Statistical entropy of Schwarzschild black holes

The entropy of a seven dimensional Schwarzschild black hole of arbitrary large radius is obtained by a mapping onto a near extremal self-dual three-brane whose partition function can be evaluated. The three-brane arises from duality after submitting a neutral blackbrane, from which the Schwarzschild...

Full description

Saved in:
Bibliographic Details
Published inPhysics letters. B Vol. 426; no. 3; pp. 269 - 274
Main Authors Englert, F., Rabinovici, E.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 07.05.1998
Online AccessGet full text

Cover

Loading…
Abstract The entropy of a seven dimensional Schwarzschild black hole of arbitrary large radius is obtained by a mapping onto a near extremal self-dual three-brane whose partition function can be evaluated. The three-brane arises from duality after submitting a neutral blackbrane, from which the Schwarzschild black hole can be obtained by compactification, to an infinite boost in non compact eleven dimensional space-time and then to a Kaluza-Klein compactification. This limit can be defined in precise terms and yields the Bekenstein-Hawking value up to a factor of order one which can be set to be exactly one with the extra assumption of keeping only transverse brane excitations. The method can be generalized to five and four dimensional black holes.
AbstractList The entropy of a seven dimensional Schwarzschild black hole of arbitrary large radius is obtained by a mapping onto a near extremal self-dual three-brane whose partition function can be evaluated. The three-brane arises from duality after submitting a neutral blackbrane, from which the Schwarzschild black hole can be obtained by compactification, to an infinite boost in non compact eleven dimensional space-time and then to a Kaluza-Klein compactification. This limit can be defined in precise terms and yields the Bekenstein-Hawking value up to a factor of order one which can be set to be exactly one with the extra assumption of keeping only transverse brane excitations. The method can be generalized to five and four dimensional black holes.
Author Englert, F.
Rabinovici, E.
Author_xml – sequence: 1
  givenname: F.
  surname: Englert
  fullname: Englert, F.
  organization: Service de Physique Théorique, Université Libre de Bruxelles, Campus Plaine, C.P.225, Boulevard du Triomphe, B-1050 Bruxelles, Belgium
– sequence: 2
  givenname: E.
  surname: Rabinovici
  fullname: Rabinovici, E.
  organization: Racah institute of Physics, Hebrew University, Jerusalem, Israel
BookMark eNqFj0tLAzEUhYNUsK3-BGGWuhi9N0kzmZVI8QUFF6PrkCY3NDrOlGRQ6q-3D3Hr6mzO-TjfhI26viPGzhGuEFBdNyAqKLmqxUWtLwF4LcrqiI1RV6LkUs5GbPxXOWGTnN8AAGegxgyawQ4xD9HZtqBuSP16U_ShaNzqy6bv7Fax9cWyte69WPUt5VN2HGyb6ew3p-z1_u5l_lgunh-e5reL0gnJh5KsxwpRqaWUHsAFTw4DcKGV9iA5oqul5FYEkkJXaL0lDL7WS0XeBxBTNjtwXepzThTMOsUPmzYGwey0zV7b7JxMrc1e21Tb3c1hR9tzn5GSyS5S58jHRG4wvo__EH4AjAVhOA
CitedBy_id crossref_primary_10_1016_S0370_2693_98_00294_9
crossref_primary_10_1016_j_physletb_2004_05_005
crossref_primary_10_1103_PhysRevD_70_026008
crossref_primary_10_1103_PhysRevD_59_084001
crossref_primary_10_1103_PhysRevLett_99_221601
crossref_primary_10_1088_1126_6708_2003_11_047
crossref_primary_10_1088_1126_6708_2004_03_069
crossref_primary_10_1142_S0218271898000358
crossref_primary_10_1103_PhysRevD_59_024006
Cites_doi 10.1103/PhysRevLett.77.2368
10.1103/PhysRevD.54.3915
10.1103/PhysRevD.48.1506
10.1103/PhysRevLett.77.428
10.1016/S0370-2693(98)00294-9
10.1016/0370-2693(96)00521-7
10.1016/0550-3213(96)00323-9
10.1103/PhysRevD.55.878
10.1016/0370-2693(96)00345-0
10.1016/0550-3213(96)00295-7
10.1016/0370-2693(96)00383-8
10.1016/0550-3213(96)00225-8
10.1103/PhysRevD.55.6189
ContentType Journal Article
Copyright 1998 Elsevier Science B.V.
Copyright_xml – notice: 1998 Elsevier Science B.V.
DBID AAYXX
CITATION
DOI 10.1016/S0370-2693(98)00293-7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2445
EndPage 274
ExternalDocumentID 10_1016_S0370_2693_98_00293_7
S0370269398002937
GroupedDBID --K
--M
-~X
.~1
0R~
0SF
123
186
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
6I.
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYJJ
ABFNM
ABLJU
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFDAS
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIBLX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BCNDV
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
ER.
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GROUPED_DOAJ
HME
HVGLF
HZ~
IHE
IPNFZ
IXB
J1W
KOM
KQ8
LZ4
M41
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OGIMB
OK1
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SHN
SPC
SPCBC
SPD
SSQ
SSZ
T5K
TN5
WH7
WUQ
XJT
ZCG
~G-
AAXKI
AAYXX
ADVLN
AKRWK
CITATION
ID FETCH-LOGICAL-c342t-ead171166b44d00cfdec1f023868d04211c9442a3fe43871adae1fd98b6eddf03
IEDL.DBID IXB
ISSN 0370-2693
IngestDate Thu Sep 12 16:47:06 EDT 2024
Fri Feb 23 02:27:12 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-ead171166b44d00cfdec1f023868d04211c9442a3fe43871adae1fd98b6eddf03
PageCount 6
ParticipantIDs crossref_primary_10_1016_S0370_2693_98_00293_7
elsevier_sciencedirect_doi_10_1016_S0370_2693_98_00293_7
PublicationCentury 1900
PublicationDate 1998-05-07
PublicationDateYYYYMMDD 1998-05-07
PublicationDate_xml – month: 05
  year: 1998
  text: 1998-05-07
  day: 07
PublicationDecade 1990
PublicationTitle Physics letters. B
PublicationYear 1998
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References G. Horowitz, J. Polchinski, Phys. Rev. D 55 (1997) 6189, hep-th/9612146.
J. Maldacena, A. Strominger, Phys. Rev. Lett. 77 (1996) 428, hep-th/9603060.
K. Sfetsos, K. Skenderis, Microscopic Derivation of the Bekenstein-Hawking Entropy Fomula for Non-Extremal Black Holes, hep-th/9711138.
C. Callan, J. Maldacena, Nucl. Phys. B 472 (1996) 591, hep-th/9602043.
J. Maldacena, Black Holes and D-Branes, hep-th/9705078, and references therein.
R. Argurio, F. Englert, L. Houart, Phys. Lett. B 426 (1998) 275, hep-th/9801053.
G. Horowitz, A. Strominger, Phys. Rev. Lett. 77 (1996) 2368, hep-th/9602051.
M.J. Duff, H. Lu, C.N. Pope, Phys. Lett. B 382 (1996) 73, hep-th/9604052.
T. Banks, W. Fischler, I.R. Klebanov, L. Susskind, Schwarzschild Black Holes from Matrix Theory, hep-th/9709091.
S. Carlip, Phys. Rev. D 51 (1995) 632, gr-qc/9409052; Phys. Rev. D 55 (1997) 878, gr-qc/9606043.
A. Hashimoto, Perturbative Dynamics of Fractional Strings on Multiply Wound D Strings, hep-th/9610250.
I.R. Klebanov, A.A. Tseytlin, Nucl. Phys. B 475 (1996) 164, hep-th/9604089.
S.R. Das, S.D. Mathur, S. Kalyana Rama, P. Ramadevi, Boosts, Schwarzschild Black Holes and Absorption Cross-Sections in M-Theory, hep-th/9711003.
D. Birmingham, I. Sachs, S. Sen, Entropy of the Three Dimensional Black Holes in String Theory, hep-th/9801019.
A. Strominger, C. Vafa, Phys. Lett. B 379 (1996) 99, hep-th/9601029.
J. Maldacena, The Large N Limit of Superconformal Field Theories and Supergravity, hep-th/9711200.
G.T. Horowitz, E.J. Martinec, Comments on Black Holes in Matrix Theory, hep-th/9710217.
M. Bañados, C. Teitelboim, J. Zanelli, Phys. Rev. Lett. 69 (1992) 1849, hep-th/9204099; M. Bañados, M. Henneaux, C. Teitelboim, J. Zanelli, Phys. Rev. D 48 (1993) 1506, gr-qc/9302012.
J Maldacena, L. Susskind, Nucl. Phys. B 475 (1996) 679, hep-th/9604042.
C.V. Johnson, R.R. Khuri, R.C. Myers, Phys. Lett. B 378 (1996) 78, hep-th/9603061.
N. Ohta, J.G. Zhou, Euclidean Path Integral, D0-Branes and Schwarzschild Black Holes in Matrix theory, hep-th/9801023.
T. Banks, W. Fischler, I.R. Klebanov, L. Susskind, Schwarzschild Black Holes in Matrix Theory II, hep-th/9711005.
I.R. Klebanov, L. Susskind, Schwarzschild Black Holes in Various Dimensions from Matrix Theory, hep-th/9709108.
S.S. Gubser, I.R. Klebanov, A.W. Peet, Phys. Rev. D 54 (1966) 3915, hep-th/9602135.
A. Strominger, Black Hole Entropy From Near Horizon Microstates, hep-th/9712251.
10.1016/S0370-2693(98)00293-7_BIB19
10.1016/S0370-2693(98)00293-7_BIB2
10.1016/S0370-2693(98)00293-7_BIB24
10.1016/S0370-2693(98)00293-7_BIB3
10.1016/S0370-2693(98)00293-7_BIB25
10.1016/S0370-2693(98)00293-7_BIB22
10.1016/S0370-2693(98)00293-7_BIB1
10.1016/S0370-2693(98)00293-7_BIB23
10.1016/S0370-2693(98)00293-7_BIB6
10.1016/S0370-2693(98)00293-7_BIB7
10.1016/S0370-2693(98)00293-7_BIB4
10.1016/S0370-2693(98)00293-7_BIB5
10.1016/S0370-2693(98)00293-7_BIB20
10.1016/S0370-2693(98)00293-7_BIB21
10.1016/S0370-2693(98)00293-7_BIB8
10.1016/S0370-2693(98)00293-7_BIB9
10.1016/S0370-2693(98)00293-7_BIB13
10.1016/S0370-2693(98)00293-7_BIB14
10.1016/S0370-2693(98)00293-7_BIB11
10.1016/S0370-2693(98)00293-7_BIB12
10.1016/S0370-2693(98)00293-7_BIB17
10.1016/S0370-2693(98)00293-7_BIB18
10.1016/S0370-2693(98)00293-7_BIB15
10.1016/S0370-2693(98)00293-7_BIB16
10.1016/S0370-2693(98)00293-7_BIB10
References_xml – ident: 10.1016/S0370-2693(98)00293-7_BIB4
  doi: 10.1103/PhysRevLett.77.2368
– ident: 10.1016/S0370-2693(98)00293-7_BIB7
  doi: 10.1103/PhysRevD.54.3915
– ident: 10.1016/S0370-2693(98)00293-7_BIB14
  doi: 10.1103/PhysRevD.48.1506
– ident: 10.1016/S0370-2693(98)00293-7_BIB18
– ident: 10.1016/S0370-2693(98)00293-7_BIB22
– ident: 10.1016/S0370-2693(98)00293-7_BIB8
– ident: 10.1016/S0370-2693(98)00293-7_BIB5
  doi: 10.1103/PhysRevLett.77.428
– ident: 10.1016/S0370-2693(98)00293-7_BIB19
  doi: 10.1016/S0370-2693(98)00294-9
– ident: 10.1016/S0370-2693(98)00293-7_BIB12
– ident: 10.1016/S0370-2693(98)00293-7_BIB10
– ident: 10.1016/S0370-2693(98)00293-7_BIB21
  doi: 10.1016/0370-2693(96)00521-7
– ident: 10.1016/S0370-2693(98)00293-7_BIB24
  doi: 10.1016/0550-3213(96)00323-9
– ident: 10.1016/S0370-2693(98)00293-7_BIB16
– ident: 10.1016/S0370-2693(98)00293-7_BIB15
  doi: 10.1103/PhysRevD.55.878
– ident: 10.1016/S0370-2693(98)00293-7_BIB2
  doi: 10.1016/0370-2693(96)00345-0
– ident: 10.1016/S0370-2693(98)00293-7_BIB20
  doi: 10.1016/0550-3213(96)00295-7
– ident: 10.1016/S0370-2693(98)00293-7_BIB17
– ident: 10.1016/S0370-2693(98)00293-7_BIB25
– ident: 10.1016/S0370-2693(98)00293-7_BIB9
– ident: 10.1016/S0370-2693(98)00293-7_BIB6
  doi: 10.1016/0370-2693(96)00383-8
– ident: 10.1016/S0370-2693(98)00293-7_BIB11
– ident: 10.1016/S0370-2693(98)00293-7_BIB13
– ident: 10.1016/S0370-2693(98)00293-7_BIB1
– ident: 10.1016/S0370-2693(98)00293-7_BIB3
  doi: 10.1016/0550-3213(96)00225-8
– ident: 10.1016/S0370-2693(98)00293-7_BIB23
  doi: 10.1103/PhysRevD.55.6189
SSID ssj0001506
Score 1.6509277
Snippet The entropy of a seven dimensional Schwarzschild black hole of arbitrary large radius is obtained by a mapping onto a near extremal self-dual three-brane whose...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 269
Title Statistical entropy of Schwarzschild black holes
URI https://dx.doi.org/10.1016/S0370-2693(98)00293-7
Volume 426
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61IngRn1gfZQ8e9JA22c0mm2MtlqrQSy30tmTzwF7a0lZED_52J9mtVRAPXsMkJJPsN_NlZyYIXSmuABhZirUwBDOwIVhmjmE40I5pZzOiQ7XPAe-P2MM4HddQd50L48MqK-wvMT2gddXSrrTZnk8m7SFJBBAImUjv84CVBRxOUhqS-Ma3X2jsK-iFPwmCYC-9yeIpRwiN1zK7CYNg8bt9-mZzevtor3IWo045nwNUs9NDtBOCNvXyCBHvKYZCyyDkb2ln87do5qKhfn5Vi_dlSNSOCn9FF_lncJfHaNS7e-r2cfUCAtYJi1cYtpkKSjkvGDOEaGesps6bWZ4Z-Nwo1ZKxWCXOsgSojzLKUmdkVnBrjCPJCapPZ1N7iiLJhQZu4JQtDGOWyxiEYqaAEgJjM3EDtdbrzudloYt8EwEGisq9onKZ5UFRuWigbK2d_MeO5QDGf3c9-3_Xc7RbZgWmmIgLVF8tXuwluAWroom2Wh-0ibY794_9QTOcgk9rD7Hd
link.rule.ids 315,783,787,3513,4509,24128,27936,27937,45597,45691,45886
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEJ4gxujF-Iz43IMHPVS6u6XdHtVIQJELkHBrun1ELkAAY_TX23YX0cR48NpMm93p7DfzdWemAJeSSgeMpIEU0xgR50MQzyxBzqAtUdZkWIVun13aGpDHYWNYgftlLYxPqyyxv8D0gNblSL3UZn06GtV7OGWOQPCU-5jHedk1WPdll97M28O7Lzj2LfTCrwSGkRdflfEUS4TBK55dh1UQ-91BfXM6zR3YLqPF6LZ4oF2omPEebISsTTXfB-xDxdBp2Qn5Y9rJ9D2a2KinXt7k7GMeKrWj3J_RRf4e3PkBDJoP_fsWKq9AQColyQK5fY5ZHFOaE6IxVlYbFVvvZ2mm3fcWx4oTksjUGpI67iO1NLHVPMup0dri9BCq48nYHEHEKVOOHFhpck2IoTxxQgmRjhM6yqaTGtws31tMi04XYpUC5hQlvKIEz0RQlGA1yJbaET-2TDg0_nvq8f-nXsBmq__cEZ129-kEtooSwQbC7BSqi9mrOXMxwiI_DzbwCcnKsn8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+entropy+of+Schwarzschild+black+holes&rft.jtitle=Physics+letters.+B&rft.au=Englert%2C+F.&rft.au=Rabinovici%2C+E.&rft.date=1998-05-07&rft.issn=0370-2693&rft.volume=426&rft.issue=3-4&rft.spage=269&rft.epage=274&rft_id=info:doi/10.1016%2FS0370-2693%2898%2900293-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0370_2693_98_00293_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0370-2693&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0370-2693&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0370-2693&client=summon