Assessing the potential of TOPCon solar cells architecture using industrial n-type cast-mono silicon material
Cast-mono silicon material is interesting for its lower carbon footprint compared to Czochralski (Cz) monocrystalline silicon. However, solar cells fabricated using cast-mono (CM) silicon show lower performances. In this work, two routes to make cast-mono silicon advantageous over Cz silicon are con...
Saved in:
Published in | EPJ Photovoltaics Vol. 15; p. 16 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
EDP Sciences
2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2105-0716 2105-0716 |
DOI | 10.1051/epjpv/2024016 |
Cover
Loading…
Abstract | Cast-mono silicon material is interesting for its lower carbon footprint compared to Czochralski (Cz) monocrystalline silicon. However, solar cells fabricated using cast-mono (CM) silicon show lower performances. In this work, two routes to make cast-mono silicon advantageous over Cz silicon are considered. The first route is to further reduce carbon footprint of cast-mono silicon, by using Upgraded Metallurgical Grade silicon (UMG-Si) feedstock instead of Solar Grade silicon (SoG-Si) feedstock. TOPCon solar cells are fabricated using both feedstocks, and cast-mono growth technology, using industrial-type furnaces. Laboratory studies show that UMG-Si can result in efficiencies higher than solar cells made of SoG-Si when feeding the material to a CM crystallization process. But when compared to Cz, CM-UMG-Si TOPCon solar cells conversion efficiency values are still 0.5%
abs
lower. The second route is to take advantage of the TOPCon passivation layer (e.g., poly-Si) ability to getter metallic impurities, and thus improve the quality of cast-mono material. Several TOPCon sequences are tested and their effect on the carrier recombination properties of the device are studied. In the end, solar cells are fabricated and again, UMG-Si solar cells show better results than SoG-Si solar cells, with efficiency up to 22.65%, independently confirmed. |
---|---|
AbstractList | Cast-mono silicon material is interesting for its lower carbon footprint compared to Czochralski (Cz) monocrystalline silicon. However, solar cells fabricated using cast-mono (CM) silicon show lower performances. In this work, two routes to make cast-mono silicon advantageous over Cz silicon are considered. The first route is to further reduce carbon footprint of cast-mono silicon, by using Upgraded Metallurgical Grade silicon (UMG-Si) feedstock instead of Solar Grade silicon (SoG-Si) feedstock. TOPCon solar cells are fabricated using both feedstocks, and cast-mono growth technology, using industrial-type furnaces. Laboratory studies show that UMG-Si can result in efficiencies higher than solar cells made of SoG-Si when feeding the material to a CM crystallization process. But when compared to Cz, CM-UMG-Si TOPCon solar cells conversion efficiency values are still 0.5%abs lower. The second route is to take advantage of the TOPCon passivation layer (e.g., poly-Si) ability to getter metallic impurities, and thus improve the quality of cast-mono material. Several TOPCon sequences are tested and their effect on the carrier recombination properties of the device are studied. In the end, solar cells are fabricated and again, UMG-Si solar cells show better results than SoG-Si solar cells, with efficiency up to 22.65%, independently confirmed. Cast-mono silicon material is interesting for its lower carbon footprint compared to Czochralski (Cz) monocrystalline silicon. However, solar cells fabricated using cast-mono (CM) silicon show lower performances. In this work, two routes to make cast-mono silicon advantageous over Cz silicon are considered. The first route is to further reduce carbon footprint of cast-mono silicon, by using Upgraded Metallurgical Grade silicon (UMG-Si) feedstock instead of Solar Grade silicon (SoG-Si) feedstock. TOPCon solar cells are fabricated using both feedstocks, and cast-mono growth technology, using industrial-type furnaces. Laboratory studies show that UMG-Si can result in efficiencies higher than solar cells made of SoG-Si when feeding the material to a CM crystallization process. But when compared to Cz, CM-UMG-Si TOPCon solar cells conversion efficiency values are still 0.5% abs lower. The second route is to take advantage of the TOPCon passivation layer (e.g., poly-Si) ability to getter metallic impurities, and thus improve the quality of cast-mono material. Several TOPCon sequences are tested and their effect on the carrier recombination properties of the device are studied. In the end, solar cells are fabricated and again, UMG-Si solar cells show better results than SoG-Si solar cells, with efficiency up to 22.65%, independently confirmed. |
Author | Saint-Cast, Pierre Williatte, Samuel Bodeux, Romain Tessmann, Christopher Posada, Jorge Bazer-Bachi, Barbara Mack, Sebastian Goaer, Gilles |
Author_xml | – sequence: 1 givenname: Barbara orcidid: 0000-0002-8877-3395 surname: Bazer-Bachi fullname: Bazer-Bachi, Barbara – sequence: 2 givenname: Pierre surname: Saint-Cast fullname: Saint-Cast, Pierre – sequence: 3 givenname: Jorge surname: Posada fullname: Posada, Jorge – sequence: 4 givenname: Samuel surname: Williatte fullname: Williatte, Samuel – sequence: 5 givenname: Christopher surname: Tessmann fullname: Tessmann, Christopher – sequence: 6 givenname: Romain surname: Bodeux fullname: Bodeux, Romain – sequence: 7 givenname: Sebastian surname: Mack fullname: Mack, Sebastian – sequence: 8 givenname: Gilles surname: Goaer fullname: Goaer, Gilles |
BookMark | eNptUctqwzAQFCWFPo-96wfc6OGHfCyhj0ChPaRnsZbWiYIjGUkp9O_rpC2U0r3sMMwMu8wFmfngkZAbzm45q_gcx-34PhdMlIzXJ-RcTGzBGl7PfuEzcp3Slk2jGCvb-pzs7lLClJxf07xBOoaMPjsYaOjp6uV1ETxNYYBIDQ5DohDNxmU0eR-R7o825-0-5Xjw-CJ_jEgNpFzsgg80ucGZKWIHGQ-KK3Law5Dw-ntfkreH-9XiqXh-eVwu7p4LI0uRCwu1BNvbVgjGRNdhI5QUTHWVEKVsZadUxSZQSjt91SrODWOogMu-kUq08pIsv3JtgK0eo9tB_NABnD4SIa41xOzMgLqzvYKyK1te21JAq7BvQIGqjK1RCZyy5FeWiSGliL02LkN2wecIbtCc6UMB-liA_i5gchV_XD9X_K__BJ4si3Q |
CitedBy_id | crossref_primary_10_1016_j_vacuum_2025_114263 |
Cites_doi | 10.1016/j.solmat.2019.110287 10.1557/jmr.2016.77 10.1016/j.egypro.2017.09.336 10.1021/acsaem.8b00367 10.1016/j.solener.2021.03.076 10.1016/j.solmat.2019.110059 10.1002/pip.979 10.1002/solr.201900297 10.1016/B978-012513910-6/50068-2 10.1016/j.jcrysgro.2016.08.037 10.1016/j.egypro.2017.09.273 10.1016/j.egypro.2011.06.203 10.1016/j.scitotenv.2021.147969 10.1016/j.egypro.2016.07.040 10.1016/j.xcrp.2021.100667 10.4028/www.scientific.net/SSP.131-133.1 10.1016/j.solmat.2017.11.004 10.1016/j.solmat.2020.110690 10.1016/B978-0-12-824324-4.00029-9 10.1016/j.actamat.2013.12.010 10.1002/pip.544 10.1002/aenm.202103773 10.1063/5.0089677 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1051/epjpv/2024016 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2105-0716 |
ExternalDocumentID | oai_doaj_org_article_bdf8a4b4916d42a98ef7a8a85cd6e82e 10_1051_epjpv_2024016 |
GroupedDBID | 4.4 5VS 8FE 8FG AAFWJ AAOGA AAYXX ABDBF ABJCF ABZDU ACACO ACGFS ACRPL ACUHS ADBBV ADMLS ADNMO AFKRA AFPKN AGQPQ ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU CITATION EBS EJD GI~ GROUPED_DOAJ HCIFZ IPNFZ L6V M7S M~E OK1 P62 PHGZM PHGZT PTHSS RIG |
ID | FETCH-LOGICAL-c342t-da63adfd922002bbe7283208b5224393b885043943d0719811c00e8a13f738293 |
IEDL.DBID | DOA |
ISSN | 2105-0716 |
IngestDate | Wed Aug 27 01:23:37 EDT 2025 Tue Jul 01 03:19:40 EDT 2025 Thu Apr 24 23:00:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-da63adfd922002bbe7283208b5224393b885043943d0719811c00e8a13f738293 |
ORCID | 0000-0002-8877-3395 |
OpenAccessLink | https://doaj.org/article/bdf8a4b4916d42a98ef7a8a85cd6e82e |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bdf8a4b4916d42a98ef7a8a85cd6e82e crossref_citationtrail_10_1051_epjpv_2024016 crossref_primary_10_1051_epjpv_2024016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-00-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024-00-00 |
PublicationDecade | 2020 |
PublicationTitle | EPJ Photovoltaics |
PublicationYear | 2024 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | Greulich (R19) 2010; 18 Ervik (R14) 2014; 67 R21 R22 Park (R25) 2012; 2012 R29 R1 R2 Breitenstein (R23) 2004; 12 Feldmann (R31) 2017; 124 Liu (R6) 2020; 215 R7 R8 Sio (R17) 2019; 201 Méndez (R3) 2021; 789 Forniés (R4) 2021; 220 Liu (R10) 2018; 179 R12 R11 Lancaster (R30) 2016; 92 Basnet (R5) 2020; 205 R16 R15 Yang (R9) 2022; 12 R18 Trempa (R13) 2016; 454 Nemeth (R27) 2016; 31 Yang (R28) 2021; 2 Liu (R24) 2018; 1 van der Vossen (R26) 2017; 124 Hoenig (R20) 2011; 8 |
