Statistical entropy of Schwarzschild black holes
The entropy of a seven dimensional Schwarzschild black hole of arbitrary large radius is obtained by a mapping onto a near extremal self-dual three-brane whose partition function can be evaluated. The three-brane arises from duality after submitting a neutral blackbrane, from which the Schwarzschild...
Saved in:
Published in | Physics letters. B Vol. 426; no. 3; pp. 269 - 274 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
07.05.1998
|
Online Access | Get full text |
Cover
Loading…
Abstract | The entropy of a seven dimensional Schwarzschild black hole of arbitrary large radius is obtained by a mapping onto a near extremal self-dual three-brane whose partition function can be evaluated. The three-brane arises from duality after submitting a neutral blackbrane, from which the Schwarzschild black hole can be obtained by compactification, to an infinite boost in non compact eleven dimensional space-time and then to a Kaluza-Klein compactification. This limit can be defined in precise terms and yields the Bekenstein-Hawking value up to a factor of order one which can be set to be exactly one with the extra assumption of keeping only transverse brane excitations. The method can be generalized to five and four dimensional black holes. |
---|---|
AbstractList | The entropy of a seven dimensional Schwarzschild black hole of arbitrary large radius is obtained by a mapping onto a near extremal self-dual three-brane whose partition function can be evaluated. The three-brane arises from duality after submitting a neutral blackbrane, from which the Schwarzschild black hole can be obtained by compactification, to an infinite boost in non compact eleven dimensional space-time and then to a Kaluza-Klein compactification. This limit can be defined in precise terms and yields the Bekenstein-Hawking value up to a factor of order one which can be set to be exactly one with the extra assumption of keeping only transverse brane excitations. The method can be generalized to five and four dimensional black holes. |
Author | Englert, F. Rabinovici, E. |
Author_xml | – sequence: 1 givenname: F. surname: Englert fullname: Englert, F. organization: Service de Physique Théorique, Université Libre de Bruxelles, Campus Plaine, C.P.225, Boulevard du Triomphe, B-1050 Bruxelles, Belgium – sequence: 2 givenname: E. surname: Rabinovici fullname: Rabinovici, E. organization: Racah institute of Physics, Hebrew University, Jerusalem, Israel |
BookMark | eNqFj0tLAzEUhYNUsK3-BGGWuhi9N0kzmZVI8QUFF6PrkCY3NDrOlGRQ6q-3D3Hr6mzO-TjfhI26viPGzhGuEFBdNyAqKLmqxUWtLwF4LcrqiI1RV6LkUs5GbPxXOWGTnN8AAGegxgyawQ4xD9HZtqBuSP16U_ShaNzqy6bv7Fax9cWyte69WPUt5VN2HGyb6ew3p-z1_u5l_lgunh-e5reL0gnJh5KsxwpRqaWUHsAFTw4DcKGV9iA5oqul5FYEkkJXaL0lDL7WS0XeBxBTNjtwXepzThTMOsUPmzYGwey0zV7b7JxMrc1e21Tb3c1hR9tzn5GSyS5S58jHRG4wvo__EH4AjAVhOA |
CitedBy_id | crossref_primary_10_1016_S0370_2693_98_00294_9 crossref_primary_10_1016_j_physletb_2004_05_005 crossref_primary_10_1103_PhysRevD_70_026008 crossref_primary_10_1103_PhysRevD_59_084001 crossref_primary_10_1103_PhysRevLett_99_221601 crossref_primary_10_1088_1126_6708_2003_11_047 crossref_primary_10_1088_1126_6708_2004_03_069 crossref_primary_10_1142_S0218271898000358 crossref_primary_10_1103_PhysRevD_59_024006 |
Cites_doi | 10.1103/PhysRevLett.77.2368 10.1103/PhysRevD.54.3915 10.1103/PhysRevD.48.1506 10.1103/PhysRevLett.77.428 10.1016/S0370-2693(98)00294-9 10.1016/0370-2693(96)00521-7 10.1016/0550-3213(96)00323-9 10.1103/PhysRevD.55.878 10.1016/0370-2693(96)00345-0 10.1016/0550-3213(96)00295-7 10.1016/0370-2693(96)00383-8 10.1016/0550-3213(96)00225-8 10.1103/PhysRevD.55.6189 |
ContentType | Journal Article |
Copyright | 1998 Elsevier Science B.V. |
Copyright_xml | – notice: 1998 Elsevier Science B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/S0370-2693(98)00293-7 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1873-2445 |
EndPage | 274 |
ExternalDocumentID | 10_1016_S0370_2693_98_00293_7 S0370269398002937 |
GroupedDBID | --K --M -~X .~1 0R~ 0SF 123 186 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 6I. 6TJ 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYJJ ABFNM ABLJU ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AENEX AEXQZ AFDAS AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIBLX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BCNDV BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 ER. FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GROUPED_DOAJ HME HVGLF HZ~ IHE IPNFZ IXB J1W KOM KQ8 LZ4 M41 MO0 MVM N9A NCXOZ O-L O9- OAUVE OGIMB OK1 OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SCC SDF SDG SDP SES SEW SHN SPC SPCBC SPD SSQ SSZ T5K TN5 WH7 WUQ XJT ZCG ~G- AAXKI AAYXX ADVLN AKRWK CITATION |
ID | FETCH-LOGICAL-c342t-ead171166b44d00cfdec1f023868d04211c9442a3fe43871adae1fd98b6eddf03 |
IEDL.DBID | IXB |
ISSN | 0370-2693 |
IngestDate | Thu Sep 12 16:47:06 EDT 2024 Fri Feb 23 02:27:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-ead171166b44d00cfdec1f023868d04211c9442a3fe43871adae1fd98b6eddf03 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1016_S0370_2693_98_00293_7 elsevier_sciencedirect_doi_10_1016_S0370_2693_98_00293_7 |
PublicationCentury | 1900 |
PublicationDate | 1998-05-07 |
PublicationDateYYYYMMDD | 1998-05-07 |
PublicationDate_xml | – month: 05 year: 1998 text: 1998-05-07 day: 07 |
PublicationDecade | 1990 |
PublicationTitle | Physics letters. B |
PublicationYear | 1998 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | G. Horowitz, J. Polchinski, Phys. Rev. D 55 (1997) 6189, hep-th/9612146. J. Maldacena, A. Strominger, Phys. Rev. Lett. 77 (1996) 428, hep-th/9603060. K. Sfetsos, K. Skenderis, Microscopic Derivation of the Bekenstein-Hawking Entropy Fomula for Non-Extremal Black Holes, hep-th/9711138. C. Callan, J. Maldacena, Nucl. Phys. B 472 (1996) 591, hep-th/9602043. J. Maldacena, Black Holes and D-Branes, hep-th/9705078, and references therein. R. Argurio, F. Englert, L. Houart, Phys. Lett. B 426 (1998) 275, hep-th/9801053. G. Horowitz, A. Strominger, Phys. Rev. Lett. 77 (1996) 2368, hep-th/9602051. M.J. Duff, H. Lu, C.N. Pope, Phys. Lett. B 382 (1996) 73, hep-th/9604052. T. Banks, W. Fischler, I.R. Klebanov, L. Susskind, Schwarzschild Black Holes from Matrix Theory, hep-th/9709091. S. Carlip, Phys. Rev. D 51 (1995) 632, gr-qc/9409052; Phys. Rev. D 55 (1997) 878, gr-qc/9606043. A. Hashimoto, Perturbative Dynamics of Fractional Strings on Multiply Wound D Strings, hep-th/9610250. I.R. Klebanov, A.A. Tseytlin, Nucl. Phys. B 475 (1996) 164, hep-th/9604089. S.R. Das, S.D. Mathur, S. Kalyana Rama, P. Ramadevi, Boosts, Schwarzschild Black Holes and Absorption Cross-Sections in M-Theory, hep-th/9711003. D. Birmingham, I. Sachs, S. Sen, Entropy of the Three Dimensional Black Holes in String Theory, hep-th/9801019. A. Strominger, C. Vafa, Phys. Lett. B 379 (1996) 99, hep-th/9601029. J. Maldacena, The Large N Limit of Superconformal Field Theories and Supergravity, hep-th/9711200. G.T. Horowitz, E.J. Martinec, Comments on Black Holes in Matrix Theory, hep-th/9710217. M. Bañados, C. Teitelboim, J. Zanelli, Phys. Rev. Lett. 69 (1992) 1849, hep-th/9204099; M. Bañados, M. Henneaux, C. Teitelboim, J. Zanelli, Phys. Rev. D 48 (1993) 1506, gr-qc/9302012. J Maldacena, L. Susskind, Nucl. Phys. B 475 (1996) 679, hep-th/9604042. C.V. Johnson, R.R. Khuri, R.C. Myers, Phys. Lett. B 378 (1996) 78, hep-th/9603061. N. Ohta, J.G. Zhou, Euclidean Path Integral, D0-Branes and Schwarzschild Black Holes in Matrix theory, hep-th/9801023. T. Banks, W. Fischler, I.R. Klebanov, L. Susskind, Schwarzschild Black Holes in Matrix Theory II, hep-th/9711005. I.R. Klebanov, L. Susskind, Schwarzschild Black Holes in Various Dimensions from Matrix Theory, hep-th/9709108. S.S. Gubser, I.R. Klebanov, A.W. Peet, Phys. Rev. D 54 (1966) 3915, hep-th/9602135. A. Strominger, Black Hole Entropy From Near Horizon Microstates, hep-th/9712251. 10.1016/S0370-2693(98)00293-7_BIB19 10.1016/S0370-2693(98)00293-7_BIB2 10.1016/S0370-2693(98)00293-7_BIB24 10.1016/S0370-2693(98)00293-7_BIB3 10.1016/S0370-2693(98)00293-7_BIB25 10.1016/S0370-2693(98)00293-7_BIB22 10.1016/S0370-2693(98)00293-7_BIB1 10.1016/S0370-2693(98)00293-7_BIB23 10.1016/S0370-2693(98)00293-7_BIB6 10.1016/S0370-2693(98)00293-7_BIB7 10.1016/S0370-2693(98)00293-7_BIB4 10.1016/S0370-2693(98)00293-7_BIB5 10.1016/S0370-2693(98)00293-7_BIB20 10.1016/S0370-2693(98)00293-7_BIB21 10.1016/S0370-2693(98)00293-7_BIB8 10.1016/S0370-2693(98)00293-7_BIB9 10.1016/S0370-2693(98)00293-7_BIB13 10.1016/S0370-2693(98)00293-7_BIB14 10.1016/S0370-2693(98)00293-7_BIB11 10.1016/S0370-2693(98)00293-7_BIB12 10.1016/S0370-2693(98)00293-7_BIB17 10.1016/S0370-2693(98)00293-7_BIB18 10.1016/S0370-2693(98)00293-7_BIB15 10.1016/S0370-2693(98)00293-7_BIB16 10.1016/S0370-2693(98)00293-7_BIB10 |
References_xml | – ident: 10.1016/S0370-2693(98)00293-7_BIB4 doi: 10.1103/PhysRevLett.77.2368 – ident: 10.1016/S0370-2693(98)00293-7_BIB7 doi: 10.1103/PhysRevD.54.3915 – ident: 10.1016/S0370-2693(98)00293-7_BIB14 doi: 10.1103/PhysRevD.48.1506 – ident: 10.1016/S0370-2693(98)00293-7_BIB18 – ident: 10.1016/S0370-2693(98)00293-7_BIB22 – ident: 10.1016/S0370-2693(98)00293-7_BIB8 – ident: 10.1016/S0370-2693(98)00293-7_BIB5 doi: 10.1103/PhysRevLett.77.428 – ident: 10.1016/S0370-2693(98)00293-7_BIB19 doi: 10.1016/S0370-2693(98)00294-9 – ident: 10.1016/S0370-2693(98)00293-7_BIB12 – ident: 10.1016/S0370-2693(98)00293-7_BIB10 – ident: 10.1016/S0370-2693(98)00293-7_BIB21 doi: 10.1016/0370-2693(96)00521-7 – ident: 10.1016/S0370-2693(98)00293-7_BIB24 doi: 10.1016/0550-3213(96)00323-9 – ident: 10.1016/S0370-2693(98)00293-7_BIB16 – ident: 10.1016/S0370-2693(98)00293-7_BIB15 doi: 10.1103/PhysRevD.55.878 – ident: 10.1016/S0370-2693(98)00293-7_BIB2 doi: 10.1016/0370-2693(96)00345-0 – ident: 10.1016/S0370-2693(98)00293-7_BIB20 doi: 10.1016/0550-3213(96)00295-7 – ident: 10.1016/S0370-2693(98)00293-7_BIB17 – ident: 10.1016/S0370-2693(98)00293-7_BIB25 – ident: 10.1016/S0370-2693(98)00293-7_BIB9 – ident: 10.1016/S0370-2693(98)00293-7_BIB6 doi: 10.1016/0370-2693(96)00383-8 – ident: 10.1016/S0370-2693(98)00293-7_BIB11 – ident: 10.1016/S0370-2693(98)00293-7_BIB13 – ident: 10.1016/S0370-2693(98)00293-7_BIB1 – ident: 10.1016/S0370-2693(98)00293-7_BIB3 doi: 10.1016/0550-3213(96)00225-8 – ident: 10.1016/S0370-2693(98)00293-7_BIB23 doi: 10.1103/PhysRevD.55.6189 |
SSID | ssj0001506 |
Score | 1.6509277 |
Snippet | The entropy of a seven dimensional Schwarzschild black hole of arbitrary large radius is obtained by a mapping onto a near extremal self-dual three-brane whose... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 269 |
Title | Statistical entropy of Schwarzschild black holes |
URI | https://dx.doi.org/10.1016/S0370-2693(98)00293-7 |
Volume | 426 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61IngRn1gfZQ8e9JA22c0mm2MtlqrQSy30tmTzwF7a0lZED_52J9mtVRAPXsMkJJPsN_NlZyYIXSmuABhZirUwBDOwIVhmjmE40I5pZzOiQ7XPAe-P2MM4HddQd50L48MqK-wvMT2gddXSrrTZnk8m7SFJBBAImUjv84CVBRxOUhqS-Ma3X2jsK-iFPwmCYC-9yeIpRwiN1zK7CYNg8bt9-mZzevtor3IWo045nwNUs9NDtBOCNvXyCBHvKYZCyyDkb2ln87do5qKhfn5Vi_dlSNSOCn9FF_lncJfHaNS7e-r2cfUCAtYJi1cYtpkKSjkvGDOEaGesps6bWZ4Z-Nwo1ZKxWCXOsgSojzLKUmdkVnBrjCPJCapPZ1N7iiLJhQZu4JQtDGOWyxiEYqaAEgJjM3EDtdbrzudloYt8EwEGisq9onKZ5UFRuWigbK2d_MeO5QDGf3c9-3_Xc7RbZgWmmIgLVF8tXuwluAWroom2Wh-0ibY794_9QTOcgk9rD7Hd |
link.rule.ids | 315,783,787,3513,4509,24128,27936,27937,45597,45691,45886 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEJ4gxujF-Iz43IMHPVS6u6XdHtVIQJELkHBrun1ELkAAY_TX23YX0cR48NpMm93p7DfzdWemAJeSSgeMpIEU0xgR50MQzyxBzqAtUdZkWIVun13aGpDHYWNYgftlLYxPqyyxv8D0gNblSL3UZn06GtV7OGWOQPCU-5jHedk1WPdll97M28O7Lzj2LfTCrwSGkRdflfEUS4TBK55dh1UQ-91BfXM6zR3YLqPF6LZ4oF2omPEebISsTTXfB-xDxdBp2Qn5Y9rJ9D2a2KinXt7k7GMeKrWj3J_RRf4e3PkBDJoP_fsWKq9AQColyQK5fY5ZHFOaE6IxVlYbFVvvZ2mm3fcWx4oTksjUGpI67iO1NLHVPMup0dri9BCq48nYHEHEKVOOHFhpck2IoTxxQgmRjhM6yqaTGtws31tMi04XYpUC5hQlvKIEz0RQlGA1yJbaET-2TDg0_nvq8f-nXsBmq__cEZ129-kEtooSwQbC7BSqi9mrOXMxwiI_DzbwCcnKsn8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+entropy+of+Schwarzschild+black+holes&rft.jtitle=Physics+letters.+B&rft.au=Englert%2C+F.&rft.au=Rabinovici%2C+E.&rft.date=1998-05-07&rft.issn=0370-2693&rft.volume=426&rft.issue=3-4&rft.spage=269&rft.epage=274&rft_id=info:doi/10.1016%2FS0370-2693%2898%2900293-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0370_2693_98_00293_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0370-2693&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0370-2693&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0370-2693&client=summon |