Entropy minimization for magneto peristaltic transport of Sutterby materials subject to temperature dependent thermal conductivity and non-linear thermal radiation
In this work peristaltic transport of Sutterby liquid with temperature dependent thermal conductivity in curved configurations is addressed. Inclined magnetic field is considered. Energy expression is modeled with effects of viscous dissipation, non-linear thermal radiation, variable thermal conduct...
Saved in:
Published in | International communications in heat and mass transfer Vol. 122; p. 105009 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0735-1933 1879-0178 |
DOI | 10.1016/j.icheatmasstransfer.2020.105009 |
Cover
Loading…
Abstract | In this work peristaltic transport of Sutterby liquid with temperature dependent thermal conductivity in curved configurations is addressed. Inclined magnetic field is considered. Energy expression is modeled with effects of viscous dissipation, non-linear thermal radiation, variable thermal conductivity, Joule heating and heat source/ sink. Lubrication approach in formulation has been implemented. Irregularities are discussed by entropy in the process of heat transfer. Perturbation method has been used for velocity and stream function in this study. However, energy equation is solved numerically. Quantities of interest via important parameters are graphically analyzed. These results witness that velocity decreases both for magnetic field and fluid parameters. Temperature decays for variable thermal conductivity parameter and radiation; whereas, it increases for heat absorption parameter Q(>0). Irregularity is minimum via entropy for enhanced thermal conductivity and radiation parameters. Heat transfer rate increases for increased values of Brinkmann number. |
---|---|
AbstractList | In this work peristaltic transport of Sutterby liquid with temperature dependent thermal conductivity in curved configurations is addressed. Inclined magnetic field is considered. Energy expression is modeled with effects of viscous dissipation, non-linear thermal radiation, variable thermal conductivity, Joule heating and heat source/ sink. Lubrication approach in formulation has been implemented. Irregularities are discussed by entropy in the process of heat transfer. Perturbation method has been used for velocity and stream function in this study. However, energy equation is solved numerically. Quantities of interest via important parameters are graphically analyzed. These results witness that velocity decreases both for magnetic field and fluid parameters. Temperature decays for variable thermal conductivity parameter and radiation; whereas, it increases for heat absorption parameter Q(>0). Irregularity is minimum via entropy for enhanced thermal conductivity and radiation parameters. Heat transfer rate increases for increased values of Brinkmann number. |
ArticleNumber | 105009 |
Author | Hayat, T. Alsaedi, A. Bibi, Farhat Khan, A.A. |
Author_xml | – sequence: 1 givenname: T. surname: Hayat fullname: Hayat, T. organization: Department of Mathematics, Quaid-I-Azam University, 45320, Islamabad 44000, Pakistan – sequence: 2 givenname: A.A. surname: Khan fullname: Khan, A.A. email: ambreen.afsar@iiu.edu organization: Department of Mathematics and Statistics, International Islamic University, 1243, Islamabad 44000, Pakistan – sequence: 3 givenname: Farhat surname: Bibi fullname: Bibi, Farhat organization: Department of Mathematics and Statistics, International Islamic University, 1243, Islamabad 44000, Pakistan – sequence: 4 givenname: A. surname: Alsaedi fullname: Alsaedi, A. organization: Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia |
BookMark | eNqVkE9vEzEQxS3USqR_voOPXDbY691sfANVLQVV6gE4ryb2bDvRrr2yJ5XC1-GL1kkQB7jAaQ5v3m_mvQtxFmJAId5ptdRKr95vl-SeEXiCnDlByAOmZa3qg9wqZd-IhV53tlK6W5-JhepMW2lrzFtxkfNWKaXXer0QP28Dpzjv5USBJvoBTDHIISY5wVNAjnLGRJlhZHLyeGiOiWUc5NcdM6ZNsUKZBGOWebfZomNZbIxTcQLvEkqPMwaPoQjPmCYYpYvB7xzTC_FeQvCypKtGCgjp904CT8d3rsT5UOh4_Wteiu93t99u7quHx0-fbz4-VM40NVdotNGts2po_Mpsmhprp3VrlB9Wtm4QFXiLXdfabtP6tmkGVxREsA10nUVzKe5OXJdizgmH3hEfPyi5aey16g_V99v-7-r7Q_X9qfoC-vAHaE40Qdr_D-LLCYEl8AsVNTvC4NBTKg33PtK_w14BjQO46Q |
CitedBy_id | crossref_primary_10_1002_zamm_202400176 crossref_primary_10_1016_j_heliyon_2024_e40289 crossref_primary_10_1108_MMMS_07_2024_0184 crossref_primary_10_1016_j_icheatmasstransfer_2021_105447 crossref_primary_10_1177_09544119221105848 crossref_primary_10_1016_j_aej_2024_10_123 crossref_primary_10_1016_j_jmmm_2023_170798 crossref_primary_10_1080_10407782_2024_2320273 crossref_primary_10_1142_S021797922250223X crossref_primary_10_1007_s10483_021_2770_9 crossref_primary_10_1177_09544062221105166 crossref_primary_10_1080_02286203_2022_2130091 crossref_primary_10_1007_s13204_022_02583_7 crossref_primary_10_1080_17455030_2022_2134603 crossref_primary_10_1016_j_csite_2022_102055 crossref_primary_10_1016_j_ijmecsci_2022_107676 crossref_primary_10_1142_S021797922350282X crossref_primary_10_1007_s40571_023_00581_2 crossref_primary_10_1080_17455030_2022_2036388 crossref_primary_10_1016_j_icheatmasstransfer_2021_105791 crossref_primary_10_1177_09544089211041278 crossref_primary_10_1080_17455030_2023_2226766 |
Cites_doi | 10.1016/j.jmmm.2014.07.051 10.1155/2012/479087 10.1016/j.molliq.2016.03.010 10.1016/j.ijheatmasstransfer.2016.01.059 10.1016/j.jmmm.2014.11.031 10.1007/s11242-007-9196-2 10.1007/s10665-018-9958-6 10.1016/j.cjph.2017.08.004 10.1007/s00162-007-0054-1 10.1016/j.ijheatmasstransfer.2016.10.017 10.1177/0954411916658318 10.1299/kikaib.66.679 10.1007/s10665-019-09988-4 10.1016/j.cnsns.2010.11.001 10.1017/S0022112069000899 10.1016/j.physa.2019.122148 10.1016/j.tsep.2019.100424 10.1115/1.4041904 10.1002/htj.21522 10.1016/0360-5442(80)90091-2 10.1615/JPorMedia.v16.i1.60 10.1007/s10483-015-1926-9 10.1016/j.energy.2016.05.044 10.1007/s40430-019-1771-2 10.1016/j.energy.2016.05.049 10.1016/j.mvr.2018.11.012 10.1016/0021-9290(71)90036-4 |
ContentType | Journal Article |
Copyright | 2020 |
Copyright_xml | – notice: 2020 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.icheatmasstransfer.2020.105009 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-0178 |
ExternalDocumentID | 10_1016_j_icheatmasstransfer_2020_105009 S0735193320305376 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSG SST SSZ T5K WUQ XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c342t-e31315c90f4d63b42e2c11530df6924ee0ad9e77597b5d544fcdf6eea94a779e3 |
IEDL.DBID | .~1 |
ISSN | 0735-1933 |
IngestDate | Thu Apr 24 23:02:43 EDT 2025 Tue Jul 01 04:24:37 EDT 2025 Fri Feb 23 02:45:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Curved channel Heat source/ sink Thermal radiation Convective boundary conditions Entropy generation Sutterby fluid Variable thermal conductivity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-e31315c90f4d63b42e2c11530df6924ee0ad9e77597b5d544fcdf6eea94a779e3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_icheatmasstransfer_2020_105009 crossref_primary_10_1016_j_icheatmasstransfer_2020_105009 elsevier_sciencedirect_doi_10_1016_j_icheatmasstransfer_2020_105009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2021 2021-03-00 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationTitle | International communications in heat and mass transfer |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Vajravelu, Sreenadh, Lakshminarayana (bb0085) 2011; 16 Bibi, Hayat, Farooq, Khan, Alsaedi (bb0145) 2019 Bejan (bb0135) 1996 Sharma, Tripathi, Sharma, Tiwari (bb0055) 2019; 535 Narla, Tripathi (bb0165) 2019; 123 Hayat, Alsaadi, Rafiq, Ahmad (bb0080) 2017; 55 Kefayati (bb0160) 2016; 107 Hussain, Asghar, Hayat, Alsaedi (bb0120) 2015; 36 Hayat, Farooq, Ahmad, Alsaedi (bb0140) 2017; 106 Shapiro, Jaffrin, Weinberg (bb0010) 1969; 37 Hayat, Abbasi, Ahmad, Alsaedi (bb0125) 2014; 43 Narla, Tripathi, Bég (bb0050) 2019; 141 Hayat, Javed, Ali (bb0060) 2008; 4 Khan, Ellahi, Gulzar, Sheikholeslami (bb0025) 2014; 372 Narla, Tripathi, Bég, Kadir (bb0035) 2018; 1 Kefayati (bb0155) 2016; 107 Wang, Hayat, Hutter (bb0065) 2007; 21 Prakash, Siva, Tripathi, Bég (bb0100) 2019; 7 Sheikholeslami, Hayat, Alsaedi (bb0110) 2016; 96 Nadeem, Ashiq, Ali (bb0070) 2012; 2012 Ramesh (bb0095) 2016; 219 Tripathi, Akbar, Khan, Bég (bb0040) 2016; 9 Sato, Kawai, Fujita, Okabe (bb0015) 2000; B66 Hayat, Zahir, Mustafa, Alsaedi (bb0075) 2016; 6 Narla, Tripathi, Sekhar (bb0045) 2019; 1 Lew, Fung, Lowenstein (bb0020) 1971; 4 Khan, Ellahi, Usman (bb0030) 2013; 16 Latham (bb0005) 1966 Narla, Tripathi, Bég (bb0150) 2020; 15 Kothandapani, Prakash (bb0105) 2015; 378 Bejan (bb0130) 1980; 5 Hayat, Bibi, Farooq, Khan (bb0090) 2019; 41 Sharma, Tripathi, Sharma, Tiwari (bb0115) 2019; 535 Hayat, Bibi, Khan, Momani (bb0170) 2020 Lew (10.1016/j.icheatmasstransfer.2020.105009_bb0020) 1971; 4 Bejan (10.1016/j.icheatmasstransfer.2020.105009_bb0130) 1980; 5 Latham (10.1016/j.icheatmasstransfer.2020.105009_bb0005) 1966 Sheikholeslami (10.1016/j.icheatmasstransfer.2020.105009_bb0110) 2016; 96 Narla (10.1016/j.icheatmasstransfer.2020.105009_bb0165) 2019; 123 Khan (10.1016/j.icheatmasstransfer.2020.105009_bb0030) 2013; 16 Hayat (10.1016/j.icheatmasstransfer.2020.105009_bb0060) 2008; 4 Hayat (10.1016/j.icheatmasstransfer.2020.105009_bb0075) 2016; 6 Hussain (10.1016/j.icheatmasstransfer.2020.105009_bb0120) 2015; 36 Vajravelu (10.1016/j.icheatmasstransfer.2020.105009_bb0085) 2011; 16 Kefayati (10.1016/j.icheatmasstransfer.2020.105009_bb0160) 2016; 107 Prakash (10.1016/j.icheatmasstransfer.2020.105009_bb0100) 2019; 7 Bejan (10.1016/j.icheatmasstransfer.2020.105009_bb0135) 1996 Ramesh (10.1016/j.icheatmasstransfer.2020.105009_bb0095) 2016; 219 Khan (10.1016/j.icheatmasstransfer.2020.105009_bb0025) 2014; 372 Shapiro (10.1016/j.icheatmasstransfer.2020.105009_bb0010) 1969; 37 Bibi (10.1016/j.icheatmasstransfer.2020.105009_bb0145) 2019 Kefayati (10.1016/j.icheatmasstransfer.2020.105009_bb0155) 2016; 107 Narla (10.1016/j.icheatmasstransfer.2020.105009_bb0050) 2019; 141 Sharma (10.1016/j.icheatmasstransfer.2020.105009_bb0115) 2019; 535 Hayat (10.1016/j.icheatmasstransfer.2020.105009_bb0080) 2017; 55 Kothandapani (10.1016/j.icheatmasstransfer.2020.105009_bb0105) 2015; 378 Hayat (10.1016/j.icheatmasstransfer.2020.105009_bb0140) 2017; 106 Narla (10.1016/j.icheatmasstransfer.2020.105009_bb0150) 2020; 15 Narla (10.1016/j.icheatmasstransfer.2020.105009_bb0045) 2019; 1 Wang (10.1016/j.icheatmasstransfer.2020.105009_bb0065) 2007; 21 Hayat (10.1016/j.icheatmasstransfer.2020.105009_bb0170) 2020 Tripathi (10.1016/j.icheatmasstransfer.2020.105009_bb0040) 2016; 9 Narla (10.1016/j.icheatmasstransfer.2020.105009_bb0035) 2018; 1 Sato (10.1016/j.icheatmasstransfer.2020.105009_bb0015) 2000; B66 Sharma (10.1016/j.icheatmasstransfer.2020.105009_bb0055) 2019; 535 Hayat (10.1016/j.icheatmasstransfer.2020.105009_bb0125) 2014; 43 Hayat (10.1016/j.icheatmasstransfer.2020.105009_bb0090) 2019; 41 Nadeem (10.1016/j.icheatmasstransfer.2020.105009_bb0070) 2012; 2012 |
References_xml | – volume: 55 start-page: 2005 year: 2017 end-page: 2024 ident: bb0080 article-title: On effects of thermal radiation and radial magnetic field for peristalsis of Sutterby liquid in a curved channel with wall properties publication-title: Chin. J. Phys. – volume: 16 start-page: 3107 year: 2011 end-page: 3125 ident: bb0085 article-title: The influence of heat transfer on peristaltic transport of a Jeffrey fluid in a vertical porous stratum publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: B66 start-page: 679 year: 2000 end-page: 685 ident: bb0015 article-title: Two dimensional peristaltic flow in curved channels publication-title: Trans. Jpn. Soc. Mech. Eng. – volume: 1 start-page: 127 year: 2018 end-page: 143 ident: bb0035 article-title: Modeling transient magnetohydrodynamic peristaltic pumping of electroconductive viscoelastic fluids through a deformable curved channel publication-title: J. Eng. Math. – volume: 107 start-page: 889 year: 2016 end-page: 916 ident: bb0155 article-title: Simulation of double diffusive MHD (magnetohydrodynamic) natural convection and entropy generation in an open cavity filled with power-law fluids in the presence of Soret and Dufour effects (part I: study of fluid flow, heat and mass transfer) publication-title: Energy – volume: 9 start-page: 817 year: 2016 end-page: 828 ident: bb0040 article-title: Peristaltic transport of bi-viscosity fluids through a curved tube: a mathematical model for intestinal flow publication-title: Proc. Int. Mech. Eng. H – volume: 6 start-page: 805 year: 2016 end-page: 810 ident: bb0075 article-title: Peristaltic flow of Sutterby fluid in a vertical channel with radiative heat transfer and compliant walls: a numerical study publication-title: Res. Phys. – volume: 372 start-page: 97 year: 2014 end-page: 106 ident: bb0025 article-title: Effects of heat transfer on peristaltic motion of Oldroyd fluid in the presence of inclined magnetic field publication-title: J. Magn. Magn. Mater. – volume: 535 start-page: 122148 year: 2019 ident: bb0115 article-title: Analysis of double diffusive convection in electroosmosis regulated peristaltic transport of nanofluids publication-title: Physica A – volume: 5 start-page: 720 year: 1980 end-page: 732 ident: bb0130 article-title: Second law analysis in heat transfer publication-title: Energy – volume: 123 start-page: 25 year: 2019 end-page: 34 ident: bb0165 article-title: Electroosmosis modulated transient blood flow in curved microvessels: study of a mathematical model publication-title: Microvasc. Res. – volume: 535 start-page: 122 year: 2019 end-page: 148 ident: bb0055 article-title: Analysis of double diffusive convection in electroosmosis regulated peristaltic transport of nanofluids publication-title: Physica A – volume: 1 start-page: 177 year: 2019 end-page: 196 ident: bb0045 article-title: Time-dependent analysis of electroosmotic fluid flow in a microchannel publication-title: J. Eng. Maths – volume: 7 start-page: 2882 year: 2019 end-page: 2908 ident: bb0100 article-title: Thermal slip and radiative heat transfer effects on electro-osmotic magnetonanoliquid peristaltic propulsion through a microchannel publication-title: Heat Transf. Asian Res. – volume: 106 start-page: 244 year: 2017 end-page: 252 ident: bb0140 article-title: Effectiveness of entropy generation and energy transfer on peristaltic flow of Jeffrey material with Darcy resistance publication-title: Int. J. Heat Mass Transf. – volume: 43 start-page: 1583 year: 2014 end-page: 1590 ident: bb0125 article-title: MHD mixed convective peristaltic flow with variable viscosity and thermal conductivity publication-title: Sains Malays. – volume: 36 start-page: 499 year: 2015 end-page: 516 ident: bb0120 article-title: Heat transfer analysis in peristaltic flow of MHD Jeffrey fluid with variable thermal conductivity publication-title: J. Appl. Math. Mech. – volume: 96 start-page: 513 year: 2016 end-page: 524 ident: bb0110 article-title: MHD free convection of publication-title: Int. J. Heat Mass Transf. – year: 2020 ident: bb0170 article-title: Soret–Dufour aspects with activation energy in peristaltic mechanism of third-grade material with variable features publication-title: J. Therm. Anal. Calorim. – volume: 37 start-page: 799 year: 1969 end-page: 825 ident: bb0010 article-title: Peristaltic pumping with long wave-lengths at low Reynolds number publication-title: J. Fluid Mech. – volume: 4 start-page: 259 year: 2008 end-page: 274 ident: bb0060 article-title: MHD peristaltic transport of Jeffrey fluid in a channel with compliant walls and porous space publication-title: Transp. Porous Media – volume: 16 start-page: 59 year: 2013 end-page: 67 ident: bb0030 article-title: The effects of variable viscosity on the peristaltic flow of non-Newtonian fluid through a porous medium in an inclined channel with slip boundary conditions publication-title: J. Porous Media – volume: 21 start-page: 369 year: 2007 end-page: 380 ident: bb0065 article-title: Peristaltic flow of a Johnson-Segalman fluid through a deformable tube publication-title: Theor. Comput. Fluid Dynam. – volume: 219 start-page: 256 year: 2016 end-page: 271 ident: bb0095 article-title: Influence of heat and mass transfer on peristaltic flow of a couple stress fluid through porous medium in the presence of inclined magnetic field in an inclined asymmetric channel publication-title: J. Mol. Liq. – volume: 107 start-page: 917 year: 2016 end-page: 959 ident: bb0160 article-title: Simulation of double diffusive MHD (magnetohydrodynamic) natural convection and entropy generation in an open cavity filled with power-law fluids in the presence of Soret and Dufour effects (part II: entropy generation) publication-title: Energy – volume: 4 start-page: 297 year: 1971 end-page: 315 ident: bb0020 article-title: Peristaltic carrying and mixing of chyme in the small intestine (an analysis of a mathematical model of peristalsis of the small intestine) publication-title: J. Biomech. – volume: 15 start-page: 100424 year: 2020 ident: bb0150 article-title: Analysis of entropy generation in biomimetic electroosmotic nanofluid pumping through a curved channel with joule dissipation publication-title: Therm. Sci. Eng. Prog. – volume: 41 start-page: 296 year: 2019 end-page: 306 ident: bb0090 article-title: Nonlinear radiative peristaltic flow of Jeffrey nanofluid with activation energy and modified Darcy’s law publication-title: J. Braz. Soc.Mech. Sci. Eng. – start-page: 1 year: 2019 end-page: 13 ident: bb0145 article-title: Entropy generation analysis in peristaltic motion of Sisko material with variable viscosity and thermal conductivity publication-title: J. Therm. Anal. Calorim. – year: 1966 ident: bb0005 article-title: Fluid Motion in a Peristaltic Pump – year: 1996 ident: bb0135 article-title: Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-time Systems and Finite-time Processes – volume: 378 start-page: 152 year: 2015 end-page: 163 ident: bb0105 article-title: Effect of radiation and magnetic field on peristaltic transport of nanofluids through a porous space in a tapered asymmetric channel publication-title: J. Magn. Mag Mater. – volume: 141 start-page: 2 year: 2019 ident: bb0050 article-title: Electro-osmosis modulated viscoelastic embryo transport in uterine hydrodynamics: mathematical modeling publication-title: J. Biomech. Eng. – volume: 2012 start-page: 1 year: 2012 end-page: 18 ident: bb0070 article-title: Williamson fluid model for the peristaltic flow of chyme in small intestine publication-title: Math. Probl. Eng. – volume: 372 start-page: 97 year: 2014 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0025 article-title: Effects of heat transfer on peristaltic motion of Oldroyd fluid in the presence of inclined magnetic field publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2014.07.051 – volume: 2012 start-page: 1 year: 2012 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0070 article-title: Williamson fluid model for the peristaltic flow of chyme in small intestine publication-title: Math. Probl. Eng. doi: 10.1155/2012/479087 – volume: 219 start-page: 256 year: 2016 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0095 article-title: Influence of heat and mass transfer on peristaltic flow of a couple stress fluid through porous medium in the presence of inclined magnetic field in an inclined asymmetric channel publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.03.010 – volume: 6 start-page: 805 year: 2016 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0075 article-title: Peristaltic flow of Sutterby fluid in a vertical channel with radiative heat transfer and compliant walls: a numerical study publication-title: Res. Phys. – volume: 96 start-page: 513 year: 2016 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0110 article-title: MHD free convection of Al2O3 -water nanofluid considering thermal radiation: a numerical study publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.01.059 – volume: 378 start-page: 152 year: 2015 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0105 article-title: Effect of radiation and magnetic field on peristaltic transport of nanofluids through a porous space in a tapered asymmetric channel publication-title: J. Magn. Mag Mater. doi: 10.1016/j.jmmm.2014.11.031 – volume: 43 start-page: 1583 year: 2014 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0125 article-title: MHD mixed convective peristaltic flow with variable viscosity and thermal conductivity publication-title: Sains Malays. – volume: 4 start-page: 259 year: 2008 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0060 article-title: MHD peristaltic transport of Jeffrey fluid in a channel with compliant walls and porous space publication-title: Transp. Porous Media doi: 10.1007/s11242-007-9196-2 – volume: 1 start-page: 127 year: 2018 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0035 article-title: Modeling transient magnetohydrodynamic peristaltic pumping of electroconductive viscoelastic fluids through a deformable curved channel publication-title: J. Eng. Math. doi: 10.1007/s10665-018-9958-6 – volume: 55 start-page: 2005 year: 2017 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0080 article-title: On effects of thermal radiation and radial magnetic field for peristalsis of Sutterby liquid in a curved channel with wall properties publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2017.08.004 – year: 1966 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0005 – volume: 21 start-page: 369 year: 2007 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0065 article-title: Peristaltic flow of a Johnson-Segalman fluid through a deformable tube publication-title: Theor. Comput. Fluid Dynam. doi: 10.1007/s00162-007-0054-1 – volume: 106 start-page: 244 year: 2017 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0140 article-title: Effectiveness of entropy generation and energy transfer on peristaltic flow of Jeffrey material with Darcy resistance publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.10.017 – volume: 9 start-page: 817 year: 2016 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0040 article-title: Peristaltic transport of bi-viscosity fluids through a curved tube: a mathematical model for intestinal flow publication-title: Proc. Int. Mech. Eng. H doi: 10.1177/0954411916658318 – volume: B66 start-page: 679 year: 2000 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0015 article-title: Two dimensional peristaltic flow in curved channels publication-title: Trans. Jpn. Soc. Mech. Eng. doi: 10.1299/kikaib.66.679 – volume: 1 start-page: 177 year: 2019 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0045 article-title: Time-dependent analysis of electroosmotic fluid flow in a microchannel publication-title: J. Eng. Maths doi: 10.1007/s10665-019-09988-4 – volume: 16 start-page: 3107 year: 2011 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0085 article-title: The influence of heat transfer on peristaltic transport of a Jeffrey fluid in a vertical porous stratum publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2010.11.001 – volume: 37 start-page: 799 year: 1969 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0010 article-title: Peristaltic pumping with long wave-lengths at low Reynolds number publication-title: J. Fluid Mech. doi: 10.1017/S0022112069000899 – year: 1996 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0135 – volume: 535 start-page: 122 year: 2019 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0055 article-title: Analysis of double diffusive convection in electroosmosis regulated peristaltic transport of nanofluids publication-title: Physica A doi: 10.1016/j.physa.2019.122148 – volume: 15 start-page: 100424 year: 2020 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0150 article-title: Analysis of entropy generation in biomimetic electroosmotic nanofluid pumping through a curved channel with joule dissipation publication-title: Therm. Sci. Eng. Prog. doi: 10.1016/j.tsep.2019.100424 – volume: 141 start-page: 2 year: 2019 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0050 article-title: Electro-osmosis modulated viscoelastic embryo transport in uterine hydrodynamics: mathematical modeling publication-title: J. Biomech. Eng. doi: 10.1115/1.4041904 – volume: 7 start-page: 2882 year: 2019 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0100 article-title: Thermal slip and radiative heat transfer effects on electro-osmotic magnetonanoliquid peristaltic propulsion through a microchannel publication-title: Heat Transf. Asian Res. doi: 10.1002/htj.21522 – year: 2020 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0170 article-title: Soret–Dufour aspects with activation energy in peristaltic mechanism of third-grade material with variable features publication-title: J. Therm. Anal. Calorim. – volume: 5 start-page: 720 year: 1980 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0130 article-title: Second law analysis in heat transfer publication-title: Energy doi: 10.1016/0360-5442(80)90091-2 – volume: 16 start-page: 59 year: 2013 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0030 article-title: The effects of variable viscosity on the peristaltic flow of non-Newtonian fluid through a porous medium in an inclined channel with slip boundary conditions publication-title: J. Porous Media doi: 10.1615/JPorMedia.v16.i1.60 – volume: 36 start-page: 499 year: 2015 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0120 article-title: Heat transfer analysis in peristaltic flow of MHD Jeffrey fluid with variable thermal conductivity publication-title: J. Appl. Math. Mech. doi: 10.1007/s10483-015-1926-9 – volume: 107 start-page: 917 year: 2016 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0160 article-title: Simulation of double diffusive MHD (magnetohydrodynamic) natural convection and entropy generation in an open cavity filled with power-law fluids in the presence of Soret and Dufour effects (part II: entropy generation) publication-title: Energy doi: 10.1016/j.energy.2016.05.044 – volume: 41 start-page: 296 year: 2019 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0090 article-title: Nonlinear radiative peristaltic flow of Jeffrey nanofluid with activation energy and modified Darcy’s law publication-title: J. Braz. Soc.Mech. Sci. Eng. doi: 10.1007/s40430-019-1771-2 – volume: 107 start-page: 889 year: 2016 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0155 article-title: Simulation of double diffusive MHD (magnetohydrodynamic) natural convection and entropy generation in an open cavity filled with power-law fluids in the presence of Soret and Dufour effects (part I: study of fluid flow, heat and mass transfer) publication-title: Energy doi: 10.1016/j.energy.2016.05.049 – volume: 123 start-page: 25 year: 2019 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0165 article-title: Electroosmosis modulated transient blood flow in curved microvessels: study of a mathematical model publication-title: Microvasc. Res. doi: 10.1016/j.mvr.2018.11.012 – volume: 4 start-page: 297 year: 1971 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0020 article-title: Peristaltic carrying and mixing of chyme in the small intestine (an analysis of a mathematical model of peristalsis of the small intestine) publication-title: J. Biomech. doi: 10.1016/0021-9290(71)90036-4 – start-page: 1 year: 2019 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0145 article-title: Entropy generation analysis in peristaltic motion of Sisko material with variable viscosity and thermal conductivity publication-title: J. Therm. Anal. Calorim. – volume: 535 start-page: 122148 year: 2019 ident: 10.1016/j.icheatmasstransfer.2020.105009_bb0115 article-title: Analysis of double diffusive convection in electroosmosis regulated peristaltic transport of nanofluids publication-title: Physica A doi: 10.1016/j.physa.2019.122148 |
SSID | ssj0001818 |
Score | 2.413621 |
Snippet | In this work peristaltic transport of Sutterby liquid with temperature dependent thermal conductivity in curved configurations is addressed. Inclined magnetic... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105009 |
SubjectTerms | Convective boundary conditions Curved channel Entropy generation Heat source/ sink Sutterby fluid Thermal radiation Variable thermal conductivity |
Title | Entropy minimization for magneto peristaltic transport of Sutterby materials subject to temperature dependent thermal conductivity and non-linear thermal radiation |
URI | https://dx.doi.org/10.1016/j.icheatmasstransfer.2020.105009 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED5VIBAMiKd4ywMDS2gbO7EyoaoqKiC6AFK3yI5tHqJpVcLAwp_hj3LnJDwEA0is8SOW73z-nHz-DuAgMui0zmW40ug3o0l4oDPtAp7EzoUmVsrLNV0M4v61OBtGwwZ067swRKusYn8Z0320rp40q9lsTu7umpfonAQ_eEg-i-uEbrALSV5-9PJB88AdzEdjrBxQ7Xk4_OB4EdtSFSOEqYWHiZYUQkOf_LZFFMWftqpP28_JMixVuJF1yqGtQMPmq7D4SU1wFeY8mzN7XIPXHvHPJ8-MhENG1U1LhvCUjdRNbosxm3iFZkXSG6yo9c3Z2LFLn7haY1NVlM7JHp80faxh2IyErCoVZlanz8WCWwrvDwyP1qQe69NRMJUblo_zgGCsmr7XmZIWAg1nHa5PelfdflBlYwgyLsIisLzN21GWtJwwMdcitGGGcJK3jIvxEGdtS5nESoknFB2ZSAiXYYm1KhFKysTyDZjB19pNYJGQGDikI_U0EVmjrVEEZCTnkRaJ3ILjeuLTrJIqp4wZD2nNSbtPv5suJdOlpem2IHnvYVLKdvyhbbe2dfrFFVPcZX7dy_a_9LIDCyGRaDzpbRdmiumT3UMUVOh97-b7MNs5Pe8P3gA81xGP |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB1BEdsBsYodHzhwidrGTqKcEKpAZesFkLhFdmyziKZVCQe-hx9lxnEKCA4gcY2XWJ7x-Dl5fgOwH2l0WmtzXGn0m1GnPFC5sgFPY2tDHUvp5Joue3H3RpzdRrcT0KnvwhCt0sf-Kqa7aO2fNP1sNocPD80rdE6CHzwkn8V1MglTpE4VNWDq6PS82xsHZNzEXEDG-gE1mIGDD5oXES5l2UekWjqkaEgkNHT5b1vEUvxpt_q0A50swoKHjuyoGt0STJhiGeY_CQouw7QjdObPK_B2TBT04Ssj7ZC-v2zJEKGyvrwrTDlgQyfSLEl9g5W1xDkbWHblclcrbCrLyj_Z84ui7zUMm5GWlRdiZnUGXSy4pwj_xPB0TQKyLiMFk4VmxaAICMnK0bjOiOQQaDircHNyfN3pBj4hQ5BzEZaB4W3ejvK0ZYWOuRKhCXNElLylbYznOGNaUqcmSfCQoiIdCWFzLDFGpkImSWr4GjTwtWYdGBoKY0diSUBNREYroyVhmYTzSIk02YDDeuKz3KuVU9KMp6ympT1m302XkemyynQbkI57GFbKHX9o26ltnX3xxgw3ml_3svkvvezBbPf68iK7OO2db8FcSJwax4HbhkY5ejE7CIpKteud_h13zBRA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entropy+minimization+for+magneto+peristaltic+transport+of+Sutterby+materials+subject+to+temperature+dependent+thermal+conductivity+and+non-linear+thermal+radiation&rft.jtitle=International+communications+in+heat+and+mass+transfer&rft.au=Hayat%2C+T.&rft.au=Khan%2C+A.A.&rft.au=Bibi%2C+Farhat&rft.au=Alsaedi%2C+A.&rft.date=2021-03-01&rft.issn=0735-1933&rft.volume=122&rft.spage=105009&rft_id=info:doi/10.1016%2Fj.icheatmasstransfer.2020.105009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_icheatmasstransfer_2020_105009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0735-1933&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0735-1933&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0735-1933&client=summon |