AI-Powered Microgrid Networks: Multi-Agent Deep Reinforcement Learning for Optimized Energy Trading in Interconnected Systems

Intelligent smart microgrids have been identified as a subject of significant research interest, given their potential to optimize energy consumption in residential contexts. The growing utilization of intelligent appliances and the integration of renewable energy sources, including distributed gene...

Full description

Saved in:
Bibliographic Details
Published inArabian journal for science and engineering (2011) Vol. 50; no. 8; pp. 6157 - 6179
Main Authors Alferidi, Ahmad, Alsolami, Mohammed, Lami, Badr, Slama, Sami Ben
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2193-567X
1319-8025
2191-4281
DOI10.1007/s13369-024-09754-4

Cover

Abstract Intelligent smart microgrids have been identified as a subject of significant research interest, given their potential to optimize energy consumption in residential contexts. The growing utilization of intelligent appliances and the integration of renewable energy sources, including distributed generation (DG) and electric vehicles (EVs), have increased energy demand. This paper presents an artificial intelligence (AI) system that employs deep reinforcement learning to facilitate efficient device scheduling and peer-to-peer (P2P) energy trading within microgrids. The system accommodates users with varying access levels to distributed generation (DG), battery storage, and electric vehicles (EVs). The real-time pricing and demand response mechanisms enable the system to adapt to fluctuating energy requirements. In contrast, surplus energy is shared through a peer-to-peer network, reducing grid dependency. The approach was validated using an experimental database from Saudi Arabia, demonstrating a notable reduction in electricity costs for participants.
AbstractList Intelligent smart microgrids have been identified as a subject of significant research interest, given their potential to optimize energy consumption in residential contexts. The growing utilization of intelligent appliances and the integration of renewable energy sources, including distributed generation (DG) and electric vehicles (EVs), have increased energy demand. This paper presents an artificial intelligence (AI) system that employs deep reinforcement learning to facilitate efficient device scheduling and peer-to-peer (P2P) energy trading within microgrids. The system accommodates users with varying access levels to distributed generation (DG), battery storage, and electric vehicles (EVs). The real-time pricing and demand response mechanisms enable the system to adapt to fluctuating energy requirements. In contrast, surplus energy is shared through a peer-to-peer network, reducing grid dependency. The approach was validated using an experimental database from Saudi Arabia, demonstrating a notable reduction in electricity costs for participants.
Author Slama, Sami Ben
Lami, Badr
Alsolami, Mohammed
Alferidi, Ahmad
Author_xml – sequence: 1
  givenname: Ahmad
  orcidid: 0000-0002-2923-9504
  surname: Alferidi
  fullname: Alferidi, Ahmad
  email: ahhfirade@taibahu.edu.sa
  organization: Electrical Engineering Department, College of Engineering, Taibah University
– sequence: 2
  givenname: Mohammed
  surname: Alsolami
  fullname: Alsolami, Mohammed
  organization: Electrical Engineering Department, College of Engineering, Taibah University
– sequence: 3
  givenname: Badr
  surname: Lami
  fullname: Lami, Badr
  organization: Electrical Engineering Department, College of Engineering, Taibah University
– sequence: 4
  givenname: Sami Ben
  surname: Slama
  fullname: Slama, Sami Ben
  organization: The Applied College, King Abdulaziz University
BookMark eNp9kEFPGzEQha2KSg0pf4CTJc4Gj-31rrlFFGikAFUBiZvlbGZXhsSb2o5QKvW_4ySVeutpRm_eeyN9x-QoDAEJOQV-DpzXFwmk1IZxoRg3daWY-kRGAgwwJRo42u-SVbp--UJOUvJzrhppKgA5In8mU_ZjeMeIC3rn2zj00S_oPeb3Ib6lS3q3WWbPJj2GTL8hrulP9KEbYournTRDF4MPPS0SfVhnv_K_S9N1wNhv6VN0i93RBzoNGWM7hIBtLobHbcq4Sl_J584tE578nWPyfHP9dPWdzR5up1eTGWulEpmh1LpuG4cLAJgrXYPRleFzB6ozLSBIrkXTcNOgqSR06FylRAtaN1VthJNjcnboXcfh1wZTtq_DJoby0kowoqmNrkVxiYOrYEgpYmfX0a9c3FrgdkfaHkjbQtruSVtVQvIQSsUceoz_qv-T-gDC5YMn
Cites_doi 10.1016/j.egyr.2023.09.008
10.1016/j.applthermaleng.2015.01.076
10.1016/j.scs.2020
10.1016/j.egyr.2021.11.101
10.1007/s12046-018-0793-2
10.1016/j.apenergy.2019.114452
10.1049/pbpo215e_ch5
10.1016/j.segan.2023.101059
10.1016/j.jclepro.2021.127792
10.1016/j.engappai.2023.106388
10.1016/j.jem.2022.02.003
10.1016/j.asej.2021.05.018
10.1002/tee.23711
10.1016/j.segan.2023.101074
10.1049/stg2.12027
10.1016/j.apenergy.2023.03.029
10.1016/j.apenergy.2023.120685
10.3390/en15207807
10.1109/tmc.2018.2878842
10.1016/j.egyr.2022.10.080
10.1016/j.rser.2023.113262
10.2139/ssrn.4493408
10.1016/j.rser.2017.04.104
10.1016/j.egyr.2023.05.011
10.1016/j.energy.2022.125563
10.1016/j.ijepes.2022.108885
10.1186/s42162-022-00235-2
10.1016/j.energy.2015.09.042
10.1063/9780735422339_012
10.1016/j.renene.2021.02.103
10.1016/j.jobe.2023.106301
10.1016/j.energy.2021.122576
10.1016/j.renene.2022.01.024
10.1016/j.scs.2020.102658
10.3390/s19183937
10.1016/0140-9883(90)90046-i
10.1016/j.jres.2024.02.011
ContentType Journal Article
Copyright King Fahd University of Petroleum & Minerals 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: King Fahd University of Petroleum & Minerals 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
DOI 10.1007/s13369-024-09754-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-4281
EndPage 6179
ExternalDocumentID 10_1007_s13369_024_09754_4
GroupedDBID 0R~
203
2KG
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AAPKM
AARHV
AASML
AATNV
AATVU
AAUYE
AAYTO
AAYZH
ABAKF
ABBRH
ABDBE
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACHSB
ACMDZ
ACMLO
ACOKC
ACPIV
ACUHS
ACZOJ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFDZB
AFLOW
AFOHR
AFQWF
AGAYW
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AHAVH
AHBYD
AHPBZ
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
AOCGG
AXYYD
AYFIA
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESX
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GQ7
H13
HG6
I-F
IKXTQ
IWAJR
J-C
JBSCW
JZLTJ
L8X
LLZTM
M4Y
MK~
NPVJJ
NQJWS
NU0
O9J
PT4
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
TUS
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ATHPR
CITATION
06D
0VY
23M
29~
2KM
30V
408
5GY
96X
AAJKR
AARTL
AAYIU
AAYQN
AAZMS
ABTHY
ACGFS
ACKNC
ADHHG
ADHIR
AEGNC
AEJHL
AENEX
AEPYU
AETCA
AFWTZ
AFZKB
AGDGC
AGWZB
AGYKE
AHYZX
AIIXL
AMKLP
AMYQR
ANMIH
AYJHY
ESBYG
FFXSO
FRRFC
FYJPI
GGRSB
GJIRD
GX1
HMJXF
HRMNR
HZ~
I0C
IXD
J9A
KOV
O93
OVT
P9P
R9I
RLLFE
S1Z
S27
S3B
SEG
SHX
T13
U2A
UG4
VC2
W48
WK8
~A9
ID FETCH-LOGICAL-c342t-e3667c8aed111b467196590ba14f9c1e1306288098e9531feaa542c16685792a3
ISSN 2193-567X
1319-8025
IngestDate Mon Jun 30 07:46:34 EDT 2025
Sun Jul 06 05:02:07 EDT 2025
Tue Apr 22 01:10:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Deep reinforcement learning
Electric vehicles
Distributed generation
Real-time pricing
Intelligent microgrids
Peer-to-peer energy trading
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-e3667c8aed111b467196590ba14f9c1e1306288098e9531feaa542c16685792a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2923-9504
PQID 3192879672
PQPubID 2044268
PageCount 23
ParticipantIDs proquest_journals_3192879672
crossref_primary_10_1007_s13369_024_09754_4
springer_journals_10_1007_s13369_024_09754_4
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Arabian journal for science and engineering (2011)
PublicationTitleAbbrev Arab J Sci Eng
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References S Ghaemi (9754_CR30) 2023; 34
AA Khan (9754_CR22) 2022; 6
HK Lopez (9754_CR37) 2023; 263
S Ben Slama (9754_CR31) 2023; 123
S Smart (9754_CR7) 2023
S Hou (9754_CR38) 2022; 18
S Lee (9754_CR14) 2019; 19
G Mokryani (9754_CR28) 2022
R Jones (9754_CR23) 2022; 90
S-K Seo (9754_CR34) 2020; 262
A Bilgen (9754_CR19) 2015; 80
Y Yang (9754_CR36) 2019; 18
MA Hassan (9754_CR5) 2021; 171
L Martinez (9754_CR24) 2023; 201
K Brown (9754_CR25) 2024; 12
Y Xia (9754_CR29) 2023; 334
K Kusakana (9754_CR13) 2021; 4
MA Hossain (9754_CR12) 2021; 66
PA Gbadega (9754_CR35) 2022; 8
E Fernandez (9754_CR26) 2023
H Pereira (9754_CR2) 2022
E-NS Youssef (9754_CR10) 2022; 15
MJ Horowitz (9754_CR27) 1990; 12
MA Hossain (9754_CR39) 2021; 66
MS Khan (9754_CR16) 2023; 70
S Paraschiv (9754_CR8) 2023; 9
K Ermis (9754_CR20) 2015; 93
M Zastempowski (9754_CR6) 2023; 178
KS Swarup (9754_CR9) 2022
G Ozkan (9754_CR18) 2018; 43
Y Huang (9754_CR15) 2022; 244
S Ben Slama (9754_CR33) 2021; 312
S Hou (9754_CR4) 2022; 18
J Wang (9754_CR1) 2023; 147
HK Lopez (9754_CR3) 2023; 263
SM Kamel (9754_CR21) 2023; 8
A Farnoosh (9754_CR17) 2017; 78
S Simkhada (9754_CR11) 2022; 8
S Ben Slama (9754_CR32) 2022; 13
References_xml – volume: 9
  start-page: 276
  year: 2023
  ident: 9754_CR8
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2023.09.008
– volume: 80
  start-page: 247
  year: 2015
  ident: 9754_CR19
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.01.076
– volume: 66
  year: 2021
  ident: 9754_CR39
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020
– volume: 8
  start-page: 825
  year: 2022
  ident: 9754_CR11
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.11.101
– volume: 43
  start-page: 42
  issue: 3
  year: 2018
  ident: 9754_CR18
  publication-title: Sadhana-Acad. Proc. Eng. Sci.
  doi: 10.1007/s12046-018-0793-2
– volume: 262
  year: 2020
  ident: 9754_CR34
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114452
– year: 2022
  ident: 9754_CR9
  publication-title: Best Practic., Case Stud., Appl.
  doi: 10.1049/pbpo215e_ch5
– volume: 34
  year: 2023
  ident: 9754_CR30
  publication-title: Sustain. Energy, Grids Netw.
  doi: 10.1016/j.segan.2023.101059
– volume: 312
  start-page: 127792
  year: 2021
  ident: 9754_CR33
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.127792
– volume: 123
  start-page: 106388
  year: 2023
  ident: 9754_CR31
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106388
– volume: 6
  start-page: 98
  issue: 2
  year: 2022
  ident: 9754_CR22
  publication-title: J. Energy Manag.
  doi: 10.1016/j.jem.2022.02.003
– volume: 13
  start-page: 101504
  issue: 1
  year: 2022
  ident: 9754_CR32
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2021.05.018
– volume: 18
  start-page: 25
  issue: 1
  year: 2022
  ident: 9754_CR38
  publication-title: IEEJ Trans. Electr. Electron. Eng.
  doi: 10.1002/tee.23711
– year: 2023
  ident: 9754_CR26
  publication-title: Sustain. Energy, Grids Netw.
  doi: 10.1016/j.segan.2023.101074
– volume: 4
  start-page: 270
  issue: 3
  year: 2021
  ident: 9754_CR13
  publication-title: IET Smart Grid
  doi: 10.1049/stg2.12027
– volume: 201
  start-page: 175
  year: 2023
  ident: 9754_CR24
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.03.029
– volume: 334
  year: 2023
  ident: 9754_CR29
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.120685
– volume: 15
  start-page: 7807
  issue: 20
  year: 2022
  ident: 9754_CR10
  publication-title: Energies
  doi: 10.3390/en15207807
– volume: 18
  start-page: 2536
  issue: 11
  year: 2019
  ident: 9754_CR36
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/tmc.2018.2878842
– volume: 8
  start-page: 105
  year: 2022
  ident: 9754_CR35
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.10.080
– volume: 178
  start-page: 113262
  year: 2023
  ident: 9754_CR6
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2023.113262
– year: 2023
  ident: 9754_CR7
  publication-title: SSRN Electron. J.
  doi: 10.2139/ssrn.4493408
– volume: 78
  start-page: 722
  year: 2017
  ident: 9754_CR17
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.04.104
– volume: 8
  start-page: 1234
  year: 2023
  ident: 9754_CR21
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2023.05.011
– volume: 263
  year: 2023
  ident: 9754_CR37
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125563
– volume: 147
  year: 2023
  ident: 9754_CR1
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2022.108885
– year: 2022
  ident: 9754_CR2
  publication-title: Energy Inf.
  doi: 10.1186/s42162-022-00235-2
– volume: 93
  start-page: 641
  issue: 1
  year: 2015
  ident: 9754_CR20
  publication-title: Energy
  doi: 10.1016/j.energy.2015.09.042
– volume: 18
  start-page: 25
  issue: 1
  year: 2022
  ident: 9754_CR4
  publication-title: IEEJ Trans. Electr. Electronic Eng.
  doi: 10.1002/tee.23711
– volume: 263
  year: 2023
  ident: 9754_CR3
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125563
– year: 2022
  ident: 9754_CR28
  publication-title: Future Distrib. Netw.
  doi: 10.1063/9780735422339_012
– volume: 171
  start-page: 191
  year: 2021
  ident: 9754_CR5
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.02.103
– volume: 70
  year: 2023
  ident: 9754_CR16
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2023.106301
– volume: 244
  year: 2022
  ident: 9754_CR15
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122576
– volume: 90
  start-page: 847
  year: 2022
  ident: 9754_CR23
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.01.024
– volume: 66
  year: 2021
  ident: 9754_CR12
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102658
– volume: 19
  start-page: 3937
  issue: 18
  year: 2019
  ident: 9754_CR14
  publication-title: Sensors
  doi: 10.3390/s19183937
– volume: 12
  start-page: 122
  issue: 2
  year: 1990
  ident: 9754_CR27
  publication-title: Energy Econ.
  doi: 10.1016/0140-9883(90)90046-i
– volume: 12
  start-page: 654
  year: 2024
  ident: 9754_CR25
  publication-title: J. Renew. Energy Syst.
  doi: 10.1016/j.jres.2024.02.011
SSID ssib048395113
ssj0001916267
ssj0061873
Score 2.346374
Snippet Intelligent smart microgrids have been identified as a subject of significant research interest, given their potential to optimize energy consumption in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 6157
SubjectTerms Artificial intelligence
Deep learning
Distributed generation
Electric power demand
Electric vehicles
Energy consumption
Energy costs
Energy management
Energy requirements
Engineering
Humanities and Social Sciences
Machine learning
Multiagent systems
multidisciplinary
Peer to peer computing
Real time
Renewable energy sources
Research Article-Electrical Engineering
Residential energy
Science
Time of use electricity pricing
Title AI-Powered Microgrid Networks: Multi-Agent Deep Reinforcement Learning for Optimized Energy Trading in Interconnected Systems
URI https://link.springer.com/article/10.1007/s13369-024-09754-4
https://www.proquest.com/docview/3192879672
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa67cIFgQBR2CYfuA2j1kmchFuKNgaiA4lN6i1yHIdVWrtpdJdJ-zf5e_j8K0mrTWJcosqu3Nbvy3tfXt_3TMg72UjZNEoz0w6MxbWKWCUa3O5wmFWWgHBYIe30RByfxV9nyWww-NOrWrpZVR_U7b26kv-xKsZgV6OSfYRl20UxgNewL66wMK7_ZOPiC_thTjkDaZyawrpf1_PaSHhNsZUtdbPyWlYY-RQ8i77CbtpOqcomBUNzVVdK-R3OYzG_xVqHTg-IMBYULzZvqExNjLIMtdfmvO1gK0338rYThVkxSIZMbl53fQ8NqTWEoJ-EuGgwVdvKguJ8IetuAjsoF3Zienlu0uzt3Dc_PpF1W2H8E2-WLtO9mB9MvM7NZzV40iuGsc4PjjRiiUhnLk6FMTzvcnfES_Derm2tR2nWc8WgamkvrIOp5feGjJGXUEeRyBkYCxvlaRJ76dFaf-6NuNlWM3adn80aJdYo7RplvEV2eJqa8oGd4mgyOQmeLgYtBdONumwgWDq3xx23P9wrvJzOc_PLrbOo7tFo4998S5JOn5Gn_umGFg6qz8lAL1-Quw6mtIUpDTD9SHsgpQakdA2kNICUYoi2IKUOpNSDlM6XdB2k1IP0JTk7Ojz9dMz8qR9MRTFfMR0JkapM6hphuEIctz0vR5Ucx02uxhqkyxyRPcoznSOANFrKJOZqLARcS85l9IpsLy-X-jWhiF6VGGUNzxMVK1FnigNrkYrAklWSyiE5CLtYXrnmLuXDxhyS3bDRpb-ZfpeIYDxLc5HyIXkfNr-bfni1N4_67LfkSXeX7JLt1fWN3gMbXlX7Hlr7ZOvzbPwXOlGvBw
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI-Powered+Microgrid+Networks%3A+Multi-Agent+Deep+Reinforcement+Learning+for+Optimized+Energy+Trading+in+Interconnected+Systems&rft.jtitle=Arabian+journal+for+science+and+engineering+%282011%29&rft.au=Alferidi%2C+Ahmad&rft.au=Alsolami%2C+Mohammed&rft.au=Lami%2C+Badr&rft.au=Slama%2C+Sami+Ben&rft.date=2025-04-01&rft.issn=2193-567X&rft.eissn=2191-4281&rft.volume=50&rft.issue=8&rft.spage=6157&rft.epage=6179&rft_id=info:doi/10.1007%2Fs13369-024-09754-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13369_024_09754_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon