AI-Powered Microgrid Networks: Multi-Agent Deep Reinforcement Learning for Optimized Energy Trading in Interconnected Systems
Intelligent smart microgrids have been identified as a subject of significant research interest, given their potential to optimize energy consumption in residential contexts. The growing utilization of intelligent appliances and the integration of renewable energy sources, including distributed gene...
Saved in:
Published in | Arabian journal for science and engineering (2011) Vol. 50; no. 8; pp. 6157 - 6179 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2193-567X 1319-8025 2191-4281 |
DOI | 10.1007/s13369-024-09754-4 |
Cover
Abstract | Intelligent smart microgrids have been identified as a subject of significant research interest, given their potential to optimize energy consumption in residential contexts. The growing utilization of intelligent appliances and the integration of renewable energy sources, including distributed generation (DG) and electric vehicles (EVs), have increased energy demand. This paper presents an artificial intelligence (AI) system that employs deep reinforcement learning to facilitate efficient device scheduling and peer-to-peer (P2P) energy trading within microgrids. The system accommodates users with varying access levels to distributed generation (DG), battery storage, and electric vehicles (EVs). The real-time pricing and demand response mechanisms enable the system to adapt to fluctuating energy requirements. In contrast, surplus energy is shared through a peer-to-peer network, reducing grid dependency. The approach was validated using an experimental database from Saudi Arabia, demonstrating a notable reduction in electricity costs for participants. |
---|---|
AbstractList | Intelligent smart microgrids have been identified as a subject of significant research interest, given their potential to optimize energy consumption in residential contexts. The growing utilization of intelligent appliances and the integration of renewable energy sources, including distributed generation (DG) and electric vehicles (EVs), have increased energy demand. This paper presents an artificial intelligence (AI) system that employs deep reinforcement learning to facilitate efficient device scheduling and peer-to-peer (P2P) energy trading within microgrids. The system accommodates users with varying access levels to distributed generation (DG), battery storage, and electric vehicles (EVs). The real-time pricing and demand response mechanisms enable the system to adapt to fluctuating energy requirements. In contrast, surplus energy is shared through a peer-to-peer network, reducing grid dependency. The approach was validated using an experimental database from Saudi Arabia, demonstrating a notable reduction in electricity costs for participants. |
Author | Slama, Sami Ben Lami, Badr Alsolami, Mohammed Alferidi, Ahmad |
Author_xml | – sequence: 1 givenname: Ahmad orcidid: 0000-0002-2923-9504 surname: Alferidi fullname: Alferidi, Ahmad email: ahhfirade@taibahu.edu.sa organization: Electrical Engineering Department, College of Engineering, Taibah University – sequence: 2 givenname: Mohammed surname: Alsolami fullname: Alsolami, Mohammed organization: Electrical Engineering Department, College of Engineering, Taibah University – sequence: 3 givenname: Badr surname: Lami fullname: Lami, Badr organization: Electrical Engineering Department, College of Engineering, Taibah University – sequence: 4 givenname: Sami Ben surname: Slama fullname: Slama, Sami Ben organization: The Applied College, King Abdulaziz University |
BookMark | eNp9kEFPGzEQha2KSg0pf4CTJc4Gj-31rrlFFGikAFUBiZvlbGZXhsSb2o5QKvW_4ySVeutpRm_eeyN9x-QoDAEJOQV-DpzXFwmk1IZxoRg3daWY-kRGAgwwJRo42u-SVbp--UJOUvJzrhppKgA5In8mU_ZjeMeIC3rn2zj00S_oPeb3Ib6lS3q3WWbPJj2GTL8hrulP9KEbYournTRDF4MPPS0SfVhnv_K_S9N1wNhv6VN0i93RBzoNGWM7hIBtLobHbcq4Sl_J584tE578nWPyfHP9dPWdzR5up1eTGWulEpmh1LpuG4cLAJgrXYPRleFzB6ozLSBIrkXTcNOgqSR06FylRAtaN1VthJNjcnboXcfh1wZTtq_DJoby0kowoqmNrkVxiYOrYEgpYmfX0a9c3FrgdkfaHkjbQtruSVtVQvIQSsUceoz_qv-T-gDC5YMn |
Cites_doi | 10.1016/j.egyr.2023.09.008 10.1016/j.applthermaleng.2015.01.076 10.1016/j.scs.2020 10.1016/j.egyr.2021.11.101 10.1007/s12046-018-0793-2 10.1016/j.apenergy.2019.114452 10.1049/pbpo215e_ch5 10.1016/j.segan.2023.101059 10.1016/j.jclepro.2021.127792 10.1016/j.engappai.2023.106388 10.1016/j.jem.2022.02.003 10.1016/j.asej.2021.05.018 10.1002/tee.23711 10.1016/j.segan.2023.101074 10.1049/stg2.12027 10.1016/j.apenergy.2023.03.029 10.1016/j.apenergy.2023.120685 10.3390/en15207807 10.1109/tmc.2018.2878842 10.1016/j.egyr.2022.10.080 10.1016/j.rser.2023.113262 10.2139/ssrn.4493408 10.1016/j.rser.2017.04.104 10.1016/j.egyr.2023.05.011 10.1016/j.energy.2022.125563 10.1016/j.ijepes.2022.108885 10.1186/s42162-022-00235-2 10.1016/j.energy.2015.09.042 10.1063/9780735422339_012 10.1016/j.renene.2021.02.103 10.1016/j.jobe.2023.106301 10.1016/j.energy.2021.122576 10.1016/j.renene.2022.01.024 10.1016/j.scs.2020.102658 10.3390/s19183937 10.1016/0140-9883(90)90046-i 10.1016/j.jres.2024.02.011 |
ContentType | Journal Article |
Copyright | King Fahd University of Petroleum & Minerals 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: King Fahd University of Petroleum & Minerals 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s13369-024-09754-4 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2191-4281 |
EndPage | 6179 |
ExternalDocumentID | 10_1007_s13369_024_09754_4 |
GroupedDBID | 0R~ 203 2KG 406 AAAVM AACDK AAHNG AAIAL AAJBT AANZL AAPKM AARHV AASML AATNV AATVU AAUYE AAYTO AAYZH ABAKF ABBRH ABDBE ABDBF ABDZT ABECU ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACHSB ACMDZ ACMLO ACOKC ACPIV ACUHS ACZOJ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFDZB AFLOW AFOHR AFQWF AGAYW AGJBK AGMZJ AGQEE AGQMX AGRTI AHAVH AHBYD AHPBZ AHSBF AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF AOCGG AXYYD AYFIA BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESX FERAY FIGPU FINBP FNLPD FSGXE GGCAI GQ7 H13 HG6 I-F IKXTQ IWAJR J-C JBSCW JZLTJ L8X LLZTM M4Y MK~ NPVJJ NQJWS NU0 O9J PT4 ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG TUS UOJIU UTJUX UZXMN VFIZW ZMTXR ~8M AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP ATHPR CITATION 06D 0VY 23M 29~ 2KM 30V 408 5GY 96X AAJKR AARTL AAYIU AAYQN AAZMS ABTHY ACGFS ACKNC ADHHG ADHIR AEGNC AEJHL AENEX AEPYU AETCA AFWTZ AFZKB AGDGC AGWZB AGYKE AHYZX AIIXL AMKLP AMYQR ANMIH AYJHY ESBYG FFXSO FRRFC FYJPI GGRSB GJIRD GX1 HMJXF HRMNR HZ~ I0C IXD J9A KOV O93 OVT P9P R9I RLLFE S1Z S27 S3B SEG SHX T13 U2A UG4 VC2 W48 WK8 ~A9 |
ID | FETCH-LOGICAL-c342t-e3667c8aed111b467196590ba14f9c1e1306288098e9531feaa542c16685792a3 |
ISSN | 2193-567X 1319-8025 |
IngestDate | Mon Jun 30 07:46:34 EDT 2025 Sun Jul 06 05:02:07 EDT 2025 Tue Apr 22 01:10:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Deep reinforcement learning Electric vehicles Distributed generation Real-time pricing Intelligent microgrids Peer-to-peer energy trading |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c342t-e3667c8aed111b467196590ba14f9c1e1306288098e9531feaa542c16685792a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2923-9504 |
PQID | 3192879672 |
PQPubID | 2044268 |
PageCount | 23 |
ParticipantIDs | proquest_journals_3192879672 crossref_primary_10_1007_s13369_024_09754_4 springer_journals_10_1007_s13369_024_09754_4 |
PublicationCentury | 2000 |
PublicationDate | 2025-04-01 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Arabian journal for science and engineering (2011) |
PublicationTitleAbbrev | Arab J Sci Eng |
PublicationYear | 2025 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | S Ghaemi (9754_CR30) 2023; 34 AA Khan (9754_CR22) 2022; 6 HK Lopez (9754_CR37) 2023; 263 S Ben Slama (9754_CR31) 2023; 123 S Smart (9754_CR7) 2023 S Hou (9754_CR38) 2022; 18 S Lee (9754_CR14) 2019; 19 G Mokryani (9754_CR28) 2022 R Jones (9754_CR23) 2022; 90 S-K Seo (9754_CR34) 2020; 262 A Bilgen (9754_CR19) 2015; 80 Y Yang (9754_CR36) 2019; 18 MA Hassan (9754_CR5) 2021; 171 L Martinez (9754_CR24) 2023; 201 K Brown (9754_CR25) 2024; 12 Y Xia (9754_CR29) 2023; 334 K Kusakana (9754_CR13) 2021; 4 MA Hossain (9754_CR12) 2021; 66 PA Gbadega (9754_CR35) 2022; 8 E Fernandez (9754_CR26) 2023 H Pereira (9754_CR2) 2022 E-NS Youssef (9754_CR10) 2022; 15 MJ Horowitz (9754_CR27) 1990; 12 MA Hossain (9754_CR39) 2021; 66 MS Khan (9754_CR16) 2023; 70 S Paraschiv (9754_CR8) 2023; 9 K Ermis (9754_CR20) 2015; 93 M Zastempowski (9754_CR6) 2023; 178 KS Swarup (9754_CR9) 2022 G Ozkan (9754_CR18) 2018; 43 Y Huang (9754_CR15) 2022; 244 S Ben Slama (9754_CR33) 2021; 312 S Hou (9754_CR4) 2022; 18 J Wang (9754_CR1) 2023; 147 HK Lopez (9754_CR3) 2023; 263 SM Kamel (9754_CR21) 2023; 8 A Farnoosh (9754_CR17) 2017; 78 S Simkhada (9754_CR11) 2022; 8 S Ben Slama (9754_CR32) 2022; 13 |
References_xml | – volume: 9 start-page: 276 year: 2023 ident: 9754_CR8 publication-title: Energy Rep. doi: 10.1016/j.egyr.2023.09.008 – volume: 80 start-page: 247 year: 2015 ident: 9754_CR19 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.01.076 – volume: 66 year: 2021 ident: 9754_CR39 publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2020 – volume: 8 start-page: 825 year: 2022 ident: 9754_CR11 publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.11.101 – volume: 43 start-page: 42 issue: 3 year: 2018 ident: 9754_CR18 publication-title: Sadhana-Acad. Proc. Eng. Sci. doi: 10.1007/s12046-018-0793-2 – volume: 262 year: 2020 ident: 9754_CR34 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.114452 – year: 2022 ident: 9754_CR9 publication-title: Best Practic., Case Stud., Appl. doi: 10.1049/pbpo215e_ch5 – volume: 34 year: 2023 ident: 9754_CR30 publication-title: Sustain. Energy, Grids Netw. doi: 10.1016/j.segan.2023.101059 – volume: 312 start-page: 127792 year: 2021 ident: 9754_CR33 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.127792 – volume: 123 start-page: 106388 year: 2023 ident: 9754_CR31 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106388 – volume: 6 start-page: 98 issue: 2 year: 2022 ident: 9754_CR22 publication-title: J. Energy Manag. doi: 10.1016/j.jem.2022.02.003 – volume: 13 start-page: 101504 issue: 1 year: 2022 ident: 9754_CR32 publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2021.05.018 – volume: 18 start-page: 25 issue: 1 year: 2022 ident: 9754_CR38 publication-title: IEEJ Trans. Electr. Electron. Eng. doi: 10.1002/tee.23711 – year: 2023 ident: 9754_CR26 publication-title: Sustain. Energy, Grids Netw. doi: 10.1016/j.segan.2023.101074 – volume: 4 start-page: 270 issue: 3 year: 2021 ident: 9754_CR13 publication-title: IET Smart Grid doi: 10.1049/stg2.12027 – volume: 201 start-page: 175 year: 2023 ident: 9754_CR24 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.03.029 – volume: 334 year: 2023 ident: 9754_CR29 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.120685 – volume: 15 start-page: 7807 issue: 20 year: 2022 ident: 9754_CR10 publication-title: Energies doi: 10.3390/en15207807 – volume: 18 start-page: 2536 issue: 11 year: 2019 ident: 9754_CR36 publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/tmc.2018.2878842 – volume: 8 start-page: 105 year: 2022 ident: 9754_CR35 publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.10.080 – volume: 178 start-page: 113262 year: 2023 ident: 9754_CR6 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2023.113262 – year: 2023 ident: 9754_CR7 publication-title: SSRN Electron. J. doi: 10.2139/ssrn.4493408 – volume: 78 start-page: 722 year: 2017 ident: 9754_CR17 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.04.104 – volume: 8 start-page: 1234 year: 2023 ident: 9754_CR21 publication-title: Energy Rep. doi: 10.1016/j.egyr.2023.05.011 – volume: 263 year: 2023 ident: 9754_CR37 publication-title: Energy doi: 10.1016/j.energy.2022.125563 – volume: 147 year: 2023 ident: 9754_CR1 publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2022.108885 – year: 2022 ident: 9754_CR2 publication-title: Energy Inf. doi: 10.1186/s42162-022-00235-2 – volume: 93 start-page: 641 issue: 1 year: 2015 ident: 9754_CR20 publication-title: Energy doi: 10.1016/j.energy.2015.09.042 – volume: 18 start-page: 25 issue: 1 year: 2022 ident: 9754_CR4 publication-title: IEEJ Trans. Electr. Electronic Eng. doi: 10.1002/tee.23711 – volume: 263 year: 2023 ident: 9754_CR3 publication-title: Energy doi: 10.1016/j.energy.2022.125563 – year: 2022 ident: 9754_CR28 publication-title: Future Distrib. Netw. doi: 10.1063/9780735422339_012 – volume: 171 start-page: 191 year: 2021 ident: 9754_CR5 publication-title: Renew. Energy doi: 10.1016/j.renene.2021.02.103 – volume: 70 year: 2023 ident: 9754_CR16 publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2023.106301 – volume: 244 year: 2022 ident: 9754_CR15 publication-title: Energy doi: 10.1016/j.energy.2021.122576 – volume: 90 start-page: 847 year: 2022 ident: 9754_CR23 publication-title: Renew. Energy doi: 10.1016/j.renene.2022.01.024 – volume: 66 year: 2021 ident: 9754_CR12 publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2020.102658 – volume: 19 start-page: 3937 issue: 18 year: 2019 ident: 9754_CR14 publication-title: Sensors doi: 10.3390/s19183937 – volume: 12 start-page: 122 issue: 2 year: 1990 ident: 9754_CR27 publication-title: Energy Econ. doi: 10.1016/0140-9883(90)90046-i – volume: 12 start-page: 654 year: 2024 ident: 9754_CR25 publication-title: J. Renew. Energy Syst. doi: 10.1016/j.jres.2024.02.011 |
SSID | ssib048395113 ssj0001916267 ssj0061873 |
Score | 2.346374 |
Snippet | Intelligent smart microgrids have been identified as a subject of significant research interest, given their potential to optimize energy consumption in... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 6157 |
SubjectTerms | Artificial intelligence Deep learning Distributed generation Electric power demand Electric vehicles Energy consumption Energy costs Energy management Energy requirements Engineering Humanities and Social Sciences Machine learning Multiagent systems multidisciplinary Peer to peer computing Real time Renewable energy sources Research Article-Electrical Engineering Residential energy Science Time of use electricity pricing |
Title | AI-Powered Microgrid Networks: Multi-Agent Deep Reinforcement Learning for Optimized Energy Trading in Interconnected Systems |
URI | https://link.springer.com/article/10.1007/s13369-024-09754-4 https://www.proquest.com/docview/3192879672 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa67cIFgQBR2CYfuA2j1kmchFuKNgaiA4lN6i1yHIdVWrtpdJdJ-zf5e_j8K0mrTWJcosqu3Nbvy3tfXt_3TMg72UjZNEoz0w6MxbWKWCUa3O5wmFWWgHBYIe30RByfxV9nyWww-NOrWrpZVR_U7b26kv-xKsZgV6OSfYRl20UxgNewL66wMK7_ZOPiC_thTjkDaZyawrpf1_PaSHhNsZUtdbPyWlYY-RQ8i77CbtpOqcomBUNzVVdK-R3OYzG_xVqHTg-IMBYULzZvqExNjLIMtdfmvO1gK0338rYThVkxSIZMbl53fQ8NqTWEoJ-EuGgwVdvKguJ8IetuAjsoF3Zienlu0uzt3Dc_PpF1W2H8E2-WLtO9mB9MvM7NZzV40iuGsc4PjjRiiUhnLk6FMTzvcnfES_Derm2tR2nWc8WgamkvrIOp5feGjJGXUEeRyBkYCxvlaRJ76dFaf-6NuNlWM3adn80aJdYo7RplvEV2eJqa8oGd4mgyOQmeLgYtBdONumwgWDq3xx23P9wrvJzOc_PLrbOo7tFo4998S5JOn5Gn_umGFg6qz8lAL1-Quw6mtIUpDTD9SHsgpQakdA2kNICUYoi2IKUOpNSDlM6XdB2k1IP0JTk7Ojz9dMz8qR9MRTFfMR0JkapM6hphuEIctz0vR5Ucx02uxhqkyxyRPcoznSOANFrKJOZqLARcS85l9IpsLy-X-jWhiF6VGGUNzxMVK1FnigNrkYrAklWSyiE5CLtYXrnmLuXDxhyS3bDRpb-ZfpeIYDxLc5HyIXkfNr-bfni1N4_67LfkSXeX7JLt1fWN3gMbXlX7Hlr7ZOvzbPwXOlGvBw |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI-Powered+Microgrid+Networks%3A+Multi-Agent+Deep+Reinforcement+Learning+for+Optimized+Energy+Trading+in+Interconnected+Systems&rft.jtitle=Arabian+journal+for+science+and+engineering+%282011%29&rft.au=Alferidi%2C+Ahmad&rft.au=Alsolami%2C+Mohammed&rft.au=Lami%2C+Badr&rft.au=Slama%2C+Sami+Ben&rft.date=2025-04-01&rft.issn=2193-567X&rft.eissn=2191-4281&rft.volume=50&rft.issue=8&rft.spage=6157&rft.epage=6179&rft_id=info:doi/10.1007%2Fs13369-024-09754-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13369_024_09754_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon |