.057 10.1007/s00704-017-2329-9 10.1016/j.rser.2022.112511 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jhydrol.2023.130317 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
ExternalDocumentID | 10_1016_j_jhydrol_2023_130317 S0022169423012593 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXKI AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV ADVLN AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c342t-f0b3f3b86d2c2d3a534f327998f2f23bd2f640e19934c79f8b4db2cf0cae31813 |
IEDL.DBID | .~1 |
ISSN | 0022-1694 |
IngestDate | Fri Aug 22 20:21:34 EDT 2025 Tue Jul 01 01:53:53 EDT 2025 Thu Apr 24 23:02:18 EDT 2025 Sat Sep 14 18:00:48 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Weather forecasts Solar radiation Reference crop evapotranspiration Air temperature |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-f0b3f3b86d2c2d3a534f327998f2f23bd2f640e19934c79f8b4db2cf0cae31813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0534-0496 |
PQID | 3040355088 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3040355088 crossref_citationtrail_10_1016_j_jhydrol_2023_130317 crossref_primary_10_1016_j_jhydrol_2023_130317 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2023_130317 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2023 2023-11-00 20231101 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: November 2023 |
PublicationDecade | 2020 |
PublicationTitle | Journal of hydrology (Amsterdam) |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Celestin, Qi, Li, Yu, Cheng (b0040) 2020; 12 Almorox, Quej, Marti (b0025) 2015; 528 Paredes, Pereira, Almorox, Darouich (b0185) 2020; 240 Todorovic, Karic, Pereira (b0280) 2013; 481 Jiang, Liang, Cui, Zhao, Du, Hu, Feng, Guan, Feng (b0110) 2019; 216 Qiu, Li, Wu, Agathokleous, Liu, Zhang, Luo, Sun (b0230) 2022; 163 Song, Achberger, Linderholm (b0275) 2011; 6 Abraha, Savage (b0005) 2008; 148 Chen, Li (b0045) 2013; 33 Paredes, Fontes, Azevedo (b0180) 2018; 134 Hassan, Youssef, Mohamed, Ali, Hanafy (b0100) 2016; 179 Liu, Xu, Zhu, Jia, Zhu (b0155) 2013; 487 Senkal (b0270) 2010; 35 Yang, Luo, Wu, Zheng, Zhang, Cui, Sun, Wang (b0300) 2019; 222 Feng, Jia, Cui, Zhao, Li, Gong (b0070) 2017; 181 Roy, Sarkar, Kamar, Goswami (b0255) 2022; 12 Cai, Liu, Lei, Pereira (b0035) 2007; 145 Pillot, Muselli, Poggi, Dias (b0210) 2015; 120 Jiang, Liang, Cui, Zhao, Liu, Feng, Hu, Gong, Zou (b0115) 2020; 295 Gueymard (b0090) 2001; 71 Liu, Liu, Cui, Shao, Mao, Zhang, Khan, Luo (b0150) 2020; 590 Roy, Barzegar, Quilty, Adamowski (b0240) 2020; 591 Li, Tang, Wu, Liu (b0140) 2013; 70 Qiu, Katul, Wang, Xu, Kang, Liu, Zhang, Li, Cajucom (b0220) 2021; 298–299 Zhang, Q., Duan, A.W., G. Y., Shen, X.J. and Cai, H.J., 2015. Middle and Short Term Forecasting Models for Reference Evapotranspiration Based on Daily Weather forecasts. Transactions of the chinese society for agricultural machinery, 46(02): 104-109 (in Chinese). Qiu, Li, Kang, Liu, Wang, Cajucom, Zhang, Agathokleous (b0225) 2021; 298–299 Luo, Li, Peng, Wang (b0160) 2013; 31 Feng, Jia, Zhang, Gong, Cui (b0075) 2018; 564 Yang, Cui, Bai, Luo, Dai, Wang, Luo (b0295) 2019; 211 Landeras, Ortiz-Barredo, Lopez (b0135) 2008; 95 Perera, Andrew, Bandara, Biju (b0205) 2014; 194 Roy, Lal, Sarker, Saha, Datta (b0245) 2021; 255 Liu, Y., Pereira, L.S., 2001. Calculation methods for reference evapotranspiration with limited weather data. J. Hydraul. 3 (2001), 11–17 (in Chinese). Roy, Sarkar, Biswas, Datta (b0260) 2023; 37 Despotovic, Nedic, Despotovic, Cvetanovic (b0050) 2015; 52 Hargreaves, Samani (b0095) 1985; 1 Yang, Cui, Luo, Lyu, Traore, Khan, Wang (b0290) 2016; 177 Allen (b0010) 1996; 122 Fan, Yue, Wu, Zhang (b0055) 2018; 263 Zhao, Wang, Andre, Morwenna (b0310) 2019; 264 Ren, Martins, Qu, Paredes, Pereira (b0235) 2016; 30 Pereira, Allen, Smith, Raes (b0200) 2015; 147 Yan, Zhang, Gerrits, Acquah, Zhang, Wu, Zhao, Huang, Fu (b0285) 2018; 262 Almorox, Bocco, Willington (b0020) 2013; 60 Roy, Saha, Kamruzzaman, Biswas, Hossain (b0250) 2021; 35 Korachagaon, Bapat (b0130) 2012; 41 Gavilan, Estevez, Berengena (b0085) 2008; 134 Paredes, Trigo, de Bruin, Pereira, Simões (b0190) 2021; 248 Feng, Cui, Zhao, Hu, Gong (b0060) 2016; 536 Allen, Pereira, Raes, Smith (b0015) 1998; 56 Qiu, Liu, Cui, Wu, Wang, Li (b0215) 2019; 224 He, Liu, Xu, Zhang, Chen, Sun (b0105) 2020; 220 Kimball, Running, Nemani (b0120) 1997; 85 Pereira, Cai, Hann (bib311) 2003; 52 Feng, Cui, Gong, Zhang, Zhao (b0065) 2017; 193 Marti, Zarzo, Vanderlinden, Girona (b0170) 2015; 529 Luo, Chang, Peng, Khan (b0165) 2014; 136 Feng, Gong, Jiang, Zhao, Cui (b0080) 2020; 203 Moriasi, Arnold, Van Liew, Bingner, Harmel, Veith (b0175) 2007; 50 Samani (b0265) 2000; 126 Jiang (10.1016/j.jhydrol.2023.130317_b0110) 2019; 216 Allen (10.1016/j.jhydrol.2023.130317_b0015) 1998; 56 Fan (10.1016/j.jhydrol.2023.130317_b0055) 2018; 263 Qiu (10.1016/j.jhydrol.2023.130317_b0230) 2022; 163 Pillot (10.1016/j.jhydrol.2023.130317_b0210) 2015; 120 Gavilan (10.1016/j.jhydrol.2023.130317_b0085) 2008; 134 Senkal (10.1016/j.jhydrol.2023.130317_b0270) 2010; 35 Gueymard (10.1016/j.jhydrol.2023.130317_b0090) 2001; 71 Allen (10.1016/j.jhydrol.2023.130317_b0010) 1996; 122 Luo (10.1016/j.jhydrol.2023.130317_b0160) 2013; 31 Yan (10.1016/j.jhydrol.2023.130317_b0285) 2018; 262 Yang (10.1016/j.jhydrol.2023.130317_b0300) 2019; 222 Pereira (10.1016/j.jhydrol.2023.130317_bib311) 2003; 52 Celestin (10.1016/j.jhydrol.2023.130317_b0040) 2020; 12 Roy (10.1016/j.jhydrol.2023.130317_b0245) 2021; 255 He (10.1016/j.jhydrol.2023.130317_b0105) 2020; 220 Paredes (10.1016/j.jhydrol.2023.130317_b0185) 2020; 240 Feng (10.1016/j.jhydrol.2023.130317_b0070) 2017; 181 Feng (10.1016/j.jhydrol.2023.130317_b0060) 2016; 536 Korachagaon (10.1016/j.jhydrol.2023.130317_b0130) 2012; 41 Landeras (10.1016/j.jhydrol.2023.130317_b0135) 2008; 95 Samani (10.1016/j.jhydrol.2023.130317_b0265) 2000; 126 Moriasi (10.1016/j.jhydrol.2023.130317_b0175) 2007; 50 Roy (10.1016/j.jhydrol.2023.130317_b0255) 2022; 12 Abraha (10.1016/j.jhydrol.2023.130317_b0005) 2008; 148 Hassan (10.1016/j.jhydrol.2023.130317_b0100) 2016; 179 Almorox (10.1016/j.jhydrol.2023.130317_b0025) 2015; 528 Feng (10.1016/j.jhydrol.2023.130317_b0080) 2020; 203 Roy (10.1016/j.jhydrol.2023.130317_b0250) 2021; 35 Almorox (10.1016/j.jhydrol.2023.130317_b0020) 2013; 60 Song (10.1016/j.jhydrol.2023.130317_b0275) 2011; 6 Kimball (10.1016/j.jhydrol.2023.130317_b0120) 1997; 85 Roy (10.1016/j.jhydrol.2023.130317_b0240) 2020; 591 10.1016/j.jhydrol.2023.130317_b0305 Perera (10.1016/j.jhydrol.2023.130317_b0205) 2014; 194 Jiang (10.1016/j.jhydrol.2023.130317_b0115) 2020; 295 10.1016/j.jhydrol.2023.130317_b0145 Marti (10.1016/j.jhydrol.2023.130317_b0170) 2015; 529 Qiu (10.1016/j.jhydrol.2023.130317_b0220) 2021; 298–299 Li (10.1016/j.jhydrol.2023.130317_b0140) 2013; 70 Cai (10.1016/j.jhydrol.2023.130317_b0035) 2007; 145 Hargreaves (10.1016/j.jhydrol.2023.130317_b0095) 1985; 1 Despotovic (10.1016/j.jhydrol.2023.130317_b0050) 2015; 52 Todorovic (10.1016/j.jhydrol.2023.130317_b0280) 2013; 481 Paredes (10.1016/j.jhydrol.2023.130317_b0180) 2018; 134 Liu (10.1016/j.jhydrol.2023.130317_b0150) 2020; 590 Yang (10.1016/j.jhydrol.2023.130317_b0290) 2016; 177 Roy (10.1016/j.jhydrol.2023.130317_b0260) 2023; 37 Paredes (10.1016/j.jhydrol.2023.130317_b0190) 2021; 248 Liu (10.1016/j.jhydrol.2023.130317_b0155) 2013; 487 Ren (10.1016/j.jhydrol.2023.130317_b0235) 2016; 30 Luo (10.1016/j.jhydrol.2023.130317_b0165) 2014; 136 Yang (10.1016/j.jhydrol.2023.130317_b0295) 2019; 211 Zhao (10.1016/j.jhydrol.2023.130317_b0310) 2019; 264 Chen (10.1016/j.jhydrol.2023.130317_b0045) 2013; 33 Feng (10.1016/j.jhydrol.2023.130317_b0065) 2017; 193 Feng (10.1016/j.jhydrol.2023.130317_b0075) 2018; 564 Qiu (10.1016/j.jhydrol.2023.130317_b0215) 2019; 224 Qiu (10.1016/j.jhydrol.2023.130317_b0225) 2021; 298–299 Pereira (10.1016/j.jhydrol.2023.130317_b0200) 2015; 147 |
References_xml | – volume: 216 start-page: 365 year: 2019 end-page: 378 ident: b0110 article-title: Impacts of climatic variables on reference evapotranspiration during growing season in Southwest China publication-title: Agri. Water Manage. – volume: 298–299 year: 2021 ident: b0225 article-title: An improved method to estimate actual vapor pressure without relative humidity data publication-title: Agric. For. Meteorol. – volume: 295 year: 2020 ident: b0115 article-title: Water use efficiency and its drivers in four typical agroecosystems based on flux tower measurements publication-title: Agric. For. Meteorol. – volume: 134 start-page: 1115 year: 2018 end-page: 1133 ident: b0180 article-title: Daily reference crop evapotranspiration with reduced data sets in the humid environments of Azores islands using estimates of actual vapour pressure, solar radiation and wind speed publication-title: Theor. Appl. Climatol. – volume: 529 start-page: 1713 year: 2015 end-page: 1724 ident: b0170 article-title: Parametric expressions for the adjusted Hargreaves coefficient in Eastern Spain publication-title: J. Hydrol. – volume: 181 start-page: 1 year: 2017 end-page: 9 ident: b0070 article-title: Calibration of Hargreaves model for reference evapotranspiration estimation in Sichuan basin of southwest China publication-title: Agri. Water Manage. – volume: 203 year: 2020 ident: b0080 article-title: National-scale development and calibration of empirical models for predicting daily global solar radiation in China publication-title: Energ. Conver. Manage. – volume: 12 year: 2020 ident: b0040 article-title: Evaluation of 32 simple equations against the penman-monteith method to estimate the reference evapotranspiration in the hexi corridor publication-title: Northwest China. Water. – volume: 41 start-page: 394 year: 2012 end-page: 400 ident: b0130 article-title: General formula for the estimation of global solar radiation on earth's surface around the globe publication-title: Renew. Energy – volume: 35 start-page: 4795 year: 2010 end-page: 4801 ident: b0270 article-title: Modeling of solar radiation using remote sensing and artificial neural network in Turkey publication-title: Energy – volume: 60 start-page: 382 year: 2013 end-page: 387 ident: b0020 article-title: Estimation of daily global solar radiation from measured temperatures at Canada de Luque, Cordoba publication-title: Argentina. Renewable Energy. – volume: 71 start-page: 325 year: 2001 end-page: 346 ident: b0090 article-title: Parameterized transmittance model for direct beam and circumsolar spectral irradiance publication-title: Sol. Energy – volume: 240 year: 2020 ident: b0185 article-title: Reference grass evapotranspiration with reduced data sets: Parameterization of the FAO Penman-Monteith temperature approach and the Hargeaves-Samani equation using local climatic variables publication-title: Agri. Water Manage. – volume: 52 start-page: 1869 year: 2015 end-page: 1880 ident: b0050 article-title: Review and statistical analysis of different global solar radiation sunshine models publication-title: Renew. Sustain. Energy Rev. – volume: 6 year: 2011 ident: b0275 article-title: Rain-season trends in precipitation and their effect in different climate regions of China during 1961–2008 publication-title: Environ. Res. Lett. – volume: 50 start-page: 885 year: 2007 end-page: 900 ident: b0175 article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations publication-title: Trans. ASABE – volume: 255 year: 2021 ident: b0245 article-title: Optimization algorithms as training approaches for prediction of reference evapotranspiration using adaptive neuro fuzzy inference system publication-title: Agric. Water Manag. – volume: 136 start-page: 42 year: 2014 end-page: 51 ident: b0165 article-title: Short-term forecasting of daily reference evapotranspiration using the Hargreaves-Samani model and temperature forecast publication-title: Agri. Water Manage. – volume: 220 year: 2020 ident: b0105 article-title: Improving solar radiation estimation in China based on regional optimal combination of meteorological factors with machine learning methods publication-title: Energ. Conver. Manage. – volume: 248 year: 2021 ident: b0190 article-title: Daily grass reference evapotranspiration with meteosat second generation shortwave radiation and reference ET products publication-title: Agri. Water Manage. – volume: 35 start-page: 5383 year: 2021 end-page: 5407 ident: b0250 article-title: Hierarchical fuzzy systems integrated with particle swarm optimization for daily reference evapotranspiration prediction: a novel approach publication-title: Water Resour. Manag. – volume: 85 start-page: 87 year: 1997 end-page: 98 ident: b0120 article-title: An improved method for estimating surface humidity from daily minimum temperature publication-title: Agric. For. Meteorol. – volume: 211 start-page: 70 year: 2019 end-page: 80 ident: b0295 article-title: Short-term forecasting of daily reference evapotranspiration using the reduced-set Penman-Monteith model and public weather forecasts publication-title: Agri. Water Manage. – volume: 122 start-page: 97 year: 1996 end-page: 106 ident: b0010 article-title: Assessing integrity of weather data for reference evapotranspiration estimation publication-title: J. Irrigation Drainage Eng.-ASCE. – volume: 298–299 year: 2021 ident: b0220 article-title: Differential response of rice evapotranspiration to varying patterns of warming publication-title: Agric. For. Meteorol. – volume: 37 start-page: 193 year: 2023 end-page: 218 ident: b0260 article-title: Generalized daily reference evapotranspiration models based on a hybrid optimization algorithm tuned fuzzy tree approach publication-title: Water Resour. Manag. – volume: 222 start-page: 386 year: 2019 end-page: 399 ident: b0300 article-title: Evaluation of six equations for daily reference evapotranspiration estimating using public weather forecasts message for different climate regions across China publication-title: Agri. Water Manage. – volume: 194 start-page: 50 year: 2014 end-page: 63 ident: b0205 article-title: Forecasting daily reference evapotranspiration for Australia using numerical weather prediction outputs publication-title: Agric. For. Meteorol. – volume: 31 start-page: 987 year: 2013 end-page: 992 ident: b0160 article-title: Forecasting reference crop evapotranspiration based on temperature forecast and Hargreaves-Samani equation publication-title: J. Drainage Irrigation Machinery Eng. – volume: 591 year: 2020 ident: b0240 article-title: Using ensembles of adaptive neuro-fuzzy inference system and optimization algorithms to predict reference evapotranspiration in subtropical climatic zones publication-title: J. Hydrol. – volume: 145 start-page: 22 year: 2007 end-page: 35 ident: b0035 article-title: Estimating reference evapotranspiration with the FAO Penman-Monteith equation using daily weather forecast messages publication-title: Agric. For. Meteorol. – reference: Zhang, Q., Duan, A.W., G. Y., Shen, X.J. and Cai, H.J., 2015. Middle and Short Term Forecasting Models for Reference Evapotranspiration Based on Daily Weather forecasts. Transactions of the chinese society for agricultural machinery, 46(02): 104-109 (in Chinese). – volume: 487 start-page: 24 year: 2013 end-page: 38 ident: b0155 article-title: Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin publication-title: China. J. Hydrol. – volume: 33 start-page: 487 year: 2013 end-page: 498 ident: b0045 article-title: Estimation of monthly average daily solar radiation from measured meteorological data in Yangtze River Basin in China publication-title: Int. J. Climatol. – volume: 95 start-page: 553 year: 2008 end-page: 565 ident: b0135 article-title: Comparison of artificial neuralnetwork models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain) publication-title: Agri. Water Manage. – volume: 52 start-page: 299 year: 2003 end-page: 317 ident: bib311 article-title: Farm water and soil management for improved water use in the North China Plain publication-title: Irrig. Drain. – volume: 147 start-page: 4 year: 2015 end-page: 20 ident: b0200 article-title: Crop evapotranspiration estimation with FAO56: past and future publication-title: Agri. Water Manage. – volume: 12 year: 2022 ident: b0255 article-title: Daily prediction and multi-step forward forecasting of reference evapotranspiration using LSTM and Bi-LSTM models publication-title: Agronomy-Basel – volume: 564 start-page: 314 year: 2018 end-page: 328 ident: b0075 article-title: National-scale assessment of pan evaporation models across different climatic zones of China publication-title: J. Hydrol. – volume: 30 start-page: 3793 year: 2016 end-page: 3814 ident: b0235 article-title: Daily reference evapotranspiration for hyper-arid to moist sub-humid climates in inner mongolia, china: II. trends of ET0 and weather variables and related spatial patterns publication-title: Water Resour. Manag. – volume: 263 start-page: 225 year: 2018 end-page: 241 ident: b0055 article-title: Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China publication-title: Agric. For. Meteorol. – volume: 120 start-page: 603 year: 2015 end-page: 619 ident: b0210 article-title: Satellite-based assessment and in situ validation of solar irradiation maps in the republic of djibouti publication-title: Sol. Energy – volume: 193 start-page: 163 year: 2017 end-page: 173 ident: b0065 article-title: Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling publication-title: Agri. Water Manage. – volume: 224 year: 2019 ident: b0215 article-title: Evapotranspiration estimation using a modified Priestley-Taylor model in a rice-wheat rotation system publication-title: Agri. Water Manage. – volume: 481 start-page: 166 year: 2013 end-page: 176 ident: b0280 article-title: Reference evapotranspiration estimate with limited weather data across a range of Mediterranean climates publication-title: J. Hydrol. – volume: 148 start-page: 401 year: 2008 end-page: 416 ident: b0005 article-title: Comparison of estimates of daily solar radiation from air temperature range for application in crop simulations publication-title: Agric. For. Meteorol. – volume: 70 start-page: 139 year: 2013 end-page: 148 ident: b0140 article-title: General models for estimating daily global solar radiation for different solar radiation zones in mainland China publication-title: Energ. Conver. Manage. – volume: 1 start-page: 96 year: 1985 end-page: 99 ident: b0095 article-title: Reference crop evapotranspiration from tem-perature publication-title: Appl. Eng. Agric. – volume: 590 year: 2020 ident: b0150 article-title: Assessing forecasting performance of daily reference evapotranspiration using public weather forecast and numerical weather prediction publication-title: J. Hydrol. – volume: 163 year: 2022 ident: b0230 article-title: Modeling daily global solar radiation using only temperature data: Past, development, and future publication-title: Renew. Sustain. Energy Rev. – volume: 528 start-page: 514 year: 2015 end-page: 522 ident: b0025 article-title: Global performance ranking of temperature-based approaches for evapotranspiration estimation considering Koppen climate classes publication-title: J. Hydrol. – volume: 179 start-page: 437 year: 2016 end-page: 450 ident: b0100 article-title: New temperature-based models for predicting global solar radiation publication-title: Appl. Energy – volume: 262 start-page: 370 year: 2018 end-page: 378 ident: b0285 article-title: Parametrization of aerodynamic and canopy resistances for modeling evapotranspiration of greenhouse cucumber publication-title: Agric. For. Meteorol. – volume: 536 start-page: 376 year: 2016 end-page: 383 ident: b0060 article-title: Comparison of ELM, GANN, WNN and empirical models for estimating reference evapotranspiration in humid region of Southwest China publication-title: J. Hydrol. – volume: 134 start-page: 1 year: 2008 end-page: 12 ident: b0085 article-title: Comparison of standardized reference evapotranspiration equations in Southern Spain publication-title: J. Irrig. Drain. Eng. – volume: 264 start-page: 114 year: 2019 end-page: 124 ident: b0310 article-title: Ensemble forecasting of monthly and seasonal reference crop evapotranspiration based on global climate model outputs publication-title: Agric. For. Meteorol. – volume: 126 start-page: 265 year: 2000 end-page: 267 ident: b0265 article-title: Estimating solar radiation and evapotranspiration using minimum climatological data publication-title: J. Irrig. Drain. Eng. – volume: 56 start-page: Rome, 300p year: 1998 ident: b0015 article-title: Crop evapotranspiration: guidelines for computing crop water requirements publication-title: FAO Irrigation and Drainage Paper – reference: Liu, Y., Pereira, L.S., 2001. Calculation methods for reference evapotranspiration with limited weather data. J. Hydraul. 3 (2001), 11–17 (in Chinese). – volume: 177 start-page: 329 year: 2016 end-page: 339 ident: b0290 article-title: Short-term forecasting of daily reference evapotranspiration using the Penman-Monteith model and public weather forecasts publication-title: Agri. Water Manage. – volume: 481 start-page: 166 year: 2013 ident: 10.1016/j.jhydrol.2023.130317_b0280 article-title: Reference evapotranspiration estimate with limited weather data across a range of Mediterranean climates publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.12.034 – volume: 203 year: 2020 ident: 10.1016/j.jhydrol.2023.130317_b0080 article-title: National-scale development and calibration of empirical models for predicting daily global solar radiation in China publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2019.112236 – volume: 134 start-page: 1 issue: 1 year: 2008 ident: 10.1016/j.jhydrol.2023.130317_b0085 article-title: Comparison of standardized reference evapotranspiration equations in Southern Spain publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(2008)134:1(1) – volume: 85 start-page: 87 issue: 1–2 year: 1997 ident: 10.1016/j.jhydrol.2023.130317_b0120 article-title: An improved method for estimating surface humidity from daily minimum temperature publication-title: Agric. For. Meteorol. doi: 10.1016/S0168-1923(96)02366-0 – volume: 52 start-page: 299 issue: 4 year: 2003 ident: 10.1016/j.jhydrol.2023.130317_bib311 article-title: Farm water and soil management for improved water use in the North China Plain publication-title: Irrig. Drain. doi: 10.1002/ird.98 – volume: 487 start-page: 24 year: 2013 ident: 10.1016/j.jhydrol.2023.130317_b0155 article-title: Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin publication-title: China. J. Hydrol. doi: 10.1016/j.jhydrol.2013.02.025 – volume: 126 start-page: 265 issue: 4 year: 2000 ident: 10.1016/j.jhydrol.2023.130317_b0265 article-title: Estimating solar radiation and evapotranspiration using minimum climatological data publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(2000)126:4(265) – volume: 41 start-page: 394 year: 2012 ident: 10.1016/j.jhydrol.2023.130317_b0130 article-title: General formula for the estimation of global solar radiation on earth's surface around the globe publication-title: Renew. Energy doi: 10.1016/j.renene.2011.11.002 – volume: 37 start-page: 193 issue: 1 year: 2023 ident: 10.1016/j.jhydrol.2023.130317_b0260 article-title: Generalized daily reference evapotranspiration models based on a hybrid optimization algorithm tuned fuzzy tree approach publication-title: Water Resour. Manag. doi: 10.1007/s11269-022-03362-3 – volume: 248 year: 2021 ident: 10.1016/j.jhydrol.2023.130317_b0190 article-title: Daily grass reference evapotranspiration with meteosat second generation shortwave radiation and reference ET products publication-title: Agri. Water Manage. doi: 10.1016/j.agwat.2020.106543 – volume: 52 start-page: 1869 year: 2015 ident: 10.1016/j.jhydrol.2023.130317_b0050 article-title: Review and statistical analysis of different global solar radiation sunshine models publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.08.035 – volume: 255 year: 2021 ident: 10.1016/j.jhydrol.2023.130317_b0245 article-title: Optimization algorithms as training approaches for prediction of reference evapotranspiration using adaptive neuro fuzzy inference system publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2021.107003 – volume: 147 start-page: 4 year: 2015 ident: 10.1016/j.jhydrol.2023.130317_b0200 article-title: Crop evapotranspiration estimation with FAO56: past and future publication-title: Agri. Water Manage. doi: 10.1016/j.agwat.2014.07.031 – volume: 194 start-page: 50 year: 2014 ident: 10.1016/j.jhydrol.2023.130317_b0205 article-title: Forecasting daily reference evapotranspiration for Australia using numerical weather prediction outputs publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2014.03.014 – volume: 30 start-page: 3793 issue: 11 year: 2016 ident: 10.1016/j.jhydrol.2023.130317_b0235 article-title: Daily reference evapotranspiration for hyper-arid to moist sub-humid climates in inner mongolia, china: II. trends of ET0 and weather variables and related spatial patterns publication-title: Water Resour. Manag. doi: 10.1007/s11269-016-1385-8 – volume: 591 year: 2020 ident: 10.1016/j.jhydrol.2023.130317_b0240 article-title: Using ensembles of adaptive neuro-fuzzy inference system and optimization algorithms to predict reference evapotranspiration in subtropical climatic zones publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125509 – volume: 177 start-page: 329 year: 2016 ident: 10.1016/j.jhydrol.2023.130317_b0290 article-title: Short-term forecasting of daily reference evapotranspiration using the Penman-Monteith model and public weather forecasts publication-title: Agri. Water Manage. doi: 10.1016/j.agwat.2016.08.020 – volume: 56 start-page: Rome, 300p year: 1998 ident: 10.1016/j.jhydrol.2023.130317_b0015 article-title: Crop evapotranspiration: guidelines for computing crop water requirements publication-title: FAO Irrigation and Drainage Paper – volume: 224 year: 2019 ident: 10.1016/j.jhydrol.2023.130317_b0215 article-title: Evapotranspiration estimation using a modified Priestley-Taylor model in a rice-wheat rotation system publication-title: Agri. Water Manage. doi: 10.1016/j.agwat.2019.105755 – volume: 1 start-page: 96 year: 1985 ident: 10.1016/j.jhydrol.2023.130317_b0095 article-title: Reference crop evapotranspiration from tem-perature publication-title: Appl. Eng. Agric. doi: 10.13031/2013.26773 – volume: 211 start-page: 70 year: 2019 ident: 10.1016/j.jhydrol.2023.130317_b0295 article-title: Short-term forecasting of daily reference evapotranspiration using the reduced-set Penman-Monteith model and public weather forecasts publication-title: Agri. Water Manage. doi: 10.1016/j.agwat.2018.09.036 – volume: 298–299 year: 2021 ident: 10.1016/j.jhydrol.2023.130317_b0220 article-title: Differential response of rice evapotranspiration to varying patterns of warming publication-title: Agric. For. Meteorol. – volume: 222 start-page: 386 year: 2019 ident: 10.1016/j.jhydrol.2023.130317_b0300 article-title: Evaluation of six equations for daily reference evapotranspiration estimating using public weather forecasts message for different climate regions across China publication-title: Agri. Water Manage. doi: 10.1016/j.agwat.2019.06.014 – volume: 564 start-page: 314 year: 2018 ident: 10.1016/j.jhydrol.2023.130317_b0075 article-title: National-scale assessment of pan evaporation models across different climatic zones of China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.07.013 – volume: 6 issue: 3 year: 2011 ident: 10.1016/j.jhydrol.2023.130317_b0275 article-title: Rain-season trends in precipitation and their effect in different climate regions of China during 1961–2008 publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/6/3/034025 – volume: 31 start-page: 987 issue: 11 year: 2013 ident: 10.1016/j.jhydrol.2023.130317_b0160 article-title: Forecasting reference crop evapotranspiration based on temperature forecast and Hargreaves-Samani equation publication-title: J. Drainage Irrigation Machinery Eng. – volume: 216 start-page: 365 year: 2019 ident: 10.1016/j.jhydrol.2023.130317_b0110 article-title: Impacts of climatic variables on reference evapotranspiration during growing season in Southwest China publication-title: Agri. Water Manage. doi: 10.1016/j.agwat.2019.02.014 – volume: 179 start-page: 437 year: 2016 ident: 10.1016/j.jhydrol.2023.130317_b0100 article-title: New temperature-based models for predicting global solar radiation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.07.006 – volume: 136 start-page: 42 issue: 1 year: 2014 ident: 10.1016/j.jhydrol.2023.130317_b0165 article-title: Short-term forecasting of daily reference evapotranspiration using the Hargreaves-Samani model and temperature forecast publication-title: Agri. Water Manage. doi: 10.1016/j.agwat.2014.01.006 – volume: 590 year: 2020 ident: 10.1016/j.jhydrol.2023.130317_b0150 article-title: Assessing forecasting performance of daily reference evapotranspiration using public weather forecast and numerical weather prediction publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125547 – volume: 181 start-page: 1 year: 2017 ident: 10.1016/j.jhydrol.2023.130317_b0070 article-title: Calibration of Hargreaves model for reference evapotranspiration estimation in Sichuan basin of southwest China publication-title: Agri. Water Manage. doi: 10.1016/j.agwat.2016.11.010 – volume: 95 start-page: 553 issue: 5 year: 2008 ident: 10.1016/j.jhydrol.2023.130317_b0135 article-title: Comparison of artificial neuralnetwork models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain) publication-title: Agri. Water Manage. doi: 10.1016/j.agwat.2007.12.011 – volume: 35 start-page: 4795 issue: 12 year: 2010 ident: 10.1016/j.jhydrol.2023.130317_b0270 article-title: Modeling of solar radiation using remote sensing and artificial neural network in Turkey publication-title: Energy doi: 10.1016/j.energy.2010.09.009 – volume: 193 start-page: 163 year: 2017 ident: 10.1016/j.jhydrol.2023.130317_b0065 article-title: Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling publication-title: Agri. Water Manage. doi: 10.1016/j.agwat.2017.08.003 – volume: 70 start-page: 139 year: 2013 ident: 10.1016/j.jhydrol.2023.130317_b0140 article-title: General models for estimating daily global solar radiation for different solar radiation zones in mainland China publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2013.03.004 – volume: 262 start-page: 370 year: 2018 ident: 10.1016/j.jhydrol.2023.130317_b0285 article-title: Parametrization of aerodynamic and canopy resistances for modeling evapotranspiration of greenhouse cucumber publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2018.07.020 – volume: 536 start-page: 376 year: 2016 ident: 10.1016/j.jhydrol.2023.130317_b0060 article-title: Comparison of ELM, GANN, WNN and empirical models for estimating reference evapotranspiration in humid region of Southwest China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.02.053 – volume: 12 issue: 3 year: 2022 ident: 10.1016/j.jhydrol.2023.130317_b0255 article-title: Daily prediction and multi-step forward forecasting of reference evapotranspiration using LSTM and Bi-LSTM models publication-title: Agronomy-Basel – volume: 220 year: 2020 ident: 10.1016/j.jhydrol.2023.130317_b0105 article-title: Improving solar radiation estimation in China based on regional optimal combination of meteorological factors with machine learning methods publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2020.113111 – volume: 295 year: 2020 ident: 10.1016/j.jhydrol.2023.130317_b0115 article-title: Water use efficiency and its drivers in four typical agroecosystems based on flux tower measurements publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2020.108200 – volume: 298–299 year: 2021 ident: 10.1016/j.jhydrol.2023.130317_b0225 article-title: An improved method to estimate actual vapor pressure without relative humidity data publication-title: Agric. For. Meteorol. – volume: 148 start-page: 401 issue: 3 year: 2008 ident: 10.1016/j.jhydrol.2023.130317_b0005 article-title: Comparison of estimates of daily solar radiation from air temperature range for application in crop simulations publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2007.10.001 – volume: 12 issue: 10 year: 2020 ident: 10.1016/j.jhydrol.2023.130317_b0040 article-title: Evaluation of 32 simple equations against the penman-monteith method to estimate the reference evapotranspiration in the hexi corridor publication-title: Northwest China. Water. – volume: 120 start-page: 603 year: 2015 ident: 10.1016/j.jhydrol.2023.130317_b0210 article-title: Satellite-based assessment and in situ validation of solar irradiation maps in the republic of djibouti publication-title: Sol. Energy doi: 10.1016/j.solener.2015.08.015 – volume: 71 start-page: 325 year: 2001 ident: 10.1016/j.jhydrol.2023.130317_b0090 article-title: Parameterized transmittance model for direct beam and circumsolar spectral irradiance publication-title: Sol. Energy doi: 10.1016/S0038-092X(01)00054-8 – volume: 240 year: 2020 ident: 10.1016/j.jhydrol.2023.130317_b0185 article-title: Reference grass evapotranspiration with reduced data sets: Parameterization of the FAO Penman-Monteith temperature approach and the Hargeaves-Samani equation using local climatic variables publication-title: Agri. Water Manage. doi: 10.1016/j.agwat.2020.106210 – volume: 529 start-page: 1713 year: 2015 ident: 10.1016/j.jhydrol.2023.130317_b0170 article-title: Parametric expressions for the adjusted Hargreaves coefficient in Eastern Spain publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.07.054 – volume: 145 start-page: 22 issue: 1 year: 2007 ident: 10.1016/j.jhydrol.2023.130317_b0035 article-title: Estimating reference evapotranspiration with the FAO Penman-Monteith equation using daily weather forecast messages publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2007.04.012 – ident: 10.1016/j.jhydrol.2023.130317_b0145 – volume: 122 start-page: 97 issue: 2 year: 1996 ident: 10.1016/j.jhydrol.2023.130317_b0010 article-title: Assessing integrity of weather data for reference evapotranspiration estimation publication-title: J. Irrigation Drainage Eng.-ASCE. doi: 10.1061/(ASCE)0733-9437(1996)122:2(97) – volume: 264 start-page: 114 year: 2019 ident: 10.1016/j.jhydrol.2023.130317_b0310 article-title: Ensemble forecasting of monthly and seasonal reference crop evapotranspiration based on global climate model outputs publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2018.10.001 – volume: 60 start-page: 382 year: 2013 ident: 10.1016/j.jhydrol.2023.130317_b0020 article-title: Estimation of daily global solar radiation from measured temperatures at Canada de Luque, Cordoba publication-title: Argentina. Renewable Energy. doi: 10.1016/j.renene.2013.05.033 – volume: 263 start-page: 225 year: 2018 ident: 10.1016/j.jhydrol.2023.130317_b0055 article-title: Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2018.08.019 – volume: 50 start-page: 885 issue: 3 year: 2007 ident: 10.1016/j.jhydrol.2023.130317_b0175 article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations publication-title: Trans. ASABE doi: 10.13031/2013.23153 – ident: 10.1016/j.jhydrol.2023.130317_b0305 – volume: 35 start-page: 5383 issue: 15 year: 2021 ident: 10.1016/j.jhydrol.2023.130317_b0250 article-title: Hierarchical fuzzy systems integrated with particle swarm optimization for daily reference evapotranspiration prediction: a novel approach publication-title: Water Resour. Manag. doi: 10.1007/s11269-021-03009-9 – volume: 33 start-page: 487 issue: 2 year: 2013 ident: 10.1016/j.jhydrol.2023.130317_b0045 article-title: Estimation of monthly average daily solar radiation from measured meteorological data in Yangtze River Basin in China publication-title: Int. J. Climatol. doi: 10.1002/joc.3442 – volume: 528 start-page: 514 year: 2015 ident: 10.1016/j.jhydrol.2023.130317_b0025 article-title: Global performance ranking of temperature-based approaches for evapotranspiration estimation considering Koppen climate classes publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.06.057 – volume: 134 start-page: 1115 issue: 2018 year: 2018 ident: 10.1016/j.jhydrol.2023.130317_b0180 article-title: Daily reference crop evapotranspiration with reduced data sets in the humid environments of Azores islands using estimates of actual vapour pressure, solar radiation and wind speed publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-017-2329-9 – volume: 163 year: 2022 ident: 10.1016/j.jhydrol.2023.130317_b0230 article-title: Modeling daily global solar radiation using only temperature data: Past, development, and future publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2022.112511 |
SSID | ssj0000334 |
Score | 2.4872465 |
Snippet | •Updated PM model with temperature and sunshine duration-based solar radiation forecast methods for ET0 forecasting.•The most accurate method of ET0... Accurate forecast of reference evapotranspiration (ET₀) is essential for effective water resource management and efficient irrigation scheduling. The... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 130317 |
SubjectTerms | Air temperature China continental climates evapotranspiration irrigation monsoon season Reference crop evapotranspiration Solar radiation temperature water management weather forecasting Weather forecasts |
Title | Assessing forecasting performance of daily reference evapotranspiration: A comparative analysis of updated temperature penman-monteith and penman-monteith forecast models |
URI | https://dx.doi.org/10.1016/j.jhydrol.2023.130317 https://www.proquest.com/docview/3040355088 |
Volume | 626 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBYhPTSX0Fdo0jao0OvasiTvrnMzocZtaU4N5Cb0xGvS3cVeB3zJD8qvzMyu1qYPCOS4QqMVmtHMSJr5hpAvBtjqwNTBFs9YIrVgicmFS0LKJrkLDEwcJjj_vErn1_L7zfjmgFz2uTAYVhl1f6fTW20dW4ZxNYd1UWCOL-ejdAL-ACjZ8QQRP6XMUMoH9_swDyaE7BHDsfc-i2e4HCwXW7eq8AWCC6yLLNq6Zf-1T39p6tb8zF6R4-g30mk3tdfkwJdvyMtYwnyxfUseuudbsEQU_FBv9RoDmmm9TwygVaBOF7dbuqstQv2drqumBTgvOlm4oFNq95DgVEfUEqTe1Hg_4CjiWUUwZvhBCaMnvxHlqmgW0N_909ZPiLZ1d9bvyPXs66_LeRILMSRWSN4kgRkRhMlTxy13Qo-FDIJncFILPHBhHA-pZB5jAaXNJiE30hluA7Mar1hH4oQcllXp3xPKzDhkqR057rHqcZpb4wMc2XKrZZbrcEpkv_zKRpRyLJZxq_pwtKWKXFPINdVx7ZQMdmR1B9PxFEHe81b9IW8KTMlTpJ97WVCwF_GBRZe-2qyVAI0Iwg2K--z5w38gR_jV5Tt-JIfNauM_gePTmPNWss_Ji-m3H_OrR99DCHE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4ikKBYwEx-x6bW-SReJQAdWWPk6t1JvxU5tVm0TdLNVe-EFc-YPMJE5XPKRKSL06GSfyjGf8mPk-Qt4aUKuDUAdTPGOJ1IIlJhcuCSmb5C4wCHFY4Hx0nE5P5Zez8dkG-dnXwmBaZfT9nU9vvXVsGcbRHNZFgTW-nI_SCawHwMmOJz2D9YFfXcG-bfFh_xMo-R3ne59PPk6TSC2QWCF5kwRmRBAmTx233Ak9FjIInsHeI_DAhXE8pJJ5zG6TNpuE3EhnuA3Majw0HAno9w65K8FdIG3C4Ps6r4QJIXuIcvy9ddnQcD6Yz1bussIrDy6QiFm0RGn_DIh_hIY23u09IPfjQpXudmPxkGz48hHZipzps9Vj8qO7L4bQR2Hh661eYAY1rdeVCLQK1OnifEWvyUyo_6brqmkR1YvO-N7TXWrXGORUR5gUlF7WeCDhKAJoRfRn-EAJvScXCKtVNDN43_3V1v8QbYl-Fk_I6a2o5ynZLKvSPyOUmXHIUjty3CPNcppb4wPsEXOrZZbrsE1kP_zKRlh0ZOc4V33-21xFrSnUmuq0tk0G12J1hwtyk0De61b9ZuAKYtdNom96W1Aw-fFGR5e-Wi6UABcMswkixfP_7_412ZqeHB2qw_3jgxfkHj7pii13yGZzufQvYdXVmFetlVPy9ban1S8IVkQ1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+forecasting+performance+of+daily+reference+evapotranspiration%3A+A+comparative+analysis+of+updated+temperature+penman-monteith+and+penman-monteith+forecast+models&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Lin%2C+En&rft.au=Qiu%2C+Rangjian&rft.au=Chen%2C+Mengting&rft.au=Xie%2C+Hua&rft.date=2023-11-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.volume=626&rft_id=info:doi/10.1016%2Fj.jhydrol.2023.130317&rft.externalDocID=S0022169423012593 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |