Oxygen gradients can determine epigenetic asymmetry and cellular differentiation via differential regulation of Tet activity in embryonic stem cells

Abstract Graded levels of molecular oxygen (O2) exist within developing mammalian embryos and can differentially regulate cellular specification pathways. During differentiation, cells acquire distinct epigenetic landscapes, which determine their function, however the mechanisms which regulate this...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 46; no. 3; pp. 1210 - 1226
Main Authors Burr, Simon, Caldwell, Anna, Chong, Mei, Beretta, Matteo, Metcalf, Stephen, Hancock, Matthew, Arno, Matthew, Balu, Sucharitha, Kropf, Valeria Leon, Mistry, Rajesh K, Shah, Ajay M, Mann, Giovanni E, Brewer, Alison C
Format Journal Article
LanguageEnglish
Published England Oxford University Press 16.02.2018
Subjects
Online AccessGet full text
ISSN0305-1048
1362-4962
1362-4962
DOI10.1093/nar/gkx1197

Cover

Loading…
Abstract Abstract Graded levels of molecular oxygen (O2) exist within developing mammalian embryos and can differentially regulate cellular specification pathways. During differentiation, cells acquire distinct epigenetic landscapes, which determine their function, however the mechanisms which regulate this are poorly understood. The demethylation of 5-methylcytosine (5mC) is achieved via successive oxidation reactions catalysed by the Ten-Eleven-Translocation (Tet) enzymes, yielding the 5-hydroxymethylcytosine (5hmC) intermediate. These require O2 as a co-factor, and hence may link epigenetic processes directly to O2 gradients during development. We demonstrate that the activities of Tet enzymes display distinct patterns of [O2]-dependency, and that Tet1 activity, specifically, is subject to differential regulation within a range of O2 which is physiologically relevant in embryogenesis. Further, differentiating embryonic stem cells displayed a transient burst of 5hmC, which was both dependent upon Tet1 and inhibited by low (1%) [O2]. A GC-rich promoter region within the Tet3 locus was identified as a significant target of this 5mC-hydroxylation. Further, this region was shown to associate with Tet1, and display the histone epigenetic marks, H3K4me3 and H3K27me3, which are characteristic of a bivalent, developmentally 'poised' promoter. We conclude that Tet1 activity, determined by [O2] may play a critical role in regulating cellular differentiation and fate in embryogenesis.
AbstractList Graded levels of molecular oxygen (O2) exist within developing mammalian embryos and can differentially regulate cellular specification pathways. During differentiation, cells acquire distinct epigenetic landscapes, which determine their function, however the mechanisms which regulate this are poorly understood. The demethylation of 5-methylcytosine (5mC) is achieved via successive oxidation reactions catalysed by the Ten-Eleven-Translocation (Tet) enzymes, yielding the 5-hydroxymethylcytosine (5hmC) intermediate. These require O2 as a co-factor, and hence may link epigenetic processes directly to O2 gradients during development. We demonstrate that the activities of Tet enzymes display distinct patterns of [O2]-dependency, and that Tet1 activity, specifically, is subject to differential regulation within a range of O2 which is physiologically relevant in embryogenesis. Further, differentiating embryonic stem cells displayed a transient burst of 5hmC, which was both dependent upon Tet1 and inhibited by low (1%) [O2]. A GC-rich promoter region within the Tet3 locus was identified as a significant target of this 5mC-hydroxylation. Further, this region was shown to associate with Tet1, and display the histone epigenetic marks, H3K4me3 and H3K27me3, which are characteristic of a bivalent, developmentally 'poised' promoter. We conclude that Tet1 activity, determined by [O2] may play a critical role in regulating cellular differentiation and fate in embryogenesis.Graded levels of molecular oxygen (O2) exist within developing mammalian embryos and can differentially regulate cellular specification pathways. During differentiation, cells acquire distinct epigenetic landscapes, which determine their function, however the mechanisms which regulate this are poorly understood. The demethylation of 5-methylcytosine (5mC) is achieved via successive oxidation reactions catalysed by the Ten-Eleven-Translocation (Tet) enzymes, yielding the 5-hydroxymethylcytosine (5hmC) intermediate. These require O2 as a co-factor, and hence may link epigenetic processes directly to O2 gradients during development. We demonstrate that the activities of Tet enzymes display distinct patterns of [O2]-dependency, and that Tet1 activity, specifically, is subject to differential regulation within a range of O2 which is physiologically relevant in embryogenesis. Further, differentiating embryonic stem cells displayed a transient burst of 5hmC, which was both dependent upon Tet1 and inhibited by low (1%) [O2]. A GC-rich promoter region within the Tet3 locus was identified as a significant target of this 5mC-hydroxylation. Further, this region was shown to associate with Tet1, and display the histone epigenetic marks, H3K4me3 and H3K27me3, which are characteristic of a bivalent, developmentally 'poised' promoter. We conclude that Tet1 activity, determined by [O2] may play a critical role in regulating cellular differentiation and fate in embryogenesis.
Abstract Graded levels of molecular oxygen (O2) exist within developing mammalian embryos and can differentially regulate cellular specification pathways. During differentiation, cells acquire distinct epigenetic landscapes, which determine their function, however the mechanisms which regulate this are poorly understood. The demethylation of 5-methylcytosine (5mC) is achieved via successive oxidation reactions catalysed by the Ten-Eleven-Translocation (Tet) enzymes, yielding the 5-hydroxymethylcytosine (5hmC) intermediate. These require O2 as a co-factor, and hence may link epigenetic processes directly to O2 gradients during development. We demonstrate that the activities of Tet enzymes display distinct patterns of [O2]-dependency, and that Tet1 activity, specifically, is subject to differential regulation within a range of O2 which is physiologically relevant in embryogenesis. Further, differentiating embryonic stem cells displayed a transient burst of 5hmC, which was both dependent upon Tet1 and inhibited by low (1%) [O2]. A GC-rich promoter region within the Tet3 locus was identified as a significant target of this 5mC-hydroxylation. Further, this region was shown to associate with Tet1, and display the histone epigenetic marks, H3K4me3 and H3K27me3, which are characteristic of a bivalent, developmentally 'poised' promoter. We conclude that Tet1 activity, determined by [O2] may play a critical role in regulating cellular differentiation and fate in embryogenesis.
Graded levels of molecular oxygen (O2) exist within developing mammalian embryos and can differentially regulate cellular specification pathways. During differentiation, cells acquire distinct epigenetic landscapes, which determine their function, however the mechanisms which regulate this are poorly understood. The demethylation of 5-methylcytosine (5mC) is achieved via successive oxidation reactions catalysed by the Ten-Eleven-Translocation (Tet) enzymes, yielding the 5-hydroxymethylcytosine (5hmC) intermediate. These require O2 as a co-factor, and hence may link epigenetic processes directly to O2 gradients during development. We demonstrate that the activities of Tet enzymes display distinct patterns of [O2]-dependency, and that Tet1 activity, specifically, is subject to differential regulation within a range of O2 which is physiologically relevant in embryogenesis. Further, differentiating embryonic stem cells displayed a transient burst of 5hmC, which was both dependent upon Tet1 and inhibited by low (1%) [O2]. A GC-rich promoter region within the Tet3 locus was identified as a significant target of this 5mC-hydroxylation. Further, this region was shown to associate with Tet1, and display the histone epigenetic marks, H3K4me3 and H3K27me3, which are characteristic of a bivalent, developmentally 'poised' promoter. We conclude that Tet1 activity, determined by [O2] may play a critical role in regulating cellular differentiation and fate in embryogenesis.
Graded levels of molecular oxygen (O 2 ) exist within developing mammalian embryos and can differentially regulate cellular specification pathways. During differentiation, cells acquire distinct epigenetic landscapes, which determine their function, however the mechanisms which regulate this are poorly understood. The demethylation of 5-methylcytosine (5mC) is achieved via successive oxidation reactions catalysed by the Ten-Eleven-Translocation (Tet) enzymes, yielding the 5-hydroxymethylcytosine (5hmC) intermediate. These require O 2 as a co-factor, and hence may link epigenetic processes directly to O 2 gradients during development. We demonstrate that the activities of Tet enzymes display distinct patterns of [O 2 ]-dependency, and that Tet1 activity, specifically, is subject to differential regulation within a range of O 2 which is physiologically relevant in embryogenesis. Further, differentiating embryonic stem cells displayed a transient burst of 5hmC, which was both dependent upon Tet1 and inhibited by low (1%) [O 2 ]. A GC-rich promoter region within the Tet3 locus was identified as a significant target of this 5mC-hydroxylation. Further, this region was shown to associate with Tet1, and display the histone epigenetic marks, H3K4me3 and H3K27me3, which are characteristic of a bivalent, developmentally ‘poised’ promoter. We conclude that Tet1 activity, determined by [O 2 ] may play a critical role in regulating cellular differentiation and fate in embryogenesis.
Author Mistry, Rajesh K
Arno, Matthew
Mann, Giovanni E
Caldwell, Anna
Brewer, Alison C
Chong, Mei
Metcalf, Stephen
Kropf, Valeria Leon
Shah, Ajay M
Beretta, Matteo
Burr, Simon
Balu, Sucharitha
Hancock, Matthew
AuthorAffiliation 3 King's Genomic Centre, King's College London, London SE1 9NH, UK
2 King's Centre of Excellence for Mass Spectrometry, King's College London, London SE1 9NH, UK
1 British Heart Foundation Centre of Research Excellence, Department of Cardiology, King's College London, London SE5 9NU, UK
AuthorAffiliation_xml – name: 2 King's Centre of Excellence for Mass Spectrometry, King's College London, London SE1 9NH, UK
– name: 3 King's Genomic Centre, King's College London, London SE1 9NH, UK
– name: 1 British Heart Foundation Centre of Research Excellence, Department of Cardiology, King's College London, London SE5 9NU, UK
Author_xml – sequence: 1
  givenname: Simon
  surname: Burr
  fullname: Burr, Simon
  organization: British Heart Foundation Centre of Research Excellence, Department of Cardiology, King's College London, London SE5 9NU, UK
– sequence: 2
  givenname: Anna
  surname: Caldwell
  fullname: Caldwell, Anna
  organization: King's Centre of Excellence for Mass Spectrometry, King's College London, London SE1 9NH, UK
– sequence: 3
  givenname: Mei
  surname: Chong
  fullname: Chong, Mei
  organization: British Heart Foundation Centre of Research Excellence, Department of Cardiology, King's College London, London SE5 9NU, UK
– sequence: 4
  givenname: Matteo
  surname: Beretta
  fullname: Beretta, Matteo
  organization: British Heart Foundation Centre of Research Excellence, Department of Cardiology, King's College London, London SE5 9NU, UK
– sequence: 5
  givenname: Stephen
  surname: Metcalf
  fullname: Metcalf, Stephen
  organization: British Heart Foundation Centre of Research Excellence, Department of Cardiology, King's College London, London SE5 9NU, UK
– sequence: 6
  givenname: Matthew
  surname: Hancock
  fullname: Hancock, Matthew
  organization: British Heart Foundation Centre of Research Excellence, Department of Cardiology, King's College London, London SE5 9NU, UK
– sequence: 7
  givenname: Matthew
  surname: Arno
  fullname: Arno, Matthew
  organization: King's Genomic Centre, King's College London, London SE1 9NH, UK
– sequence: 8
  givenname: Sucharitha
  surname: Balu
  fullname: Balu, Sucharitha
  organization: King's Genomic Centre, King's College London, London SE1 9NH, UK
– sequence: 9
  givenname: Valeria Leon
  surname: Kropf
  fullname: Kropf, Valeria Leon
  organization: British Heart Foundation Centre of Research Excellence, Department of Cardiology, King's College London, London SE5 9NU, UK
– sequence: 10
  givenname: Rajesh K
  surname: Mistry
  fullname: Mistry, Rajesh K
  organization: British Heart Foundation Centre of Research Excellence, Department of Cardiology, King's College London, London SE5 9NU, UK
– sequence: 11
  givenname: Ajay M
  surname: Shah
  fullname: Shah, Ajay M
  organization: British Heart Foundation Centre of Research Excellence, Department of Cardiology, King's College London, London SE5 9NU, UK
– sequence: 12
  givenname: Giovanni E
  surname: Mann
  fullname: Mann, Giovanni E
  organization: British Heart Foundation Centre of Research Excellence, Department of Cardiology, King's College London, London SE5 9NU, UK
– sequence: 13
  givenname: Alison C
  surname: Brewer
  fullname: Brewer, Alison C
  email: alison.brewer@kcl.ac.uk
  organization: British Heart Foundation Centre of Research Excellence, Department of Cardiology, King's College London, London SE5 9NU, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29186571$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9r3DAQxUVJaDZpT70XnUqhuJFky2tdCiX0HwRySc5ibI1dtba0leQl_h79wFV2tyEtJAch0PvNmxm9U3LkvENCXnH2njNVnjsI58PPW87V-hlZ8bIWRaVqcURWrGSy4KxqTshpjD8Y4xWX1XNyIhRvarnmK_L76nYZ0NEhgLHoUqQdOGowYZisQ4obm2VMtqMQl2nCFBYKztAOx3EeIVBj-x5DLrWQrHd0a-Hh20gDDhncab6n15godMlubVqodRSnNizeZf-YcNrZxhfkuIcx4svDfUZuPn-6vvhaXF59-Xbx8bLoykqkAlvTysYAVz0w1mMluGSy5YBNZ3o0QoKqjTD5qKZt1yhrvgYmFSrFSg7lGfmw993M7YSmywMHGPUm2AnCoj1Y_a_i7Hc9-K2WDa8a0WSDtweD4H_NGJOebLxbARz6OeocCatLJaTM6OuHve6b_I0iA-_2QBd8jAH7e4QzfRe0zkHrQ9CZ5v_RnU27T86D2vGRmjf7Gj9vnjT_A2VlwEQ
CitedBy_id crossref_primary_10_1038_s41392_023_01537_x
crossref_primary_10_1111_joa_13756
crossref_primary_10_1016_j_exer_2021_108473
crossref_primary_10_1016_j_freeradbiomed_2021_10_023
crossref_primary_10_3389_fonc_2023_1182727
crossref_primary_10_1186_s13148_020_00848_y
crossref_primary_10_3390_ijms21093223
crossref_primary_10_1093_jb_mvae087
crossref_primary_10_1016_j_bbagrm_2020_194643
crossref_primary_10_1088_2516_1091_ab5637
crossref_primary_10_1016_j_freeradbiomed_2021_01_008
crossref_primary_10_1186_s13287_023_03341_4
crossref_primary_10_1016_j_diff_2020_07_001
crossref_primary_10_1242_dev_200679
crossref_primary_10_3389_fped_2023_1140021
crossref_primary_10_3390_biom14010131
crossref_primary_10_1186_s12974_024_03189_2
crossref_primary_10_3390_ijms222010969
crossref_primary_10_3390_epigenomes2010003
crossref_primary_10_3390_antiox11030477
crossref_primary_10_1002_ijc_32520
crossref_primary_10_1016_j_freeradbiomed_2018_12_009
crossref_primary_10_3390_epigenomes6030017
crossref_primary_10_1016_j_biopha_2023_115324
crossref_primary_10_31083_FBL26082
crossref_primary_10_1111_mec_16259
crossref_primary_10_1016_j_tiv_2021_105247
crossref_primary_10_1021_acs_jpcb_8b07830
crossref_primary_10_1186_s12986_020_00466_8
crossref_primary_10_1016_j_exer_2022_109192
crossref_primary_10_1038_s41467_025_56928_1
crossref_primary_10_3390_ijms23105854
crossref_primary_10_1186_s13072_021_00431_6
crossref_primary_10_1038_s41388_023_02659_w
crossref_primary_10_3389_fgene_2023_1179256
crossref_primary_10_1002_adhm_202302830
crossref_primary_10_1111_bph_16302
crossref_primary_10_1080_00365521_2024_2310172
crossref_primary_10_1073_pnas_2200022119
crossref_primary_10_1111_febs_15695
crossref_primary_10_1002_cbic_202100605
Cites_doi 10.1242/dev.129452
10.1038/cr.2011.22
10.1038/embor.2011.233
10.1016/j.ab.2011.01.026
10.1038/nn.2959
10.1016/j.molcel.2011.04.005
10.4161/cc.10.15.16930
10.1074/jbc.C113.464800
10.18632/oncotarget.6069
10.1126/science.1210597
10.1016/j.cancergen.2015.02.009
10.1038/nature12052
10.1016/j.molcel.2008.04.009
10.1016/j.cell.2006.02.041
10.1126/science.1170116
10.1016/j.stem.2011.07.010
10.1016/j.ygeno.2014.08.020
10.1111/j.1460-9568.2004.03813.x
10.1016/j.devcel.2012.12.015
10.1016/j.stem.2010.07.007
10.1182/blood-2002-12-3809
10.1038/nature10066
10.1038/srep16791
10.1074/jbc.M112.439844
10.1016/j.celrep.2015.03.020
10.1126/science.1210944
10.1002/ijc.28190
10.1007/s00018-015-1978-z
10.1038/ng.2807
10.1093/nar/gkr1253
10.1016/j.stem.2013.06.002
10.1016/j.celrep.2015.12.044
10.1038/nrm2354
10.1016/j.molcel.2012.12.019
10.1146/annurev-genet-110711-155451
10.1093/nar/gkq684
10.1038/nature09586
10.1016/j.stem.2013.05.006
10.1038/nature12362
10.1186/1471-2105-12-366
10.1016/j.neuron.2013.08.003
10.1038/nature19081
10.1038/nature06008
10.1016/j.cellsig.2011.08.019
10.1016/j.celrep.2015.07.025
10.1016/j.cell.2007.04.019
10.2217/epi.15.24
10.1016/j.freeradbiomed.2007.06.027
10.1073/pnas.1510510112
10.1038/ng.3868
10.1007/s001090050231
10.1016/j.stem.2011.01.008
10.1073/pnas.1617802113
10.1016/j.molcel.2016.04.025
10.1007/s12035-014-8734-5
10.1074/jbc.M115.688762
10.1038/nrg3354
10.1006/dbio.2000.9753
10.1038/nrm3589
10.1007/BF02459572
10.1016/j.bbagen.2012.08.025
10.1038/nature09934
10.1016/j.stem.2013.06.004
10.1038/nsmb.2510
10.1101/gad.2037511
10.1016/S0012-1606(03)00112-X
10.1101/gad.219626.113
10.1038/nature11925
10.1073/pnas.1322921111
10.1262/jrd.11-138N
10.1038/emm.2017.5
10.1038/nature09303
10.1038/ng1760
10.1186/gb-2013-14-8-r91
10.1038/nrg3607
10.1016/j.molcel.2008.05.007
ContentType Journal Article
Copyright The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. 2017
Copyright_xml – notice: The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. 2017
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gkx1197
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 1226
ExternalDocumentID PMC5814828
29186571
10_1093_nar_gkx1197
10.1093/nar/gkx1197
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: British Heart Foundation
  grantid: RG/13/11/30384
– fundername: British Heart Foundation
  grantid: PG/08/110/26228
– fundername: British Heart Foundation
  grantid: PG/15/119/31970
– fundername: British Heart Foundation
  grantid: PG/15/27/31374
– fundername: British Heart Foundation
  grantid: IG/16/2/32273
GroupedDBID ---
-DZ
-~X
.I3
0R~
123
18M
1TH
29N
2WC
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAUQX
AAVAP
ABEJV
ABGNP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACUTJ
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFYAG
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
BAWUL
BAYMD
BCNDV
CAG
CIDKT
CS3
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
EMOBN
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
IH2
KAQDR
KQ8
KSI
M49
OAWHX
OBC
OBS
OEB
OES
OJQWA
P2P
PEELM
PQQKQ
R44
RD5
RNS
ROL
ROZ
RPM
RXO
SV3
TN5
TOX
TR2
WG7
WOQ
X7H
XSB
YSK
ZKX
~91
~D7
~KM
AAYXX
CITATION
OVT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
EJD
ID FETCH-LOGICAL-c342t-ebdb58da19fa00fe421505b1ae8cdfed25a96d2d6d298bb7e5617a059e99031a3
IEDL.DBID TOX
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 18:31:56 EDT 2025
Fri Jul 11 12:04:22 EDT 2025
Mon Jul 21 06:04:09 EDT 2025
Tue Jul 01 02:07:11 EDT 2025
Thu Apr 24 22:54:02 EDT 2025
Wed Apr 02 07:01:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
http://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-ebdb58da19fa00fe421505b1ae8cdfed25a96d2d6d298bb7e5617a059e99031a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: Alison Brewer, British Heart Foundation Centre of Research Excellence, Department of Cardiology, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK.
OpenAccessLink https://dx.doi.org/10.1093/nar/gkx1197
PMID 29186571
PQID 1970639255
PQPubID 23479
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5814828
proquest_miscellaneous_1970639255
pubmed_primary_29186571
crossref_primary_10_1093_nar_gkx1197
crossref_citationtrail_10_1093_nar_gkx1197
oup_primary_10_1093_nar_gkx1197
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-16
PublicationDateYYYYMMDD 2018-02-16
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-16
  day: 16
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2018
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Chen ( key 20180215031948_B61) 2014; 15
Vasanthakumar ( key 20180215031948_B17) 2015; 208
Williams ( key 20180215031948_B19) 2011; 13
Pastor ( key 20180215031948_B53) 2013; 14
Hancock ( key 20180215031948_B77) 2015; 7
Keith ( key 20180215031948_B60) 2007; 129
Simon ( key 20180215031948_B4) 2008; 9
Li ( key 20180215031948_B75) 2015; 51
Maltepe ( key 20180215031948_B5) 1998; 76
Huang ( key 20180215031948_B29) 2014; 111
Minegishi ( key 20180215031948_B44) 2003; 102
Perera ( key 20180215031948_B76) 2015; 11
Mikkelsen ( key 20180215031948_B55) 2007; 448
Mohyeldin ( key 20180215031948_B6) 2010; 7
Ficz ( key 20180215031948_B49) 2013; 13
Hitchler ( key 20180215031948_B8) 2007; 43
Wu ( key 20180215031948_B30) 2011; 473
Loh ( key 20180215031948_B47) 2006; 38
von Meyenn ( key 20180215031948_B67) 2016; 62
He ( key 20180215031948_B12) 2011; 333
Wen ( key 20180215031948_B20) 2014; 104
Brown ( key 20180215031948_B39) 2001
Kaelin ( key 20180215031948_B65) 2008; 30
Bannister ( key 20180215031948_B10) 2011; 21
Freudenberg ( key 20180215031948_B28) 2012; 40
Jin ( key 20180215031948_B52) 2016; 14
Salminen ( key 20180215031948_B11) 2015; 72
Mantsoki ( key 20180215031948_B73) 2015; 5
Smith ( key 20180215031948_B9) 2013; 14
Minor ( key 20180215031948_B70) 2013; 288
Brand ( key 20180215031948_B43) 2003; 258
Tsai ( key 20180215031948_B62) 2014; 134
Rudenko ( key 20180215031948_B35) 2013; 79
Vella ( key 20180215031948_B57) 2013; 49
Park ( key 20180215031948_B74) 2015; 6
Voigt ( key 20180215031948_B58) 2013; 27
Chen ( key 20180215031948_B69) 2013; 45
Blaschke ( key 20180215031948_B68) 2013; 500
Bernstein ( key 20180215031948_B56) 2006; 125
Ito ( key 20180215031948_B14) 2011; 333
Zhang ( key 20180215031948_B36) 2013; 13
Ko ( key 20180215031948_B37) 2013; 497
Mohn ( key 20180215031948_B66) 2008; 30
Koh ( key 20180215031948_B21) 2011; 8
Dawlaty ( key 20180215031948_B27) 2011; 9
Habibi ( key 20180215031948_B50) 2013; 13
Wu ( key 20180215031948_B72) 2011; 10
Murray ( key 20180215031948_B42) 2013; 288
Costa ( key 20180215031948_B71) 2013; 495
Briscoe ( key 20180215031948_B2) 2015; 142
An ( key 20180215031948_B15) 2017; 49
Williams ( key 20180215031948_B23) 2011; 473
Kang ( key 20180215031948_B32) 2015; 112
Neri ( key 20180215031948_B59) 2013; 14
Ludwig ( key 20180215031948_B41) 2011; 12
Melvin ( key 20180215031948_B63) 2012; 24
Xu ( key 20180215031948_B24) 2011; 42
Christoffels ( key 20180215031948_B45) 2000; 223
Le ( key 20180215031948_B40) 2011; 412
Szwagierczak ( key 20180215031948_B18) 2010; 38
Li ( key 20180215031948_B25) 2016; 113
Takahashi ( key 20180215031948_B3) 2012; 58
Couillard-Despres ( key 20180215031948_B46) 2005; 21
Deaton ( key 20180215031948_B54) 2011; 25
Leitch ( key 20180215031948_B51) 2013; 20
Dawlaty ( key 20180215031948_B31) 2013; 24
Szulwach ( key 20180215031948_B26) 2011; 14
Khoueiry ( key 20180215031948_B33) 2017; 49
Li ( key 20180215031948_B34) 2015; 12
Thienpont ( key 20180215031948_B64) 2016; 537
Laukka ( key 20180215031948_B48) 2016; 291
Turing ( key 20180215031948_B1) 1990; 52
Beyer ( key 20180215031948_B7) 2013; 1830
Franchini ( key 20180215031948_B16) 2012; 46
Ito ( key 20180215031948_B13) 2010; 466
Tahiliani ( key 20180215031948_B22) 2009; 324
Ko ( key 20180215031948_B38) 2010; 468
References_xml – volume: 142
  start-page: 3996
  year: 2015
  ident: key 20180215031948_B2
  article-title: Morphogen rules: design principles of gradient-mediated embryo patterning
  publication-title: Development
  doi: 10.1242/dev.129452
– volume: 21
  start-page: 381
  year: 2011
  ident: key 20180215031948_B10
  article-title: Regulation of chromatin by histone modifications
  publication-title: Cell Res.
  doi: 10.1038/cr.2011.22
– volume: 13
  start-page: 28
  year: 2011
  ident: key 20180215031948_B19
  article-title: DNA methylation: TET proteins-guardians of CpG islands
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2011.233
– volume: 412
  start-page: 203
  year: 2011
  ident: key 20180215031948_B40
  article-title: A sensitive mass spectrometry method for simultaneous quantification of DNA methylation and hydroxymethylation levels in biological samples
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2011.01.026
– volume: 14
  start-page: 1607
  year: 2011
  ident: key 20180215031948_B26
  article-title: 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2959
– volume: 42
  start-page: 451
  year: 2011
  ident: key 20180215031948_B24
  article-title: Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.04.005
– volume: 10
  start-page: 2428
  year: 2011
  ident: key 20180215031948_B72
  article-title: Tet1 and 5-hydroxymethylation: a genome-wide view in mouse embryonic stem cells
  publication-title: Cell Cycle
  doi: 10.4161/cc.10.15.16930
– volume: 288
  start-page: 13669
  year: 2013
  ident: key 20180215031948_B70
  article-title: Ascorbate induces ten-eleven translocation (Tet) methylcytosine dioxygenase-mediated generation of 5-hydroxymethylcytosine
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C113.464800
– volume: 6
  start-page: 37647
  year: 2015
  ident: key 20180215031948_B74
  article-title: Decrease of 5hmC in gastric cancers is associated with TET1 silencing due to with DNA methylation and bivalent histone marks at TET1 CpG island 3′-shore
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.6069
– volume: 333
  start-page: 1300
  year: 2011
  ident: key 20180215031948_B14
  article-title: Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine
  publication-title: Science
  doi: 10.1126/science.1210597
– volume: 208
  start-page: 167
  year: 2015
  ident: key 20180215031948_B17
  article-title: 5-hydroxymethylcytosine in cancer: significance in diagnosis and therapy
  publication-title: Cancer Genet.
  doi: 10.1016/j.cancergen.2015.02.009
– volume: 497
  start-page: 122
  year: 2013
  ident: key 20180215031948_B37
  article-title: Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX
  publication-title: Nature
  doi: 10.1038/nature12052
– volume: 30
  start-page: 393
  year: 2008
  ident: key 20180215031948_B65
  article-title: Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.04.009
– volume: 125
  start-page: 315
  year: 2006
  ident: key 20180215031948_B56
  article-title: A bivalent chromatin structure marks key developmental genes in embryonic stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2006.02.041
– volume: 324
  start-page: 930
  year: 2009
  ident: key 20180215031948_B22
  article-title: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
  publication-title: Science
  doi: 10.1126/science.1170116
– volume: 9
  start-page: 166
  year: 2011
  ident: key 20180215031948_B27
  article-title: Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.07.010
– volume: 104
  start-page: 341
  year: 2014
  ident: key 20180215031948_B20
  article-title: Genomic distribution and possible functions of DNA hydroxymethylation in the brain
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2014.08.020
– volume: 21
  start-page: 1
  year: 2005
  ident: key 20180215031948_B46
  article-title: Doublecortin expression levels in adult brain reflect neurogenesis
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2004.03813.x
– volume: 24
  start-page: 310
  year: 2013
  ident: key 20180215031948_B31
  article-title: Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2012.12.015
– volume: 7
  start-page: 150
  year: 2010
  ident: key 20180215031948_B6
  article-title: Oxygen in stem cell biology: a critical component of the stem cell niche
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.07.007
– volume: 102
  start-page: 896
  year: 2003
  ident: key 20180215031948_B44
  article-title: Expression and domain-specific function of GATA-2 during differentiation of the hematopoietic precursor cells in midgestation mouse embryos
  publication-title: Blood
  doi: 10.1182/blood-2002-12-3809
– volume: 473
  start-page: 343
  year: 2011
  ident: key 20180215031948_B23
  article-title: TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity
  publication-title: Nature
  doi: 10.1038/nature10066
– volume: 5
  start-page: 16791
  year: 2015
  ident: key 20180215031948_B73
  article-title: CpG island erosion, polycomb occupancy and sequence motif enrichment at bivalent promoters in mammalian embryonic stem cells
  publication-title: Sci. Rep.
  doi: 10.1038/srep16791
– volume: 288
  start-page: 15745
  year: 2013
  ident: key 20180215031948_B42
  article-title: NADPH oxidase 4 regulates cardiomyocyte differentiation via redox activation of c-Jun protein and the cis-regulation of GATA-4 gene transcription
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.439844
– volume: 11
  start-page: 283
  year: 2015
  ident: key 20180215031948_B76
  article-title: TET3 is recruited by REST for context-specific hydroxymethylation and induction of gene expression
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.03.020
– volume: 333
  start-page: 1303
  year: 2011
  ident: key 20180215031948_B12
  article-title: Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA
  publication-title: Science
  doi: 10.1126/science.1210944
– volume: 134
  start-page: 249
  year: 2014
  ident: key 20180215031948_B62
  article-title: Epigenetic regulation of hypoxia-responsive gene expression: focusing on chromatin and DNA modifications
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.28190
– volume: 72
  start-page: 3897
  year: 2015
  ident: key 20180215031948_B11
  article-title: 2-Oxoglutarate-dependent dioxygenases are sensors of energy metabolism, oxygen availability, and iron homeostasis: potential role in the regulation of aging process
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-015-1978-z
– volume: 45
  start-page: 1504
  year: 2013
  ident: key 20180215031948_B69
  article-title: Vitamin C modulates TET1 function during somatic cell reprogramming
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2807
– volume: 40
  start-page: 3364
  year: 2012
  ident: key 20180215031948_B28
  article-title: Acute depletion of Tet1-dependent 5-hydroxymethylcytosine levels impairs LIF/Stat3 signaling and results in loss of embryonic stem cell identity
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr1253
– volume: 13
  start-page: 360
  year: 2013
  ident: key 20180215031948_B50
  article-title: Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.06.002
– volume: 14
  start-page: 493
  year: 2016
  ident: key 20180215031948_B52
  article-title: Tet3 reads 5-carboxylcytosine through Its CXXC domain and is a potential guardian against neurodegeneration
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.12.044
– volume: 9
  start-page: 285
  year: 2008
  ident: key 20180215031948_B4
  article-title: The role of oxygen availability in embryonic development and stem cell function
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2354
– volume: 49
  start-page: 645
  year: 2013
  ident: key 20180215031948_B57
  article-title: Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.12.019
– volume: 46
  start-page: 419
  year: 2012
  ident: key 20180215031948_B16
  article-title: 5-Methylcytosine DNA demethylation: more than losing a methyl group
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-110711-155451
– volume: 38
  start-page: e181
  year: 2010
  ident: key 20180215031948_B18
  article-title: Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq684
– volume: 468
  start-page: 839
  year: 2010
  ident: key 20180215031948_B38
  article-title: Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2
  publication-title: Nature
  doi: 10.1038/nature09586
– volume: 13
  start-page: 237
  year: 2013
  ident: key 20180215031948_B36
  article-title: Tet1 regulates adult hippocampal neurogenesis and cognition
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.05.006
– volume: 500
  start-page: 222
  year: 2013
  ident: key 20180215031948_B68
  article-title: Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells
  publication-title: Nature
  doi: 10.1038/nature12362
– volume: 12
  start-page: 366
  year: 2011
  ident: key 20180215031948_B41
  article-title: MetaboLab–advanced NMR data processing and analysis for metabolomics
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-366
– volume: 79
  start-page: 1109
  year: 2013
  ident: key 20180215031948_B35
  article-title: Tet1 is critical for neuronal activity-regulated gene expression and memory extinction
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.08.003
– volume: 537
  start-page: 63
  year: 2016
  ident: key 20180215031948_B64
  article-title: Tumour hypoxia causes DNA hypermethylation by reducing TET activity
  publication-title: Nature
  doi: 10.1038/nature19081
– volume: 448
  start-page: 553
  year: 2007
  ident: key 20180215031948_B55
  article-title: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells
  publication-title: Nature
  doi: 10.1038/nature06008
– volume: 24
  start-page: 35
  year: 2012
  ident: key 20180215031948_B63
  article-title: Chromatin as an oxygen sensor and active player in the hypoxia response
  publication-title: Cell Signal.
  doi: 10.1016/j.cellsig.2011.08.019
– volume: 12
  start-page: 1133
  year: 2015
  ident: key 20180215031948_B34
  article-title: Overlapping requirements for Tet2 and Tet3 in normal development and hematopoietic stem cell emergence
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.07.025
– volume: 129
  start-page: 465
  year: 2007
  ident: key 20180215031948_B60
  article-title: Hypoxia-inducible factors, stem cells, and cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2007.04.019
– volume: 7
  start-page: 791
  year: 2015
  ident: key 20180215031948_B77
  article-title: Epigenetic regulation by histone demethylases in hypoxia
  publication-title: Epigenomics
  doi: 10.2217/epi.15.24
– volume: 43
  start-page: 1023
  year: 2007
  ident: key 20180215031948_B8
  article-title: An epigenetic perspective on the free radical theory of development
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2007.06.027
– volume: 112
  start-page: E4236
  year: 2015
  ident: key 20180215031948_B32
  article-title: Simultaneous deletion of the methylcytosine oxidases Tet1 and Tet3 increases transcriptome variability in early embryogenesis
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1510510112
– volume: 49
  start-page: 1061
  year: 2017
  ident: key 20180215031948_B33
  article-title: Lineage-specific functions of TET1 in the postimplantation mouse embryo
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3868
– volume: 76
  start-page: 391
  year: 1998
  ident: key 20180215031948_B5
  article-title: Oxygen, genes, and development: an analysis of the role of hypoxic gene regulation during murine vascular development
  publication-title: J. Mol. Med. (Berl.)
  doi: 10.1007/s001090050231
– volume: 8
  start-page: 200
  year: 2011
  ident: key 20180215031948_B21
  article-title: Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.01.008
– volume: 113
  start-page: E8267
  year: 2016
  ident: key 20180215031948_B25
  article-title: Tet proteins influence the balance between neuroectodermal and mesodermal fate choice by inhibiting Wnt signaling
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1617802113
– volume: 62
  start-page: 848
  year: 2016
  ident: key 20180215031948_B67
  article-title: Impairment of DNA Methylation Maintenance Is the Main Cause of Global Demethylation in Naive Embryonic Stem Cells
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2016.04.025
– volume: 51
  start-page: 142
  year: 2015
  ident: key 20180215031948_B75
  article-title: Critical role of Tet3 in neural progenitor cell maintenance and terminal differentiation
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-014-8734-5
– volume: 291
  start-page: 4256
  year: 2016
  ident: key 20180215031948_B48
  article-title: Fumarate and succinate regulate expression of hypoxia-inducible genes via TET enzymes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.688762
– volume: 14
  start-page: 204
  year: 2013
  ident: key 20180215031948_B9
  article-title: DNA methylation: roles in mammalian development
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3354
– volume: 223
  start-page: 266
  year: 2000
  ident: key 20180215031948_B45
  article-title: Chamber formation and morphogenesis in the developing mammalian heart
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.2000.9753
– volume: 14
  start-page: 341
  year: 2013
  ident: key 20180215031948_B53
  article-title: TETonic shift: biological roles of TET proteins in DNA demethylation and transcription
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3589
– volume: 52
  start-page: 153
  year: 1990
  ident: key 20180215031948_B1
  article-title: The chemical basis of morphogenesis. 1953
  publication-title: Bull. Math. Biol.
  doi: 10.1007/BF02459572
– volume-title: Curr. Protoc. Mol. Biol
  year: 2001
  ident: key 20180215031948_B39
  article-title: Dot and slot blotting of DNA
– volume: 1830
  start-page: 2268
  year: 2013
  ident: key 20180215031948_B7
  article-title: The TGFbeta superfamily in stem cell biology and early mammalian embryonic development
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2012.08.025
– volume: 473
  start-page: 389
  year: 2011
  ident: key 20180215031948_B30
  article-title: Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells
  publication-title: Nature
  doi: 10.1038/nature09934
– volume: 13
  start-page: 351
  year: 2013
  ident: key 20180215031948_B49
  article-title: FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.06.004
– volume: 20
  start-page: 311
  year: 2013
  ident: key 20180215031948_B51
  article-title: Naive pluripotency is associated with global DNA hypomethylation
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2510
– volume: 25
  start-page: 1010
  year: 2011
  ident: key 20180215031948_B54
  article-title: CpG islands and the regulation of transcription
  publication-title: Genes Dev.
  doi: 10.1101/gad.2037511
– volume: 258
  start-page: 1
  year: 2003
  ident: key 20180215031948_B43
  article-title: Heart development: molecular insights into cardiac specification and early morphogenesis
  publication-title: Dev. Biol.
  doi: 10.1016/S0012-1606(03)00112-X
– volume: 27
  start-page: 1318
  year: 2013
  ident: key 20180215031948_B58
  article-title: A double take on bivalent promoters
  publication-title: Genes Dev.
  doi: 10.1101/gad.219626.113
– volume: 495
  start-page: 370
  year: 2013
  ident: key 20180215031948_B71
  article-title: NANOG-dependent function of TET1 and TET2 in establishment of pluripotency
  publication-title: Nature
  doi: 10.1038/nature11925
– volume: 111
  start-page: 1361
  year: 2014
  ident: key 20180215031948_B29
  article-title: Distinct roles of the methylcytosine oxidases Tet1 and Tet2 in mouse embryonic stem cells
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1322921111
– volume: 58
  start-page: 1
  year: 2012
  ident: key 20180215031948_B3
  article-title: Oxidative stress and redox regulation on in vitro development of mammalian embryos
  publication-title: J. Reprod. Dev.
  doi: 10.1262/jrd.11-138N
– volume: 49
  start-page: e323
  year: 2017
  ident: key 20180215031948_B15
  article-title: TET family dioxygenases and DNA demethylation in stem cells and cancers
  publication-title: Exp. Mol. Med.
  doi: 10.1038/emm.2017.5
– volume: 466
  start-page: 1129
  year: 2010
  ident: key 20180215031948_B13
  article-title: Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification
  publication-title: Nature
  doi: 10.1038/nature09303
– volume: 38
  start-page: 431
  year: 2006
  ident: key 20180215031948_B47
  article-title: The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells
  publication-title: Nat. Genet.
  doi: 10.1038/ng1760
– volume: 14
  start-page: R91
  year: 2013
  ident: key 20180215031948_B59
  article-title: Genome-wide analysis identifies a functional association of Tet1 and Polycomb repressive complex 2 in mouse embryonic stem cells
  publication-title: Genome Biol
  doi: 10.1186/gb-2013-14-8-r91
– volume: 15
  start-page: 93
  year: 2014
  ident: key 20180215031948_B61
  article-title: Chromatin modifiers and remodellers: regulators of cellular differentiation
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3607
– volume: 30
  start-page: 755
  year: 2008
  ident: key 20180215031948_B66
  article-title: Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2008.05.007
SSID ssj0014154
Score 2.4414923
Snippet Abstract Graded levels of molecular oxygen (O2) exist within developing mammalian embryos and can differentially regulate cellular specification pathways....
Graded levels of molecular oxygen (O2) exist within developing mammalian embryos and can differentially regulate cellular specification pathways. During...
Graded levels of molecular oxygen (O 2 ) exist within developing mammalian embryos and can differentially regulate cellular specification pathways. During...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1210
SubjectTerms 5-Methylcytosine - analogs & derivatives
5-Methylcytosine - metabolism
Amino Acids, Dicarboxylic - pharmacology
Animals
Cell Differentiation - drug effects
Cell Hypoxia
Cell Line
Demethylation
Dioxygenases - genetics
Dioxygenases - metabolism
Embryoid Bodies - cytology
Embryoid Bodies - metabolism
Epigenesis, Genetic
Gene Expression Regulation, Developmental
Gene regulation, Chromatin and Epigenetics
HEK293 Cells
Histones - genetics
Histones - metabolism
Humans
Hydroxylation
Mice
Mixed Function Oxygenases - genetics
Mixed Function Oxygenases - metabolism
Models, Biological
Mouse Embryonic Stem Cells - cytology
Mouse Embryonic Stem Cells - drug effects
Mouse Embryonic Stem Cells - metabolism
Oxygen - metabolism
Oxygen - pharmacology
Promoter Regions, Genetic
Protein Isoforms - genetics
Protein Isoforms - metabolism
Proto-Oncogene Proteins - genetics
Proto-Oncogene Proteins - metabolism
Title Oxygen gradients can determine epigenetic asymmetry and cellular differentiation via differential regulation of Tet activity in embryonic stem cells
URI https://www.ncbi.nlm.nih.gov/pubmed/29186571
https://www.proquest.com/docview/1970639255
https://pubmed.ncbi.nlm.nih.gov/PMC5814828
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La9tAEF5KLumltEkfTpt0CqGHgohXz9UxhIRQaHNxwDcxqx2lpvE6SEqJ_0d_cGck2dghpAddtA_Efovm252Zb5Q6zrJcO2fSQFvKglgTBrmxFORoS6zG4yqykij842d6eR1_nybTIUC2ecKFn0cnHuuTm98P4u_iXy2bX5HIn1xN184CtkG9SlQnqhmbIQ3v0dgtw7OVzLbBKR-HRm7YmovX6tVAEuG0R_WNekF-T-2fej4gz5fwFbqwze4-fE_tnq1Ktu2rv1cPS94QcFN3gVxtA7xw4IaIFwK6E-1NSVsEbJbzOfEoQO9Aru8lHhVW9VLaHjH4M8PNd7dQ97XrpW1RwYRakMwIKUABMw80t_VSxHZB9KG7aZu36vrifHJ2GQxlF4IyisM2IOtsYhzqvEIGi2JmBePEaiRTuopcmGCeutDxw7DajJiCZcg0jdiyRRqjd2rHLzx9UMAn9dBJaazcMI3QpclsqjGkyMVYJRpH6tsKk6IcNMmlNMZt0fvGo4IBLAYAR-p43fmul-J4uttnBvf5Hl9WwBcMkKwFelrcNwU3CmXjY9ZIve83wnqiMNcmTTI9UtnWFll3EKHu7RY_-9UJdidG1FbNwX-_7KN6yYTMSFS4Tj-pnba-p0MmPa096i4LjrqN_w_63Qfc
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxygen+gradients+can+determine+epigenetic+asymmetry+and+cellular+differentiation+via+differential+regulation+of+Tet+activity+in+embryonic+stem+cells&rft.jtitle=Nucleic+acids+research&rft.au=Burr%2C+Simon&rft.au=Caldwell%2C+Anna&rft.au=Chong%2C+Mei&rft.au=Beretta%2C+Matteo&rft.date=2018-02-16&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=46&rft.issue=3&rft.spage=1210&rft.epage=1226&rft_id=info:doi/10.1093%2Fnar%2Fgkx1197&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_nar_gkx1197
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon