Interaction of Turing and Hopf Modes in the Superdiffusive Brusselator Model Near a Codimension Two Bifurcation Point

Spatiotemporal patterns near a codimension-2 Turing-Hopf point of the one-dimensional superdiffusive Brusselator model are analyzed. The superdiffusive Brusselator model differs from its regular counterpart in that the Laplacian operator of the regular model is replaced by ∂α/∂|ξ|α, 1 < α < 2,...

Full description

Saved in:
Bibliographic Details
Published inMathematical modelling of natural phenomena Vol. 6; no. 1; pp. 87 - 118
Main Authors Tzou, J. C., Bayliss, A., Matkowsky, B.J., Volpert, V.A.
Format Journal Article
LanguageEnglish
Published Les Ulis EDP Sciences 2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spatiotemporal patterns near a codimension-2 Turing-Hopf point of the one-dimensional superdiffusive Brusselator model are analyzed. The superdiffusive Brusselator model differs from its regular counterpart in that the Laplacian operator of the regular model is replaced by ∂α/∂|ξ|α, 1 < α < 2, an integro-differential operator that reflects the nonlocal behavior of superdiffusion. The order of the operator, α, is a measure of the rate of superdiffusion, which, in general, can be different for each of the two components. A weakly nonlinear analysis is used to derive two coupled amplitude equations describing the slow time evolution of the Turing and Hopf modes. We seek special solutions of the amplitude equations, namely a pure Turing solution, a pure Hopf solution, and a mixed mode solution, and analyze their stability to long-wave perturbations. We find that the stability criteria of all three solutions depend greatly on the rates of superdiffusion of the two components. In addition, the stability properties of the solutions to the anomalous diffusion model are different from those of the regular diffusion model. Numerical computations in a large spatial domain, using Fourier spectral methods in space and second order Runge-Kutta in time are used to confirm the analysis and also to find solutions not predicted by the weakly nonlinear analysis, in the fully nonlinear regime. Specifically, we find a large number of steady state patterns consisting of a localized region or regions of stationary stripes in a background of time periodic cellular motion, as well as patterns with a localized region or regions of time periodic cells in a background of stationary stripes. Each such pattern lies on a branch of such solutions, is stable and corresponds to a different initial condition. The patterns correspond to the phenomenon of pinning of the front between the stripes and the time periodic cellular motion. While in some cases it is difficult to isolate the effect of the diffusion exponents, we find characteristics in the spatiotemporal patterns for anomalous diffusion that we have not found for regular (Fickian) diffusion.
AbstractList Spatiotemporal patterns near a codimension-2 Turing-Hopf point of the one-dimensional superdiffusive Brusselator model are analyzed. The superdiffusive Brusselator model differs from its regular counterpart in that the Laplacian operator of the regular model is replaced by ∂α/∂|ξ|α, 1 < α < 2, an integro-differential operator that reflects the nonlocal behavior of superdiffusion. The order of the operator, α, is a measure of the rate of superdiffusion, which, in general, can be different for each of the two components. A weakly nonlinear analysis is used to derive two coupled amplitude equations describing the slow time evolution of the Turing and Hopf modes. We seek special solutions of the amplitude equations, namely a pure Turing solution, a pure Hopf solution, and a mixed mode solution, and analyze their stability to long-wave perturbations. We find that the stability criteria of all three solutions depend greatly on the rates of superdiffusion of the two components. In addition, the stability properties of the solutions to the anomalous diffusion model are different from those of the regular diffusion model. Numerical computations in a large spatial domain, using Fourier spectral methods in space and second order Runge-Kutta in time are used to confirm the analysis and also to find solutions not predicted by the weakly nonlinear analysis, in the fully nonlinear regime. Specifically, we find a large number of steady state patterns consisting of a localized region or regions of stationary stripes in a background of time periodic cellular motion, as well as patterns with a localized region or regions of time periodic cells in a background of stationary stripes. Each such pattern lies on a branch of such solutions, is stable and corresponds to a different initial condition. The patterns correspond to the phenomenon of pinning of the front between the stripes and the time periodic cellular motion. While in some cases it is difficult to isolate the effect of the diffusion exponents, we find characteristics in the spatiotemporal patterns for anomalous diffusion that we have not found for regular (Fickian) diffusion.
Spatiotemporal patterns near a codimension-2 Turing-Hopf point of the one-dimensional superdiffusive Brusselator model are analyzed. The superdiffusive Brusselator model differs from its regular counterpart in that the Laplacian operator of the regular model is replaced by ∂ α /∂|ξ| α , 1 < α < 2, an integro-differential operator that reflects the nonlocal behavior of superdiffusion. The order of the operator, α, is a measure of the rate of superdiffusion, which, in general, can be different for each of the two components. A weakly nonlinear analysis is used to derive two coupled amplitude equations describing the slow time evolution of the Turing and Hopf modes. We seek special solutions of the amplitude equations, namely a pure Turing solution, a pure Hopf solution, and a mixed mode solution, and analyze their stability to long-wave perturbations. We find that the stability criteria of all three solutions depend greatly on the rates of superdiffusion of the two components. In addition, the stability properties of the solutions to the anomalous diffusion model are different from those of the regular diffusion model. Numerical computations in a large spatial domain, using Fourier spectral methods in space and second order Runge-Kutta in time are used to confirm the analysis and also to find solutions not predicted by the weakly nonlinear analysis, in the fully nonlinear regime. Specifically, we find a large number of steady state patterns consisting of a localized region or regions of stationary stripes in a background of time periodic cellular motion, as well as patterns with a localized region or regions of time periodic cells in a background of stationary stripes. Each such pattern lies on a branch of such solutions, is stable and corresponds to a different initial condition. The patterns correspond to the phenomenon of pinning of the front between the stripes and the time periodic cellular motion. While in some cases it is difficult to isolate the effect of the diffusion exponents, we find characteristics in the spatiotemporal patterns for anomalous diffusion that we have not found for regular (Fickian) diffusion. [PUBLICATION ABSTRACT]
Author Tzou, J. C.
Volpert, V.A.
Matkowsky, B.J.
Bayliss, A.
Author_xml – sequence: 1
  givenname: J. C.
  surname: Tzou
  fullname: Tzou, J. C.
– sequence: 2
  givenname: A.
  surname: Bayliss
  fullname: Bayliss, A.
– sequence: 3
  givenname: B.J.
  surname: Matkowsky
  fullname: Matkowsky, B.J.
  email: b-matkowsky@northwestern.edu
  organization: E-mail: b-matkowsky@northwestern.edu
– sequence: 4
  givenname: V.A.
  surname: Volpert
  fullname: Volpert, V.A.
BookMark eNpFkElPwzAQRi1UJErhyN0S51AvcZweacVSVAoSRRwt1xmDobWDnbD8e9KyzWVmpKfvk94-6vngAaEjSk4oEXS4Xvt6yAilRffuoD6VBcm6m_ZQn4wkzwTPyz10mNIz6YbTnBPSR-3UNxC1aVzwOFi8aKPzj1j7Cl-G2uLrUEHCzuPmCfBdW0OsnLVtcm-Ax7FNCVa6CXHLrfAcdMQaT0Ll1uDTJnPxHvDY2TYave24Dc43B2jX6lWCw589QPfnZ4vJZTa7uZhOTmeZ4TlrMqMFFzIXGjiTDMrliFHNtBG2ooYsSTmSy6UuDbCi5MxUVlojDKO0sgJykfMBOv7OrWN4bSE16jm00XeVipJixISgedFR2TdlYkgpglV1dGsdPztIbeSqjVz1K_efd6mBjz9YxxdVSC6FKsmDEnQ-uSKSqRn_Ai__fpE
CitedBy_id crossref_primary_10_1103_PhysRevE_93_062207
crossref_primary_10_1103_PhysRevE_94_052202
crossref_primary_10_1063_5_0197808
crossref_primary_10_1098_rsta_2012_0179
crossref_primary_10_1017_S0956792511000179
crossref_primary_10_1142_S0218127415300141
crossref_primary_10_1142_S0218127419501463
crossref_primary_10_1142_S0218339020500175
crossref_primary_10_1103_PhysRevE_88_042925
crossref_primary_10_1142_S0218127420300207
crossref_primary_10_1017_S0956792513000089
crossref_primary_10_1016_j_mbs_2018_02_002
crossref_primary_10_1103_PhysRevE_87_022908
crossref_primary_10_1051_mmnp_20138205
crossref_primary_10_1051_mmnp_20138513
Cites_doi 10.1016/S0370-1573(00)00070-3
10.1006/bulm.1999.0131
10.1103/PhysRevA.42.7244
10.1103/PhysRevA.38.5461
10.1209/0295-5075/82/58003
10.1137/070703454
10.1016/j.fluiddyn.2007.11.002
10.1002/9780470141687.ch5
10.1063/1.1507110
10.1016/j.aml.2009.01.054
ContentType Journal Article
Copyright EDP Sciences, 2010
Copyright_xml – notice: EDP Sciences, 2010
DBID BSCLL
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
DOI 10.1051/mmnp/20116105
DatabaseName Istex
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1760-6101
EndPage 118
ExternalDocumentID 2769330611
10_1051_mmnp_20116105
ark_67375_80W_51NCJ072_L
Genre Feature
GroupedDBID -E.
.FH
0E1
169
3V.
4.4
5GY
5VS
7~V
8FE
8FG
8FH
AADXX
AAFWJ
AAOTM
ABDBF
ABJCF
ABJNI
ABKKG
ABUBZ
ABZDU
ACACO
ACGFS
ACIMK
ACIWK
ACPRK
ACQPF
ADBBV
AEMTW
AENEX
AFAYI
AFHSK
AFKRA
AFRAH
AFUTZ
AJPFC
ALMA_UNASSIGNED_HOLDINGS
ARABE
ARAPS
AZPVJ
BENPR
BHPHI
BPHCQ
BSCLL
C0O
CS3
DC4
EBS
EJD
ESX
F5P
FRP
GFF
GI~
HCIFZ
HG-
HST
HZ~
I-F
I.6
IL9
I~P
J36
J38
J9A
K6V
K7-
L6V
LK8
LO0
M-V
M0N
M7P
M7S
O9-
OK1
P2P
P62
PQQKQ
PROAC
RCA
RED
RR0
S6-
TUS
WQ3
WXU
WXY
~8M
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-c342t-ca535745ae3272e8b921a2ac5fd1c0b0897bba8ce26832cdf7fc5c211df5e4543
ISSN 0973-5348
IngestDate Thu Oct 10 22:06:47 EDT 2024
Fri Aug 23 01:14:06 EDT 2024
Wed Oct 30 09:49:08 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-ca535745ae3272e8b921a2ac5fd1c0b0897bba8ce26832cdf7fc5c211df5e4543
Notes This paper is dedicated to the memory of our colleague and friend Alexander (Sasha) Golovin
publisher-ID:mmnp20106p87
PII:S0973534811061050
ark:/67375/80W-51NCJ072-L
istex:F983A97CF86260151612BFF156295A2EFA2F3C35
OpenAccessLink https://www.mmnp-journal.org/articles/mmnp/pdf/2011/01/mmnp20106p87.pdf
PQID 1069255146
PQPubID 626347
PageCount 32
ParticipantIDs proquest_journals_1069255146
crossref_primary_10_1051_mmnp_20116105
istex_primary_ark_67375_80W_51NCJ072_L
PublicationCentury 2000
PublicationDate 2011
2011-00-00
20110101
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – year: 2011
  text: 2011
PublicationDecade 2010
PublicationPlace Les Ulis
PublicationPlace_xml – name: Les Ulis
PublicationTitle Mathematical modelling of natural phenomena
PublicationYear 2011
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References R3
De Wit (R6) 1999; 109
R4
Pomeau (R13) 1986; D23
Yan (R15) 2002; 117
De Wit (R7) 1996; E54
Crampin (R5) 1999; 61
Golovin (R8) 2008; 69
Malomed (R9) 1990; A42
R12
R11
Assemat (R1) 2008; 40
Metzler (R10) 2000; 339
Tzou (R14) 2009; 22
Bensimon (R2) 1988; A38
References_xml – volume: D23
  start-page: 3
  year: 1986
  ident: R13
  publication-title: Physica
  contributor:
    fullname: Pomeau
– ident: R12
– volume: 339
  start-page: 1
  issue: 1
  year: 2000
  ident: R10
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(00)00070-3
  contributor:
    fullname: Metzler
– volume: 61
  start-page: 1093
  year: 1999
  ident: R5
  publication-title: Bull. Math. Biol.
  doi: 10.1006/bulm.1999.0131
  contributor:
    fullname: Crampin
– volume: A42
  start-page: 7244
  year: 1990
  ident: R9
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevA.42.7244
  contributor:
    fullname: Malomed
– volume: A38
  start-page: 5461
  year: 1988
  ident: R2
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevA.38.5461
  contributor:
    fullname: Bensimon
– ident: R11
  doi: 10.1209/0295-5075/82/58003
– volume: 69
  start-page: 251
  year: 2008
  ident: R8
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/070703454
  contributor:
    fullname: Golovin
– volume: E54
  start-page: 261
  year: 1996
  ident: R7
  publication-title: Phys. Rev.
  contributor:
    fullname: De Wit
– volume: 40
  start-page: 852
  year: 2008
  ident: R1
  publication-title: Fluid Dynamics Research
  doi: 10.1016/j.fluiddyn.2007.11.002
  contributor:
    fullname: Assemat
– ident: R3
– ident: R4
– volume: 109
  start-page: 435
  year: 1999
  ident: R6
  publication-title: Adv. Chem. Phys.
  doi: 10.1002/9780470141687.ch5
  contributor:
    fullname: De Wit
– volume: 117
  start-page: 7259
  year: 2002
  ident: R15
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1507110
  contributor:
    fullname: Yan
– volume: 22
  start-page: 1432
  year: 2009
  ident: R14
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2009.01.054
  contributor:
    fullname: Tzou
SSID ssj0000314300
Score 1.9515464
Snippet Spatiotemporal patterns near a codimension-2 Turing-Hopf point of the one-dimensional superdiffusive Brusselator model are analyzed. The superdiffusive...
SourceID proquest
crossref
istex
SourceType Aggregation Database
Publisher
StartPage 87
SubjectTerms 35B36
35K57
35Q99
37G99
amplitude equations
Brusselator model
codimension-2 bifurcation
Computational mathematics
Diffusion
Fourier analysis
Hopf bifurcation
Mathematical models
Nonlinear equations
spatiotemporal patterns
superdiffusion
Turing pattern
weakly nonlinear analysis
Title Interaction of Turing and Hopf Modes in the Superdiffusive Brusselator Model Near a Codimension Two Bifurcation Point
URI https://api.istex.fr/ark:/67375/80W-51NCJ072-L/fulltext.pdf
https://www.proquest.com/docview/1069255146
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67YUXxPgQgzH5ASFQlS5x4nw8boUxVduYRDf2FjmOo1XrkiptNNg_x7_GneOkKQVpIFVR61on1_fr3fl8H4S8tYVgvut4lgJlaXmeCKzE86Qlowg-ZEoEDHOHT8_84wtvdMWver2fnailapEM5P0f80r-h6swBnzFLNl_4GxLFAbgPfAXnsBheD6Ix9qdZ5p9g9E3XqYcHhezTPc5mzeBjF-rmSqxHUqlA9aBp_M5BsIVpZ43BXEnyr4AAZFiwX90ovXHd0X_cJJVZe3X658Xk3zFl3_aFn3FJBQkMzVR1LpgKGZ5Xascizy00n98X1QaOoP-cLD0o_6YTur27QftIBC_Ke6Mc_dwMGq_uCymM5NqdDkw89PGE7v0o308byTXikMycC3u1nU3B6oWx4GPh1vj7jDy2l-D5byruGst7tRSfU1BgAwCrt7e5jNMhcFbKMfmS13Y3P__piLbwEVR3mAkXMDj0P4Wc-dsOLIDFp9skC0Gkg5jSk--2K2TD3sDuHUaVPPrTJ1XWMc-rmK_WcOKXbSFf_Hva-aBtnnGT8hjc1ihBzXytklP5U_JdrOp9L2pWf7hGak6UKRFRmsoUoAiRShSDUU6ySngha5CkXagqOdNKUKRCtqBIgUo0g4UqYbic3Jx9Gk8PLZMRw9Luh5bWFJwlwceF8plAVNhEjFHMCF5ljrSTuwwCpJEhFIxHzSNTLMgk1wyx0kzrjzuuS_IZl7k6iWhCk1lNwL7SzpekkZh6HPXdzIV-lnIM7FD3jX7Gc_qwi2xDrjgTowbHzcbDxP1brez_sbjHbLbsCM2QmAO9PyI4anDf_VQOq_Jo_piAl-7ZHNRVuoNWLaLZI9shEef9zSGfgEbPKYq
link.rule.ids 315,783,787,4031,27935,27936,27937,33385
linkProvider EuDML: The European Digital Mathematics Library
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interaction+of+Turing+and+Hopf+Modes+in+the+Superdiffusive+Brusselator+Model+Near+a+Codimension+Two+Bifurcation+Point&rft.jtitle=Mathematical+modelling+of+natural+phenomena&rft.au=Tzou%2C+J.+C.&rft.au=Bayliss%2C+A.&rft.au=Matkowsky%2C+B.J.&rft.au=Volpert%2C+V.A.&rft.date=2011&rft.pub=EDP+Sciences&rft.issn=0973-5348&rft.eissn=1760-6101&rft.volume=6&rft.issue=1&rft.spage=87&rft.epage=118&rft_id=info:doi/10.1051%2Fmmnp%2F20116105&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_80W_51NCJ072_L
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0973-5348&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0973-5348&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0973-5348&client=summon