Assessing the potential of TOPCon solar cells architecture using industrial n-type cast-mono silicon material

Cast-mono silicon material is interesting for its lower carbon footprint compared to Czochralski (Cz) monocrystalline silicon. However, solar cells fabricated using cast-mono (CM) silicon show lower performances. In this work, two routes to make cast-mono silicon advantageous over Cz silicon are con...

Full description

Saved in:
Bibliographic Details
Published inEPJ Photovoltaics Vol. 15; p. 16
Main Authors Bazer-Bachi, Barbara, Saint-Cast, Pierre, Posada, Jorge, Williatte, Samuel, Tessmann, Christopher, Bodeux, Romain, Mack, Sebastian, Goaer, Gilles
Format Journal Article
LanguageEnglish
Published EDP Sciences 2024
Subjects
Online AccessGet full text
ISSN2105-0716
2105-0716
DOI10.1051/epjpv/2024016

Cover

Loading…
Abstract Cast-mono silicon material is interesting for its lower carbon footprint compared to Czochralski (Cz) monocrystalline silicon. However, solar cells fabricated using cast-mono (CM) silicon show lower performances. In this work, two routes to make cast-mono silicon advantageous over Cz silicon are considered. The first route is to further reduce carbon footprint of cast-mono silicon, by using Upgraded Metallurgical Grade silicon (UMG-Si) feedstock instead of Solar Grade silicon (SoG-Si) feedstock. TOPCon solar cells are fabricated using both feedstocks, and cast-mono growth technology, using industrial-type furnaces. Laboratory studies show that UMG-Si can result in efficiencies higher than solar cells made of SoG-Si when feeding the material to a CM crystallization process. But when compared to Cz, CM-UMG-Si TOPCon solar cells conversion efficiency values are still 0.5% abs lower. The second route is to take advantage of the TOPCon passivation layer (e.g., poly-Si) ability to getter metallic impurities, and thus improve the quality of cast-mono material. Several TOPCon sequences are tested and their effect on the carrier recombination properties of the device are studied. In the end, solar cells are fabricated and again, UMG-Si solar cells show better results than SoG-Si solar cells, with efficiency up to 22.65%, independently confirmed.
AbstractList Cast-mono silicon material is interesting for its lower carbon footprint compared to Czochralski (Cz) monocrystalline silicon. However, solar cells fabricated using cast-mono (CM) silicon show lower performances. In this work, two routes to make cast-mono silicon advantageous over Cz silicon are considered. The first route is to further reduce carbon footprint of cast-mono silicon, by using Upgraded Metallurgical Grade silicon (UMG-Si) feedstock instead of Solar Grade silicon (SoG-Si) feedstock. TOPCon solar cells are fabricated using both feedstocks, and cast-mono growth technology, using industrial-type furnaces. Laboratory studies show that UMG-Si can result in efficiencies higher than solar cells made of SoG-Si when feeding the material to a CM crystallization process. But when compared to Cz, CM-UMG-Si TOPCon solar cells conversion efficiency values are still 0.5%abs lower. The second route is to take advantage of the TOPCon passivation layer (e.g., poly-Si) ability to getter metallic impurities, and thus improve the quality of cast-mono material. Several TOPCon sequences are tested and their effect on the carrier recombination properties of the device are studied. In the end, solar cells are fabricated and again, UMG-Si solar cells show better results than SoG-Si solar cells, with efficiency up to 22.65%, independently confirmed.
Cast-mono silicon material is interesting for its lower carbon footprint compared to Czochralski (Cz) monocrystalline silicon. However, solar cells fabricated using cast-mono (CM) silicon show lower performances. In this work, two routes to make cast-mono silicon advantageous over Cz silicon are considered. The first route is to further reduce carbon footprint of cast-mono silicon, by using Upgraded Metallurgical Grade silicon (UMG-Si) feedstock instead of Solar Grade silicon (SoG-Si) feedstock. TOPCon solar cells are fabricated using both feedstocks, and cast-mono growth technology, using industrial-type furnaces. Laboratory studies show that UMG-Si can result in efficiencies higher than solar cells made of SoG-Si when feeding the material to a CM crystallization process. But when compared to Cz, CM-UMG-Si TOPCon solar cells conversion efficiency values are still 0.5% abs lower. The second route is to take advantage of the TOPCon passivation layer (e.g., poly-Si) ability to getter metallic impurities, and thus improve the quality of cast-mono material. Several TOPCon sequences are tested and their effect on the carrier recombination properties of the device are studied. In the end, solar cells are fabricated and again, UMG-Si solar cells show better results than SoG-Si solar cells, with efficiency up to 22.65%, independently confirmed.
Author Saint-Cast, Pierre
Williatte, Samuel
Bodeux, Romain
Tessmann, Christopher
Posada, Jorge
Bazer-Bachi, Barbara
Mack, Sebastian
Goaer, Gilles
Author_xml – sequence: 1
  givenname: Barbara
  orcidid: 0000-0002-8877-3395
  surname: Bazer-Bachi
  fullname: Bazer-Bachi, Barbara
– sequence: 2
  givenname: Pierre
  surname: Saint-Cast
  fullname: Saint-Cast, Pierre
– sequence: 3
  givenname: Jorge
  surname: Posada
  fullname: Posada, Jorge
– sequence: 4
  givenname: Samuel
  surname: Williatte
  fullname: Williatte, Samuel
– sequence: 5
  givenname: Christopher
  surname: Tessmann
  fullname: Tessmann, Christopher
– sequence: 6
  givenname: Romain
  surname: Bodeux
  fullname: Bodeux, Romain
– sequence: 7
  givenname: Sebastian
  surname: Mack
  fullname: Mack, Sebastian
– sequence: 8
  givenname: Gilles
  surname: Goaer
  fullname: Goaer, Gilles
BookMark eNptUctqwzAQFCWFPo-96wfc6OGHfCyhj0ChPaRnsZbWiYIjGUkp9O_rpC2U0r3sMMwMu8wFmfngkZAbzm45q_gcx-34PhdMlIzXJ-RcTGzBGl7PfuEzcp3Slk2jGCvb-pzs7lLClJxf07xBOoaMPjsYaOjp6uV1ETxNYYBIDQ5DohDNxmU0eR-R7o825-0-5Xjw-CJ_jEgNpFzsgg80ucGZKWIHGQ-KK3Law5Dw-ntfkreH-9XiqXh-eVwu7p4LI0uRCwu1BNvbVgjGRNdhI5QUTHWVEKVsZadUxSZQSjt91SrODWOogMu-kUq08pIsv3JtgK0eo9tB_NABnD4SIa41xOzMgLqzvYKyK1te21JAq7BvQIGqjK1RCZyy5FeWiSGliL02LkN2wecIbtCc6UMB-liA_i5gchV_XD9X_K__BJ4si3Q
CitedBy_id crossref_primary_10_1016_j_vacuum_2025_114263
Cites_doi 10.1016/j.solmat.2019.110287
10.1557/jmr.2016.77
10.1016/j.egypro.2017.09.336
10.1021/acsaem.8b00367
10.1016/j.solener.2021.03.076
10.1016/j.solmat.2019.110059
10.1002/pip.979
10.1002/solr.201900297
10.1016/B978-012513910-6/50068-2
10.1016/j.jcrysgro.2016.08.037
10.1016/j.egypro.2017.09.273
10.1016/j.egypro.2011.06.203
10.1016/j.scitotenv.2021.147969
10.1016/j.egypro.2016.07.040
10.1016/j.xcrp.2021.100667
10.4028/www.scientific.net/SSP.131-133.1
10.1016/j.solmat.2017.11.004
10.1016/j.solmat.2020.110690
10.1016/B978-0-12-824324-4.00029-9
10.1016/j.actamat.2013.12.010
10.1002/pip.544
10.1002/aenm.202103773
10.1063/5.0089677
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1051/epjpv/2024016
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2105-0716
ExternalDocumentID oai_doaj_org_article_bdf8a4b4916d42a98ef7a8a85cd6e82e
10_1051_epjpv_2024016
GroupedDBID 4.4
5VS
8FE
8FG
AAFWJ
AAOGA
AAYXX
ABDBF
ABJCF
ABZDU
ACACO
ACGFS
ACRPL
ACUHS
ADBBV
ADMLS
ADNMO
AFKRA
AFPKN
AGQPQ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
EBS
EJD
GI~
GROUPED_DOAJ
HCIFZ
IPNFZ
L6V
M7S
M~E
OK1
P62
PHGZM
PHGZT
PTHSS
RIG
ID FETCH-LOGICAL-c342t-da63adfd922002bbe7283208b5224393b885043943d0719811c00e8a13f738293
IEDL.DBID DOA
ISSN 2105-0716
IngestDate Wed Aug 27 01:23:37 EDT 2025
Tue Jul 01 03:19:40 EDT 2025
Thu Apr 24 23:00:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-da63adfd922002bbe7283208b5224393b885043943d0719811c00e8a13f738293
ORCID 0000-0002-8877-3395
OpenAccessLink https://doaj.org/article/bdf8a4b4916d42a98ef7a8a85cd6e82e
ParticipantIDs doaj_primary_oai_doaj_org_article_bdf8a4b4916d42a98ef7a8a85cd6e82e
crossref_citationtrail_10_1051_epjpv_2024016
crossref_primary_10_1051_epjpv_2024016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationTitle EPJ Photovoltaics
PublicationYear 2024
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Greulich (R19) 2010; 18
Ervik (R14) 2014; 67
R21
R22
Park (R25) 2012; 2012
R29
R1
R2
Breitenstein (R23) 2004; 12
Feldmann (R31) 2017; 124
Liu (R6) 2020; 215
R7
R8
Sio (R17) 2019; 201
Méndez (R3) 2021; 789
Forniés (R4) 2021; 220
Liu (R10) 2018; 179
R12
R11
Lancaster (R30) 2016; 92
Basnet (R5) 2020; 205
R16
R15
Yang (R9) 2022; 12
R18
Trempa (R13) 2016; 454
Nemeth (R27) 2016; 31
Yang (R28) 2021; 2
Liu (R24) 2018; 1
van der Vossen (R26) 2017; 124
Hoenig (R20) 2011; 8
References_xml – volume: 205
  start-page: 110287
  year: 2020
  ident: R5
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2019.110287
– volume: 31
  start-page: 671
  year: 2016
  ident: R27
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2016.77
– volume: 124
  start-page: 31
  year: 2017
  ident: R31
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.09.336
– volume: 1
  start-page: 2275
  year: 2018
  ident: R24
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00367
– volume: 220
  start-page: 354
  year: 2021
  ident: R4
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2021.03.076
– volume: 201
  start-page: 110059
  year: 2019
  ident: R17
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2019.110059
– volume: 18
  start-page: 511
  year: 2010
  ident: R19
  publication-title: Prog. Photovolt.: Res. Appl.
  doi: 10.1002/pip.979
– ident: R8
  doi: 10.1002/solr.201900297
– ident: R22
  doi: 10.1016/B978-012513910-6/50068-2
– ident: R21
– volume: 454
  start-page: 6
  year: 2016
  ident: R13
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2016.08.037
– volume: 124
  start-page: 448
  year: 2017
  ident: R26
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.09.273
– volume: 8
  start-page: 694
  year: 2011
  ident: R20
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2011.06.203
– volume: 789
  start-page: 147969
  year: 2021
  ident: R3
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.147969
– volume: 92
  start-page: 116
  year: 2016
  ident: R30
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2016.07.040
– volume: 2
  start-page: 100667
  year: 2021
  ident: R28
  publication-title: Cell Rep. Phys. Sci.
  doi: 10.1016/j.xcrp.2021.100667
– ident: R1
  doi: 10.4028/www.scientific.net/SSP.131-133.1
– ident: R16
– ident: R18
– ident: R12
– volume: 179
  start-page: 136
  year: 2018
  ident: R10
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2017.11.004
– volume: 215
  start-page: 110690
  year: 2020
  ident: R6
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2020.110690
– ident: R11
  doi: 10.1016/B978-0-12-824324-4.00029-9
– volume: 67
  start-page: 199
  year: 2014
  ident: R14
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.12.010
– volume: 12
  start-page: 529
  year: 2004
  ident: R23
  publication-title: Prog. Photovolt.: Res. Appl.
  doi: 10.1002/pip.544
– ident: R29
– volume: 12
  start-page: 2103773
  year: 2022
  ident: R9
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202103773
– ident: R7
  doi: 10.1063/5.0089677
– ident: R2
– volume: 2012
  start-page: 794876
  year: 2012
  ident: R25
  publication-title: Int. J. Photoenergy
– ident: R15
SSID ssj0000800496
Score 2.2571747
Snippet Cast-mono silicon material is interesting for its lower carbon footprint compared to Czochralski (Cz) monocrystalline silicon. However, solar cells fabricated...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 16
SubjectTerms cast-mono
sog
topcon
umg
Title Assessing the potential of TOPCon solar cells architecture using industrial n-type cast-mono silicon material
URI https://doaj.org/article/bdf8a4b4916d42a98ef7a8a85cd6e82e
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8oCYiJrEjuOMUAEFicfQSt0iP6VWJYlIy8hv5-yEKgyIhSWKIjuKzp9y3_nO3yF0IRMSmtTCCjAmAmq4DrJQZxDzUMOMkEJbd3b46ZmNJvRxmkw7rb5cTVgjD9wYbiC15YJKCjRG01hk3NhUcMETpZnhsXF_X_B5nWBq3vIgmrFWVBOANzDVvPpwoT4EFOyHE-po9XuncreDtls2iK-br9hFG6bYQ1sdjcB99NakZeEeA1fDVbl09T0wqbR4_PI6LAtcu_AUuy34GncTA3jlp83W3TlwEbgtV6xEDeFuWZS4ni0ACgUG3uqheIAmd7fj4ShoeyQEitB4GWjBCNhTZ7GrtpDSpK73UMgl8CrgGkRynvjTr0QDmch4FKkwNFxExKaEg68_RL2iLMwRwkTFRttYaiUjWLRISEtIqHRKXSowFH109W20XLUC4q6PxSL3iewkyr2N89bGfXS5Hl41yhm_DbxxK7Ae5ASv_QOAQd7CIP8LBsf_8ZITtOm-qSnKPkW95fvKnAHnWMpzDy-43j98fgE0JtnT
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+the+potential+of+TOPCon+solar+cells+architecture+using+industrial+n-type+cast-mono+silicon+material&rft.jtitle=EPJ+Photovoltaics&rft.au=Bazer-Bachi%2C+Barbara&rft.au=Saint-Cast%2C+Pierre&rft.au=Posada%2C+Jorge&rft.au=Williatte%2C+Samuel&rft.date=2024&rft.issn=2105-0716&rft.eissn=2105-0716&rft.volume=15&rft.spage=16&rft_id=info:doi/10.1051%2Fepjpv%2F2024016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_epjpv_2024016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2105-0716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2105-0716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2105-0716&client=summon