References_xml | – volume: 205 start-page: 110287 year: 2020 ident: R5 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2019.110287 – volume: 31 start-page: 671 year: 2016 ident: R27 publication-title: J. Mater. Res. doi: 10.1557/jmr.2016.77 – volume: 124 start-page: 31 year: 2017 ident: R31 publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.09.336 – volume: 1 start-page: 2275 year: 2018 ident: R24 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00367 – volume: 220 start-page: 354 year: 2021 ident: R4 publication-title: Sol. Energy doi: 10.1016/j.solener.2021.03.076 – volume: 201 start-page: 110059 year: 2019 ident: R17 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2019.110059 – volume: 18 start-page: 511 year: 2010 ident: R19 publication-title: Prog. Photovolt.: Res. Appl. doi: 10.1002/pip.979 – ident: R8 doi: 10.1002/solr.201900297 – ident: R22 doi: 10.1016/B978-012513910-6/50068-2 – ident: R21 – volume: 454 start-page: 6 year: 2016 ident: R13 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2016.08.037 – volume: 124 start-page: 448 year: 2017 ident: R26 publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.09.273 – volume: 8 start-page: 694 year: 2011 ident: R20 publication-title: Energy Procedia doi: 10.1016/j.egypro.2011.06.203 – volume: 789 start-page: 147969 year: 2021 ident: R3 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.147969 – volume: 92 start-page: 116 year: 2016 ident: R30 publication-title: Energy Procedia doi: 10.1016/j.egypro.2016.07.040 – volume: 2 start-page: 100667 year: 2021 ident: R28 publication-title: Cell Rep. Phys. Sci. doi: 10.1016/j.xcrp.2021.100667 – ident: R1 doi: 10.4028/www.scientific.net/SSP.131-133.1 – ident: R16 – ident: R18 – ident: R12 – volume: 179 start-page: 136 year: 2018 ident: R10 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2017.11.004 – volume: 215 start-page: 110690 year: 2020 ident: R6 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2020.110690 – ident: R11 doi: 10.1016/B978-0-12-824324-4.00029-9 – volume: 67 start-page: 199 year: 2014 ident: R14 publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.12.010 – volume: 12 start-page: 529 year: 2004 ident: R23 publication-title: Prog. Photovolt.: Res. Appl. doi: 10.1002/pip.544 – ident: R29 – volume: 12 start-page: 2103773 year: 2022 ident: R9 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202103773 – ident: R7 doi: 10.1063/5.0089677 – ident: R2 – volume: 2012 start-page: 794876 year: 2012 ident: R25 publication-title: Int. J. Photoenergy – ident: R15 |
SSID | ssj0000800496 |
Score | 2.2571747 |
Snippet | Cast-mono silicon material is interesting for its lower carbon footprint compared to Czochralski (Cz) monocrystalline silicon. However, solar cells fabricated... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 16 |
SubjectTerms | cast-mono sog topcon umg |
Title | Assessing the potential of TOPCon solar cells architecture using industrial n-type cast-mono silicon material |
URI | https://doaj.org/article/bdf8a4b4916d42a98ef7a8a85cd6e82e |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8oCYiJrEjuOMUAEFicfQSt0iP6VWJYlIy8hv5-yEKgyIhSWKIjuKzp9y3_nO3yF0IRMSmtTCCjAmAmq4DrJQZxDzUMOMkEJbd3b46ZmNJvRxmkw7rb5cTVgjD9wYbiC15YJKCjRG01hk3NhUcMETpZnhsXF_X_B5nWBq3vIgmrFWVBOANzDVvPpwoT4EFOyHE-po9XuncreDtls2iK-br9hFG6bYQ1sdjcB99NakZeEeA1fDVbl09T0wqbR4_PI6LAtcu_AUuy34GncTA3jlp83W3TlwEbgtV6xEDeFuWZS4ni0ACgUG3uqheIAmd7fj4ShoeyQEitB4GWjBCNhTZ7GrtpDSpK73UMgl8CrgGkRynvjTr0QDmch4FKkwNFxExKaEg68_RL2iLMwRwkTFRttYaiUjWLRISEtIqHRKXSowFH109W20XLUC4q6PxSL3iewkyr2N89bGfXS5Hl41yhm_DbxxK7Ae5ASv_QOAQd7CIP8LBsf_8ZITtOm-qSnKPkW95fvKnAHnWMpzDy-43j98fgE0JtnT |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+the+potential+of+TOPCon+solar+cells+architecture+using+industrial+n-type+cast-mono+silicon+material&rft.jtitle=EPJ+Photovoltaics&rft.au=Bazer-Bachi%2C+Barbara&rft.au=Saint-Cast%2C+Pierre&rft.au=Posada%2C+Jorge&rft.au=Williatte%2C+Samuel&rft.date=2024&rft.issn=2105-0716&rft.eissn=2105-0716&rft.volume=15&rft.spage=16&rft_id=info:doi/10.1051%2Fepjpv%2F2024016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_epjpv_2024016 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2105-0716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2105-0716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2105-0716&client=summon |