Interactive plant functional group and water table effects on decomposition and extracellular enzyme activity in Sphagnum peatlands
Peatland decomposition may be altered by hydrology and plant functional groups (PFGs), but exactly how the latter influences decomposition is unclear, as are potential interactions of these factors. We used a factorial mesocosm experiment with intact 1 m3 peat monoliths to explore how PFGs (sedges v...
Saved in:
Published in | Soil biology & biochemistry Vol. 108; pp. 1 - 8 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Peatland decomposition may be altered by hydrology and plant functional groups (PFGs), but exactly how the latter influences decomposition is unclear, as are potential interactions of these factors. We used a factorial mesocosm experiment with intact 1 m3 peat monoliths to explore how PFGs (sedges vs Ericaceae) and water table level individually and interactively affect decomposition processes. Decomposition was measured using litter bags at three depths filled with cellulose strips to mimic decomposition of a simple plant-derived structure, and Sphagnum tissue to simulate decomposition of the most abundant recalcitrant material in peatlands. We also analyzed the potential activity of five hydrolytic extracellular enzymes at an intermediate depth. We found lowered water table reduced activity of several enzymes and increased cellulose and Sphagnum decomposition. Presence of Ericaceae reduced decomposition of the recalcitrant Sphagnum tissue, whereas higher activity of chitinase was found in the combined presence of sedges and Ericaceae. We found no relationship between any potential enzyme activity and Sphagnum decomposition rate. Overall our results showed a dominating role of water table controlling decomposition processes, as well as support for the hypothesis that the presence of mycorrhizal Ericaceae can slow decomposition processes of complex plant tissues in peatlands.
•We found support for the “Gadgil effect” in peatlands.•Ericoid mycorrhizae potentially slow decomposition processes in peatlands.•A strong water table effect on cellulose decomposition was observed.•Extracellular enzyme activity (EEA) responded weakly to the vegetation treatment.•Long term decomposition processes were not captured with point measurements of EEA. |
---|---|
AbstractList | Peatland decomposition may be altered by hydrology and plant functional groups (PFGs), but exactly how the latter influences decomposition is unclear, as are potential interactions of these factors. We used a factorial mesocosm experiment with intact 1 m3 peat monoliths to explore how PFGs (sedges vs Ericaceae) and water table level individually and interactively affect decomposition processes. Decomposition was measured using litter bags at three depths filled with cellulose strips to mimic decomposition of a simple plant-derived structure, and Sphagnum tissue to simulate decomposition of the most abundant recalcitrant material in peatlands. We also analyzed the potential activity of five hydrolytic extracellular enzymes at an intermediate depth. We found lowered water table reduced activity of several enzymes and increased cellulose and Sphagnum decomposition. Presence of Ericaceae reduced decomposition of the recalcitrant Sphagnum tissue, whereas higher activity of chitinase was found in the combined presence of sedges and Ericaceae. We found no relationship between any potential enzyme activity and Sphagnum decomposition rate. Overall our results showed a dominating role of water table controlling decomposition processes, as well as support for the hypothesis that the presence of mycorrhizal Ericaceae can slow decomposition processes of complex plant tissues in peatlands. Peatland decomposition may be altered by hydrology and plant functional groups (PFGs), but exactly how the latter influences decomposition is unclear, as are potential interactions of these factors. We used a factorial mesocosm experiment with intact 1 m3 peat monoliths to explore how PFGs (sedges vs Ericaceae) and water table level individually and interactively affect decomposition processes. Decomposition was measured using litter bags at three depths filled with cellulose strips to mimic decomposition of a simple plant-derived structure, and Sphagnum tissue to simulate decomposition of the most abundant recalcitrant material in peatlands. We also analyzed the potential activity of five hydrolytic extracellular enzymes at an intermediate depth. We found lowered water table reduced activity of several enzymes and increased cellulose and Sphagnum decomposition. Presence of Ericaceae reduced decomposition of the recalcitrant Sphagnum tissue, whereas higher activity of chitinase was found in the combined presence of sedges and Ericaceae. We found no relationship between any potential enzyme activity and Sphagnum decomposition rate. Overall our results showed a dominating role of water table controlling decomposition processes, as well as support for the hypothesis that the presence of mycorrhizal Ericaceae can slow decomposition processes of complex plant tissues in peatlands. •We found support for the “Gadgil effect” in peatlands.•Ericoid mycorrhizae potentially slow decomposition processes in peatlands.•A strong water table effect on cellulose decomposition was observed.•Extracellular enzyme activity (EEA) responded weakly to the vegetation treatment.•Long term decomposition processes were not captured with point measurements of EEA. |
Author | Kane, Evan S. Potvin, Lynette R. Wiedermann, Magdalena M. Lilleskov, Erik A. |
Author_xml | – sequence: 1 givenname: Magdalena M. surname: Wiedermann fullname: Wiedermann, Magdalena M. email: magdalena.wiedermann@uc.edu organization: School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA – sequence: 2 givenname: Evan S. surname: Kane fullname: Kane, Evan S. email: eskane@mtu.edu organization: School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA – sequence: 3 givenname: Lynette R. surname: Potvin fullname: Potvin, Lynette R. email: lrpotvin@fs.fed.us organization: US Forest Service, Northern Research Station, 410 MacInnes Dr., Houghton, MI 49931, USA – sequence: 4 givenname: Erik A. surname: Lilleskov fullname: Lilleskov, Erik A. email: elilleskov@fs.fed.us organization: US Forest Service, Northern Research Station, 410 MacInnes Dr., Houghton, MI 49931, USA |
BookMark | eNqFkMFu1DAURS1UJKaFT0Dykk3Cc5xMErFAqAJaqRILYG059nPxyLGD7ZQOW34cp9NVN11Zlu659j3n5MwHj4S8ZVAzYPv3hzoF6yYb6gZYXwOrAYYXZMeGfqx42wxnZAfAhwp61r8i5ykdAKDpGN-Rf9c-Y5Qq2zuki5M-U7P6cg1eOnobw7pQ6TX9I0uMZjk5pGgMqpxo8FSjCvMSkt2AhyDe51KHzq1ORor-73FG-tBv85FaT78vv-StX2e6oMzlQZ1ek5dGuoRvHs8L8vPL5x-XV9XNt6_Xl59uKlVG5ApZ1zdKw2RaA6OeWmMmMCPq0XRyGlQ7crPnWhrVcWbavZHYTiMo7Aa-V2PDL8i7U-8Sw-8VUxazTdtXpcewJtEUK5wDa_oS_XCKqhhSimiEslluI8s66wQDsakXB_GoXmzqBTBR1Be6e0Iv0c4yHp_lPp44LBbuLEaRlEWvUNtYjAsd7DMN_wHGbqiG |
CitedBy_id | crossref_primary_10_1016_j_funeco_2024_101409 crossref_primary_10_1111_gcb_16508 crossref_primary_10_1128_AEM_00241_21 crossref_primary_10_1016_j_scitotenv_2021_146384 crossref_primary_10_1007_s10021_022_00754_9 crossref_primary_10_1007_s11104_024_06725_4 crossref_primary_10_1007_s00572_021_01060_3 crossref_primary_10_1007_s11104_024_06895_1 crossref_primary_10_1016_j_ejsobi_2020_103195 crossref_primary_10_1016_j_apsoil_2020_103872 crossref_primary_10_1016_j_scitotenv_2018_02_298 crossref_primary_10_1016_j_soilbio_2023_109024 crossref_primary_10_1016_j_catena_2023_107051 crossref_primary_10_1016_j_scitotenv_2018_07_014 crossref_primary_10_1016_j_eti_2023_103064 crossref_primary_10_1111_ejss_13048 crossref_primary_10_1111_nph_18954 crossref_primary_10_1007_s13157_021_01431_8 crossref_primary_10_1016_j_scitotenv_2024_170688 crossref_primary_10_1016_j_pedsph_2023_05_005 crossref_primary_10_1080_02705060_2018_1459324 crossref_primary_10_3389_fenvs_2019_00116 crossref_primary_10_18343_jipi_24_1_20 crossref_primary_10_1007_s13157_020_01377_3 crossref_primary_10_1007_s13157_022_01626_7 crossref_primary_10_1016_j_scitotenv_2021_152077 crossref_primary_10_1111_1365_2435_13232 crossref_primary_10_5194_bg_20_4819_2023 crossref_primary_10_1016_j_geoderma_2019_113890 crossref_primary_10_1029_2019JG005339 crossref_primary_10_1016_j_geoderma_2020_114585 crossref_primary_10_1016_j_scitotenv_2022_154294 crossref_primary_10_1002_fes3_200 crossref_primary_10_1007_s10123_025_00639_6 crossref_primary_10_1007_s10533_019_00590_5 crossref_primary_10_1007_s11104_024_06569_y crossref_primary_10_1016_j_jclepro_2023_136905 crossref_primary_10_1016_j_chemosphere_2022_134167 crossref_primary_10_3389_fmicb_2023_1266016 crossref_primary_10_1002_ldr_4013 crossref_primary_10_1016_j_scitotenv_2018_11_109 crossref_primary_10_1111_gcb_17562 crossref_primary_10_1007_s10533_021_00828_1 crossref_primary_10_1016_j_jiph_2019_06_018 crossref_primary_10_1016_j_scitotenv_2022_157539 crossref_primary_10_1002_eco_2100 |
Cites_doi | 10.1038/nature12901 10.1111/j.1469-8137.2012.04254.x 10.4319/lo.2008.53.4.1393 10.1111/j.1574-6941.2008.00560.x 10.1002/eco.1493 10.1080/01490451.2011.568272 10.1111/j.1365-2745.2005.01024.x 10.1111/j.1469-8137.1995.tb03073.x 10.1016/j.soilbio.2006.02.017 10.1016/j.soilbio.2004.09.014 10.1111/j.1469-8137.1985.tb02853.x 10.1016/j.baae.2008.05.005 10.1890/04-1575 10.1007/s11104-014-2301-8 10.1007/s11104-015-2584-4 10.1639/05 10.1007/s10021-009-9283-z 10.3791/50961 10.4141/S05-082 10.1111/1365-2745.12413 10.1007/s10021-015-9907-4 10.1890/09-0135.1 10.1111/j.1365-2486.2011.02503.x 10.1111/j.1365-2435.2008.01402.x 10.1007/BF00328791 10.1016/S0038-0717(00)00084-5 10.1016/j.soilbio.2013.10.013 10.1038/233133a0 10.1111/gcb.13362 10.1016/j.tree.2008.10.008 10.2307/3547057 10.1007/s00442-009-1433-7 10.1006/anbo.1996.0044 10.1038/ngeo1027 10.1016/j.soilbio.2005.09.006 10.1016/j.quascirev.2015.05.012 10.1002/bimj.200810425 10.1016/0169-5347(95)90007-1 10.5194/esd-1-1-2010 10.1111/j.1365-2486.2008.01654.x 10.1038/ngeo2325 10.1890/14-0292.1 10.1111/j.1461-0248.2007.01051.x 10.1007/BF03161775 10.1023/A:1005408719297 10.4141/S05-089 10.1126/science.1231923 10.1111/nph.13201 10.1007/BF00418675 10.1038/ng.3223 10.2307/2656816 10.1111/j.1461-0248.2011.01611.x 10.1111/nph.13648 10.2307/1941811 10.18637/jss.v059.i09 10.1007/s10533-013-9852-2 10.1046/j.1365-2486.2003.00571.x 10.1007/s11104-015-2746-4 10.1111/gcb.12672 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd |
Copyright_xml | – notice: 2017 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.soilbio.2017.01.008 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Agriculture |
EISSN | 1879-3428 |
EndPage | 8 |
ExternalDocumentID | 10_1016_j_soilbio_2017_01_008 S0038071717300573 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CNWQP CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HMA HMC HMG HVGLF HZ~ IHE J1W K-O KCYFY KOM LW9 LX3 LY3 LY9 M41 MO0 N9A NHB O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SCU SDF SDG SDP SEN SEP SES SEW SIN SPCBC SSA SSJ SSU SSZ T5K TN5 TWZ WUQ XPP Y6R ZMT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c342t-e1572cd0bf4f09db4ffb0f9ed9f5ab8c493f63dafc531f46fae4b90ce5836c923 |
IEDL.DBID | .~1 |
ISSN | 0038-0717 |
IngestDate | Fri Jul 11 06:32:27 EDT 2025 Thu Apr 24 22:55:53 EDT 2025 Tue Jul 01 03:19:57 EDT 2025 Fri Feb 23 02:23:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Climate change Saprotroph Extracellular enzymes Vegetation composition Ericoid mycorrhizae Wetlands |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-e1572cd0bf4f09db4ffb0f9ed9f5ab8c493f63dafc531f46fae4b90ce5836c923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2000330127 |
PQPubID | 24069 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2000330127 crossref_citationtrail_10_1016_j_soilbio_2017_01_008 crossref_primary_10_1016_j_soilbio_2017_01_008 elsevier_sciencedirect_doi_10_1016_j_soilbio_2017_01_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2017 2017-05-00 20170501 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: May 2017 |
PublicationDecade | 2010 |
PublicationTitle | Soil biology & biochemistry |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Frolking, Roulet, Tuittila, Bubier, Quillet, Talbot, Richard (bib23) 2010; 1 Kardol, Cregger, Campany, Classen (bib31) 2010; 91 Wieder (bib77) 2001; 11 Waddington, Morris, Kettridge, Granath, Thompson, Moore (bib73) 2015; 8 Turetsky, Benscoter, Page, Rein, van der Werf, Watts (bib68) 2015; 8 Bajwa, Abuarghub, Read (bib4) 1985; 101 Gorham (bib25) 1991; 1 Buffam, Carpenter, Yeck, Hanson, Turner (bib12) 2010 Nilsson, Sagerfors, Buffam, Laudon, Eriksson, Grelle, Klemedtsson, Weslien, Lindroth (bib49) 2008; 14 Fox, Weisberg (bib22) 2011 Clemmensen, Bahr, Ovaskainen, Dahlberg, Ekblad, Wallander, Stenlid, Finlay, Wardle, Lindahl (bib16) 2013; 339 Fernandez, Kennedy (bib21) 2016; 209 Kohler, Kuo, Nagy, Morin, Barry, Buscot, Canback, Choi, Cichocki, Clum, Colpaert, Copeland, Costa, Dore, Floudas, Gay, Girlanda, Henrissat, Herrmann, Hess, Hogberg, Johansson, Khouja, LaButti, Lahrmann, Levasseur, Lindquist, Lipzen, Marmeisse, Martino, Murat, Ngan, Nehls, Plett, Pringle, Ohm, Perotto, Peter, Riley, Rineau, Ruytinx, Salamov, Shah, Sun, Tarkka, Tritt, Veneault-Fourrey, Zuccaro, Tunlid, Grigoriev, Hibbett, Martin, Mycorrhizal Genomics Initiative (bib35) 2015; 47 Hothorn, Bretz, Westfall (bib29) 2008; 50 Halekoh, Højsgaard (bib27) 2014; 59 Toberman, Freeman, Evans, Fenner, Artz (bib63) 2008; 66 Breeuwer, Robroek, Limpens, Heijmans, Schouten, Berendse (bib11) 2009; 10 R Core Team (bib52) 2013 Sinsabaugh (bib57) 1994; 17 Turetsky, Kane, Harden, Ottmar, Manies, Hoy, Kasischke (bib70) 2011; 4 Beer, Lee, Whiticar, Blodau (bib8) 2008; 53 Michelsen, Schmidt, Jonasson, Quarmby, Sleep (bib45) 1996; 105 Treseder, Torn, Masiello (bib64) 2006; 38 Turetsky (bib67) 2003; 106 Dorrepaal, Cornelissen, Aerts, Wallen, Van Logtestijn (bib20) 2005; 93 Cornelissen, van Bodegom, Aerts, Callaghan, van Logtestijn, Alatalo, Chapin, Gerdol, Gudmundsson, Gwynn-Jones, Hartley, Hik, Hofgaard, Jonsdottir, Karlsson, Klein, Laundre, Magnusson, Michelsen, Molau, Onipchenko, Quested, Sandvik, Schmidt, Shaver, Solheim, Soudzilovskaia, Stenstrom, Tolvanen, Totland, Wada, Welker, Zhao, Team (bib18) 2007; 10 Kuznetsova, Brockhoff, Christensen (bib37) 2015 McDonald (bib43) 2014 Allison, Vitousek (bib1) 2005; 37 Murphy, Laiho, Moore (bib48) 2009; 12 Armstrong, Waldron, Ostle, Richardson, Whitaker (bib2) 2015; 18 Turetsky, Bond-Lamberty, Euskirchen, Talbot, Frolking, McGuire, Tuittila (bib69) 2012; 196 Potvin, Kane, Chimner, Kolka, Lilleskov (bib51) 2015; 387 Clymo, Turunen, Tolonen (bib17) 1998; 81 Kuzyakov, Friedel, Stahr (bib38) 2000; 32 Gadgil, Gadgil (bib24) 1971; 233 Ward, Orwin, Ostle, Briones, Thomson, Griffiths, Oakley, Quirk, Bardgett (bib74) 2015; 96 Read (bib53) 1996; 77 Hajek (bib26) 2009; 14 Bolker, Brooks, Clark, Geange, Poulsen, Stevens, White (bib10) 2009; 24 Romanowicz, Kane, Potvin, Daniels, Kolka, Lilleskov (bib56) 2015; 397 Miller, Smith, Jastrow, Bever (bib46) 1999; 86 Strakova, Penttila, Laine, Laiho (bib58) 2012; 18 Venables, Ripley (bib72) 2002 Charman, Amesbury, Hinchliffe, Hughes, Mallon, Blake, Daley, Gallego-Sala, Mauquoy (bib14) 2015; 121 Kivlin, Treseder (bib34) 2014; 117 Bell, Fricks, Rocca, Steinweg, McMahon, Wallenstein (bib9) 2013 Vanbreemen (bib71) 1995; 10 Wickham (bib76) 2009 Moore, Roulet, Waddington (bib47) 1998; 40 Weltzin, Bridgham, Pastor, Chen, Harth (bib75) 2003; 9 Thormann (bib61) 2006; 86 Christiansen, Haugwitz, Priemé, Nielsen, Elberling, Michelsen, Grogan, Blok (bib15) 2017; 23 Kettridge, Turetsky, Sherwood, Thompson, Miller, Benscoter, Flannigan, Wotton, Waddington (bib33) 2015 Averill, Turner, Finzi (bib3) 2014; 505 Lindahl, Tunlid (bib41) 2015; 205 Basiliko, Stewart, Roulet, Moore (bib6) 2012; 29 Trettin, Laiho, Minkkinen, Laine (bib65) 2006; 86 Talbot, Allison, Treseder (bib59) 2008; 22 Orwin, Kirschbaum, St John, Dickie (bib50) 2011; 14 Laiho (bib39) 2006; 38 Baldrian (bib5) 2009; 161 Robroek, Jassey, Kox, Berendsen, Mills, Cecillon, Puissant, Meima-Franke, Bakker, Bodelier (bib55) 2015; 103 Burke, Smemo, Hewins (bib13) 2014; 68 Read, Leake, Perez-Moreno (bib54) 2004; 82 Bates, Mächler, Bolker, Walker (bib7) 2015 Linkosalmi, Pumpanen, Biasi, Heinonsalo, Laiho, Linden, Palonen, Laurila, Lohila (bib42) 2015; 396 Kerley, Read (bib32) 1995; 131 IPCC (bib30) 2014 Kurnianto, Warren, Talbot, Kauffman, Murdiyarso, Frolking (bib36) 2015; 21 Thormann, Currah, Bayley (bib60) 1999; 19 Hobbie, Ouimette, Schuur, Kierstead, Trappe, Bendiksen, Ohenoja (bib28) 2013; 114 Crow, Wieder (bib19) 2005; 86 IPCC (10.1016/j.soilbio.2017.01.008_bib30) 2014 Thormann (10.1016/j.soilbio.2017.01.008_bib60) 1999; 19 Toberman (10.1016/j.soilbio.2017.01.008_bib63) 2008; 66 Waddington (10.1016/j.soilbio.2017.01.008_bib73) 2015; 8 Turetsky (10.1016/j.soilbio.2017.01.008_bib67) 2003; 106 Hajek (10.1016/j.soilbio.2017.01.008_bib26) 2009; 14 Allison (10.1016/j.soilbio.2017.01.008_bib1) 2005; 37 Armstrong (10.1016/j.soilbio.2017.01.008_bib2) 2015; 18 Kuznetsova (10.1016/j.soilbio.2017.01.008_bib37) 2015 Hobbie (10.1016/j.soilbio.2017.01.008_bib28) 2013; 114 Averill (10.1016/j.soilbio.2017.01.008_bib3) 2014; 505 Kivlin (10.1016/j.soilbio.2017.01.008_bib34) 2014; 117 R Core Team (10.1016/j.soilbio.2017.01.008_bib52) 2013 Bell (10.1016/j.soilbio.2017.01.008_bib9) 2013 Wickham (10.1016/j.soilbio.2017.01.008_bib76) 2009 Robroek (10.1016/j.soilbio.2017.01.008_bib55) 2015; 103 Halekoh (10.1016/j.soilbio.2017.01.008_bib27) 2014; 59 Laiho (10.1016/j.soilbio.2017.01.008_bib39) 2006; 38 Bajwa (10.1016/j.soilbio.2017.01.008_bib4) 1985; 101 Burke (10.1016/j.soilbio.2017.01.008_bib13) 2014; 68 Nilsson (10.1016/j.soilbio.2017.01.008_bib49) 2008; 14 Strakova (10.1016/j.soilbio.2017.01.008_bib58) 2012; 18 Linkosalmi (10.1016/j.soilbio.2017.01.008_bib42) 2015; 396 Kardol (10.1016/j.soilbio.2017.01.008_bib31) 2010; 91 Baldrian (10.1016/j.soilbio.2017.01.008_bib5) 2009; 161 Moore (10.1016/j.soilbio.2017.01.008_bib47) 1998; 40 Charman (10.1016/j.soilbio.2017.01.008_bib14) 2015; 121 Clymo (10.1016/j.soilbio.2017.01.008_bib17) 1998; 81 Ward (10.1016/j.soilbio.2017.01.008_bib74) 2015; 96 Breeuwer (10.1016/j.soilbio.2017.01.008_bib11) 2009; 10 Thormann (10.1016/j.soilbio.2017.01.008_bib61) 2006; 86 Frolking (10.1016/j.soilbio.2017.01.008_bib23) 2010; 1 Cornelissen (10.1016/j.soilbio.2017.01.008_bib18) 2007; 10 Venables (10.1016/j.soilbio.2017.01.008_bib72) 2002 Turetsky (10.1016/j.soilbio.2017.01.008_bib70) 2011; 4 Kettridge (10.1016/j.soilbio.2017.01.008_bib33) 2015 Murphy (10.1016/j.soilbio.2017.01.008_bib48) 2009; 12 Fox (10.1016/j.soilbio.2017.01.008_bib22) 2011 Bolker (10.1016/j.soilbio.2017.01.008_bib10) 2009; 24 Romanowicz (10.1016/j.soilbio.2017.01.008_bib56) 2015; 397 Crow (10.1016/j.soilbio.2017.01.008_bib19) 2005; 86 Bates (10.1016/j.soilbio.2017.01.008_bib7) 2015 Vanbreemen (10.1016/j.soilbio.2017.01.008_bib71) 1995; 10 Hothorn (10.1016/j.soilbio.2017.01.008_bib29) 2008; 50 Buffam (10.1016/j.soilbio.2017.01.008_bib12) 2010 Kurnianto (10.1016/j.soilbio.2017.01.008_bib36) 2015; 21 Basiliko (10.1016/j.soilbio.2017.01.008_bib6) 2012; 29 Turetsky (10.1016/j.soilbio.2017.01.008_bib68) 2015; 8 McDonald (10.1016/j.soilbio.2017.01.008_bib43) 2014 Trettin (10.1016/j.soilbio.2017.01.008_bib65) 2006; 86 Turetsky (10.1016/j.soilbio.2017.01.008_bib69) 2012; 196 Treseder (10.1016/j.soilbio.2017.01.008_bib64) 2006; 38 Gorham (10.1016/j.soilbio.2017.01.008_bib25) 1991; 1 Kerley (10.1016/j.soilbio.2017.01.008_bib32) 1995; 131 Read (10.1016/j.soilbio.2017.01.008_bib53) 1996; 77 Wieder (10.1016/j.soilbio.2017.01.008_bib77) 2001; 11 Talbot (10.1016/j.soilbio.2017.01.008_bib59) 2008; 22 Clemmensen (10.1016/j.soilbio.2017.01.008_bib16) 2013; 339 Orwin (10.1016/j.soilbio.2017.01.008_bib50) 2011; 14 Fernandez (10.1016/j.soilbio.2017.01.008_bib21) 2016; 209 Gadgil (10.1016/j.soilbio.2017.01.008_bib24) 1971; 233 Dorrepaal (10.1016/j.soilbio.2017.01.008_bib20) 2005; 93 Miller (10.1016/j.soilbio.2017.01.008_bib46) 1999; 86 Lindahl (10.1016/j.soilbio.2017.01.008_bib41) 2015; 205 Christiansen (10.1016/j.soilbio.2017.01.008_bib15) 2017; 23 Weltzin (10.1016/j.soilbio.2017.01.008_bib75) 2003; 9 Michelsen (10.1016/j.soilbio.2017.01.008_bib45) 1996; 105 Read (10.1016/j.soilbio.2017.01.008_bib54) 2004; 82 Potvin (10.1016/j.soilbio.2017.01.008_bib51) 2015; 387 Kuzyakov (10.1016/j.soilbio.2017.01.008_bib38) 2000; 32 Sinsabaugh (10.1016/j.soilbio.2017.01.008_bib57) 1994; 17 Beer (10.1016/j.soilbio.2017.01.008_bib8) 2008; 53 Kohler (10.1016/j.soilbio.2017.01.008_bib35) 2015; 47 |
References_xml | – volume: 10 start-page: 619 year: 2007 end-page: 627 ident: bib18 article-title: Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes publication-title: Ecology Letters – volume: 209 start-page: 1382 year: 2016 end-page: 1394 ident: bib21 article-title: Revisiting the “Gadgil effect”: do interguild fungal interactions control carbon cycling in forest soils? publication-title: New Phytologist – volume: 161 start-page: 657 year: 2009 end-page: 660 ident: bib5 article-title: Ectomycorrhizal fungi and their enzymes in soils: is there enough evidence for their role as facultative soil saprotrophs? publication-title: Oecologia – volume: 1 start-page: 182 year: 1991 end-page: 195 ident: bib25 article-title: Northern peatlands – role in the carbon-cycle and probable responses to climatic warming publication-title: Ecological Applications – volume: 86 start-page: 269 year: 2006 end-page: 280 ident: bib65 article-title: Influence of climate change factors on carbon dynamics in northern forested peatlands publication-title: Canadian Journal of Soil Science – volume: 10 start-page: 330 year: 2009 end-page: 339 ident: bib11 article-title: Decreased summer water table depth affects peatland vegetation publication-title: Basic and Applied Ecology – volume: 77 start-page: 365 year: 1996 end-page: 374 ident: bib53 article-title: The structure and function of the ericoid mycorrhizal root publication-title: Annals of Botany – volume: 106 start-page: 395 year: 2003 end-page: 409 ident: bib67 article-title: The role of bryophytes in carbon and nitrogen cycling publication-title: The Bryologist – volume: 10 start-page: 270 year: 1995 end-page: 275 ident: bib71 article-title: How publication-title: Trends in Ecology & Evolution – volume: 11 start-page: 327 year: 2001 end-page: 342 ident: bib77 article-title: Past, present, and future peatland carbon balance: an empirical model based on Pb-210-dated cores publication-title: Ecological Applications – volume: 93 start-page: 817 year: 2005 end-page: 828 ident: bib20 article-title: Are growth forms consistent predictors of leaf litter quality and decomposability across peatlands along a latitudinal gradient? publication-title: Journal of Ecology – volume: 91 start-page: 767 year: 2010 end-page: 781 ident: bib31 article-title: Soil ecosystem functioning under climate change: plant species and community effects publication-title: Ecology – volume: 114 start-page: 381 year: 2013 end-page: 389 ident: bib28 article-title: Radiocarbon evidence for the mining of organic nitrogen from soil by mycorrhizal fungi publication-title: Biogeochemistry – volume: 66 start-page: 426 year: 2008 end-page: 436 ident: bib63 article-title: Summer drought decreases soil fungal diversity and associated phenol oxidase activity in upland publication-title: Fems Microbiology Ecology – volume: 47 year: 2015 ident: bib35 article-title: Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists publication-title: Nature Genetics – volume: 105 start-page: 53 year: 1996 end-page: 63 ident: bib45 article-title: Leaf N-15 abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non- and arbuscular mycorrhizal species access different sources of soil nitrogen publication-title: Oecologia – volume: 50 start-page: 346 year: 2008 end-page: 363 ident: bib29 article-title: Simultaneous inference in general parametric models. Biometrical Journal publication-title: Biometrische Zeitschrift – volume: 8 start-page: 113 year: 2015 end-page: 127 ident: bib73 article-title: Hydrological feedbacks in northern peatlands publication-title: Ecohydrology – volume: 38 start-page: 1077 year: 2006 end-page: 1082 ident: bib64 article-title: An ecosystem-scale radiocarbon tracer to test use of litter carbon by ectomycorrhizal fungi publication-title: Soil Biology & Biochemistry – volume: 397 start-page: 371 year: 2015 end-page: 386 ident: bib56 article-title: Understanding drivers of peatland extracellular enzyme activity in the PEATcosm experiment: mixed evidence for enzymic latch hypothesis publication-title: Plant and Soil – volume: 37 start-page: 937 year: 2005 end-page: 944 ident: bib1 article-title: Responses of extracellular enzymes to simple and complex nutrient inputs publication-title: Soil Biology & Biochemistry – volume: 131 start-page: 369 year: 1995 end-page: 375 ident: bib32 article-title: The biology of mycorrhiza in the Ericaceae. XVIII. Chitin degradation by Hymenoscyphus ericaeand transfer of chitin-nitrogen to the host plant publication-title: New Phytologist – start-page: 5 year: 2015 ident: bib33 article-title: Moderate drop in water table increases peatland vulnerability to post-fire regime shift publication-title: Scientific Reports – volume: 21 start-page: 431 year: 2015 end-page: 444 ident: bib36 article-title: Carbon accumulation of tropical peatlands over millennia: a modeling approach publication-title: Global Change Biology – year: 2013 ident: bib9 article-title: High-throughput fluorometric measurement of potential soil extracellular enzyme activities publication-title: Jove-Journal of Visualized Experiments – volume: 82 start-page: 1243 year: 2004 end-page: 1263 ident: bib54 article-title: Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes publication-title: Canadian Journal of Botany-Revue Canadienne De Botanique – volume: 339 start-page: 1615 year: 2013 end-page: 1618 ident: bib16 article-title: Roots and associated fungi drive long-term carbon sequestration in Boreal Forest publication-title: Science – start-page: 67 year: 2015 ident: bib7 article-title: Fitting linear mixed-effects models using lme4 publication-title: Journal of Statistical Software – volume: 81 start-page: 368 year: 1998 end-page: 388 ident: bib17 article-title: Carbon accumulation in peatland publication-title: Oikos – volume: 396 start-page: 59 year: 2015 end-page: 72 ident: bib42 article-title: Studying the impact of living roots on the decomposition of soil organic matter in two different forestry-drained peatlands publication-title: Plant and Soil – volume: 68 start-page: 219 year: 2014 end-page: 222 ident: bib13 article-title: Ectomycorrhizal fungi isolated from old-growth northern hardwood forest display variability in extracellular enzyme activity in the presence of plant litter publication-title: Soil Biology & Biochemistry – volume: 1 start-page: 1 year: 2010 end-page: 21 ident: bib23 article-title: A new model of Holocene peatland net primary production, decomposition, water balance, and peat accumulation publication-title: Earth Syst. Dynam – start-page: 1 year: 2014 end-page: 32 ident: bib30 article-title: Summary for policymakers publication-title: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change – volume: 103 start-page: 925 year: 2015 end-page: 934 ident: bib55 article-title: Peatland vascular plant functional types affect methane dynamics by altering microbial community structure publication-title: Journal of Ecology – volume: 14 start-page: 493 year: 2011 end-page: 502 ident: bib50 article-title: Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment publication-title: Ecology Letters – volume: 96 start-page: 113 year: 2015 end-page: 123 ident: bib74 article-title: Vegetation exerts a greater control on litter decomposition than climate warming in peatlands publication-title: Ecology – volume: 233 start-page: 133 year: 1971 ident: bib24 article-title: Mycorrhiza and litter decomposition publication-title: Nature – volume: 32 start-page: 1485 year: 2000 end-page: 1498 ident: bib38 article-title: Review of mechanisms and quantification of priming effects publication-title: Soil Biology & Biochemistry – volume: 29 start-page: 374 year: 2012 end-page: 378 ident: bib6 article-title: Do root exudates enhance peat decomposition? publication-title: Geomicrobiology Journal – volume: 505 start-page: 543 year: 2014 ident: bib3 article-title: Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage publication-title: Nature – volume: 196 start-page: 49 year: 2012 end-page: 67 ident: bib69 article-title: The resilience and functional role of moss in boreal and arctic ecosystems publication-title: New Phytologist – volume: 18 start-page: 322 year: 2012 end-page: 335 ident: bib58 article-title: Disentangling direct and indirect effects of water table drawdown on above- and belowground plant litter decomposition: consequences for accumulation of organic matter in boreal peatlands publication-title: Global Change Biology – volume: 4 start-page: 27 year: 2011 end-page: 31 ident: bib70 article-title: Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands publication-title: Nature Geoscience – start-page: 115 year: 2010 ident: bib12 article-title: Filling holes in regional carbon budgets: predicting peat depth in a north temperate lake district publication-title: Journal of Geophysical Research – volume: 17 start-page: 69 year: 1994 end-page: 74 ident: bib57 article-title: Enzymatic analysis of microbial pattern and process publication-title: Biology and Fertility of Soils – volume: 9 start-page: 141 year: 2003 end-page: 151 ident: bib75 article-title: Potential effects of warming and drying on peatland plant community composition publication-title: Global Change Biology – year: 2009 ident: bib76 article-title: ggplot2 – year: 2011 ident: bib22 article-title: An {R} Companion to Applied Regression – volume: 14 start-page: 947 year: 2009 end-page: 958 ident: bib26 article-title: Habitat and species controls on publication-title: Boreal Environment Research – year: 2002 ident: bib72 article-title: Modern Applied Statistics with S, Statistics and Computing – volume: 86 start-page: 547 year: 1999 end-page: 553 ident: bib46 article-title: Mycorrhizal status of the genus Carex (Cyperaceae) publication-title: American Journal of Botany – volume: 86 start-page: 281 year: 2006 end-page: 293 ident: bib61 article-title: Diversity and function of fungi in peatlands: a carbon cycling perspective publication-title: Canadian Journal of Soil Science – volume: 24 start-page: 127 year: 2009 end-page: 135 ident: bib10 article-title: Generalized linear mixed models: a practical guide for ecology and evolution publication-title: Trends in Ecology & Evolution – volume: 59 start-page: 32 year: 2014 ident: bib27 article-title: A kenward-roger approximation and parametric bootstrap methods for tests in linear mixed models. The R package pbkrtest publication-title: Journal of Statistical Software – volume: 14 start-page: 2317 year: 2008 end-page: 2332 ident: bib49 article-title: Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire - a significant sink after accounting for all C-fluxes publication-title: Global Change Biology – volume: 387 start-page: 277 year: 2015 end-page: 294 ident: bib51 article-title: Effects of water table position and plant functional group on plant community, aboveground production, and peat properties in a peatland mesocosm experiment (PEATcosm) publication-title: Plant and Soil – volume: 18 start-page: 1395 year: 2015 end-page: 1409 ident: bib2 article-title: Biotic and abiotic factors interact to regulate northern peatland carbon cycling publication-title: Ecosystems – volume: 23 start-page: 406 year: 2017 end-page: 420 ident: bib15 article-title: Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra publication-title: Global Change Biology – start-page: 0 year: 2015 end-page: 29 ident: bib37 article-title: lmerTest: tests in linear mixed effects models publication-title: R Package Version 2 – volume: 205 start-page: 1443 year: 2015 end-page: 1447 ident: bib41 article-title: Ectomycorrhizal fungi - potential organic matter decomposers, yet not saprotrophs publication-title: New Phytologist – volume: 22 start-page: 955 year: 2008 end-page: 963 ident: bib59 article-title: Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change publication-title: Functional Ecology – volume: 8 start-page: 11 year: 2015 end-page: 14 ident: bib68 article-title: Global vulnerability of peatlands to fire and carbon loss publication-title: Nature Geoscience – year: 2014 ident: bib43 article-title: Handbook of Biological Statistics – volume: 117 start-page: 23 year: 2014 end-page: 37 ident: bib34 article-title: Soil extracellular enzyme activities correspond with abiotic factors more than fungal community composition publication-title: Biogeochemistry – volume: 86 start-page: 1825 year: 2005 end-page: 1834 ident: bib19 article-title: Sources of Co-2 emission from a northern peatland: root respiration, exudation, and decomposition publication-title: Ecology – year: 2013 ident: bib52 article-title: R: a Language and Environment for Statistical Computing – volume: 19 start-page: 438 year: 1999 end-page: 450 ident: bib60 article-title: The mycorrhizal status of the dominant vegetation along a peatland gradient in southern boreal Alberta, Canada publication-title: Wetlands – volume: 53 start-page: 1393 year: 2008 end-page: 1407 ident: bib8 article-title: Geochemical controls on anaerobic organic matter decomposition in a northern peatland publication-title: Limnology and Oceanography – volume: 121 start-page: 110 year: 2015 end-page: 119 ident: bib14 article-title: Drivers of Holocene peatland carbon accumulation across a climate gradient in northeastern North America publication-title: Quaternary Science Reviews – volume: 40 start-page: 229 year: 1998 end-page: 245 ident: bib47 article-title: Uncertainty in predicting the effect of climatic change on the carbon cycling of Canadian peatlands publication-title: Climatic Change – volume: 101 start-page: 469 year: 1985 end-page: 486 ident: bib4 article-title: The biology of mycorrhiza in the Ericaceae. 10. The utilization of proteins and the production of proteolytic-enzymes by the mycorrhizal endophyte and by mycorrhizal plants publication-title: New Phytologist – volume: 38 start-page: 2011 year: 2006 end-page: 2024 ident: bib39 article-title: Decomposition in peatlands: reconciling seemingly contrasting results on the impacts of lowered water levels publication-title: Soil Biology & Biochemistry – volume: 12 start-page: 1268 year: 2009 end-page: 1282 ident: bib48 article-title: Effects of water table drawdown on root production and aboveground biomass in a boreal bog publication-title: Ecosystems – volume: 505 start-page: 543 year: 2014 ident: 10.1016/j.soilbio.2017.01.008_bib3 article-title: Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage publication-title: Nature doi: 10.1038/nature12901 – volume: 196 start-page: 49 year: 2012 ident: 10.1016/j.soilbio.2017.01.008_bib69 article-title: The resilience and functional role of moss in boreal and arctic ecosystems publication-title: New Phytologist doi: 10.1111/j.1469-8137.2012.04254.x – volume: 53 start-page: 1393 year: 2008 ident: 10.1016/j.soilbio.2017.01.008_bib8 article-title: Geochemical controls on anaerobic organic matter decomposition in a northern peatland publication-title: Limnology and Oceanography doi: 10.4319/lo.2008.53.4.1393 – volume: 66 start-page: 426 year: 2008 ident: 10.1016/j.soilbio.2017.01.008_bib63 article-title: Summer drought decreases soil fungal diversity and associated phenol oxidase activity in upland Calluna heathland soil publication-title: Fems Microbiology Ecology doi: 10.1111/j.1574-6941.2008.00560.x – volume: 8 start-page: 113 year: 2015 ident: 10.1016/j.soilbio.2017.01.008_bib73 article-title: Hydrological feedbacks in northern peatlands publication-title: Ecohydrology doi: 10.1002/eco.1493 – volume: 29 start-page: 374 year: 2012 ident: 10.1016/j.soilbio.2017.01.008_bib6 article-title: Do root exudates enhance peat decomposition? publication-title: Geomicrobiology Journal doi: 10.1080/01490451.2011.568272 – volume: 93 start-page: 817 year: 2005 ident: 10.1016/j.soilbio.2017.01.008_bib20 article-title: Are growth forms consistent predictors of leaf litter quality and decomposability across peatlands along a latitudinal gradient? publication-title: Journal of Ecology doi: 10.1111/j.1365-2745.2005.01024.x – volume: 131 start-page: 369 year: 1995 ident: 10.1016/j.soilbio.2017.01.008_bib32 article-title: The biology of mycorrhiza in the Ericaceae. XVIII. Chitin degradation by Hymenoscyphus ericaeand transfer of chitin-nitrogen to the host plant publication-title: New Phytologist doi: 10.1111/j.1469-8137.1995.tb03073.x – volume: 38 start-page: 2011 year: 2006 ident: 10.1016/j.soilbio.2017.01.008_bib39 article-title: Decomposition in peatlands: reconciling seemingly contrasting results on the impacts of lowered water levels publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2006.02.017 – volume: 37 start-page: 937 year: 2005 ident: 10.1016/j.soilbio.2017.01.008_bib1 article-title: Responses of extracellular enzymes to simple and complex nutrient inputs publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2004.09.014 – volume: 101 start-page: 469 year: 1985 ident: 10.1016/j.soilbio.2017.01.008_bib4 article-title: The biology of mycorrhiza in the Ericaceae. 10. The utilization of proteins and the production of proteolytic-enzymes by the mycorrhizal endophyte and by mycorrhizal plants publication-title: New Phytologist doi: 10.1111/j.1469-8137.1985.tb02853.x – volume: 10 start-page: 330 year: 2009 ident: 10.1016/j.soilbio.2017.01.008_bib11 article-title: Decreased summer water table depth affects peatland vegetation publication-title: Basic and Applied Ecology doi: 10.1016/j.baae.2008.05.005 – volume: 86 start-page: 1825 year: 2005 ident: 10.1016/j.soilbio.2017.01.008_bib19 article-title: Sources of Co-2 emission from a northern peatland: root respiration, exudation, and decomposition publication-title: Ecology doi: 10.1890/04-1575 – volume: 387 start-page: 277 year: 2015 ident: 10.1016/j.soilbio.2017.01.008_bib51 article-title: Effects of water table position and plant functional group on plant community, aboveground production, and peat properties in a peatland mesocosm experiment (PEATcosm) publication-title: Plant and Soil doi: 10.1007/s11104-014-2301-8 – volume: 396 start-page: 59 year: 2015 ident: 10.1016/j.soilbio.2017.01.008_bib42 article-title: Studying the impact of living roots on the decomposition of soil organic matter in two different forestry-drained peatlands publication-title: Plant and Soil doi: 10.1007/s11104-015-2584-4 – volume: 106 start-page: 395 year: 2003 ident: 10.1016/j.soilbio.2017.01.008_bib67 article-title: The role of bryophytes in carbon and nitrogen cycling publication-title: The Bryologist doi: 10.1639/05 – volume: 12 start-page: 1268 year: 2009 ident: 10.1016/j.soilbio.2017.01.008_bib48 article-title: Effects of water table drawdown on root production and aboveground biomass in a boreal bog publication-title: Ecosystems doi: 10.1007/s10021-009-9283-z – year: 2013 ident: 10.1016/j.soilbio.2017.01.008_bib9 article-title: High-throughput fluorometric measurement of potential soil extracellular enzyme activities publication-title: Jove-Journal of Visualized Experiments doi: 10.3791/50961 – volume: 86 start-page: 281 year: 2006 ident: 10.1016/j.soilbio.2017.01.008_bib61 article-title: Diversity and function of fungi in peatlands: a carbon cycling perspective publication-title: Canadian Journal of Soil Science doi: 10.4141/S05-082 – volume: 103 start-page: 925 year: 2015 ident: 10.1016/j.soilbio.2017.01.008_bib55 article-title: Peatland vascular plant functional types affect methane dynamics by altering microbial community structure publication-title: Journal of Ecology doi: 10.1111/1365-2745.12413 – volume: 18 start-page: 1395 year: 2015 ident: 10.1016/j.soilbio.2017.01.008_bib2 article-title: Biotic and abiotic factors interact to regulate northern peatland carbon cycling publication-title: Ecosystems doi: 10.1007/s10021-015-9907-4 – start-page: 5 year: 2015 ident: 10.1016/j.soilbio.2017.01.008_bib33 article-title: Moderate drop in water table increases peatland vulnerability to post-fire regime shift publication-title: Scientific Reports – volume: 14 start-page: 947 year: 2009 ident: 10.1016/j.soilbio.2017.01.008_bib26 article-title: Habitat and species controls on Sphagnum production and decomposition in a mountain raised bog publication-title: Boreal Environment Research – year: 2009 ident: 10.1016/j.soilbio.2017.01.008_bib76 – start-page: 1 year: 2014 ident: 10.1016/j.soilbio.2017.01.008_bib30 article-title: Summary for policymakers – volume: 91 start-page: 767 year: 2010 ident: 10.1016/j.soilbio.2017.01.008_bib31 article-title: Soil ecosystem functioning under climate change: plant species and community effects publication-title: Ecology doi: 10.1890/09-0135.1 – volume: 18 start-page: 322 year: 2012 ident: 10.1016/j.soilbio.2017.01.008_bib58 article-title: Disentangling direct and indirect effects of water table drawdown on above- and belowground plant litter decomposition: consequences for accumulation of organic matter in boreal peatlands publication-title: Global Change Biology doi: 10.1111/j.1365-2486.2011.02503.x – volume: 22 start-page: 955 year: 2008 ident: 10.1016/j.soilbio.2017.01.008_bib59 article-title: Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change publication-title: Functional Ecology doi: 10.1111/j.1365-2435.2008.01402.x – year: 2002 ident: 10.1016/j.soilbio.2017.01.008_bib72 – volume: 105 start-page: 53 year: 1996 ident: 10.1016/j.soilbio.2017.01.008_bib45 article-title: Leaf N-15 abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non- and arbuscular mycorrhizal species access different sources of soil nitrogen publication-title: Oecologia doi: 10.1007/BF00328791 – volume: 32 start-page: 1485 year: 2000 ident: 10.1016/j.soilbio.2017.01.008_bib38 article-title: Review of mechanisms and quantification of priming effects publication-title: Soil Biology & Biochemistry doi: 10.1016/S0038-0717(00)00084-5 – volume: 68 start-page: 219 year: 2014 ident: 10.1016/j.soilbio.2017.01.008_bib13 article-title: Ectomycorrhizal fungi isolated from old-growth northern hardwood forest display variability in extracellular enzyme activity in the presence of plant litter publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2013.10.013 – volume: 233 start-page: 133 year: 1971 ident: 10.1016/j.soilbio.2017.01.008_bib24 article-title: Mycorrhiza and litter decomposition publication-title: Nature doi: 10.1038/233133a0 – volume: 23 start-page: 406 year: 2017 ident: 10.1016/j.soilbio.2017.01.008_bib15 article-title: Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra publication-title: Global Change Biology doi: 10.1111/gcb.13362 – start-page: 67 year: 2015 ident: 10.1016/j.soilbio.2017.01.008_bib7 article-title: Fitting linear mixed-effects models using lme4 publication-title: Journal of Statistical Software – volume: 24 start-page: 127 year: 2009 ident: 10.1016/j.soilbio.2017.01.008_bib10 article-title: Generalized linear mixed models: a practical guide for ecology and evolution publication-title: Trends in Ecology & Evolution doi: 10.1016/j.tree.2008.10.008 – volume: 81 start-page: 368 year: 1998 ident: 10.1016/j.soilbio.2017.01.008_bib17 article-title: Carbon accumulation in peatland publication-title: Oikos doi: 10.2307/3547057 – volume: 161 start-page: 657 year: 2009 ident: 10.1016/j.soilbio.2017.01.008_bib5 article-title: Ectomycorrhizal fungi and their enzymes in soils: is there enough evidence for their role as facultative soil saprotrophs? publication-title: Oecologia doi: 10.1007/s00442-009-1433-7 – year: 2011 ident: 10.1016/j.soilbio.2017.01.008_bib22 – volume: 82 start-page: 1243 year: 2004 ident: 10.1016/j.soilbio.2017.01.008_bib54 article-title: Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes publication-title: Canadian Journal of Botany-Revue Canadienne De Botanique – volume: 77 start-page: 365 year: 1996 ident: 10.1016/j.soilbio.2017.01.008_bib53 article-title: The structure and function of the ericoid mycorrhizal root publication-title: Annals of Botany doi: 10.1006/anbo.1996.0044 – volume: 4 start-page: 27 year: 2011 ident: 10.1016/j.soilbio.2017.01.008_bib70 article-title: Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands publication-title: Nature Geoscience doi: 10.1038/ngeo1027 – volume: 38 start-page: 1077 year: 2006 ident: 10.1016/j.soilbio.2017.01.008_bib64 article-title: An ecosystem-scale radiocarbon tracer to test use of litter carbon by ectomycorrhizal fungi publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2005.09.006 – volume: 121 start-page: 110 year: 2015 ident: 10.1016/j.soilbio.2017.01.008_bib14 article-title: Drivers of Holocene peatland carbon accumulation across a climate gradient in northeastern North America publication-title: Quaternary Science Reviews doi: 10.1016/j.quascirev.2015.05.012 – volume: 50 start-page: 346 year: 2008 ident: 10.1016/j.soilbio.2017.01.008_bib29 article-title: Simultaneous inference in general parametric models. Biometrical Journal publication-title: Biometrische Zeitschrift doi: 10.1002/bimj.200810425 – volume: 10 start-page: 270 year: 1995 ident: 10.1016/j.soilbio.2017.01.008_bib71 article-title: How Sphagnum bogs down other plants publication-title: Trends in Ecology & Evolution doi: 10.1016/0169-5347(95)90007-1 – volume: 1 start-page: 1 year: 2010 ident: 10.1016/j.soilbio.2017.01.008_bib23 article-title: A new model of Holocene peatland net primary production, decomposition, water balance, and peat accumulation publication-title: Earth Syst. Dynam doi: 10.5194/esd-1-1-2010 – volume: 14 start-page: 2317 year: 2008 ident: 10.1016/j.soilbio.2017.01.008_bib49 article-title: Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire - a significant sink after accounting for all C-fluxes publication-title: Global Change Biology doi: 10.1111/j.1365-2486.2008.01654.x – start-page: 0 year: 2015 ident: 10.1016/j.soilbio.2017.01.008_bib37 article-title: lmerTest: tests in linear mixed effects models publication-title: R Package Version 2 – volume: 8 start-page: 11 year: 2015 ident: 10.1016/j.soilbio.2017.01.008_bib68 article-title: Global vulnerability of peatlands to fire and carbon loss publication-title: Nature Geoscience doi: 10.1038/ngeo2325 – year: 2014 ident: 10.1016/j.soilbio.2017.01.008_bib43 – volume: 96 start-page: 113 year: 2015 ident: 10.1016/j.soilbio.2017.01.008_bib74 article-title: Vegetation exerts a greater control on litter decomposition than climate warming in peatlands publication-title: Ecology doi: 10.1890/14-0292.1 – volume: 10 start-page: 619 year: 2007 ident: 10.1016/j.soilbio.2017.01.008_bib18 article-title: Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes publication-title: Ecology Letters doi: 10.1111/j.1461-0248.2007.01051.x – volume: 19 start-page: 438 year: 1999 ident: 10.1016/j.soilbio.2017.01.008_bib60 article-title: The mycorrhizal status of the dominant vegetation along a peatland gradient in southern boreal Alberta, Canada publication-title: Wetlands doi: 10.1007/BF03161775 – volume: 40 start-page: 229 year: 1998 ident: 10.1016/j.soilbio.2017.01.008_bib47 article-title: Uncertainty in predicting the effect of climatic change on the carbon cycling of Canadian peatlands publication-title: Climatic Change doi: 10.1023/A:1005408719297 – volume: 86 start-page: 269 year: 2006 ident: 10.1016/j.soilbio.2017.01.008_bib65 article-title: Influence of climate change factors on carbon dynamics in northern forested peatlands publication-title: Canadian Journal of Soil Science doi: 10.4141/S05-089 – volume: 339 start-page: 1615 year: 2013 ident: 10.1016/j.soilbio.2017.01.008_bib16 article-title: Roots and associated fungi drive long-term carbon sequestration in Boreal Forest publication-title: Science doi: 10.1126/science.1231923 – volume: 205 start-page: 1443 year: 2015 ident: 10.1016/j.soilbio.2017.01.008_bib41 article-title: Ectomycorrhizal fungi - potential organic matter decomposers, yet not saprotrophs publication-title: New Phytologist doi: 10.1111/nph.13201 – volume: 17 start-page: 69 year: 1994 ident: 10.1016/j.soilbio.2017.01.008_bib57 article-title: Enzymatic analysis of microbial pattern and process publication-title: Biology and Fertility of Soils doi: 10.1007/BF00418675 – start-page: 115 year: 2010 ident: 10.1016/j.soilbio.2017.01.008_bib12 article-title: Filling holes in regional carbon budgets: predicting peat depth in a north temperate lake district publication-title: Journal of Geophysical Research – volume: 47 year: 2015 ident: 10.1016/j.soilbio.2017.01.008_bib35 article-title: Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists publication-title: Nature Genetics doi: 10.1038/ng.3223 – volume: 86 start-page: 547 year: 1999 ident: 10.1016/j.soilbio.2017.01.008_bib46 article-title: Mycorrhizal status of the genus Carex (Cyperaceae) publication-title: American Journal of Botany doi: 10.2307/2656816 – volume: 11 start-page: 327 year: 2001 ident: 10.1016/j.soilbio.2017.01.008_bib77 article-title: Past, present, and future peatland carbon balance: an empirical model based on Pb-210-dated cores publication-title: Ecological Applications – volume: 14 start-page: 493 year: 2011 ident: 10.1016/j.soilbio.2017.01.008_bib50 article-title: Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment publication-title: Ecology Letters doi: 10.1111/j.1461-0248.2011.01611.x – volume: 209 start-page: 1382 year: 2016 ident: 10.1016/j.soilbio.2017.01.008_bib21 article-title: Revisiting the “Gadgil effect”: do interguild fungal interactions control carbon cycling in forest soils? publication-title: New Phytologist doi: 10.1111/nph.13648 – volume: 1 start-page: 182 year: 1991 ident: 10.1016/j.soilbio.2017.01.008_bib25 article-title: Northern peatlands – role in the carbon-cycle and probable responses to climatic warming publication-title: Ecological Applications doi: 10.2307/1941811 – volume: 59 start-page: 32 year: 2014 ident: 10.1016/j.soilbio.2017.01.008_bib27 article-title: A kenward-roger approximation and parametric bootstrap methods for tests in linear mixed models. The R package pbkrtest publication-title: Journal of Statistical Software doi: 10.18637/jss.v059.i09 – year: 2013 ident: 10.1016/j.soilbio.2017.01.008_bib52 – volume: 114 start-page: 381 year: 2013 ident: 10.1016/j.soilbio.2017.01.008_bib28 article-title: Radiocarbon evidence for the mining of organic nitrogen from soil by mycorrhizal fungi publication-title: Biogeochemistry – volume: 117 start-page: 23 year: 2014 ident: 10.1016/j.soilbio.2017.01.008_bib34 article-title: Soil extracellular enzyme activities correspond with abiotic factors more than fungal community composition publication-title: Biogeochemistry doi: 10.1007/s10533-013-9852-2 – volume: 9 start-page: 141 year: 2003 ident: 10.1016/j.soilbio.2017.01.008_bib75 article-title: Potential effects of warming and drying on peatland plant community composition publication-title: Global Change Biology doi: 10.1046/j.1365-2486.2003.00571.x – volume: 397 start-page: 371 year: 2015 ident: 10.1016/j.soilbio.2017.01.008_bib56 article-title: Understanding drivers of peatland extracellular enzyme activity in the PEATcosm experiment: mixed evidence for enzymic latch hypothesis publication-title: Plant and Soil doi: 10.1007/s11104-015-2746-4 – volume: 21 start-page: 431 year: 2015 ident: 10.1016/j.soilbio.2017.01.008_bib36 article-title: Carbon accumulation of tropical peatlands over millennia: a modeling approach publication-title: Global Change Biology doi: 10.1111/gcb.12672 |
SSID | ssj0002513 |
Score | 2.438687 |
Snippet | Peatland decomposition may be altered by hydrology and plant functional groups (PFGs), but exactly how the latter influences decomposition is unclear, as are... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | bags cellulose chitinase Climate change Cyperaceae enzyme activity Ericaceae Ericoid mycorrhizae Extracellular enzymes peat peatlands plant tissues Saprotroph Sphagnum Vegetation composition water table Wetlands |
Title | Interactive plant functional group and water table effects on decomposition and extracellular enzyme activity in Sphagnum peatlands |
URI | https://dx.doi.org/10.1016/j.soilbio.2017.01.008 https://www.proquest.com/docview/2000330127 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF5KfVAfRKtirS0r-Jpekt382MfjaDkV-6KFvi3ZZKZeSffC9Q7RB1_6jzuzt7EoQsHHhMwQdiYzk935vhHinUIquqGkP1UsdaIzbBIHYJKizjFX5ABVxkDhT2fl_Fx_uCgudsRsxMJwW2WM_duYHqJ1vDOJqzkZFgvG-DJZesbHyIHWjxHsumIvP_551-ZB-TsS79YM1qnuUDyTK-bL7d2CMYBZFdg7ecrkv_PTX5E6pJ_Tp-JJrBvldPtqz8QO-D3xeHq5itwZsCcezsbhbc_Fbdjpa0Iwk0NPyyc5g203_mSAcsjGd_IblZoruWb8lIytHXLpZQfcah77ucKDFMNJHfQ9t61K8D--X4MM-qmMlwsvPw9fm0u_uZYDRfcAIH4hzk9PvszmSZy3kLRK5-sEsqLK2y51qDE1ndOILkUDncGicXWrjcJSdQ229OGiLrEB7UzaQlGrsqVK8aXY9UsPr4REXWOeO6fyjlTXuUPjdAZVYVKnSXxf6HGVbRvJyHkmRm_HrrMrG41j2Tg2zSwZZ18c_xYbtmwc9wnUowntH25lKWPcJ_p2NLkl4_EKNx6Wmxue3JkqxWf2r_9f_YF4xFehd9K8Ebvr1QYOqb5Zu6PgwEfiwfT9x_nZLy4r_0Y |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWqcigcKiggSikYCY7pJrbz4QOHqlBt6ceFVurNxMm4bJVmo-2uqnLgwk_iD3bGcahASJWQek1iH_ycmXHy3hvG3kmHRTdkeFJ1mYpU4srIAugoLYQTEjdAnpBQ-PAoG5-oz6fp6RL7NWhhiFYZYn8f0320DldGYTVH3WRCGl8yS0_oN7K39QvMyn24vsJz2-WHvY8I8nshdj8d74yj0FogqqQS8wiSNBdVHVunXKxrq5yzsdNQa5eWtqiUli6Tdekq3KNOZa4EZXVcQVrIrNLkdoBx_4HCcEFtE7Z-3PJKsGAITr8FqYPyW9nQ6JwMehs7IdFhknu7UGpr-e-E-Fdq8Plu9zFbDYUq3-7X4glbgnaNPdo-mwWzDlhjKztDt7in7Kf_tFj66Mm7BvHilDL7L43ca0d42db8CmvbGZ-TYIsHLgmftrwG4rYHApl_EJMGTgdNQzxZDu336wvgfn48N_BJy79038qzdnHBO0wnXrH8jJ3cCwrP2XI7beEF404VTghrpahx6kJYp61KIE91bBUOX2dqWGVTBfdzasLRmIHmdm4COIbAMXFiEJx1tvV7WNfbf9w1oBggNH_sY4Mp6q6hbwfIDYJHK1y2MF1cUqvQWEoiCbz8_-nfsJXx8eGBOdg72t9gD-lOT9x8xZbnswVsYnE1t6_9Zubs632_PTfk8T1t |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interactive+plant+functional+group+and+water+table+effects+on+decomposition+and+extracellular+enzyme+activity+in+Sphagnum+peatlands&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Wiedermann%2C+Magdalena+M.&rft.au=Kane%2C+Evan+S.&rft.au=Potvin%2C+Lynette+R.&rft.au=Lilleskov%2C+Erik+A.&rft.date=2017-05-01&rft.issn=0038-0717&rft.volume=108&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1016%2Fj.soilbio.2017.01.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_soilbio_2017_01_008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon |