Interactive plant functional group and water table effects on decomposition and extracellular enzyme activity in Sphagnum peatlands

Peatland decomposition may be altered by hydrology and plant functional groups (PFGs), but exactly how the latter influences decomposition is unclear, as are potential interactions of these factors. We used a factorial mesocosm experiment with intact 1 m3 peat monoliths to explore how PFGs (sedges v...

Full description

Saved in:
Bibliographic Details
Published inSoil biology & biochemistry Vol. 108; pp. 1 - 8
Main Authors Wiedermann, Magdalena M., Kane, Evan S., Potvin, Lynette R., Lilleskov, Erik A.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Peatland decomposition may be altered by hydrology and plant functional groups (PFGs), but exactly how the latter influences decomposition is unclear, as are potential interactions of these factors. We used a factorial mesocosm experiment with intact 1 m3 peat monoliths to explore how PFGs (sedges vs Ericaceae) and water table level individually and interactively affect decomposition processes. Decomposition was measured using litter bags at three depths filled with cellulose strips to mimic decomposition of a simple plant-derived structure, and Sphagnum tissue to simulate decomposition of the most abundant recalcitrant material in peatlands. We also analyzed the potential activity of five hydrolytic extracellular enzymes at an intermediate depth. We found lowered water table reduced activity of several enzymes and increased cellulose and Sphagnum decomposition. Presence of Ericaceae reduced decomposition of the recalcitrant Sphagnum tissue, whereas higher activity of chitinase was found in the combined presence of sedges and Ericaceae. We found no relationship between any potential enzyme activity and Sphagnum decomposition rate. Overall our results showed a dominating role of water table controlling decomposition processes, as well as support for the hypothesis that the presence of mycorrhizal Ericaceae can slow decomposition processes of complex plant tissues in peatlands. •We found support for the “Gadgil effect” in peatlands.•Ericoid mycorrhizae potentially slow decomposition processes in peatlands.•A strong water table effect on cellulose decomposition was observed.•Extracellular enzyme activity (EEA) responded weakly to the vegetation treatment.•Long term decomposition processes were not captured with point measurements of EEA.
AbstractList Peatland decomposition may be altered by hydrology and plant functional groups (PFGs), but exactly how the latter influences decomposition is unclear, as are potential interactions of these factors. We used a factorial mesocosm experiment with intact 1 m3 peat monoliths to explore how PFGs (sedges vs Ericaceae) and water table level individually and interactively affect decomposition processes. Decomposition was measured using litter bags at three depths filled with cellulose strips to mimic decomposition of a simple plant-derived structure, and Sphagnum tissue to simulate decomposition of the most abundant recalcitrant material in peatlands. We also analyzed the potential activity of five hydrolytic extracellular enzymes at an intermediate depth. We found lowered water table reduced activity of several enzymes and increased cellulose and Sphagnum decomposition. Presence of Ericaceae reduced decomposition of the recalcitrant Sphagnum tissue, whereas higher activity of chitinase was found in the combined presence of sedges and Ericaceae. We found no relationship between any potential enzyme activity and Sphagnum decomposition rate. Overall our results showed a dominating role of water table controlling decomposition processes, as well as support for the hypothesis that the presence of mycorrhizal Ericaceae can slow decomposition processes of complex plant tissues in peatlands.
Peatland decomposition may be altered by hydrology and plant functional groups (PFGs), but exactly how the latter influences decomposition is unclear, as are potential interactions of these factors. We used a factorial mesocosm experiment with intact 1 m3 peat monoliths to explore how PFGs (sedges vs Ericaceae) and water table level individually and interactively affect decomposition processes. Decomposition was measured using litter bags at three depths filled with cellulose strips to mimic decomposition of a simple plant-derived structure, and Sphagnum tissue to simulate decomposition of the most abundant recalcitrant material in peatlands. We also analyzed the potential activity of five hydrolytic extracellular enzymes at an intermediate depth. We found lowered water table reduced activity of several enzymes and increased cellulose and Sphagnum decomposition. Presence of Ericaceae reduced decomposition of the recalcitrant Sphagnum tissue, whereas higher activity of chitinase was found in the combined presence of sedges and Ericaceae. We found no relationship between any potential enzyme activity and Sphagnum decomposition rate. Overall our results showed a dominating role of water table controlling decomposition processes, as well as support for the hypothesis that the presence of mycorrhizal Ericaceae can slow decomposition processes of complex plant tissues in peatlands. •We found support for the “Gadgil effect” in peatlands.•Ericoid mycorrhizae potentially slow decomposition processes in peatlands.•A strong water table effect on cellulose decomposition was observed.•Extracellular enzyme activity (EEA) responded weakly to the vegetation treatment.•Long term decomposition processes were not captured with point measurements of EEA.
Author Kane, Evan S.
Potvin, Lynette R.
Wiedermann, Magdalena M.
Lilleskov, Erik A.
Author_xml – sequence: 1
  givenname: Magdalena M.
  surname: Wiedermann
  fullname: Wiedermann, Magdalena M.
  email: magdalena.wiedermann@uc.edu
  organization: School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
– sequence: 2
  givenname: Evan S.
  surname: Kane
  fullname: Kane, Evan S.
  email: eskane@mtu.edu
  organization: School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
– sequence: 3
  givenname: Lynette R.
  surname: Potvin
  fullname: Potvin, Lynette R.
  email: lrpotvin@fs.fed.us
  organization: US Forest Service, Northern Research Station, 410 MacInnes Dr., Houghton, MI 49931, USA
– sequence: 4
  givenname: Erik A.
  surname: Lilleskov
  fullname: Lilleskov, Erik A.
  email: elilleskov@fs.fed.us
  organization: US Forest Service, Northern Research Station, 410 MacInnes Dr., Houghton, MI 49931, USA
BookMark eNqFkMFu1DAURS1UJKaFT0Dykk3Cc5xMErFAqAJaqRILYG059nPxyLGD7ZQOW34cp9NVN11Zlu659j3n5MwHj4S8ZVAzYPv3hzoF6yYb6gZYXwOrAYYXZMeGfqx42wxnZAfAhwp61r8i5ykdAKDpGN-Rf9c-Y5Qq2zuki5M-U7P6cg1eOnobw7pQ6TX9I0uMZjk5pGgMqpxo8FSjCvMSkt2AhyDe51KHzq1ORor-73FG-tBv85FaT78vv-StX2e6oMzlQZ1ek5dGuoRvHs8L8vPL5x-XV9XNt6_Xl59uKlVG5ApZ1zdKw2RaA6OeWmMmMCPq0XRyGlQ7crPnWhrVcWbavZHYTiMo7Aa-V2PDL8i7U-8Sw-8VUxazTdtXpcewJtEUK5wDa_oS_XCKqhhSimiEslluI8s66wQDsakXB_GoXmzqBTBR1Be6e0Iv0c4yHp_lPp44LBbuLEaRlEWvUNtYjAsd7DMN_wHGbqiG
CitedBy_id crossref_primary_10_1016_j_funeco_2024_101409
crossref_primary_10_1111_gcb_16508
crossref_primary_10_1128_AEM_00241_21
crossref_primary_10_1016_j_scitotenv_2021_146384
crossref_primary_10_1007_s10021_022_00754_9
crossref_primary_10_1007_s11104_024_06725_4
crossref_primary_10_1007_s00572_021_01060_3
crossref_primary_10_1007_s11104_024_06895_1
crossref_primary_10_1016_j_ejsobi_2020_103195
crossref_primary_10_1016_j_apsoil_2020_103872
crossref_primary_10_1016_j_scitotenv_2018_02_298
crossref_primary_10_1016_j_soilbio_2023_109024
crossref_primary_10_1016_j_catena_2023_107051
crossref_primary_10_1016_j_scitotenv_2018_07_014
crossref_primary_10_1016_j_eti_2023_103064
crossref_primary_10_1111_ejss_13048
crossref_primary_10_1111_nph_18954
crossref_primary_10_1007_s13157_021_01431_8
crossref_primary_10_1016_j_scitotenv_2024_170688
crossref_primary_10_1016_j_pedsph_2023_05_005
crossref_primary_10_1080_02705060_2018_1459324
crossref_primary_10_3389_fenvs_2019_00116
crossref_primary_10_18343_jipi_24_1_20
crossref_primary_10_1007_s13157_020_01377_3
crossref_primary_10_1007_s13157_022_01626_7
crossref_primary_10_1016_j_scitotenv_2021_152077
crossref_primary_10_1111_1365_2435_13232
crossref_primary_10_5194_bg_20_4819_2023
crossref_primary_10_1016_j_geoderma_2019_113890
crossref_primary_10_1029_2019JG005339
crossref_primary_10_1016_j_geoderma_2020_114585
crossref_primary_10_1016_j_scitotenv_2022_154294
crossref_primary_10_1002_fes3_200
crossref_primary_10_1007_s10123_025_00639_6
crossref_primary_10_1007_s10533_019_00590_5
crossref_primary_10_1007_s11104_024_06569_y
crossref_primary_10_1016_j_jclepro_2023_136905
crossref_primary_10_1016_j_chemosphere_2022_134167
crossref_primary_10_3389_fmicb_2023_1266016
crossref_primary_10_1002_ldr_4013
crossref_primary_10_1016_j_scitotenv_2018_11_109
crossref_primary_10_1111_gcb_17562
crossref_primary_10_1007_s10533_021_00828_1
crossref_primary_10_1016_j_jiph_2019_06_018
crossref_primary_10_1016_j_scitotenv_2022_157539
crossref_primary_10_1002_eco_2100
Cites_doi 10.1038/nature12901
10.1111/j.1469-8137.2012.04254.x
10.4319/lo.2008.53.4.1393
10.1111/j.1574-6941.2008.00560.x
10.1002/eco.1493
10.1080/01490451.2011.568272
10.1111/j.1365-2745.2005.01024.x
10.1111/j.1469-8137.1995.tb03073.x
10.1016/j.soilbio.2006.02.017
10.1016/j.soilbio.2004.09.014
10.1111/j.1469-8137.1985.tb02853.x
10.1016/j.baae.2008.05.005
10.1890/04-1575
10.1007/s11104-014-2301-8
10.1007/s11104-015-2584-4
10.1639/05
10.1007/s10021-009-9283-z
10.3791/50961
10.4141/S05-082
10.1111/1365-2745.12413
10.1007/s10021-015-9907-4
10.1890/09-0135.1
10.1111/j.1365-2486.2011.02503.x
10.1111/j.1365-2435.2008.01402.x
10.1007/BF00328791
10.1016/S0038-0717(00)00084-5
10.1016/j.soilbio.2013.10.013
10.1038/233133a0
10.1111/gcb.13362
10.1016/j.tree.2008.10.008
10.2307/3547057
10.1007/s00442-009-1433-7
10.1006/anbo.1996.0044
10.1038/ngeo1027
10.1016/j.soilbio.2005.09.006
10.1016/j.quascirev.2015.05.012
10.1002/bimj.200810425
10.1016/0169-5347(95)90007-1
10.5194/esd-1-1-2010
10.1111/j.1365-2486.2008.01654.x
10.1038/ngeo2325
10.1890/14-0292.1
10.1111/j.1461-0248.2007.01051.x
10.1007/BF03161775
10.1023/A:1005408719297
10.4141/S05-089
10.1126/science.1231923
10.1111/nph.13201
10.1007/BF00418675
10.1038/ng.3223
10.2307/2656816
10.1111/j.1461-0248.2011.01611.x
10.1111/nph.13648
10.2307/1941811
10.18637/jss.v059.i09
10.1007/s10533-013-9852-2
10.1046/j.1365-2486.2003.00571.x
10.1007/s11104-015-2746-4
10.1111/gcb.12672
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.soilbio.2017.01.008
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Agriculture
EISSN 1879-3428
EndPage 8
ExternalDocumentID 10_1016_j_soilbio_2017_01_008
S0038071717300573
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CBWCG
CNWQP
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLW
HMA
HMC
HMG
HVGLF
HZ~
IHE
J1W
K-O
KCYFY
KOM
LW9
LX3
LY3
LY9
M41
MO0
N9A
NHB
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SBG
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SIN
SPCBC
SSA
SSJ
SSU
SSZ
T5K
TN5
TWZ
WUQ
XPP
Y6R
ZMT
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c342t-e1572cd0bf4f09db4ffb0f9ed9f5ab8c493f63dafc531f46fae4b90ce5836c923
IEDL.DBID .~1
ISSN 0038-0717
IngestDate Fri Jul 11 06:32:27 EDT 2025
Thu Apr 24 22:55:53 EDT 2025
Tue Jul 01 03:19:57 EDT 2025
Fri Feb 23 02:23:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Climate change
Saprotroph
Extracellular enzymes
Vegetation composition
Ericoid mycorrhizae
Wetlands
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-e1572cd0bf4f09db4ffb0f9ed9f5ab8c493f63dafc531f46fae4b90ce5836c923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2000330127
PQPubID 24069
PageCount 8
ParticipantIDs proquest_miscellaneous_2000330127
crossref_citationtrail_10_1016_j_soilbio_2017_01_008
crossref_primary_10_1016_j_soilbio_2017_01_008
elsevier_sciencedirect_doi_10_1016_j_soilbio_2017_01_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2017
2017-05-00
20170501
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: May 2017
PublicationDecade 2010
PublicationTitle Soil biology & biochemistry
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Frolking, Roulet, Tuittila, Bubier, Quillet, Talbot, Richard (bib23) 2010; 1
Kardol, Cregger, Campany, Classen (bib31) 2010; 91
Wieder (bib77) 2001; 11
Waddington, Morris, Kettridge, Granath, Thompson, Moore (bib73) 2015; 8
Turetsky, Benscoter, Page, Rein, van der Werf, Watts (bib68) 2015; 8
Bajwa, Abuarghub, Read (bib4) 1985; 101
Gorham (bib25) 1991; 1
Buffam, Carpenter, Yeck, Hanson, Turner (bib12) 2010
Nilsson, Sagerfors, Buffam, Laudon, Eriksson, Grelle, Klemedtsson, Weslien, Lindroth (bib49) 2008; 14
Fox, Weisberg (bib22) 2011
Clemmensen, Bahr, Ovaskainen, Dahlberg, Ekblad, Wallander, Stenlid, Finlay, Wardle, Lindahl (bib16) 2013; 339
Fernandez, Kennedy (bib21) 2016; 209
Kohler, Kuo, Nagy, Morin, Barry, Buscot, Canback, Choi, Cichocki, Clum, Colpaert, Copeland, Costa, Dore, Floudas, Gay, Girlanda, Henrissat, Herrmann, Hess, Hogberg, Johansson, Khouja, LaButti, Lahrmann, Levasseur, Lindquist, Lipzen, Marmeisse, Martino, Murat, Ngan, Nehls, Plett, Pringle, Ohm, Perotto, Peter, Riley, Rineau, Ruytinx, Salamov, Shah, Sun, Tarkka, Tritt, Veneault-Fourrey, Zuccaro, Tunlid, Grigoriev, Hibbett, Martin, Mycorrhizal Genomics Initiative (bib35) 2015; 47
Hothorn, Bretz, Westfall (bib29) 2008; 50
Halekoh, Højsgaard (bib27) 2014; 59
Toberman, Freeman, Evans, Fenner, Artz (bib63) 2008; 66
Breeuwer, Robroek, Limpens, Heijmans, Schouten, Berendse (bib11) 2009; 10
R Core Team (bib52) 2013
Sinsabaugh (bib57) 1994; 17
Turetsky, Kane, Harden, Ottmar, Manies, Hoy, Kasischke (bib70) 2011; 4
Beer, Lee, Whiticar, Blodau (bib8) 2008; 53
Michelsen, Schmidt, Jonasson, Quarmby, Sleep (bib45) 1996; 105
Treseder, Torn, Masiello (bib64) 2006; 38
Turetsky (bib67) 2003; 106
Dorrepaal, Cornelissen, Aerts, Wallen, Van Logtestijn (bib20) 2005; 93
Cornelissen, van Bodegom, Aerts, Callaghan, van Logtestijn, Alatalo, Chapin, Gerdol, Gudmundsson, Gwynn-Jones, Hartley, Hik, Hofgaard, Jonsdottir, Karlsson, Klein, Laundre, Magnusson, Michelsen, Molau, Onipchenko, Quested, Sandvik, Schmidt, Shaver, Solheim, Soudzilovskaia, Stenstrom, Tolvanen, Totland, Wada, Welker, Zhao, Team (bib18) 2007; 10
Kuznetsova, Brockhoff, Christensen (bib37) 2015
McDonald (bib43) 2014
Allison, Vitousek (bib1) 2005; 37
Murphy, Laiho, Moore (bib48) 2009; 12
Armstrong, Waldron, Ostle, Richardson, Whitaker (bib2) 2015; 18
Turetsky, Bond-Lamberty, Euskirchen, Talbot, Frolking, McGuire, Tuittila (bib69) 2012; 196
Potvin, Kane, Chimner, Kolka, Lilleskov (bib51) 2015; 387
Clymo, Turunen, Tolonen (bib17) 1998; 81
Kuzyakov, Friedel, Stahr (bib38) 2000; 32
Gadgil, Gadgil (bib24) 1971; 233
Ward, Orwin, Ostle, Briones, Thomson, Griffiths, Oakley, Quirk, Bardgett (bib74) 2015; 96
Read (bib53) 1996; 77
Hajek (bib26) 2009; 14
Bolker, Brooks, Clark, Geange, Poulsen, Stevens, White (bib10) 2009; 24
Romanowicz, Kane, Potvin, Daniels, Kolka, Lilleskov (bib56) 2015; 397
Miller, Smith, Jastrow, Bever (bib46) 1999; 86
Strakova, Penttila, Laine, Laiho (bib58) 2012; 18
Venables, Ripley (bib72) 2002
Charman, Amesbury, Hinchliffe, Hughes, Mallon, Blake, Daley, Gallego-Sala, Mauquoy (bib14) 2015; 121
Kivlin, Treseder (bib34) 2014; 117
Bell, Fricks, Rocca, Steinweg, McMahon, Wallenstein (bib9) 2013
Vanbreemen (bib71) 1995; 10
Wickham (bib76) 2009
Moore, Roulet, Waddington (bib47) 1998; 40
Weltzin, Bridgham, Pastor, Chen, Harth (bib75) 2003; 9
Thormann (bib61) 2006; 86
Christiansen, Haugwitz, Priemé, Nielsen, Elberling, Michelsen, Grogan, Blok (bib15) 2017; 23
Kettridge, Turetsky, Sherwood, Thompson, Miller, Benscoter, Flannigan, Wotton, Waddington (bib33) 2015
Averill, Turner, Finzi (bib3) 2014; 505
Lindahl, Tunlid (bib41) 2015; 205
Basiliko, Stewart, Roulet, Moore (bib6) 2012; 29
Trettin, Laiho, Minkkinen, Laine (bib65) 2006; 86
Talbot, Allison, Treseder (bib59) 2008; 22
Orwin, Kirschbaum, St John, Dickie (bib50) 2011; 14
Laiho (bib39) 2006; 38
Baldrian (bib5) 2009; 161
Robroek, Jassey, Kox, Berendsen, Mills, Cecillon, Puissant, Meima-Franke, Bakker, Bodelier (bib55) 2015; 103
Burke, Smemo, Hewins (bib13) 2014; 68
Read, Leake, Perez-Moreno (bib54) 2004; 82
Bates, Mächler, Bolker, Walker (bib7) 2015
Linkosalmi, Pumpanen, Biasi, Heinonsalo, Laiho, Linden, Palonen, Laurila, Lohila (bib42) 2015; 396
Kerley, Read (bib32) 1995; 131
IPCC (bib30) 2014
Kurnianto, Warren, Talbot, Kauffman, Murdiyarso, Frolking (bib36) 2015; 21
Thormann, Currah, Bayley (bib60) 1999; 19
Hobbie, Ouimette, Schuur, Kierstead, Trappe, Bendiksen, Ohenoja (bib28) 2013; 114
Crow, Wieder (bib19) 2005; 86
IPCC (10.1016/j.soilbio.2017.01.008_bib30) 2014
Thormann (10.1016/j.soilbio.2017.01.008_bib60) 1999; 19
Toberman (10.1016/j.soilbio.2017.01.008_bib63) 2008; 66
Waddington (10.1016/j.soilbio.2017.01.008_bib73) 2015; 8
Turetsky (10.1016/j.soilbio.2017.01.008_bib67) 2003; 106
Hajek (10.1016/j.soilbio.2017.01.008_bib26) 2009; 14
Allison (10.1016/j.soilbio.2017.01.008_bib1) 2005; 37
Armstrong (10.1016/j.soilbio.2017.01.008_bib2) 2015; 18
Kuznetsova (10.1016/j.soilbio.2017.01.008_bib37) 2015
Hobbie (10.1016/j.soilbio.2017.01.008_bib28) 2013; 114
Averill (10.1016/j.soilbio.2017.01.008_bib3) 2014; 505
Kivlin (10.1016/j.soilbio.2017.01.008_bib34) 2014; 117
R Core Team (10.1016/j.soilbio.2017.01.008_bib52) 2013
Bell (10.1016/j.soilbio.2017.01.008_bib9) 2013
Wickham (10.1016/j.soilbio.2017.01.008_bib76) 2009
Robroek (10.1016/j.soilbio.2017.01.008_bib55) 2015; 103
Halekoh (10.1016/j.soilbio.2017.01.008_bib27) 2014; 59
Laiho (10.1016/j.soilbio.2017.01.008_bib39) 2006; 38
Bajwa (10.1016/j.soilbio.2017.01.008_bib4) 1985; 101
Burke (10.1016/j.soilbio.2017.01.008_bib13) 2014; 68
Nilsson (10.1016/j.soilbio.2017.01.008_bib49) 2008; 14
Strakova (10.1016/j.soilbio.2017.01.008_bib58) 2012; 18
Linkosalmi (10.1016/j.soilbio.2017.01.008_bib42) 2015; 396
Kardol (10.1016/j.soilbio.2017.01.008_bib31) 2010; 91
Baldrian (10.1016/j.soilbio.2017.01.008_bib5) 2009; 161
Moore (10.1016/j.soilbio.2017.01.008_bib47) 1998; 40
Charman (10.1016/j.soilbio.2017.01.008_bib14) 2015; 121
Clymo (10.1016/j.soilbio.2017.01.008_bib17) 1998; 81
Ward (10.1016/j.soilbio.2017.01.008_bib74) 2015; 96
Breeuwer (10.1016/j.soilbio.2017.01.008_bib11) 2009; 10
Thormann (10.1016/j.soilbio.2017.01.008_bib61) 2006; 86
Frolking (10.1016/j.soilbio.2017.01.008_bib23) 2010; 1
Cornelissen (10.1016/j.soilbio.2017.01.008_bib18) 2007; 10
Venables (10.1016/j.soilbio.2017.01.008_bib72) 2002
Turetsky (10.1016/j.soilbio.2017.01.008_bib70) 2011; 4
Kettridge (10.1016/j.soilbio.2017.01.008_bib33) 2015
Murphy (10.1016/j.soilbio.2017.01.008_bib48) 2009; 12
Fox (10.1016/j.soilbio.2017.01.008_bib22) 2011
Bolker (10.1016/j.soilbio.2017.01.008_bib10) 2009; 24
Romanowicz (10.1016/j.soilbio.2017.01.008_bib56) 2015; 397
Crow (10.1016/j.soilbio.2017.01.008_bib19) 2005; 86
Bates (10.1016/j.soilbio.2017.01.008_bib7) 2015
Vanbreemen (10.1016/j.soilbio.2017.01.008_bib71) 1995; 10
Hothorn (10.1016/j.soilbio.2017.01.008_bib29) 2008; 50
Buffam (10.1016/j.soilbio.2017.01.008_bib12) 2010
Kurnianto (10.1016/j.soilbio.2017.01.008_bib36) 2015; 21
Basiliko (10.1016/j.soilbio.2017.01.008_bib6) 2012; 29
Turetsky (10.1016/j.soilbio.2017.01.008_bib68) 2015; 8
McDonald (10.1016/j.soilbio.2017.01.008_bib43) 2014
Trettin (10.1016/j.soilbio.2017.01.008_bib65) 2006; 86
Turetsky (10.1016/j.soilbio.2017.01.008_bib69) 2012; 196
Treseder (10.1016/j.soilbio.2017.01.008_bib64) 2006; 38
Gorham (10.1016/j.soilbio.2017.01.008_bib25) 1991; 1
Kerley (10.1016/j.soilbio.2017.01.008_bib32) 1995; 131
Read (10.1016/j.soilbio.2017.01.008_bib53) 1996; 77
Wieder (10.1016/j.soilbio.2017.01.008_bib77) 2001; 11
Talbot (10.1016/j.soilbio.2017.01.008_bib59) 2008; 22
Clemmensen (10.1016/j.soilbio.2017.01.008_bib16) 2013; 339
Orwin (10.1016/j.soilbio.2017.01.008_bib50) 2011; 14
Fernandez (10.1016/j.soilbio.2017.01.008_bib21) 2016; 209
Gadgil (10.1016/j.soilbio.2017.01.008_bib24) 1971; 233
Dorrepaal (10.1016/j.soilbio.2017.01.008_bib20) 2005; 93
Miller (10.1016/j.soilbio.2017.01.008_bib46) 1999; 86
Lindahl (10.1016/j.soilbio.2017.01.008_bib41) 2015; 205
Christiansen (10.1016/j.soilbio.2017.01.008_bib15) 2017; 23
Weltzin (10.1016/j.soilbio.2017.01.008_bib75) 2003; 9
Michelsen (10.1016/j.soilbio.2017.01.008_bib45) 1996; 105
Read (10.1016/j.soilbio.2017.01.008_bib54) 2004; 82
Potvin (10.1016/j.soilbio.2017.01.008_bib51) 2015; 387
Kuzyakov (10.1016/j.soilbio.2017.01.008_bib38) 2000; 32
Sinsabaugh (10.1016/j.soilbio.2017.01.008_bib57) 1994; 17
Beer (10.1016/j.soilbio.2017.01.008_bib8) 2008; 53
Kohler (10.1016/j.soilbio.2017.01.008_bib35) 2015; 47
References_xml – volume: 10
  start-page: 619
  year: 2007
  end-page: 627
  ident: bib18
  article-title: Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes
  publication-title: Ecology Letters
– volume: 209
  start-page: 1382
  year: 2016
  end-page: 1394
  ident: bib21
  article-title: Revisiting the “Gadgil effect”: do interguild fungal interactions control carbon cycling in forest soils?
  publication-title: New Phytologist
– volume: 161
  start-page: 657
  year: 2009
  end-page: 660
  ident: bib5
  article-title: Ectomycorrhizal fungi and their enzymes in soils: is there enough evidence for their role as facultative soil saprotrophs?
  publication-title: Oecologia
– volume: 1
  start-page: 182
  year: 1991
  end-page: 195
  ident: bib25
  article-title: Northern peatlands – role in the carbon-cycle and probable responses to climatic warming
  publication-title: Ecological Applications
– volume: 86
  start-page: 269
  year: 2006
  end-page: 280
  ident: bib65
  article-title: Influence of climate change factors on carbon dynamics in northern forested peatlands
  publication-title: Canadian Journal of Soil Science
– volume: 10
  start-page: 330
  year: 2009
  end-page: 339
  ident: bib11
  article-title: Decreased summer water table depth affects peatland vegetation
  publication-title: Basic and Applied Ecology
– volume: 77
  start-page: 365
  year: 1996
  end-page: 374
  ident: bib53
  article-title: The structure and function of the ericoid mycorrhizal root
  publication-title: Annals of Botany
– volume: 106
  start-page: 395
  year: 2003
  end-page: 409
  ident: bib67
  article-title: The role of bryophytes in carbon and nitrogen cycling
  publication-title: The Bryologist
– volume: 10
  start-page: 270
  year: 1995
  end-page: 275
  ident: bib71
  article-title: How
  publication-title: Trends in Ecology & Evolution
– volume: 11
  start-page: 327
  year: 2001
  end-page: 342
  ident: bib77
  article-title: Past, present, and future peatland carbon balance: an empirical model based on Pb-210-dated cores
  publication-title: Ecological Applications
– volume: 93
  start-page: 817
  year: 2005
  end-page: 828
  ident: bib20
  article-title: Are growth forms consistent predictors of leaf litter quality and decomposability across peatlands along a latitudinal gradient?
  publication-title: Journal of Ecology
– volume: 91
  start-page: 767
  year: 2010
  end-page: 781
  ident: bib31
  article-title: Soil ecosystem functioning under climate change: plant species and community effects
  publication-title: Ecology
– volume: 114
  start-page: 381
  year: 2013
  end-page: 389
  ident: bib28
  article-title: Radiocarbon evidence for the mining of organic nitrogen from soil by mycorrhizal fungi
  publication-title: Biogeochemistry
– volume: 66
  start-page: 426
  year: 2008
  end-page: 436
  ident: bib63
  article-title: Summer drought decreases soil fungal diversity and associated phenol oxidase activity in upland
  publication-title: Fems Microbiology Ecology
– volume: 47
  year: 2015
  ident: bib35
  article-title: Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists
  publication-title: Nature Genetics
– volume: 105
  start-page: 53
  year: 1996
  end-page: 63
  ident: bib45
  article-title: Leaf N-15 abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non- and arbuscular mycorrhizal species access different sources of soil nitrogen
  publication-title: Oecologia
– volume: 50
  start-page: 346
  year: 2008
  end-page: 363
  ident: bib29
  article-title: Simultaneous inference in general parametric models. Biometrical Journal
  publication-title: Biometrische Zeitschrift
– volume: 8
  start-page: 113
  year: 2015
  end-page: 127
  ident: bib73
  article-title: Hydrological feedbacks in northern peatlands
  publication-title: Ecohydrology
– volume: 38
  start-page: 1077
  year: 2006
  end-page: 1082
  ident: bib64
  article-title: An ecosystem-scale radiocarbon tracer to test use of litter carbon by ectomycorrhizal fungi
  publication-title: Soil Biology & Biochemistry
– volume: 397
  start-page: 371
  year: 2015
  end-page: 386
  ident: bib56
  article-title: Understanding drivers of peatland extracellular enzyme activity in the PEATcosm experiment: mixed evidence for enzymic latch hypothesis
  publication-title: Plant and Soil
– volume: 37
  start-page: 937
  year: 2005
  end-page: 944
  ident: bib1
  article-title: Responses of extracellular enzymes to simple and complex nutrient inputs
  publication-title: Soil Biology & Biochemistry
– volume: 131
  start-page: 369
  year: 1995
  end-page: 375
  ident: bib32
  article-title: The biology of mycorrhiza in the Ericaceae. XVIII. Chitin degradation by Hymenoscyphus ericaeand transfer of chitin-nitrogen to the host plant
  publication-title: New Phytologist
– start-page: 5
  year: 2015
  ident: bib33
  article-title: Moderate drop in water table increases peatland vulnerability to post-fire regime shift
  publication-title: Scientific Reports
– volume: 21
  start-page: 431
  year: 2015
  end-page: 444
  ident: bib36
  article-title: Carbon accumulation of tropical peatlands over millennia: a modeling approach
  publication-title: Global Change Biology
– year: 2013
  ident: bib9
  article-title: High-throughput fluorometric measurement of potential soil extracellular enzyme activities
  publication-title: Jove-Journal of Visualized Experiments
– volume: 82
  start-page: 1243
  year: 2004
  end-page: 1263
  ident: bib54
  article-title: Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes
  publication-title: Canadian Journal of Botany-Revue Canadienne De Botanique
– volume: 339
  start-page: 1615
  year: 2013
  end-page: 1618
  ident: bib16
  article-title: Roots and associated fungi drive long-term carbon sequestration in Boreal Forest
  publication-title: Science
– start-page: 67
  year: 2015
  ident: bib7
  article-title: Fitting linear mixed-effects models using lme4
  publication-title: Journal of Statistical Software
– volume: 81
  start-page: 368
  year: 1998
  end-page: 388
  ident: bib17
  article-title: Carbon accumulation in peatland
  publication-title: Oikos
– volume: 396
  start-page: 59
  year: 2015
  end-page: 72
  ident: bib42
  article-title: Studying the impact of living roots on the decomposition of soil organic matter in two different forestry-drained peatlands
  publication-title: Plant and Soil
– volume: 68
  start-page: 219
  year: 2014
  end-page: 222
  ident: bib13
  article-title: Ectomycorrhizal fungi isolated from old-growth northern hardwood forest display variability in extracellular enzyme activity in the presence of plant litter
  publication-title: Soil Biology & Biochemistry
– volume: 1
  start-page: 1
  year: 2010
  end-page: 21
  ident: bib23
  article-title: A new model of Holocene peatland net primary production, decomposition, water balance, and peat accumulation
  publication-title: Earth Syst. Dynam
– start-page: 1
  year: 2014
  end-page: 32
  ident: bib30
  article-title: Summary for policymakers
  publication-title: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 103
  start-page: 925
  year: 2015
  end-page: 934
  ident: bib55
  article-title: Peatland vascular plant functional types affect methane dynamics by altering microbial community structure
  publication-title: Journal of Ecology
– volume: 14
  start-page: 493
  year: 2011
  end-page: 502
  ident: bib50
  article-title: Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment
  publication-title: Ecology Letters
– volume: 96
  start-page: 113
  year: 2015
  end-page: 123
  ident: bib74
  article-title: Vegetation exerts a greater control on litter decomposition than climate warming in peatlands
  publication-title: Ecology
– volume: 233
  start-page: 133
  year: 1971
  ident: bib24
  article-title: Mycorrhiza and litter decomposition
  publication-title: Nature
– volume: 32
  start-page: 1485
  year: 2000
  end-page: 1498
  ident: bib38
  article-title: Review of mechanisms and quantification of priming effects
  publication-title: Soil Biology & Biochemistry
– volume: 29
  start-page: 374
  year: 2012
  end-page: 378
  ident: bib6
  article-title: Do root exudates enhance peat decomposition?
  publication-title: Geomicrobiology Journal
– volume: 505
  start-page: 543
  year: 2014
  ident: bib3
  article-title: Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage
  publication-title: Nature
– volume: 196
  start-page: 49
  year: 2012
  end-page: 67
  ident: bib69
  article-title: The resilience and functional role of moss in boreal and arctic ecosystems
  publication-title: New Phytologist
– volume: 18
  start-page: 322
  year: 2012
  end-page: 335
  ident: bib58
  article-title: Disentangling direct and indirect effects of water table drawdown on above- and belowground plant litter decomposition: consequences for accumulation of organic matter in boreal peatlands
  publication-title: Global Change Biology
– volume: 4
  start-page: 27
  year: 2011
  end-page: 31
  ident: bib70
  article-title: Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands
  publication-title: Nature Geoscience
– start-page: 115
  year: 2010
  ident: bib12
  article-title: Filling holes in regional carbon budgets: predicting peat depth in a north temperate lake district
  publication-title: Journal of Geophysical Research
– volume: 17
  start-page: 69
  year: 1994
  end-page: 74
  ident: bib57
  article-title: Enzymatic analysis of microbial pattern and process
  publication-title: Biology and Fertility of Soils
– volume: 9
  start-page: 141
  year: 2003
  end-page: 151
  ident: bib75
  article-title: Potential effects of warming and drying on peatland plant community composition
  publication-title: Global Change Biology
– year: 2009
  ident: bib76
  article-title: ggplot2
– year: 2011
  ident: bib22
  article-title: An {R} Companion to Applied Regression
– volume: 14
  start-page: 947
  year: 2009
  end-page: 958
  ident: bib26
  article-title: Habitat and species controls on
  publication-title: Boreal Environment Research
– year: 2002
  ident: bib72
  article-title: Modern Applied Statistics with S, Statistics and Computing
– volume: 86
  start-page: 547
  year: 1999
  end-page: 553
  ident: bib46
  article-title: Mycorrhizal status of the genus Carex (Cyperaceae)
  publication-title: American Journal of Botany
– volume: 86
  start-page: 281
  year: 2006
  end-page: 293
  ident: bib61
  article-title: Diversity and function of fungi in peatlands: a carbon cycling perspective
  publication-title: Canadian Journal of Soil Science
– volume: 24
  start-page: 127
  year: 2009
  end-page: 135
  ident: bib10
  article-title: Generalized linear mixed models: a practical guide for ecology and evolution
  publication-title: Trends in Ecology & Evolution
– volume: 59
  start-page: 32
  year: 2014
  ident: bib27
  article-title: A kenward-roger approximation and parametric bootstrap methods for tests in linear mixed models. The R package pbkrtest
  publication-title: Journal of Statistical Software
– volume: 14
  start-page: 2317
  year: 2008
  end-page: 2332
  ident: bib49
  article-title: Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire - a significant sink after accounting for all C-fluxes
  publication-title: Global Change Biology
– volume: 387
  start-page: 277
  year: 2015
  end-page: 294
  ident: bib51
  article-title: Effects of water table position and plant functional group on plant community, aboveground production, and peat properties in a peatland mesocosm experiment (PEATcosm)
  publication-title: Plant and Soil
– volume: 18
  start-page: 1395
  year: 2015
  end-page: 1409
  ident: bib2
  article-title: Biotic and abiotic factors interact to regulate northern peatland carbon cycling
  publication-title: Ecosystems
– volume: 23
  start-page: 406
  year: 2017
  end-page: 420
  ident: bib15
  article-title: Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra
  publication-title: Global Change Biology
– start-page: 0
  year: 2015
  end-page: 29
  ident: bib37
  article-title: lmerTest: tests in linear mixed effects models
  publication-title: R Package Version 2
– volume: 205
  start-page: 1443
  year: 2015
  end-page: 1447
  ident: bib41
  article-title: Ectomycorrhizal fungi - potential organic matter decomposers, yet not saprotrophs
  publication-title: New Phytologist
– volume: 22
  start-page: 955
  year: 2008
  end-page: 963
  ident: bib59
  article-title: Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change
  publication-title: Functional Ecology
– volume: 8
  start-page: 11
  year: 2015
  end-page: 14
  ident: bib68
  article-title: Global vulnerability of peatlands to fire and carbon loss
  publication-title: Nature Geoscience
– year: 2014
  ident: bib43
  article-title: Handbook of Biological Statistics
– volume: 117
  start-page: 23
  year: 2014
  end-page: 37
  ident: bib34
  article-title: Soil extracellular enzyme activities correspond with abiotic factors more than fungal community composition
  publication-title: Biogeochemistry
– volume: 86
  start-page: 1825
  year: 2005
  end-page: 1834
  ident: bib19
  article-title: Sources of Co-2 emission from a northern peatland: root respiration, exudation, and decomposition
  publication-title: Ecology
– year: 2013
  ident: bib52
  article-title: R: a Language and Environment for Statistical Computing
– volume: 19
  start-page: 438
  year: 1999
  end-page: 450
  ident: bib60
  article-title: The mycorrhizal status of the dominant vegetation along a peatland gradient in southern boreal Alberta, Canada
  publication-title: Wetlands
– volume: 53
  start-page: 1393
  year: 2008
  end-page: 1407
  ident: bib8
  article-title: Geochemical controls on anaerobic organic matter decomposition in a northern peatland
  publication-title: Limnology and Oceanography
– volume: 121
  start-page: 110
  year: 2015
  end-page: 119
  ident: bib14
  article-title: Drivers of Holocene peatland carbon accumulation across a climate gradient in northeastern North America
  publication-title: Quaternary Science Reviews
– volume: 40
  start-page: 229
  year: 1998
  end-page: 245
  ident: bib47
  article-title: Uncertainty in predicting the effect of climatic change on the carbon cycling of Canadian peatlands
  publication-title: Climatic Change
– volume: 101
  start-page: 469
  year: 1985
  end-page: 486
  ident: bib4
  article-title: The biology of mycorrhiza in the Ericaceae. 10. The utilization of proteins and the production of proteolytic-enzymes by the mycorrhizal endophyte and by mycorrhizal plants
  publication-title: New Phytologist
– volume: 38
  start-page: 2011
  year: 2006
  end-page: 2024
  ident: bib39
  article-title: Decomposition in peatlands: reconciling seemingly contrasting results on the impacts of lowered water levels
  publication-title: Soil Biology & Biochemistry
– volume: 12
  start-page: 1268
  year: 2009
  end-page: 1282
  ident: bib48
  article-title: Effects of water table drawdown on root production and aboveground biomass in a boreal bog
  publication-title: Ecosystems
– volume: 505
  start-page: 543
  year: 2014
  ident: 10.1016/j.soilbio.2017.01.008_bib3
  article-title: Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage
  publication-title: Nature
  doi: 10.1038/nature12901
– volume: 196
  start-page: 49
  year: 2012
  ident: 10.1016/j.soilbio.2017.01.008_bib69
  article-title: The resilience and functional role of moss in boreal and arctic ecosystems
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2012.04254.x
– volume: 53
  start-page: 1393
  year: 2008
  ident: 10.1016/j.soilbio.2017.01.008_bib8
  article-title: Geochemical controls on anaerobic organic matter decomposition in a northern peatland
  publication-title: Limnology and Oceanography
  doi: 10.4319/lo.2008.53.4.1393
– volume: 66
  start-page: 426
  year: 2008
  ident: 10.1016/j.soilbio.2017.01.008_bib63
  article-title: Summer drought decreases soil fungal diversity and associated phenol oxidase activity in upland Calluna heathland soil
  publication-title: Fems Microbiology Ecology
  doi: 10.1111/j.1574-6941.2008.00560.x
– volume: 8
  start-page: 113
  year: 2015
  ident: 10.1016/j.soilbio.2017.01.008_bib73
  article-title: Hydrological feedbacks in northern peatlands
  publication-title: Ecohydrology
  doi: 10.1002/eco.1493
– volume: 29
  start-page: 374
  year: 2012
  ident: 10.1016/j.soilbio.2017.01.008_bib6
  article-title: Do root exudates enhance peat decomposition?
  publication-title: Geomicrobiology Journal
  doi: 10.1080/01490451.2011.568272
– volume: 93
  start-page: 817
  year: 2005
  ident: 10.1016/j.soilbio.2017.01.008_bib20
  article-title: Are growth forms consistent predictors of leaf litter quality and decomposability across peatlands along a latitudinal gradient?
  publication-title: Journal of Ecology
  doi: 10.1111/j.1365-2745.2005.01024.x
– volume: 131
  start-page: 369
  year: 1995
  ident: 10.1016/j.soilbio.2017.01.008_bib32
  article-title: The biology of mycorrhiza in the Ericaceae. XVIII. Chitin degradation by Hymenoscyphus ericaeand transfer of chitin-nitrogen to the host plant
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.1995.tb03073.x
– volume: 38
  start-page: 2011
  year: 2006
  ident: 10.1016/j.soilbio.2017.01.008_bib39
  article-title: Decomposition in peatlands: reconciling seemingly contrasting results on the impacts of lowered water levels
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/j.soilbio.2006.02.017
– volume: 37
  start-page: 937
  year: 2005
  ident: 10.1016/j.soilbio.2017.01.008_bib1
  article-title: Responses of extracellular enzymes to simple and complex nutrient inputs
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/j.soilbio.2004.09.014
– volume: 101
  start-page: 469
  year: 1985
  ident: 10.1016/j.soilbio.2017.01.008_bib4
  article-title: The biology of mycorrhiza in the Ericaceae. 10. The utilization of proteins and the production of proteolytic-enzymes by the mycorrhizal endophyte and by mycorrhizal plants
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.1985.tb02853.x
– volume: 10
  start-page: 330
  year: 2009
  ident: 10.1016/j.soilbio.2017.01.008_bib11
  article-title: Decreased summer water table depth affects peatland vegetation
  publication-title: Basic and Applied Ecology
  doi: 10.1016/j.baae.2008.05.005
– volume: 86
  start-page: 1825
  year: 2005
  ident: 10.1016/j.soilbio.2017.01.008_bib19
  article-title: Sources of Co-2 emission from a northern peatland: root respiration, exudation, and decomposition
  publication-title: Ecology
  doi: 10.1890/04-1575
– volume: 387
  start-page: 277
  year: 2015
  ident: 10.1016/j.soilbio.2017.01.008_bib51
  article-title: Effects of water table position and plant functional group on plant community, aboveground production, and peat properties in a peatland mesocosm experiment (PEATcosm)
  publication-title: Plant and Soil
  doi: 10.1007/s11104-014-2301-8
– volume: 396
  start-page: 59
  year: 2015
  ident: 10.1016/j.soilbio.2017.01.008_bib42
  article-title: Studying the impact of living roots on the decomposition of soil organic matter in two different forestry-drained peatlands
  publication-title: Plant and Soil
  doi: 10.1007/s11104-015-2584-4
– volume: 106
  start-page: 395
  year: 2003
  ident: 10.1016/j.soilbio.2017.01.008_bib67
  article-title: The role of bryophytes in carbon and nitrogen cycling
  publication-title: The Bryologist
  doi: 10.1639/05
– volume: 12
  start-page: 1268
  year: 2009
  ident: 10.1016/j.soilbio.2017.01.008_bib48
  article-title: Effects of water table drawdown on root production and aboveground biomass in a boreal bog
  publication-title: Ecosystems
  doi: 10.1007/s10021-009-9283-z
– year: 2013
  ident: 10.1016/j.soilbio.2017.01.008_bib9
  article-title: High-throughput fluorometric measurement of potential soil extracellular enzyme activities
  publication-title: Jove-Journal of Visualized Experiments
  doi: 10.3791/50961
– volume: 86
  start-page: 281
  year: 2006
  ident: 10.1016/j.soilbio.2017.01.008_bib61
  article-title: Diversity and function of fungi in peatlands: a carbon cycling perspective
  publication-title: Canadian Journal of Soil Science
  doi: 10.4141/S05-082
– volume: 103
  start-page: 925
  year: 2015
  ident: 10.1016/j.soilbio.2017.01.008_bib55
  article-title: Peatland vascular plant functional types affect methane dynamics by altering microbial community structure
  publication-title: Journal of Ecology
  doi: 10.1111/1365-2745.12413
– volume: 18
  start-page: 1395
  year: 2015
  ident: 10.1016/j.soilbio.2017.01.008_bib2
  article-title: Biotic and abiotic factors interact to regulate northern peatland carbon cycling
  publication-title: Ecosystems
  doi: 10.1007/s10021-015-9907-4
– start-page: 5
  year: 2015
  ident: 10.1016/j.soilbio.2017.01.008_bib33
  article-title: Moderate drop in water table increases peatland vulnerability to post-fire regime shift
  publication-title: Scientific Reports
– volume: 14
  start-page: 947
  year: 2009
  ident: 10.1016/j.soilbio.2017.01.008_bib26
  article-title: Habitat and species controls on Sphagnum production and decomposition in a mountain raised bog
  publication-title: Boreal Environment Research
– year: 2009
  ident: 10.1016/j.soilbio.2017.01.008_bib76
– start-page: 1
  year: 2014
  ident: 10.1016/j.soilbio.2017.01.008_bib30
  article-title: Summary for policymakers
– volume: 91
  start-page: 767
  year: 2010
  ident: 10.1016/j.soilbio.2017.01.008_bib31
  article-title: Soil ecosystem functioning under climate change: plant species and community effects
  publication-title: Ecology
  doi: 10.1890/09-0135.1
– volume: 18
  start-page: 322
  year: 2012
  ident: 10.1016/j.soilbio.2017.01.008_bib58
  article-title: Disentangling direct and indirect effects of water table drawdown on above- and belowground plant litter decomposition: consequences for accumulation of organic matter in boreal peatlands
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2011.02503.x
– volume: 22
  start-page: 955
  year: 2008
  ident: 10.1016/j.soilbio.2017.01.008_bib59
  article-title: Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change
  publication-title: Functional Ecology
  doi: 10.1111/j.1365-2435.2008.01402.x
– year: 2002
  ident: 10.1016/j.soilbio.2017.01.008_bib72
– volume: 105
  start-page: 53
  year: 1996
  ident: 10.1016/j.soilbio.2017.01.008_bib45
  article-title: Leaf N-15 abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non- and arbuscular mycorrhizal species access different sources of soil nitrogen
  publication-title: Oecologia
  doi: 10.1007/BF00328791
– volume: 32
  start-page: 1485
  year: 2000
  ident: 10.1016/j.soilbio.2017.01.008_bib38
  article-title: Review of mechanisms and quantification of priming effects
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/S0038-0717(00)00084-5
– volume: 68
  start-page: 219
  year: 2014
  ident: 10.1016/j.soilbio.2017.01.008_bib13
  article-title: Ectomycorrhizal fungi isolated from old-growth northern hardwood forest display variability in extracellular enzyme activity in the presence of plant litter
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/j.soilbio.2013.10.013
– volume: 233
  start-page: 133
  year: 1971
  ident: 10.1016/j.soilbio.2017.01.008_bib24
  article-title: Mycorrhiza and litter decomposition
  publication-title: Nature
  doi: 10.1038/233133a0
– volume: 23
  start-page: 406
  year: 2017
  ident: 10.1016/j.soilbio.2017.01.008_bib15
  article-title: Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra
  publication-title: Global Change Biology
  doi: 10.1111/gcb.13362
– start-page: 67
  year: 2015
  ident: 10.1016/j.soilbio.2017.01.008_bib7
  article-title: Fitting linear mixed-effects models using lme4
  publication-title: Journal of Statistical Software
– volume: 24
  start-page: 127
  year: 2009
  ident: 10.1016/j.soilbio.2017.01.008_bib10
  article-title: Generalized linear mixed models: a practical guide for ecology and evolution
  publication-title: Trends in Ecology & Evolution
  doi: 10.1016/j.tree.2008.10.008
– volume: 81
  start-page: 368
  year: 1998
  ident: 10.1016/j.soilbio.2017.01.008_bib17
  article-title: Carbon accumulation in peatland
  publication-title: Oikos
  doi: 10.2307/3547057
– volume: 161
  start-page: 657
  year: 2009
  ident: 10.1016/j.soilbio.2017.01.008_bib5
  article-title: Ectomycorrhizal fungi and their enzymes in soils: is there enough evidence for their role as facultative soil saprotrophs?
  publication-title: Oecologia
  doi: 10.1007/s00442-009-1433-7
– year: 2011
  ident: 10.1016/j.soilbio.2017.01.008_bib22
– volume: 82
  start-page: 1243
  year: 2004
  ident: 10.1016/j.soilbio.2017.01.008_bib54
  article-title: Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes
  publication-title: Canadian Journal of Botany-Revue Canadienne De Botanique
– volume: 77
  start-page: 365
  year: 1996
  ident: 10.1016/j.soilbio.2017.01.008_bib53
  article-title: The structure and function of the ericoid mycorrhizal root
  publication-title: Annals of Botany
  doi: 10.1006/anbo.1996.0044
– volume: 4
  start-page: 27
  year: 2011
  ident: 10.1016/j.soilbio.2017.01.008_bib70
  article-title: Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands
  publication-title: Nature Geoscience
  doi: 10.1038/ngeo1027
– volume: 38
  start-page: 1077
  year: 2006
  ident: 10.1016/j.soilbio.2017.01.008_bib64
  article-title: An ecosystem-scale radiocarbon tracer to test use of litter carbon by ectomycorrhizal fungi
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/j.soilbio.2005.09.006
– volume: 121
  start-page: 110
  year: 2015
  ident: 10.1016/j.soilbio.2017.01.008_bib14
  article-title: Drivers of Holocene peatland carbon accumulation across a climate gradient in northeastern North America
  publication-title: Quaternary Science Reviews
  doi: 10.1016/j.quascirev.2015.05.012
– volume: 50
  start-page: 346
  year: 2008
  ident: 10.1016/j.soilbio.2017.01.008_bib29
  article-title: Simultaneous inference in general parametric models. Biometrical Journal
  publication-title: Biometrische Zeitschrift
  doi: 10.1002/bimj.200810425
– volume: 10
  start-page: 270
  year: 1995
  ident: 10.1016/j.soilbio.2017.01.008_bib71
  article-title: How Sphagnum bogs down other plants
  publication-title: Trends in Ecology & Evolution
  doi: 10.1016/0169-5347(95)90007-1
– volume: 1
  start-page: 1
  year: 2010
  ident: 10.1016/j.soilbio.2017.01.008_bib23
  article-title: A new model of Holocene peatland net primary production, decomposition, water balance, and peat accumulation
  publication-title: Earth Syst. Dynam
  doi: 10.5194/esd-1-1-2010
– volume: 14
  start-page: 2317
  year: 2008
  ident: 10.1016/j.soilbio.2017.01.008_bib49
  article-title: Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire - a significant sink after accounting for all C-fluxes
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2008.01654.x
– start-page: 0
  year: 2015
  ident: 10.1016/j.soilbio.2017.01.008_bib37
  article-title: lmerTest: tests in linear mixed effects models
  publication-title: R Package Version 2
– volume: 8
  start-page: 11
  year: 2015
  ident: 10.1016/j.soilbio.2017.01.008_bib68
  article-title: Global vulnerability of peatlands to fire and carbon loss
  publication-title: Nature Geoscience
  doi: 10.1038/ngeo2325
– year: 2014
  ident: 10.1016/j.soilbio.2017.01.008_bib43
– volume: 96
  start-page: 113
  year: 2015
  ident: 10.1016/j.soilbio.2017.01.008_bib74
  article-title: Vegetation exerts a greater control on litter decomposition than climate warming in peatlands
  publication-title: Ecology
  doi: 10.1890/14-0292.1
– volume: 10
  start-page: 619
  year: 2007
  ident: 10.1016/j.soilbio.2017.01.008_bib18
  article-title: Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes
  publication-title: Ecology Letters
  doi: 10.1111/j.1461-0248.2007.01051.x
– volume: 19
  start-page: 438
  year: 1999
  ident: 10.1016/j.soilbio.2017.01.008_bib60
  article-title: The mycorrhizal status of the dominant vegetation along a peatland gradient in southern boreal Alberta, Canada
  publication-title: Wetlands
  doi: 10.1007/BF03161775
– volume: 40
  start-page: 229
  year: 1998
  ident: 10.1016/j.soilbio.2017.01.008_bib47
  article-title: Uncertainty in predicting the effect of climatic change on the carbon cycling of Canadian peatlands
  publication-title: Climatic Change
  doi: 10.1023/A:1005408719297
– volume: 86
  start-page: 269
  year: 2006
  ident: 10.1016/j.soilbio.2017.01.008_bib65
  article-title: Influence of climate change factors on carbon dynamics in northern forested peatlands
  publication-title: Canadian Journal of Soil Science
  doi: 10.4141/S05-089
– volume: 339
  start-page: 1615
  year: 2013
  ident: 10.1016/j.soilbio.2017.01.008_bib16
  article-title: Roots and associated fungi drive long-term carbon sequestration in Boreal Forest
  publication-title: Science
  doi: 10.1126/science.1231923
– volume: 205
  start-page: 1443
  year: 2015
  ident: 10.1016/j.soilbio.2017.01.008_bib41
  article-title: Ectomycorrhizal fungi - potential organic matter decomposers, yet not saprotrophs
  publication-title: New Phytologist
  doi: 10.1111/nph.13201
– volume: 17
  start-page: 69
  year: 1994
  ident: 10.1016/j.soilbio.2017.01.008_bib57
  article-title: Enzymatic analysis of microbial pattern and process
  publication-title: Biology and Fertility of Soils
  doi: 10.1007/BF00418675
– start-page: 115
  year: 2010
  ident: 10.1016/j.soilbio.2017.01.008_bib12
  article-title: Filling holes in regional carbon budgets: predicting peat depth in a north temperate lake district
  publication-title: Journal of Geophysical Research
– volume: 47
  year: 2015
  ident: 10.1016/j.soilbio.2017.01.008_bib35
  article-title: Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists
  publication-title: Nature Genetics
  doi: 10.1038/ng.3223
– volume: 86
  start-page: 547
  year: 1999
  ident: 10.1016/j.soilbio.2017.01.008_bib46
  article-title: Mycorrhizal status of the genus Carex (Cyperaceae)
  publication-title: American Journal of Botany
  doi: 10.2307/2656816
– volume: 11
  start-page: 327
  year: 2001
  ident: 10.1016/j.soilbio.2017.01.008_bib77
  article-title: Past, present, and future peatland carbon balance: an empirical model based on Pb-210-dated cores
  publication-title: Ecological Applications
– volume: 14
  start-page: 493
  year: 2011
  ident: 10.1016/j.soilbio.2017.01.008_bib50
  article-title: Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment
  publication-title: Ecology Letters
  doi: 10.1111/j.1461-0248.2011.01611.x
– volume: 209
  start-page: 1382
  year: 2016
  ident: 10.1016/j.soilbio.2017.01.008_bib21
  article-title: Revisiting the “Gadgil effect”: do interguild fungal interactions control carbon cycling in forest soils?
  publication-title: New Phytologist
  doi: 10.1111/nph.13648
– volume: 1
  start-page: 182
  year: 1991
  ident: 10.1016/j.soilbio.2017.01.008_bib25
  article-title: Northern peatlands – role in the carbon-cycle and probable responses to climatic warming
  publication-title: Ecological Applications
  doi: 10.2307/1941811
– volume: 59
  start-page: 32
  year: 2014
  ident: 10.1016/j.soilbio.2017.01.008_bib27
  article-title: A kenward-roger approximation and parametric bootstrap methods for tests in linear mixed models. The R package pbkrtest
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v059.i09
– year: 2013
  ident: 10.1016/j.soilbio.2017.01.008_bib52
– volume: 114
  start-page: 381
  year: 2013
  ident: 10.1016/j.soilbio.2017.01.008_bib28
  article-title: Radiocarbon evidence for the mining of organic nitrogen from soil by mycorrhizal fungi
  publication-title: Biogeochemistry
– volume: 117
  start-page: 23
  year: 2014
  ident: 10.1016/j.soilbio.2017.01.008_bib34
  article-title: Soil extracellular enzyme activities correspond with abiotic factors more than fungal community composition
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-013-9852-2
– volume: 9
  start-page: 141
  year: 2003
  ident: 10.1016/j.soilbio.2017.01.008_bib75
  article-title: Potential effects of warming and drying on peatland plant community composition
  publication-title: Global Change Biology
  doi: 10.1046/j.1365-2486.2003.00571.x
– volume: 397
  start-page: 371
  year: 2015
  ident: 10.1016/j.soilbio.2017.01.008_bib56
  article-title: Understanding drivers of peatland extracellular enzyme activity in the PEATcosm experiment: mixed evidence for enzymic latch hypothesis
  publication-title: Plant and Soil
  doi: 10.1007/s11104-015-2746-4
– volume: 21
  start-page: 431
  year: 2015
  ident: 10.1016/j.soilbio.2017.01.008_bib36
  article-title: Carbon accumulation of tropical peatlands over millennia: a modeling approach
  publication-title: Global Change Biology
  doi: 10.1111/gcb.12672
SSID ssj0002513
Score 2.438687
Snippet Peatland decomposition may be altered by hydrology and plant functional groups (PFGs), but exactly how the latter influences decomposition is unclear, as are...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms bags
cellulose
chitinase
Climate change
Cyperaceae
enzyme activity
Ericaceae
Ericoid mycorrhizae
Extracellular enzymes
peat
peatlands
plant tissues
Saprotroph
Sphagnum
Vegetation composition
water table
Wetlands
Title Interactive plant functional group and water table effects on decomposition and extracellular enzyme activity in Sphagnum peatlands
URI https://dx.doi.org/10.1016/j.soilbio.2017.01.008
https://www.proquest.com/docview/2000330127
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF5KfVAfRKtirS0r-Jpekt382MfjaDkV-6KFvi3ZZKZeSffC9Q7RB1_6jzuzt7EoQsHHhMwQdiYzk935vhHinUIquqGkP1UsdaIzbBIHYJKizjFX5ABVxkDhT2fl_Fx_uCgudsRsxMJwW2WM_duYHqJ1vDOJqzkZFgvG-DJZesbHyIHWjxHsumIvP_551-ZB-TsS79YM1qnuUDyTK-bL7d2CMYBZFdg7ecrkv_PTX5E6pJ_Tp-JJrBvldPtqz8QO-D3xeHq5itwZsCcezsbhbc_Fbdjpa0Iwk0NPyyc5g203_mSAcsjGd_IblZoruWb8lIytHXLpZQfcah77ucKDFMNJHfQ9t61K8D--X4MM-qmMlwsvPw9fm0u_uZYDRfcAIH4hzk9PvszmSZy3kLRK5-sEsqLK2y51qDE1ndOILkUDncGicXWrjcJSdQ229OGiLrEB7UzaQlGrsqVK8aXY9UsPr4REXWOeO6fyjlTXuUPjdAZVYVKnSXxf6HGVbRvJyHkmRm_HrrMrG41j2Tg2zSwZZ18c_xYbtmwc9wnUowntH25lKWPcJ_p2NLkl4_EKNx6Wmxue3JkqxWf2r_9f_YF4xFehd9K8Ebvr1QYOqb5Zu6PgwEfiwfT9x_nZLy4r_0Y
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWqcigcKiggSikYCY7pJrbz4QOHqlBt6ceFVurNxMm4bJVmo-2uqnLgwk_iD3bGcahASJWQek1iH_ycmXHy3hvG3kmHRTdkeFJ1mYpU4srIAugoLYQTEjdAnpBQ-PAoG5-oz6fp6RL7NWhhiFYZYn8f0320DldGYTVH3WRCGl8yS0_oN7K39QvMyn24vsJz2-WHvY8I8nshdj8d74yj0FogqqQS8wiSNBdVHVunXKxrq5yzsdNQa5eWtqiUli6Tdekq3KNOZa4EZXVcQVrIrNLkdoBx_4HCcEFtE7Z-3PJKsGAITr8FqYPyW9nQ6JwMehs7IdFhknu7UGpr-e-E-Fdq8Plu9zFbDYUq3-7X4glbgnaNPdo-mwWzDlhjKztDt7in7Kf_tFj66Mm7BvHilDL7L43ca0d42db8CmvbGZ-TYIsHLgmftrwG4rYHApl_EJMGTgdNQzxZDu336wvgfn48N_BJy79038qzdnHBO0wnXrH8jJ3cCwrP2XI7beEF404VTghrpahx6kJYp61KIE91bBUOX2dqWGVTBfdzasLRmIHmdm4COIbAMXFiEJx1tvV7WNfbf9w1oBggNH_sY4Mp6q6hbwfIDYJHK1y2MF1cUqvQWEoiCbz8_-nfsJXx8eGBOdg72t9gD-lOT9x8xZbnswVsYnE1t6_9Zubs632_PTfk8T1t
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interactive+plant+functional+group+and+water+table+effects+on+decomposition+and+extracellular+enzyme+activity+in+Sphagnum+peatlands&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Wiedermann%2C+Magdalena+M.&rft.au=Kane%2C+Evan+S.&rft.au=Potvin%2C+Lynette+R.&rft.au=Lilleskov%2C+Erik+A.&rft.date=2017-05-01&rft.issn=0038-0717&rft.volume=108&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1016%2Fj.soilbio.2017.01.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_soilbio_2017_01_008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon