On the modeling of the thermo-mechanical responses of four different classes of NiTi-based shape memory materials using a general multi-mechanism framework

•A multiple-mechanism modeling strategy is applied to the actual test data of four different NiTi-based SMA materials.•The general model parameters are classified into two groups of fixed and functionally dependent parameters.•The fixed parameters are designed to capture the non-linear, hysteretic r...

Full description

Saved in:
Bibliographic Details
Published inMechanics of materials Vol. 80; pp. 67 - 86
Main Authors Saleeb, A.F., Dhakal, B., Dilibal, S., Owusu-Danquah, J.S., Padula, S.A.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A multiple-mechanism modeling strategy is applied to the actual test data of four different NiTi-based SMA materials.•The general model parameters are classified into two groups of fixed and functionally dependent parameters.•The fixed parameters are designed to capture the non-linear, hysteretic response.•The functionally dependent parameters enabled the capturing of characteristics such as tension/compression asymmetry and the temperature- and stress-state dependencies.•Comparisons of model predictions and test results highlighted the importance of the amount and type of data required to predict the response. The properties of a shape memory alloy (SMA) have been shown to be highly dependent on the chemical composition and thermo-mechanical processing applied to the material. These differences dictate the degree of superelasticity, pseudoplasticity, shape memory effect, and evolution under mechanical/thermal loading cycles, that is observed in the material. Understanding and utilizing these unique phenomena has become essential in many engineering applications. It is, therefore, important to provide two key ingredients in any SMA constitutive model; (i) a sufficiently comprehensive scope in the mathematical formulation to handle different classes of SMA materials; and (ii) a general model parameterization derived from fundamental tests that can be used for a specific SMA as intended for use in a given application. The present work is aimed at a detailed investigation of the interaction aspects between the above items (i) and (ii) in the context of using a recent three-dimensional, multimechanism-based SMA framework to model the experimentally measured responses of four different classes of SMA materials: (a) a commercial superelastic NiTi, (b) a powder metallurgically-processed NiTi-based SMA material, (c) a commercial Ni49.9Ti50.1 actuation material, and (d) a high-temperature Ni50.3Ti29.7Hf20 alloy. To facilitate the parameterization task, the model parameters are classified into two groups, i.e., (1) fixed parameters that are designed to capture the non-linear, hysteretic response under any thermo-mechanical loading condition, and (2) a set of functionally dependent material parameters which account for a number of refinements including asymmetry in tension and compression responses, temperature- and stress-state dependencies, etc. The results of the work showed that the complexity of the characterization is dependent on the SMA feature exploited by the specific application intended, which in turn dictates the amount and type of test data required to accurately predict a given application response.
AbstractList The properties of a shape memory alloy (SMA) have been shown to be highly dependent on the chemical composition and thermo-mechanical processing applied to the material. These differences dictate the degree of superelasticity, pseudoplasticity, shape memory effect, and evolution under mechanical/thermal loading cycles, that is observed in the material. Understanding and utilizing these unique phenomena has become essential in many engineering applications. It is, therefore, important to provide two key ingredients in any SMA constitutive model; (i) a sufficiently comprehensive scope in the mathematical formulation to handle different classes of SMA materials; and (ii) a general model parameterization derived from fundamental tests that can be used for a specific SMA as intended for use in a given application. The present work is aimed at a detailed investigation of the interaction aspects between the above items (i) and (ii) in the context of using a recent three-dimensional, multimechanism-based SMA framework to model the experimentally measured responses of four different classes of SMA materials: (a) a commercial superelastic NiTi, (b) a powder metallurgically-processed NiTi-based SMA material, (c) a commercial Ni49.9Ti50.1 actuation material, and (d) a high-temperature Ni50.3Ti29.7Hf20 alloy. To facilitate the parameterization task, the model parameters are classified into two groups, i.e., (1) fixed parameters that are designed to capture the non-linear, hysteretic response under any thermo-mechanical loading condition, and (2) a set of functionally dependent material parameters which account for a number of refinements including asymmetry in tension and compression responses, temperature- and stress-state dependencies, etc. The results of the work showed that the complexity of the characterization is dependent on the SMA feature exploited by the specific application intended, which in turn dictates the amount and type of test data required to accurately predict a given application response.
•A multiple-mechanism modeling strategy is applied to the actual test data of four different NiTi-based SMA materials.•The general model parameters are classified into two groups of fixed and functionally dependent parameters.•The fixed parameters are designed to capture the non-linear, hysteretic response.•The functionally dependent parameters enabled the capturing of characteristics such as tension/compression asymmetry and the temperature- and stress-state dependencies.•Comparisons of model predictions and test results highlighted the importance of the amount and type of data required to predict the response. The properties of a shape memory alloy (SMA) have been shown to be highly dependent on the chemical composition and thermo-mechanical processing applied to the material. These differences dictate the degree of superelasticity, pseudoplasticity, shape memory effect, and evolution under mechanical/thermal loading cycles, that is observed in the material. Understanding and utilizing these unique phenomena has become essential in many engineering applications. It is, therefore, important to provide two key ingredients in any SMA constitutive model; (i) a sufficiently comprehensive scope in the mathematical formulation to handle different classes of SMA materials; and (ii) a general model parameterization derived from fundamental tests that can be used for a specific SMA as intended for use in a given application. The present work is aimed at a detailed investigation of the interaction aspects between the above items (i) and (ii) in the context of using a recent three-dimensional, multimechanism-based SMA framework to model the experimentally measured responses of four different classes of SMA materials: (a) a commercial superelastic NiTi, (b) a powder metallurgically-processed NiTi-based SMA material, (c) a commercial Ni49.9Ti50.1 actuation material, and (d) a high-temperature Ni50.3Ti29.7Hf20 alloy. To facilitate the parameterization task, the model parameters are classified into two groups, i.e., (1) fixed parameters that are designed to capture the non-linear, hysteretic response under any thermo-mechanical loading condition, and (2) a set of functionally dependent material parameters which account for a number of refinements including asymmetry in tension and compression responses, temperature- and stress-state dependencies, etc. The results of the work showed that the complexity of the characterization is dependent on the SMA feature exploited by the specific application intended, which in turn dictates the amount and type of test data required to accurately predict a given application response.
Author Owusu-Danquah, J.S.
Dhakal, B.
Dilibal, S.
Saleeb, A.F.
Padula, S.A.
Author_xml – sequence: 1
  givenname: A.F.
  surname: Saleeb
  fullname: Saleeb, A.F.
  email: saleeb@uakron.edu
  organization: Department of Civil Engineering, The University of Akron, Akron, OH 44325-3905, USA
– sequence: 2
  givenname: B.
  surname: Dhakal
  fullname: Dhakal, B.
  organization: Department of Civil Engineering, The University of Akron, Akron, OH 44325-3905, USA
– sequence: 3
  givenname: S.
  surname: Dilibal
  fullname: Dilibal, S.
  organization: Department of Civil Engineering, The University of Akron, Akron, OH 44325-3905, USA
– sequence: 4
  givenname: J.S.
  surname: Owusu-Danquah
  fullname: Owusu-Danquah, J.S.
  organization: Department of Civil Engineering, The University of Akron, Akron, OH 44325-3905, USA
– sequence: 5
  givenname: S.A.
  surname: Padula
  fullname: Padula, S.A.
  organization: N.A.S.A. Glenn Research Center, 21000 Brookpark Rd., Cleveland, OH 44135, USA
BookMark eNqFUctu3DAMFIoU6CbtJxTQsRe7kuXnqSiCpg0QJJfkLHBlKqutJW1FO0G-pT9bubs550AQBGeGHMw5OwsxIGOfpSilkO3XfenR7DzMZSVkXYqhFEK-YxvZd1XRdbU6Y5uM64q2Ve0Hdk60F0I0Q9Nt2N-7wOcdch9HnFx45NH-n3MlH4tVGIIzMPGEdIiBkFaIjUvio7MWE4aZmwnotLl1967YAuHIaQeHrIw-phee38PkYCK-0HoH-CMGTFnYL9PsXi-R5zaBx-eYfn9k720m4KdTv2APVz_uL38VN3c_ry-_3xRG1dVcjFswDchRDdDYPhvt1dAN2EloYFuN2DfQSjCdFEJV294qmZe1yfaxzrNRF-zLUfeQ4p8FadbekcFpgoBxIS3bVoihUkpkaHOEmhSJElp9SM5DetFS6DUMvdenMPQahhaDzmFk3rcjD7OPJ4dJk3EYDI4uoZn1GN0bCv8Ag6Oatw
CitedBy_id crossref_primary_10_1016_j_matdes_2016_04_044
crossref_primary_10_1088_1361_665X_aa7c36
crossref_primary_10_1016_j_jallcom_2021_160971
crossref_primary_10_1177_1045389X17704062
crossref_primary_10_1007_s11665_015_1425_1
crossref_primary_10_1016_j_mechmat_2017_05_012
crossref_primary_10_1088_1361_665X_aa6c17
crossref_primary_10_1016_j_compbiomed_2015_04_010
crossref_primary_10_33889_IJMEMS_2023_8_3_024
crossref_primary_10_1016_j_ijsolstr_2021_02_005
crossref_primary_10_1016_j_polymer_2017_10_003
crossref_primary_10_1088_1361_665X_ac383d
crossref_primary_10_1061__ASCE_AS_1943_5525_0001211
crossref_primary_10_1007_s40830_024_00479_9
crossref_primary_10_1007_s11665_017_2721_8
crossref_primary_10_1007_s12046_024_02437_8
crossref_primary_10_1016_j_ijsolstr_2017_12_002
crossref_primary_10_1016_j_euromechsol_2017_02_005
crossref_primary_10_1016_j_ijmecsci_2019_105303
crossref_primary_10_1088_0964_1726_25_9_095056
Cites_doi 10.1016/j.msea.2007.04.124
10.1016/j.jallcom.2012.07.082
10.1016/j.msea.2013.04.040
10.1016/j.mechmat.2004.03.007
10.1016/j.actamat.2012.09.023
10.1002/jbm.a.30464
10.1016/j.ijsolstr.2007.10.029
10.1115/1.2816007
10.1016/j.mechmat.2013.04.003
10.1016/j.scriptamat.2012.11.042
10.1016/j.ijplas.2009.08.005
10.1016/j.mechmat.2005.05.027
10.1016/j.ijplas.2010.08.012
10.1016/j.ijsolstr.2009.06.017
10.1007/s11661-012-1297-z
10.1016/j.mechmat.2005.08.003
10.1016/j.actamat.2013.02.023
10.1142/S1793604712500385
10.1016/0022-5096(95)00024-D
10.1016/j.ijplas.2013.06.003
10.1016/j.scriptamat.2012.03.036
10.1088/0964-1726/22/9/094017
10.1016/j.scriptamat.2010.12.028
10.1016/j.msea.2011.10.073
10.1016/j.jallcom.2006.01.128
10.1016/0001-6160(85)90167-1
10.1002/adem.200500029
10.1016/S0167-6636(02)00310-1
10.1016/j.msea.2003.10.327
10.1016/j.msea.2013.02.035
10.1016/j.matchar.2007.02.007
10.1007/s11661-012-1267-5
10.1177/1045389X12457255
10.1016/j.scriptamat.2006.02.029
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.mechmat.2014.09.001
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7743
EndPage 86
ExternalDocumentID 10_1016_j_mechmat_2014_09_001
S0167663614001641
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SST
SSZ
T5K
WUQ
XPP
ZMT
~02
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c342t-dbac5a1d39a5f801683979e71a5ab2de85a61ac710032b8f319e74c957e42b8c3
IEDL.DBID AIKHN
ISSN 0167-6636
IngestDate Sat Aug 17 03:17:42 EDT 2024
Thu Sep 26 18:09:13 EDT 2024
Fri Feb 23 02:27:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Material modeling
Evolution
Thermal cycles
NiTi shape memory alloys
Pseudoplastic behavior
Superelastic behavior
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-dbac5a1d39a5f801683979e71a5ab2de85a61ac710032b8f319e74c957e42b8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1660092330
PQPubID 23500
PageCount 20
ParticipantIDs proquest_miscellaneous_1660092330
crossref_primary_10_1016_j_mechmat_2014_09_001
elsevier_sciencedirect_doi_10_1016_j_mechmat_2014_09_001
PublicationCentury 2000
PublicationDate January 2015
2015-01-00
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: January 2015
PublicationDecade 2010
PublicationTitle Mechanics of materials
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Saleeb, Dhakal, Padula, Gaydosh (b0185) 2013; 22
Yang, Coughlin, Phillips, Yang, Devaraj, Kovarik, Noebe, Mills (b0205) 2013; 61
Christ, Reese (b0045) 2009; 46
Otsuka, Wayman (b0140) 1998
Grabe, Bruhns (b0080) 2008; 45
Lagoudas, Entchev, Popov, Patoor, Brinson, Gao (b0110) 2006; 38
Angst, Thoma, Kao (b0005) 1995; 5
Chen, Saleeb (b0040) 1994
Eggeler, Hornbogen, Yawny, Heckmann, Wagner (b0055) 2004; 378
Kockar, Karaman, Kim, Chumlyakov (b0100) 2006; 54
Saleeb, Dhakal, Padula, Gaydosh (b0180) 2013; 24
Helm, D., 2001. Formgedächtnislegierungen – experimentelle Untersuchung, phänomenologische Modellierung und numerische Simulation der thermomechanischen Materialeigenschaften (Ph.D. thesis), Universität Gesamthochschule Kassel.
Padula, Gaydosh, Saleeb, Dhakal (b0150) 2013
Qiu, S., 2010. Investigation of thermal, elastic and load-biased transformation strains in NiTi shape memory alloys. Doctoral dissertation, University of Central Florida Orlando, Florida.
Ezaz, Wang, Sehitoglu, Maier (b0065) 2013; 61
Atli, Franco, Karaman, Gaydosh, Noebe (b0010) 2013; 574
Lim, McDowell (b0115) 1999; 121
Coughlin, Phillips, Bigelow, Garg, Noebe, Mills (b0050) 2012; 67
Wada, Liu (b0200) 2008; 449
Benafan, Noebe, Padula, Gaydosh, Lerch, Garg, Bigelow, An, Vaidyanathan (b0025) 2013; 68
McNaney, Imbeni, Jung, Papadopoulos, Ritchie (b0125) 2003; 35
Krone, Mentz, Bram, Buchkremer, Stöver, Wagner, Eggeler, Christ, Reese, Bogdanski, Köller, Esenwein, Muhr, Prymak, Epple (b0105) 2005; 7
Goo, Duerig, Melton, Sinclair (b0075) 1985; 33
Saleeb, Kumar, Padula, Dhakal (b0190) 2013; 63
Patoor, Lagoudas, Entchev, Brinson, Gao (b0155) 2006; 38
Evirgen, Basner, Karaman, Noebe, Pons, Santamarta (b0060) 2012; 5
Padula, Qiu, Gaydosh, Noebe, Bigelow, Garg, Vaidyanathan (b0145) 2012; 43
Yawny, Olbricht, Sade, Eggeler (b0210) 2008; 481–482
Hartl, Lagoudas, Calkins, Mabe (b0085) 2010; 19
Benafan, Noebe, Padula II, Vaidyanathan (b0020) 2012; 43
Kan, Kang (b0095) 2010; 26
Raj, Noebe (b0170) 2013; 581
Saleeb, Padula, Kumar (b0175) 2011; 27
Nemat-Nasser, Choi, Guo, Isaacs (b0130) 2005; 37
Shaw, Kyriakides (b0195) 1995; 43
Gall, Tyber, Brice, Frick, Maier, Morgan (b0070) 2005; 75A
Noebe, R. 2012. Pitfalls and potential for developing stable high-temperature shape memory alloys through nano-precipitate strengthening. In: Proceedings, NASA Fundamental Aeronautics Program, Technical Conference, March 13–15, 2012, Cleveland, Ohio.
Benafan, Noebe, Padula, Garg, Clausen, Vogel, Vaidyanathan (b0030) 2013; 51
Liu, Wang, Yang, Qi (b0120) 2008; 59
Belyaev, Resnina, Sibirev (b0015) 2012; 542
Bigelow, Garg, Padula, Gaydosha, Noebe (b0035) 2011; 64
Pelton, Huang, Moine, Sinclair (b0160) 2012; 532
Raj (10.1016/j.mechmat.2014.09.001_b0170) 2013; 581
Padula (10.1016/j.mechmat.2014.09.001_b0150) 2013
Lim (10.1016/j.mechmat.2014.09.001_b0115) 1999; 121
Saleeb (10.1016/j.mechmat.2014.09.001_b0180) 2013; 24
Goo (10.1016/j.mechmat.2014.09.001_b0075) 1985; 33
Saleeb (10.1016/j.mechmat.2014.09.001_b0185) 2013; 22
Atli (10.1016/j.mechmat.2014.09.001_b0010) 2013; 574
Patoor (10.1016/j.mechmat.2014.09.001_b0155) 2006; 38
Pelton (10.1016/j.mechmat.2014.09.001_b0160) 2012; 532
Saleeb (10.1016/j.mechmat.2014.09.001_b0175) 2011; 27
Otsuka (10.1016/j.mechmat.2014.09.001_b0140) 1998
Christ (10.1016/j.mechmat.2014.09.001_b0045) 2009; 46
Kockar (10.1016/j.mechmat.2014.09.001_b0100) 2006; 54
Belyaev (10.1016/j.mechmat.2014.09.001_b0015) 2012; 542
McNaney (10.1016/j.mechmat.2014.09.001_b0125) 2003; 35
Krone (10.1016/j.mechmat.2014.09.001_b0105) 2005; 7
Eggeler (10.1016/j.mechmat.2014.09.001_b0055) 2004; 378
Gall (10.1016/j.mechmat.2014.09.001_b0070) 2005; 75A
10.1016/j.mechmat.2014.09.001_b0165
Shaw (10.1016/j.mechmat.2014.09.001_b0195) 1995; 43
Benafan (10.1016/j.mechmat.2014.09.001_b0030) 2013; 51
Yang (10.1016/j.mechmat.2014.09.001_b0205) 2013; 61
Evirgen (10.1016/j.mechmat.2014.09.001_b0060) 2012; 5
Benafan (10.1016/j.mechmat.2014.09.001_b0025) 2013; 68
10.1016/j.mechmat.2014.09.001_b0090
Kan (10.1016/j.mechmat.2014.09.001_b0095) 2010; 26
Padula (10.1016/j.mechmat.2014.09.001_b0145) 2012; 43
Saleeb (10.1016/j.mechmat.2014.09.001_b0190) 2013; 63
Benafan (10.1016/j.mechmat.2014.09.001_b0020) 2012; 43
Coughlin (10.1016/j.mechmat.2014.09.001_b0050) 2012; 67
Angst (10.1016/j.mechmat.2014.09.001_b0005) 1995; 5
Liu (10.1016/j.mechmat.2014.09.001_b0120) 2008; 59
Wada (10.1016/j.mechmat.2014.09.001_b0200) 2008; 449
Grabe (10.1016/j.mechmat.2014.09.001_b0080) 2008; 45
Hartl (10.1016/j.mechmat.2014.09.001_b0085) 2010; 19
Chen (10.1016/j.mechmat.2014.09.001_b0040) 1994
Lagoudas (10.1016/j.mechmat.2014.09.001_b0110) 2006; 38
Yawny (10.1016/j.mechmat.2014.09.001_b0210) 2008; 481–482
10.1016/j.mechmat.2014.09.001_b0135
Ezaz (10.1016/j.mechmat.2014.09.001_b0065) 2013; 61
Nemat-Nasser (10.1016/j.mechmat.2014.09.001_b0130) 2005; 37
Bigelow (10.1016/j.mechmat.2014.09.001_b0035) 2011; 64
References_xml – volume: 51
  start-page: 103
  year: 2013
  end-page: 121
  ident: b0030
  article-title: Temperature dependent deformation of the B2 austenite phase of a NiTi shape memory alloy
  publication-title: Int. J. Plast.
  contributor:
    fullname: Vaidyanathan
– volume: 7
  start-page: 613
  year: 2005
  end-page: 619
  ident: b0105
  article-title: The potential of powder metallurgy for the fabrication of biomaterials on the basis of nickel–titanium: a case study with a staple showing shape memory behaviour
  publication-title: Adv. Eng. Mater.
  contributor:
    fullname: Epple
– year: 1998
  ident: b0140
  article-title: Shape Memory Materials
  contributor:
    fullname: Wayman
– volume: 43
  start-page: 1243
  year: 1995
  end-page: 1281
  ident: b0195
  article-title: Thermomechanical aspects of NiTi
  publication-title: J. Mech. Phys. Solids
  contributor:
    fullname: Kyriakides
– volume: 54
  start-page: 2203
  year: 2006
  end-page: 2208
  ident: b0100
  article-title: A method to enhance cyclic reversibility of NiTiHf high temperature shape memory alloys
  publication-title: Scr. Mater.
  contributor:
    fullname: Chumlyakov
– volume: 68
  start-page: 571
  year: 2013
  end-page: 574
  ident: b0025
  article-title: Temperature-dependent behavior of a polycrystalline NiTi shape memory alloy around the transformation regime
  publication-title: Scr. Mater.
  contributor:
    fullname: Vaidyanathan
– volume: 449
  start-page: 125
  year: 2008
  end-page: 128
  ident: b0200
  article-title: On the mechanisms of two-way memory effect and stress-assisted two-way memory effect in NiTi shape memory alloy
  publication-title: J. Alloys Compd.
  contributor:
    fullname: Liu
– volume: 59
  start-page: 402
  year: 2008
  end-page: 406
  ident: b0120
  article-title: The effect of ageing treatment on shape-setting and superelasticity of a nitinol stent
  publication-title: Mater. Charact.
  contributor:
    fullname: Qi
– start-page: 1
  year: 2013
  end-page: 7
  ident: b0150
  article-title: Transients and evolution in NiTi
  publication-title: Exp. Mech.
  contributor:
    fullname: Dhakal
– volume: 121
  start-page: 9
  year: 1999
  end-page: 18
  ident: b0115
  article-title: Mechanical behavior of an Ni–Ti shape memory alloy under axial-torsional proportional and nonproportional loading
  publication-title: J. Eng. Mater. Technol.
  contributor:
    fullname: McDowell
– volume: 64
  start-page: 725
  year: 2011
  end-page: 728
  ident: b0035
  article-title: Load-biased shape-memory and superelastic properties of a precipitation strengthened high-temperature Ni
  publication-title: Scr. Mater.
  contributor:
    fullname: Noebe
– volume: 45
  start-page: 1876
  year: 2008
  end-page: 1895
  ident: b0080
  article-title: On the viscous and strain rate dependent behavior of polycrystalline NiTi
  publication-title: Int. J. Solids Struct.
  contributor:
    fullname: Bruhns
– volume: 43
  start-page: 4610
  year: 2012
  end-page: 4621
  ident: b0145
  article-title: Effect of upper-cycle temperature on the load-biased, strain-temperature response of NiTi
  publication-title: Metal. Mater. Trans. A
  contributor:
    fullname: Vaidyanathan
– volume: 24
  start-page: 70
  year: 2013
  end-page: 88
  ident: b0180
  article-title: Calibration of a 3D multi-mechanism SMA material model for the prediction of the cyclic attraction character in binary NiTi alloys
  publication-title: J. Intel. Mater. Syst. Struct.
  contributor:
    fullname: Gaydosh
– volume: 33
  start-page: 1725
  year: 1985
  end-page: 1733
  ident: b0075
  article-title: Mechanical twinning in TiNiFe and TiNi alloys
  publication-title: Acta Metal.
  contributor:
    fullname: Sinclair
– volume: 581
  start-page: 145
  year: 2013
  end-page: 153
  ident: b0170
  article-title: Low temperature creep of hot-extruded near-stoichiometric NiTi shape memory alloy part II: effect of thermal cycling
  publication-title: Mater. Sci. Eng. A
  contributor:
    fullname: Noebe
– volume: 46
  start-page: 3694
  year: 2009
  end-page: 3709
  ident: b0045
  article-title: A finite element model for shape memory alloys considering thermo-mechanical couplings at large strains
  publication-title: Int. J. Solids Struct.
  contributor:
    fullname: Reese
– year: 1994
  ident: b0040
  article-title: Constitutive Equations for Engineering Materials
  contributor:
    fullname: Saleeb
– volume: 61
  start-page: 3335
  year: 2013
  end-page: 3346
  ident: b0205
  article-title: Structure analysis of a precipitate phase in a Ni-rich high-temperature NiTiHf shape memory alloy
  publication-title: Acta Mater.
  contributor:
    fullname: Mills
– volume: 61
  start-page: 67
  year: 2013
  end-page: 78
  ident: b0065
  article-title: Plastic deformation of NiTi shape memory alloys
  publication-title: Acta Mater.
  contributor:
    fullname: Maier
– volume: 19
  start-page: 015
  year: 2010
  end-page: 020
  ident: b0085
  article-title: Use of a Ni60Ti shape memory alloy for active jet engine chevron application: I. Thermomechanical characterization
  publication-title: Smart Mater. Struct.
  contributor:
    fullname: Mabe
– volume: 542
  start-page: 37
  year: 2012
  end-page: 42
  ident: b0015
  article-title: Peculiarities of residual strain accumulation during thermal cycling of TiNi alloy
  publication-title: J. Alloy Comput.
  contributor:
    fullname: Sibirev
– volume: 5
  year: 2012
  ident: b0060
  article-title: Effect of aging on the martensitic transformation characteristics of a Ni-RICH NiTiHf high temperature shape memory alloy
  publication-title: Funct. Mater. Lett.
  contributor:
    fullname: Santamarta
– volume: 43
  start-page: 4539
  year: 2012
  end-page: 4552
  ident: b0020
  article-title: Microstructural response during isothermal and isobaric loading of a precipitation-strengthened Ni-29.7 Ti-20Hf high-temperature shape memory alloy
  publication-title: Metal. Mater. Trans. A
  contributor:
    fullname: Vaidyanathan
– volume: 378
  start-page: 24
  year: 2004
  end-page: 33
  ident: b0055
  article-title: Structural and functional fatigue of NiTi shape memory alloys
  publication-title: Mater. Sci. Eng. A
  contributor:
    fullname: Wagner
– volume: 38
  start-page: 391
  year: 2006
  end-page: 429
  ident: b0155
  article-title: Shape memory alloys, part I: general properties and modeling of single crystals
  publication-title: Mech. Mater.
  contributor:
    fullname: Gao
– volume: 22
  start-page: 094017
  year: 2013
  ident: b0185
  article-title: Calibration of SMA material model for the prediction of the ‘evolutionary’ load-bias behavior under conditions of extended thermal cycling
  publication-title: Smart Mater. Struct.
  contributor:
    fullname: Gaydosh
– volume: 26
  start-page: 441
  year: 2010
  end-page: 465
  ident: b0095
  article-title: Constitutive model for uniaxial transformation ratcheting of super-elastic NiTi shape memory alloy at room temperature
  publication-title: Int. J. Plast.
  contributor:
    fullname: Kang
– volume: 481–482
  start-page: 86
  year: 2008
  end-page: 90
  ident: b0210
  article-title: Pseudoelastic cycling and ageing effects at ambient temperature in nanocrystalline Ni-rich NiTi wire
  publication-title: Mater. Sci. Eng. A
  contributor:
    fullname: Eggeler
– volume: 75A
  start-page: 810
  year: 2005
  end-page: 823
  ident: b0070
  article-title: Tensile deformation of NiTi wires
  publication-title: J. Biomed. Mat. Res. Part A
  contributor:
    fullname: Morgan
– volume: 35
  start-page: 969
  year: 2003
  end-page: 986
  ident: b0125
  article-title: An experimental study of the superelastic effect in a shape-memory nitinol alloy under biaxial loading
  publication-title: Mech. Mater.
  contributor:
    fullname: Ritchie
– volume: 5
  start-page: C8
  year: 1995
  end-page: 747
  ident: b0005
  article-title: The effect of hafnium content on the transformation temperatures of Ni49Ti51– xHfx shape memory alloys
  publication-title: J. Phys. IV
  contributor:
    fullname: Kao
– volume: 532
  start-page: 130
  year: 2012
  end-page: 138
  ident: b0160
  article-title: Effects of thermal cycling on microstructure and properties in nitinol
  publication-title: Mater. Sci. Eng. A
  contributor:
    fullname: Sinclair
– volume: 574
  start-page: 9
  year: 2013
  end-page: 16
  ident: b0010
  article-title: Influence of crystallographic compatibility on residual strain of TiNi based shape memory alloys during thermo-mechanical cycling
  publication-title: Mater. Sci. Eng. A
  contributor:
    fullname: Noebe
– volume: 63
  start-page: 21
  year: 2013
  end-page: 47
  ident: b0190
  article-title: The cyclic and evolutionary response to approach the attraction loops under stress controlled isothermal conditions for a multi-mechanism based multi-axial SMA model
  publication-title: Mech. Mater.
  contributor:
    fullname: Dhakal
– volume: 67
  start-page: 112
  year: 2012
  end-page: 115
  ident: b0050
  article-title: Characterization of the microstructure and mechanical properties of a 50.3 Ni-29.7 Ti-20Hf shape memory alloy
  publication-title: Scr. Mater.
  contributor:
    fullname: Mills
– volume: 38
  start-page: 430
  year: 2006
  end-page: 462
  ident: b0110
  article-title: Shape memory alloys, part II: modeling of polycrystals
  publication-title: Mech. Mater.
  contributor:
    fullname: Gao
– volume: 37
  start-page: 287
  year: 2005
  end-page: 298
  ident: b0130
  article-title: Very high strain-rate response of a NiTi shape-memory alloy
  publication-title: Mech. Mater.
  contributor:
    fullname: Isaacs
– volume: 27
  start-page: 655
  year: 2011
  end-page: 687
  ident: b0175
  article-title: A multi-axial, multi-mechanism based constitutive model for the comprehensive representation of the evolutionary response of SMAs under general thermo-mechanical loading conditions
  publication-title: Int. J. Plast.
  contributor:
    fullname: Kumar
– volume: 481–482
  start-page: 86
  year: 2008
  ident: 10.1016/j.mechmat.2014.09.001_b0210
  article-title: Pseudoelastic cycling and ageing effects at ambient temperature in nanocrystalline Ni-rich NiTi wire
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2007.04.124
  contributor:
    fullname: Yawny
– volume: 542
  start-page: 37
  year: 2012
  ident: 10.1016/j.mechmat.2014.09.001_b0015
  article-title: Peculiarities of residual strain accumulation during thermal cycling of TiNi alloy
  publication-title: J. Alloy Comput.
  doi: 10.1016/j.jallcom.2012.07.082
  contributor:
    fullname: Belyaev
– year: 1994
  ident: 10.1016/j.mechmat.2014.09.001_b0040
  contributor:
    fullname: Chen
– volume: 581
  start-page: 145
  year: 2013
  ident: 10.1016/j.mechmat.2014.09.001_b0170
  article-title: Low temperature creep of hot-extruded near-stoichiometric NiTi shape memory alloy part II: effect of thermal cycling
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2013.04.040
  contributor:
    fullname: Raj
– volume: 37
  start-page: 287
  issue: 2–3
  year: 2005
  ident: 10.1016/j.mechmat.2014.09.001_b0130
  article-title: Very high strain-rate response of a NiTi shape-memory alloy
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2004.03.007
  contributor:
    fullname: Nemat-Nasser
– volume: 61
  start-page: 67
  year: 2013
  ident: 10.1016/j.mechmat.2014.09.001_b0065
  article-title: Plastic deformation of NiTi shape memory alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2012.09.023
  contributor:
    fullname: Ezaz
– volume: 75A
  start-page: 810
  issue: 4
  year: 2005
  ident: 10.1016/j.mechmat.2014.09.001_b0070
  article-title: Tensile deformation of NiTi wires
  publication-title: J. Biomed. Mat. Res. Part A
  doi: 10.1002/jbm.a.30464
  contributor:
    fullname: Gall
– ident: 10.1016/j.mechmat.2014.09.001_b0135
– volume: 45
  start-page: 1876
  issue: 7–8
  year: 2008
  ident: 10.1016/j.mechmat.2014.09.001_b0080
  article-title: On the viscous and strain rate dependent behavior of polycrystalline NiTi
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2007.10.029
  contributor:
    fullname: Grabe
– volume: 121
  start-page: 9
  issue: 1
  year: 1999
  ident: 10.1016/j.mechmat.2014.09.001_b0115
  article-title: Mechanical behavior of an Ni–Ti shape memory alloy under axial-torsional proportional and nonproportional loading
  publication-title: J. Eng. Mater. Technol.
  doi: 10.1115/1.2816007
  contributor:
    fullname: Lim
– volume: 63
  start-page: 21
  year: 2013
  ident: 10.1016/j.mechmat.2014.09.001_b0190
  article-title: The cyclic and evolutionary response to approach the attraction loops under stress controlled isothermal conditions for a multi-mechanism based multi-axial SMA model
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2013.04.003
  contributor:
    fullname: Saleeb
– volume: 68
  start-page: 571
  issue: 8
  year: 2013
  ident: 10.1016/j.mechmat.2014.09.001_b0025
  article-title: Temperature-dependent behavior of a polycrystalline NiTi shape memory alloy around the transformation regime
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2012.11.042
  contributor:
    fullname: Benafan
– start-page: 1
  year: 2013
  ident: 10.1016/j.mechmat.2014.09.001_b0150
  article-title: Transients and evolution in NiTi
  publication-title: Exp. Mech.
  contributor:
    fullname: Padula
– volume: 26
  start-page: 441
  year: 2010
  ident: 10.1016/j.mechmat.2014.09.001_b0095
  article-title: Constitutive model for uniaxial transformation ratcheting of super-elastic NiTi shape memory alloy at room temperature
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2009.08.005
  contributor:
    fullname: Kan
– year: 1998
  ident: 10.1016/j.mechmat.2014.09.001_b0140
  contributor:
    fullname: Otsuka
– volume: 38
  start-page: 391
  year: 2006
  ident: 10.1016/j.mechmat.2014.09.001_b0155
  article-title: Shape memory alloys, part I: general properties and modeling of single crystals
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2005.05.027
  contributor:
    fullname: Patoor
– volume: 19
  start-page: 015
  year: 2010
  ident: 10.1016/j.mechmat.2014.09.001_b0085
  article-title: Use of a Ni60Ti shape memory alloy for active jet engine chevron application: I. Thermomechanical characterization
  publication-title: Smart Mater. Struct.
  contributor:
    fullname: Hartl
– volume: 27
  start-page: 655
  year: 2011
  ident: 10.1016/j.mechmat.2014.09.001_b0175
  article-title: A multi-axial, multi-mechanism based constitutive model for the comprehensive representation of the evolutionary response of SMAs under general thermo-mechanical loading conditions
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2010.08.012
  contributor:
    fullname: Saleeb
– volume: 46
  start-page: 3694
  year: 2009
  ident: 10.1016/j.mechmat.2014.09.001_b0045
  article-title: A finite element model for shape memory alloys considering thermo-mechanical couplings at large strains
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2009.06.017
  contributor:
    fullname: Christ
– volume: 43
  start-page: 4539
  issue: 12
  year: 2012
  ident: 10.1016/j.mechmat.2014.09.001_b0020
  article-title: Microstructural response during isothermal and isobaric loading of a precipitation-strengthened Ni-29.7 Ti-20Hf high-temperature shape memory alloy
  publication-title: Metal. Mater. Trans. A
  doi: 10.1007/s11661-012-1297-z
  contributor:
    fullname: Benafan
– volume: 38
  start-page: 430
  year: 2006
  ident: 10.1016/j.mechmat.2014.09.001_b0110
  article-title: Shape memory alloys, part II: modeling of polycrystals
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2005.08.003
  contributor:
    fullname: Lagoudas
– volume: 61
  start-page: 3335
  year: 2013
  ident: 10.1016/j.mechmat.2014.09.001_b0205
  article-title: Structure analysis of a precipitate phase in a Ni-rich high-temperature NiTiHf shape memory alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.02.023
  contributor:
    fullname: Yang
– volume: 5
  issue: 04
  year: 2012
  ident: 10.1016/j.mechmat.2014.09.001_b0060
  article-title: Effect of aging on the martensitic transformation characteristics of a Ni-RICH NiTiHf high temperature shape memory alloy
  publication-title: Funct. Mater. Lett.
  doi: 10.1142/S1793604712500385
  contributor:
    fullname: Evirgen
– volume: 43
  start-page: 1243
  issue: 8
  year: 1995
  ident: 10.1016/j.mechmat.2014.09.001_b0195
  article-title: Thermomechanical aspects of NiTi
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(95)00024-D
  contributor:
    fullname: Shaw
– volume: 51
  start-page: 103
  year: 2013
  ident: 10.1016/j.mechmat.2014.09.001_b0030
  article-title: Temperature dependent deformation of the B2 austenite phase of a NiTi shape memory alloy
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2013.06.003
  contributor:
    fullname: Benafan
– volume: 67
  start-page: 112
  issue: 1
  year: 2012
  ident: 10.1016/j.mechmat.2014.09.001_b0050
  article-title: Characterization of the microstructure and mechanical properties of a 50.3 Ni-29.7 Ti-20Hf shape memory alloy
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2012.03.036
  contributor:
    fullname: Coughlin
– volume: 22
  start-page: 094017
  issue: 9
  year: 2013
  ident: 10.1016/j.mechmat.2014.09.001_b0185
  article-title: Calibration of SMA material model for the prediction of the ‘evolutionary’ load-bias behavior under conditions of extended thermal cycling
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/22/9/094017
  contributor:
    fullname: Saleeb
– volume: 64
  start-page: 725
  year: 2011
  ident: 10.1016/j.mechmat.2014.09.001_b0035
  article-title: Load-biased shape-memory and superelastic properties of a precipitation strengthened high-temperature Ni50.3Ti29.7Hf20 alloy
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2010.12.028
  contributor:
    fullname: Bigelow
– ident: 10.1016/j.mechmat.2014.09.001_b0090
– volume: 532
  start-page: 130
  year: 2012
  ident: 10.1016/j.mechmat.2014.09.001_b0160
  article-title: Effects of thermal cycling on microstructure and properties in nitinol
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2011.10.073
  contributor:
    fullname: Pelton
– volume: 449
  start-page: 125
  year: 2008
  ident: 10.1016/j.mechmat.2014.09.001_b0200
  article-title: On the mechanisms of two-way memory effect and stress-assisted two-way memory effect in NiTi shape memory alloy
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2006.01.128
  contributor:
    fullname: Wada
– volume: 33
  start-page: 1725
  year: 1985
  ident: 10.1016/j.mechmat.2014.09.001_b0075
  article-title: Mechanical twinning in TiNiFe and TiNi alloys
  publication-title: Acta Metal.
  doi: 10.1016/0001-6160(85)90167-1
  contributor:
    fullname: Goo
– volume: 7
  start-page: 613
  year: 2005
  ident: 10.1016/j.mechmat.2014.09.001_b0105
  article-title: The potential of powder metallurgy for the fabrication of biomaterials on the basis of nickel–titanium: a case study with a staple showing shape memory behaviour
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200500029
  contributor:
    fullname: Krone
– volume: 35
  start-page: 969
  issue: 10
  year: 2003
  ident: 10.1016/j.mechmat.2014.09.001_b0125
  article-title: An experimental study of the superelastic effect in a shape-memory nitinol alloy under biaxial loading
  publication-title: Mech. Mater.
  doi: 10.1016/S0167-6636(02)00310-1
  contributor:
    fullname: McNaney
– volume: 378
  start-page: 24
  year: 2004
  ident: 10.1016/j.mechmat.2014.09.001_b0055
  article-title: Structural and functional fatigue of NiTi shape memory alloys
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2003.10.327
  contributor:
    fullname: Eggeler
– volume: 574
  start-page: 9
  year: 2013
  ident: 10.1016/j.mechmat.2014.09.001_b0010
  article-title: Influence of crystallographic compatibility on residual strain of TiNi based shape memory alloys during thermo-mechanical cycling
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2013.02.035
  contributor:
    fullname: Atli
– volume: 59
  start-page: 402
  year: 2008
  ident: 10.1016/j.mechmat.2014.09.001_b0120
  article-title: The effect of ageing treatment on shape-setting and superelasticity of a nitinol stent
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2007.02.007
  contributor:
    fullname: Liu
– volume: 43
  start-page: 4610
  issue: 12
  year: 2012
  ident: 10.1016/j.mechmat.2014.09.001_b0145
  article-title: Effect of upper-cycle temperature on the load-biased, strain-temperature response of NiTi
  publication-title: Metal. Mater. Trans. A
  doi: 10.1007/s11661-012-1267-5
  contributor:
    fullname: Padula
– ident: 10.1016/j.mechmat.2014.09.001_b0165
– volume: 24
  start-page: 70
  year: 2013
  ident: 10.1016/j.mechmat.2014.09.001_b0180
  article-title: Calibration of a 3D multi-mechanism SMA material model for the prediction of the cyclic attraction character in binary NiTi alloys
  publication-title: J. Intel. Mater. Syst. Struct.
  doi: 10.1177/1045389X12457255
  contributor:
    fullname: Saleeb
– volume: 5
  start-page: C8
  issue: 8
  year: 1995
  ident: 10.1016/j.mechmat.2014.09.001_b0005
  article-title: The effect of hafnium content on the transformation temperatures of Ni49Ti51– xHfx shape memory alloys
  publication-title: J. Phys. IV
  contributor:
    fullname: Angst
– volume: 54
  start-page: 2203
  year: 2006
  ident: 10.1016/j.mechmat.2014.09.001_b0100
  article-title: A method to enhance cyclic reversibility of NiTiHf high temperature shape memory alloys
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2006.02.029
  contributor:
    fullname: Kockar
SSID ssj0005957
Score 2.2594407
Snippet •A multiple-mechanism modeling strategy is applied to the actual test data of four different NiTi-based SMA materials.•The general model parameters are...
The properties of a shape memory alloy (SMA) have been shown to be highly dependent on the chemical composition and thermo-mechanical processing applied to the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 67
SubjectTerms Evolution
Intermetallics
Material modeling
Mathematical models
Nickel base alloys
Nickel compounds
NiTi shape memory alloys
Parametrization
Pseudoplastic behavior
Shape memory alloys
Superelastic behavior
Superelasticity
Thermal cycles
Titanium compounds
Title On the modeling of the thermo-mechanical responses of four different classes of NiTi-based shape memory materials using a general multi-mechanism framework
URI https://dx.doi.org/10.1016/j.mechmat.2014.09.001
https://search.proquest.com/docview/1660092330
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagLDAgnuItI7GmTRrbtUeEqAqIMgBSN8tx7LZITStaBhb-CH-WuzgRDyEhMdqJHcfn3J3j774j5Az2NrKTKxFlPjMRs7GLpBEsij1PubCcW4Xxzrd90Xtk1wM-WCIXdSwMwior3R90eqmtq5pWNZut2XjcukcAPdhLsC8lTxRsgVbAHDHWICvnVze9_ifSQwXCT6T4xgafgTytp-bE2RH4hgjyCoynVXqYX0zUD2VdWqDuBlmvXEd6Hka3SZZcsUXWvhAKbpP3u4KCR0fL_DZQQ6e-LKOXN5lGOApTBkLS54CNdXO8xUPXtE6VsqAWPepwpT9-gM0zWLqczkdmBj0jMveVwruEpUsROD-khg4DfzUtEYr1k-YT6mv01w557F4-XPSiKv1CZFPWXkR5Ziw3SZ4qwz0YMiHxDNB1EsNN1s6d5EYkxiI9UNrOpIeP2XWYhcl2DMo23SWNYlq4PUITnivHlTCJdMzITArvkth5cK9U7pXYJ816xvUssGzoGn72pCsRaRSRjhXC8PaJrOWivy0XDZbgr6antRw1fEp4PmIKN32Z60QIpKBK0_jg_90fklUo8fCX5og0Fs8v7hj8lkV2Qpabb8lJtTo_AE1p8IM
link.rule.ids 315,786,790,4521,24144,27955,27956,45618,45712
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQGYAB8RRvjMSaNmli1x5RBSpQykCRulmOY7dFalrRMrDwR_iz3MWJeAgJidGPOI7P9p3j774j5BzONqKVSR6kLtVBYkIbCM2TIHQsZtwwZiT6O9_1eOcxuRmwwRJpV74wCKss936_pxe7dZnTKEezMRuPGw8IoAd9Cfql4ImCI9AyWgOI66q_fcF5SE_3iQTfWP3TjafxVJ9YMwLLECFenu-0DA7zi4L6sVUX-udqg6yXhiO98H3bJEs23yJrX-gEt8n7fU7BnqNFdBvIoVNXpNHGm0wD7IUu3CDps0fG2jlWcdA0rQKlLKhBe9qX9MZ9ODqDnsvofKRn0DLicl8pfIufuBRh80Oq6dCzV9MCn1i9aT6hrsJ-7ZDHq8t-uxOUwRcCEyfNRZCl2jAdZbHUzIEa4wJvAG0r0kynzcwKpnmkDZIDxc1UOFjKtpUYGGybQNrEu6SWT3O7R2jEMmmZ5DoSNtEiFdzZKLQOjCuZOcn3Sb0acTXzHBuqAp89qVJECkWkQokgvH0iKrmob5NFgR7469GzSo4KFhLejujcTl_mKuIcCajiODz4f_OnZKXTv-uq7nXv9pCsQgnz_2uOSG3x_GKPwYJZpCfFDP0AdyvxWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+modeling+of+the+thermo-mechanical+responses+of+four+different+classes+of+NiTi-based+shape+memory+materials+using+a+general+multi-mechanism+framework&rft.jtitle=Mechanics+of+materials&rft.au=Saleeb%2C+A.F.&rft.au=Dhakal%2C+B.&rft.au=Dilibal%2C+S.&rft.au=Owusu-Danquah%2C+J.S.&rft.date=2015-01-01&rft.pub=Elsevier+Ltd&rft.issn=0167-6636&rft.eissn=1872-7743&rft.volume=80&rft.spage=67&rft.epage=86&rft_id=info:doi/10.1016%2Fj.mechmat.2014.09.001&rft.externalDocID=S0167663614001641
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6636&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6636&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6636&client=summon