Gray–white matter contrast reversal on T1-weighted spin-echo in postmortem brain

The image contrast of postmortem magnetic resonance imaging (MRI) may differ from that of antemortem MRI because of circulator arrest, changes in postmortem tissue, and low-body-temperature scanning conditions. In fact, we have found that the signal intensity of white matter (WM) on T1-weighted spin...

Full description

Saved in:
Bibliographic Details
Published inForensic science international Vol. 360; p. 112031
Main Authors Kojima, Masatoshi, Makino, Yohsuke, Yamaguchi, Rutsuko, Motomura, Ayumi, Yajima, Daisuke, Inokuchi, Go, Saito, Naoki, Torimitsu, Suguru, Hoshioka, Yumi, Urabe, Shumari, Yoshida, Maiko, Iwase, Hirotaro, Miyati, Tosiaki
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The image contrast of postmortem magnetic resonance imaging (MRI) may differ from that of antemortem MRI because of circulator arrest, changes in postmortem tissue, and low-body-temperature scanning conditions. In fact, we have found that the signal intensity of white matter (WM) on T1-weighted spin-echo (T1WSE) images of the postmortem brain was lower than that of gray matter (GM), which resulted in image contrast reversal between GM and WM relative to the living brain. However, the reason for this phenomenon is unclear. Therefore, the aim of this study is to clarify the reason why image contrast reversal occurs between GM and WM of the postmortem brain. Twenty-three corpses were included in the study (mean age, 60.6 years; range: 19–60 years; mean rectal temperature at scan, 6.9℃; range: 4–11℃). On a 1.5 T MRI system, postmortem T1W-SE MRI of the brain was conducted in the 23 corpses prior to medico-legal autopsy. Next, T1 and T2 of the GM and WM at the level of the basal ganglia were determined in the same participants using inversion recovery and multiple SE sequences, respectively. The proton density (PD) was also calculated from the T1 and T2 images (in the same slice). T1W-SE image contrast between the GM and WM of all postmortem brains was inverted relative to the living brain. T1 (579 ms in GM and 307 ms in WM) and PD (64 in GM and 44 in WM) of the postmortem brain decreased compared with the living brain. While T1 of WM/GM remained below 1 even postmortem, the PD of WM/GM decreased. T2 (110 ms in GM and 98 ms in WM) of the postmortem brain did not differ from the living brain. The decrease in PD of WM/GM in the postmortem brain may be the major driver of contrast reversal between the GM and WM relative to the living brain. •WM/GM is preserved in postmortem brain T1W-SE images.•Postmortem brain T1 and PD are decreased.•Rates of postmortem water reduction differ between WM and GM.•Lower PD of postmortem brain WM drives contrast inversion between the GM and WM.
AbstractList The image contrast of postmortem magnetic resonance imaging (MRI) may differ from that of antemortem MRI because of circulator arrest, changes in postmortem tissue, and low-body-temperature scanning conditions. In fact, we have found that the signal intensity of white matter (WM) on T1-weighted spin-echo (T1WSE) images of the postmortem brain was lower than that of gray matter (GM), which resulted in image contrast reversal between GM and WM relative to the living brain. However, the reason for this phenomenon is unclear. Therefore, the aim of this study is to clarify the reason why image contrast reversal occurs between GM and WM of the postmortem brain. Twenty-three corpses were included in the study (mean age, 60.6 years; range: 19–60 years; mean rectal temperature at scan, 6.9℃; range: 4–11℃). On a 1.5 T MRI system, postmortem T1W-SE MRI of the brain was conducted in the 23 corpses prior to medico-legal autopsy. Next, T1 and T2 of the GM and WM at the level of the basal ganglia were determined in the same participants using inversion recovery and multiple SE sequences, respectively. The proton density (PD) was also calculated from the T1 and T2 images (in the same slice). T1W-SE image contrast between the GM and WM of all postmortem brains was inverted relative to the living brain. T1 (579 ms in GM and 307 ms in WM) and PD (64 in GM and 44 in WM) of the postmortem brain decreased compared with the living brain. While T1 of WM/GM remained below 1 even postmortem, the PD of WM/GM decreased. T2 (110 ms in GM and 98 ms in WM) of the postmortem brain did not differ from the living brain. The decrease in PD of WM/GM in the postmortem brain may be the major driver of contrast reversal between the GM and WM relative to the living brain. •WM/GM is preserved in postmortem brain T1W-SE images.•Postmortem brain T1 and PD are decreased.•Rates of postmortem water reduction differ between WM and GM.•Lower PD of postmortem brain WM drives contrast inversion between the GM and WM.
The image contrast of postmortem magnetic resonance imaging (MRI) may differ from that of antemortem MRI because of circulator arrest, changes in postmortem tissue, and low-body-temperature scanning conditions. In fact, we have found that the signal intensity of white matter (WM) on T1-weighted spin-echo (T1WSE) images of the postmortem brain was lower than that of gray matter (GM), which resulted in image contrast reversal between GM and WM relative to the living brain. However, the reason for this phenomenon is unclear. Therefore, the aim of this study is to clarify the reason why image contrast reversal occurs between GM and WM of the postmortem brain. Twenty-three corpses were included in the study (mean age, 60.6 years; range: 19–60 years; mean rectal temperature at scan, 6.9℃; range: 4–11℃). On a 1.5 T MRI system, postmortem T1W-SE MRI of the brain was conducted in the 23 corpses prior to medico-legal autopsy. Next, T1 and T2 of the GM and WM at the level of the basal ganglia were determined in the same participants using inversion recovery and multiple SE sequences, respectively. The proton density (PD) was also calculated from the T1 and T2 images (in the same slice). T1W-SE image contrast between the GM and WM of all postmortem brains was inverted relative to the living brain. T1 (579 ms in GM and 307 ms in WM) and PD (64 in GM and 44 in WM) of the postmortem brain decreased compared with the living brain. While T1 of WM/GM remained below 1 even postmortem, the PD of WM/GM decreased. T2 (110 ms in GM and 98 ms in WM) of the postmortem brain did not differ from the living brain. The decrease in PD of WM/GM in the postmortem brain may be the major driver of contrast reversal between the GM and WM relative to the living brain.
The image contrast of postmortem magnetic resonance imaging (MRI) may differ from that of antemortem MRI because of circulator arrest, changes in postmortem tissue, and low-body-temperature scanning conditions. In fact, we have found that the signal intensity of white matter (WM) on T1-weighted spin-echo (T1WSE) images of the postmortem brain was lower than that of gray matter (GM), which resulted in image contrast reversal between GM and WM relative to the living brain. However, the reason for this phenomenon is unclear. Therefore, the aim of this study is to clarify the reason why image contrast reversal occurs between GM and WM of the postmortem brain.PURPOSEThe image contrast of postmortem magnetic resonance imaging (MRI) may differ from that of antemortem MRI because of circulator arrest, changes in postmortem tissue, and low-body-temperature scanning conditions. In fact, we have found that the signal intensity of white matter (WM) on T1-weighted spin-echo (T1WSE) images of the postmortem brain was lower than that of gray matter (GM), which resulted in image contrast reversal between GM and WM relative to the living brain. However, the reason for this phenomenon is unclear. Therefore, the aim of this study is to clarify the reason why image contrast reversal occurs between GM and WM of the postmortem brain.Twenty-three corpses were included in the study (mean age, 60.6 years; range: 19-60 years; mean rectal temperature at scan, 6.9℃; range: 4-11℃). On a 1.5 T MRI system, postmortem T1W-SE MRI of the brain was conducted in the 23 corpses prior to medico-legal autopsy. Next, T1 and T2 of the GM and WM at the level of the basal ganglia were determined in the same participants using inversion recovery and multiple SE sequences, respectively. The proton density (PD) was also calculated from the T1 and T2 images (in the same slice).MATERIALS AND METHODSTwenty-three corpses were included in the study (mean age, 60.6 years; range: 19-60 years; mean rectal temperature at scan, 6.9℃; range: 4-11℃). On a 1.5 T MRI system, postmortem T1W-SE MRI of the brain was conducted in the 23 corpses prior to medico-legal autopsy. Next, T1 and T2 of the GM and WM at the level of the basal ganglia were determined in the same participants using inversion recovery and multiple SE sequences, respectively. The proton density (PD) was also calculated from the T1 and T2 images (in the same slice).T1W-SE image contrast between the GM and WM of all postmortem brains was inverted relative to the living brain. T1 (579 ms in GM and 307 ms in WM) and PD (64 in GM and 44 in WM) of the postmortem brain decreased compared with the living brain. While T1 of WM/GM remained below 1 even postmortem, the PD of WM/GM decreased. T2 (110 ms in GM and 98 ms in WM) of the postmortem brain did not differ from the living brain.RESULTST1W-SE image contrast between the GM and WM of all postmortem brains was inverted relative to the living brain. T1 (579 ms in GM and 307 ms in WM) and PD (64 in GM and 44 in WM) of the postmortem brain decreased compared with the living brain. While T1 of WM/GM remained below 1 even postmortem, the PD of WM/GM decreased. T2 (110 ms in GM and 98 ms in WM) of the postmortem brain did not differ from the living brain.The decrease in PD of WM/GM in the postmortem brain may be the major driver of contrast reversal between the GM and WM relative to the living brain.CONCLUSIONThe decrease in PD of WM/GM in the postmortem brain may be the major driver of contrast reversal between the GM and WM relative to the living brain.
ArticleNumber 112031
Author Iwase, Hirotaro
Inokuchi, Go
Hoshioka, Yumi
Urabe, Shumari
Yajima, Daisuke
Yoshida, Maiko
Kojima, Masatoshi
Motomura, Ayumi
Makino, Yohsuke
Miyati, Tosiaki
Yamaguchi, Rutsuko
Saito, Naoki
Torimitsu, Suguru
Author_xml – sequence: 1
  givenname: Masatoshi
  surname: Kojima
  fullname: Kojima, Masatoshi
  email: kojima@chiba-u.jp
  organization: Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba 260-8670, Japan
– sequence: 2
  givenname: Yohsuke
  surname: Makino
  fullname: Makino, Yohsuke
  organization: Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba 260-8670, Japan
– sequence: 3
  givenname: Rutsuko
  surname: Yamaguchi
  fullname: Yamaguchi, Rutsuko
  organization: Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
– sequence: 4
  givenname: Ayumi
  surname: Motomura
  fullname: Motomura, Ayumi
  organization: Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba 260-8670, Japan
– sequence: 5
  givenname: Daisuke
  surname: Yajima
  fullname: Yajima, Daisuke
  organization: Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba 260-8670, Japan
– sequence: 6
  givenname: Go
  surname: Inokuchi
  fullname: Inokuchi, Go
  organization: Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba 260-8670, Japan
– sequence: 7
  givenname: Naoki
  surname: Saito
  fullname: Saito, Naoki
  organization: Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba 260-8670, Japan
– sequence: 8
  givenname: Suguru
  surname: Torimitsu
  fullname: Torimitsu, Suguru
  organization: Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba 260-8670, Japan
– sequence: 9
  givenname: Yumi
  surname: Hoshioka
  fullname: Hoshioka, Yumi
  organization: Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba 260-8670, Japan
– sequence: 10
  givenname: Shumari
  surname: Urabe
  fullname: Urabe, Shumari
  organization: Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba 260-8670, Japan
– sequence: 11
  givenname: Maiko
  surname: Yoshida
  fullname: Yoshida, Maiko
  organization: Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba 260-8670, Japan
– sequence: 12
  givenname: Hirotaro
  surname: Iwase
  fullname: Iwase, Hirotaro
  organization: Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba 260-8670, Japan
– sequence: 13
  givenname: Tosiaki
  surname: Miyati
  fullname: Miyati, Tosiaki
  organization: Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
BookMark eNqNkM1KAzEURoMoWH-ewSzdTL1JZiYzKxHxDwRBdB3S2zs2dSapSVS68x18Q5_ESsWFG13dzfkO3LPDNn3wxNiBgLEAUR_Nx12ICZ3zeSxBlmMhJCixwUai0bKoZaM22QiUbgvQqtlmOynNAaCqZD1itxfRLj_e3l9nLhMfbM4UOQafo02ZR3qhmGzPg-d3ongl9zDLNOVp4XxBOAvceb4IKQ8hZhr4JFrn99hWZ_tE-993l92fn92dXhbXNxdXpyfXBapS5gJrq9tOVJKUbSTqFmtpJ4BCUdnIWlSltoRk0VLTqg5gMq1AdYp0haCxVLvscO1dxPD0TCmbwSWkvreewnMySkItWtBC_I1CpVrdCtWuUL1GMYaUInVmEd1g49IIMF_Bzdz8BDdfwc06-Gp5sl7S6ukXR9GsIPJIUxcJs5kG9w_H8S8H9s47tP0jLf9l-AQvL6Zr
Cites_doi 10.1007/s10334-021-00971-8
10.1007/s00330-015-3588-4
10.2463/mrms.9.101
10.1007/s00330-011-2248-6
10.1002/mrm.28874
10.1002/mrm.24799
10.1111/1754-9485.12691
10.1016/j.legalmed.2003.09.001
10.1007/s00414-016-1318-3
10.1016/j.forsciint.2021.110984
10.1111/1556-4029.14883
10.1097/PAF.0000000000000177
10.1186/s12880-016-0137-9
10.1002/1522-2586(200102)13:2<277::AID-JMRI1040>3.0.CO;2-W
10.1016/0730-725X(87)90020-8
10.1148/radiol.2503080421
10.1007/s11064-005-9005-7
10.2214/AJR.13.11775
10.1016/S0046-8177(85)80104-0
10.3174/ajnr.A2508
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright © 2024 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 Elsevier B.V.
– notice: Copyright © 2024 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.forsciint.2024.112031
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1872-6283
ExternalDocumentID 10_1016_j_forsciint_2024_112031
S0379073824001129
GroupedDBID ---
--K
--M
.1-
.4L
.FO
.GJ
.~1
04C
0R~
186
1B1
1P~
1RT
1~.
1~5
29H
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
7RV
7X7
88E
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
9JO
AABNK
AAEDT
AAEDW
AAFJI
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABMMH
ABMZM
ABOCM
ABUDA
ABUWG
ABWVN
ABXDB
ABZDS
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADECG
ADEZE
ADFRT
ADMUD
ADNMO
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AFZHZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJSZI
AJUYK
AKBMS
AKRWK
AKYEP
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOMHK
APXCP
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKEYQ
BKOJK
BLXMC
BMSDO
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBD
EBS
EFJIC
EFKBS
EIHBH
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HDY
HMCUK
HMK
HMO
HVGLF
HZ~
I-F
IAO
IEA
IHE
ILT
IOF
ITC
J1W
KOM
LK8
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OG0
OGGZJ
OS0
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PRBVW
PROAC
PSQYO
PUEGO
Q38
R2-
RNS
ROL
RPZ
SAE
SCB
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSB
SSH
SSK
SSO
SSP
SSU
SSZ
T5K
TAE
TN5
UKHRP
ULE
WH7
WOW
WUQ
Z5R
ZGI
~02
~G-
3V.
AACTN
AAIAV
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
RIG
AAYXX
AGRNS
CITATION
7X8
7S9
L.6
ID FETCH-LOGICAL-c342t-c6a79f152e3a82c79c62ab0c13e48261547aeceacae893f00bd503f3e75c07c43
IEDL.DBID .~1
ISSN 0379-0738
1872-6283
IngestDate Fri Jul 11 17:25:06 EDT 2025
Fri Jul 11 03:23:48 EDT 2025
Tue Jul 01 00:48:02 EDT 2025
Tue Jun 18 08:50:46 EDT 2024
Tue Aug 26 17:55:25 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Postmortem imaging
Postmortem MRI
Brain
Postmortem change
Virtual autopsy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-c6a79f152e3a82c79c62ab0c13e48261547aeceacae893f00bd503f3e75c07c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://kanazawa-u.repo.nii.ac.jp/records/2003155
PQID 3053979139
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3206190711
proquest_miscellaneous_3053979139
crossref_primary_10_1016_j_forsciint_2024_112031
elsevier_sciencedirect_doi_10_1016_j_forsciint_2024_112031
elsevier_clinicalkey_doi_10_1016_j_forsciint_2024_112031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Forensic science international
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Scheurer, Lovblad, Kreis (bib23) 2011; 32
Weustink, Hunink, van Dijke (bib7) 2009; 250
Yen, Anon, Remonda (bib9) 2009
Sutherland, O’Donnell (bib17) 2018; 62
Arnold, Schwendener, Lombardo (bib13) 2021; 327
Takahashi, Higuchi, Shiotani (bib2) 2012; 22
Matt, king (bib19) 2004
Shiotani, Yamazaki, Kikuchi (bib6) 2005; 23
Gulyás, Dobai, Szilágyi (bib21) 2006; 31
Zech, Schwendener, Persson (bib12) 2015; 25
Kobayashi, Isobe, Shiotani (bib10) 2010; 9
Makino, Yokota, Hayakawa (bib3) 2014; 203
Oesterhelweg, Thali (bib1) 2009
Birkl, Langkammer, Haybaeck (bib18) 2014; 71
Nelson, Tung (bib14) 1987; 5
Flach, Schroth, Schweitzer (bib24) 2015; 36
Mintaldo, Addison, Oliveira (bib16) 2016; 27
Yoshida, Makino, Hoshioka (bib4) 2022; 67
Berger, Melanie, Holger (bib11) 2022; 35
Lenz, Berger, Bauer (bib25) 2021; 86
Tomita, Nihira, Ohno (bib20) 2004; 6
Hutchins (bib22) 1985; 16
Zech, Hottinger, Schwendener (bib15) 2016; 130
Patriquin, Kassarjian, Barish (bib5) 2001; 13
Jackowski, Thali (bib8) 2009
Jackowski (10.1016/j.forsciint.2024.112031_bib8) 2009
Yen (10.1016/j.forsciint.2024.112031_bib9) 2009
Zech (10.1016/j.forsciint.2024.112031_bib12) 2015; 25
Tomita (10.1016/j.forsciint.2024.112031_bib20) 2004; 6
Sutherland (10.1016/j.forsciint.2024.112031_bib17) 2018; 62
Kobayashi (10.1016/j.forsciint.2024.112031_bib10) 2010; 9
Flach (10.1016/j.forsciint.2024.112031_bib24) 2015; 36
Zech (10.1016/j.forsciint.2024.112031_bib15) 2016; 130
Birkl (10.1016/j.forsciint.2024.112031_bib18) 2014; 71
Takahashi (10.1016/j.forsciint.2024.112031_bib2) 2012; 22
Nelson (10.1016/j.forsciint.2024.112031_bib14) 1987; 5
Hutchins (10.1016/j.forsciint.2024.112031_bib22) 1985; 16
Mintaldo (10.1016/j.forsciint.2024.112031_bib16) 2016; 27
Yoshida (10.1016/j.forsciint.2024.112031_bib4) 2022; 67
Shiotani (10.1016/j.forsciint.2024.112031_bib6) 2005; 23
Patriquin (10.1016/j.forsciint.2024.112031_bib5) 2001; 13
Berger (10.1016/j.forsciint.2024.112031_bib11) 2022; 35
Gulyás (10.1016/j.forsciint.2024.112031_bib21) 2006; 31
Oesterhelweg (10.1016/j.forsciint.2024.112031_bib1) 2009
Makino (10.1016/j.forsciint.2024.112031_bib3) 2014; 203
Scheurer (10.1016/j.forsciint.2024.112031_bib23) 2011; 32
Arnold (10.1016/j.forsciint.2024.112031_bib13) 2021; 327
Lenz (10.1016/j.forsciint.2024.112031_bib25) 2021; 86
Weustink (10.1016/j.forsciint.2024.112031_bib7) 2009; 250
Matt (10.1016/j.forsciint.2024.112031_bib19) 2004
References_xml – volume: 35
  start-page: 375
  year: 2022
  end-page: 387
  ident: bib11
  article-title: Post mortem brain temperature and its influence on quantitative MRI of the brain
  publication-title: Magma
– start-page: 230
  year: 2009
  end-page: 249
  ident: bib8
  article-title: Cardiac pathology
  publication-title: The virtopsy approach
– volume: 203
  start-page: 240
  year: 2014
  end-page: 244
  ident: bib3
  article-title: Spinal cord injuries with normal postmortem CT findings: a pitfall of virtual autopsy for detecting traumatic death
  publication-title: Am. J. Roentgenol.
– volume: 130
  start-page: 1071
  year: 2016
  end-page: 1080
  ident: bib15
  article-title: Post-mortem 1.5T MR quantification of regular anatomical brain structures
  publication-title: Int J. Leg. Med
– start-page: 638
  year: 2004
  end-page: 639
  ident: bib19
  article-title: Handbook of MRI pulse sequences
– start-page: 272
  year: 2009
  end-page: 304
  ident: bib9
  article-title: Forensic neuroimaging
  publication-title: The virtopsy approach
– volume: 9
  start-page: 101
  year: 2010
  end-page: 108
  ident: bib10
  article-title: Postmortem magnetic resonance imaging dealing with low temperature objects
  publication-title: Magn. Reson Med Sci.
– volume: 31
  start-page: 157
  year: 2006
  end-page: 166
  ident: bib21
  article-title: Continuous monitoring of post mortem temperature changes in the human brain
  publication-title: Neurochem Res
– volume: 71
  start-page: 1575
  year: 2014
  end-page: 1580
  ident: bib18
  article-title: Temperature-induced changes of magnetic resonance relaxation times in the human brain: A postmortem study
  publication-title: Magn. Reson Med
– volume: 25
  start-page: 2381
  year: 2015
  end-page: 2389
  ident: bib12
  article-title: Temperature dependence of postmortem MR quantification for soft tissue discrimination
  publication-title: Eur. Radio.
– volume: 13
  start-page: 277
  year: 2001
  end-page: 287
  ident: bib5
  article-title: Post-mortem whole-body magnetic resonance imaging as an adjunct to autopsy: preliminary clinical experience
  publication-title: J. Magn. Reson Imaging
– volume: 36
  start-page: 153
  year: 2015
  end-page: 161
  ident: bib24
  article-title: Deep into the fibers! Postmortem diffusion tensor imaging in forensic radiology
  publication-title: Am. J. Forensic Med Pathol.
– volume: 32
  start-page: 1518
  year: 2011
  end-page: 1524
  ident: bib23
  article-title: Forensic application of postmortem diffusion-weighted and diffusion tensor MR imaging of the human brain in situ
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 16
  start-page: 560
  year: 1985
  end-page: 561
  ident: bib22
  article-title: Body temperature is elevated in the early postmortem period
  publication-title: Hum. Pathol.
– start-page: 475
  year: 2009
  end-page: 477
  ident: bib1
  article-title: Experiences with virtual autopsy approach worldwide
  publication-title: The virtopsy approach
– volume: 86
  start-page: 2703
  year: 2021
  end-page: 2715
  ident: bib25
  article-title: Sensitivity of fiber orientation dependent R2
  publication-title: Magn. Reson Med
– volume: 62
  start-page: 203
  year: 2018
  end-page: 210
  ident: bib17
  article-title: The artefacts of death: CT post-mortem findings
  publication-title: J. Med Imaging Radiat. Oncol.
– volume: 22
  start-page: 152
  year: 2012
  end-page: 160
  ident: bib2
  article-title: The effectiveness of postmortem multidetector computed tomography in the detection of fatal findings related to cause of non-traumatic death in the emergency department
  publication-title: Eur. Radio.
– volume: 327
  year: 2021
  ident: bib13
  article-title: 3Tesla post-mortem MRI quantification of anatomical brain structures
  publication-title: Forensic Sci. Int
– volume: 67
  start-page: 395
  year: 2022
  end-page: 403
  ident: bib4
  article-title: Technical and interpretive pitfalls of postmortem CT: five examples of errors revealed by autopsy
  publication-title: J. Forensic Sci.
– volume: 6
  start-page: 25
  year: 2004
  end-page: 31
  ident: bib20
  article-title: Ultrastructural changes during in situ early postmortem autolysis in kidney, pancreas, liver, heart and skeletal muscle of rats
  publication-title: Leg. Med.
– volume: 23
  start-page: 563
  year: 2005
  end-page: 565
  ident: bib6
  article-title: Post-mortem magnetic resonance imaging (PMMRI) demonstration of reversible injury phase myocardium in a case of sudden death from acute coronary plaque change
  publication-title: Radiat. Med
– volume: 250
  start-page: 897
  year: 2009
  end-page: 904
  ident: bib7
  article-title: Minimally invasive autopsy: an alternative to conventional autopsy?
  publication-title: Radiology
– volume: 5
  start-page: 189
  year: 1987
  end-page: 199
  ident: bib14
  article-title: Temperature dependence of proton relaxation times in vitro
  publication-title: Magn. Reson Imaging
– volume: 27
  start-page: 34
  year: 2016
  ident: bib16
  article-title: Quantification of maceration changes using post mortem MRI in fetuses
  publication-title: BMC Med. Imaging
– volume: 35
  start-page: 375
  year: 2022
  ident: 10.1016/j.forsciint.2024.112031_bib11
  article-title: Post mortem brain temperature and its influence on quantitative MRI of the brain
  publication-title: Magma
  doi: 10.1007/s10334-021-00971-8
– volume: 25
  start-page: 2381
  year: 2015
  ident: 10.1016/j.forsciint.2024.112031_bib12
  article-title: Temperature dependence of postmortem MR quantification for soft tissue discrimination
  publication-title: Eur. Radio.
  doi: 10.1007/s00330-015-3588-4
– volume: 9
  start-page: 101
  year: 2010
  ident: 10.1016/j.forsciint.2024.112031_bib10
  article-title: Postmortem magnetic resonance imaging dealing with low temperature objects
  publication-title: Magn. Reson Med Sci.
  doi: 10.2463/mrms.9.101
– volume: 22
  start-page: 152
  year: 2012
  ident: 10.1016/j.forsciint.2024.112031_bib2
  article-title: The effectiveness of postmortem multidetector computed tomography in the detection of fatal findings related to cause of non-traumatic death in the emergency department
  publication-title: Eur. Radio.
  doi: 10.1007/s00330-011-2248-6
– volume: 86
  start-page: 2703
  year: 2021
  ident: 10.1016/j.forsciint.2024.112031_bib25
  article-title: Sensitivity of fiber orientation dependent R2∗ to temperature and post mortem interval
  publication-title: Magn. Reson Med
  doi: 10.1002/mrm.28874
– volume: 71
  start-page: 1575
  issue: 4
  year: 2014
  ident: 10.1016/j.forsciint.2024.112031_bib18
  article-title: Temperature-induced changes of magnetic resonance relaxation times in the human brain: A postmortem study
  publication-title: Magn. Reson Med
  doi: 10.1002/mrm.24799
– volume: 62
  start-page: 203
  year: 2018
  ident: 10.1016/j.forsciint.2024.112031_bib17
  article-title: The artefacts of death: CT post-mortem findings
  publication-title: J. Med Imaging Radiat. Oncol.
  doi: 10.1111/1754-9485.12691
– volume: 6
  start-page: 25
  year: 2004
  ident: 10.1016/j.forsciint.2024.112031_bib20
  article-title: Ultrastructural changes during in situ early postmortem autolysis in kidney, pancreas, liver, heart and skeletal muscle of rats
  publication-title: Leg. Med.
  doi: 10.1016/j.legalmed.2003.09.001
– volume: 130
  start-page: 1071
  year: 2016
  ident: 10.1016/j.forsciint.2024.112031_bib15
  article-title: Post-mortem 1.5T MR quantification of regular anatomical brain structures
  publication-title: Int J. Leg. Med
  doi: 10.1007/s00414-016-1318-3
– volume: 327
  year: 2021
  ident: 10.1016/j.forsciint.2024.112031_bib13
  article-title: 3Tesla post-mortem MRI quantification of anatomical brain structures
  publication-title: Forensic Sci. Int
  doi: 10.1016/j.forsciint.2021.110984
– volume: 23
  start-page: 563
  year: 2005
  ident: 10.1016/j.forsciint.2024.112031_bib6
  article-title: Post-mortem magnetic resonance imaging (PMMRI) demonstration of reversible injury phase myocardium in a case of sudden death from acute coronary plaque change
  publication-title: Radiat. Med
– volume: 67
  start-page: 395
  year: 2022
  ident: 10.1016/j.forsciint.2024.112031_bib4
  article-title: Technical and interpretive pitfalls of postmortem CT: five examples of errors revealed by autopsy
  publication-title: J. Forensic Sci.
  doi: 10.1111/1556-4029.14883
– volume: 36
  start-page: 153
  year: 2015
  ident: 10.1016/j.forsciint.2024.112031_bib24
  article-title: Deep into the fibers! Postmortem diffusion tensor imaging in forensic radiology
  publication-title: Am. J. Forensic Med Pathol.
  doi: 10.1097/PAF.0000000000000177
– volume: 27
  start-page: 34
  issue: 16
  year: 2016
  ident: 10.1016/j.forsciint.2024.112031_bib16
  article-title: Quantification of maceration changes using post mortem MRI in fetuses
  publication-title: BMC Med. Imaging
  doi: 10.1186/s12880-016-0137-9
– start-page: 230
  year: 2009
  ident: 10.1016/j.forsciint.2024.112031_bib8
  article-title: Cardiac pathology
– start-page: 272
  year: 2009
  ident: 10.1016/j.forsciint.2024.112031_bib9
  article-title: Forensic neuroimaging
– volume: 13
  start-page: 277
  year: 2001
  ident: 10.1016/j.forsciint.2024.112031_bib5
  article-title: Post-mortem whole-body magnetic resonance imaging as an adjunct to autopsy: preliminary clinical experience
  publication-title: J. Magn. Reson Imaging
  doi: 10.1002/1522-2586(200102)13:2<277::AID-JMRI1040>3.0.CO;2-W
– start-page: 638
  year: 2004
  ident: 10.1016/j.forsciint.2024.112031_bib19
– volume: 5
  start-page: 189
  year: 1987
  ident: 10.1016/j.forsciint.2024.112031_bib14
  article-title: Temperature dependence of proton relaxation times in vitro
  publication-title: Magn. Reson Imaging
  doi: 10.1016/0730-725X(87)90020-8
– volume: 250
  start-page: 897
  year: 2009
  ident: 10.1016/j.forsciint.2024.112031_bib7
  article-title: Minimally invasive autopsy: an alternative to conventional autopsy?
  publication-title: Radiology
  doi: 10.1148/radiol.2503080421
– volume: 31
  start-page: 157
  year: 2006
  ident: 10.1016/j.forsciint.2024.112031_bib21
  article-title: Continuous monitoring of post mortem temperature changes in the human brain
  publication-title: Neurochem Res
  doi: 10.1007/s11064-005-9005-7
– start-page: 475
  year: 2009
  ident: 10.1016/j.forsciint.2024.112031_bib1
  article-title: Experiences with virtual autopsy approach worldwide
– volume: 203
  start-page: 240
  year: 2014
  ident: 10.1016/j.forsciint.2024.112031_bib3
  article-title: Spinal cord injuries with normal postmortem CT findings: a pitfall of virtual autopsy for detecting traumatic death
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.13.11775
– volume: 16
  start-page: 560
  year: 1985
  ident: 10.1016/j.forsciint.2024.112031_bib22
  article-title: Body temperature is elevated in the early postmortem period
  publication-title: Hum. Pathol.
  doi: 10.1016/S0046-8177(85)80104-0
– volume: 32
  start-page: 1518
  year: 2011
  ident: 10.1016/j.forsciint.2024.112031_bib23
  article-title: Forensic application of postmortem diffusion-weighted and diffusion tensor MR imaging of the human brain in situ
  publication-title: AJNR Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A2508
SSID ssj0005526
Score 2.4167614
Snippet The image contrast of postmortem magnetic resonance imaging (MRI) may differ from that of antemortem MRI because of circulator arrest, changes in postmortem...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 112031
SubjectTerms body temperature
Brain
forensic sciences
necropsy
Postmortem change
Postmortem imaging
Postmortem MRI
Virtual autopsy
Title Gray–white matter contrast reversal on T1-weighted spin-echo in postmortem brain
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0379073824001129
https://dx.doi.org/10.1016/j.forsciint.2024.112031
https://www.proquest.com/docview/3053979139
https://www.proquest.com/docview/3206190711
Volume 360
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBUhuRRCadqGJmmCAr26K0uyZfeWhN1sunQp24TsTciyBA7Eu6wdQi8h_6H_sL8kM_4ITaFNoRcLG0uIsfz0RvNGIuSDEtxHBpwcnkfgoCTgs6ah94H0MsziPBdWYTbyl2k8vpCf59F8jZz0uTAoq-ywv8X0Bq27J4POmoNlUQy-MaHAsxMJqiCRNWAGu1Q4yj_e_SLziHgbr1SYrCOSJxov4IXQdFGiqJJLTKdhIvzTDPUbVjcT0OgVedkxR3rUdm6LrLnyNdlsl91om030hsxOV-b7z_sftxgdoNfN5pm0kaObqqa4XdOqgkYWJT0Pg9tmWdTltFoWZeAACGlR0uWiqq8bCS7N8PyIt-RiNDw_GQfdsQmBFZLXgY2NSj3My06YhFuV2pibjNlQOAnOBHAmZZwFwDUOyIpnLMsjJrxwKrJMWSm2yXq5KN07QoHbRaHJ0gSAQcaxzWLLWe5Tn1upLBM7hPWm0st2dwzdy8au9KN1NVpXt9bdIUlvUt0nfwJcaUDw56t-eqz6ZIz8W-XD_vtp-IMwLGJKt7ipNCAeBjeBCv_lHQ68B0ZbGO7-Tyf2yAu8a-W-78l6vbpx-0Bq6uygGbVwVXN1QDaOzibjKZaT2eUEyuPh9OvsAUTy_Ms
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3R5dBKCFFoxWdrJK7ROrYTJ9wQgi4F9lAWiZvlOLYUJLKrTRDixn_gH_JLGOcDRCXaSr0msWWNnec3njdjgD3JmYs0Ojksj9BBSdBnTUPnAuFEmMV5zo302cjn43h0KX5eRVcLcNjnwnhZZYf9LaY3aN09GXbWHM6KYnhBuUTPjideBelZwwdY9NWpogEsHpycjsavSo-ItSFL6fN1ePJG5oXUEHsvSq-rZMJn1FAevrdJ_QbXzR50vALLHXkkB-34PsOCLVdhqT15I21C0Rr8-jHX908Pj3c-QEBumvqZpFGk66omvmLTvMJOpiWZhMFdczJqc1LNijKwiIWkKMlsWtU3jQqXZP4KiS9weXw0ORwF3c0JgeGC1YGJtUwdbs2W64QZmZqY6YyakFuB_gTSJqmtQczVFvmKozTLI8odtzIyVBrBv8KgnJZ2HQjSuyjUWZogNog4NllsGM1d6nIjpKF8A2hvKjVrC2SoXjl2rV6sq7x1VWvdDUh6k6o-_xMRSyGI_73p_kvTN8vk3xrv9vOn8CfykRFd2ultpRD0fHwT2fAfvmFIfXDBheHm_wziO3wcTc7P1NnJ-HQLPvk3rfp3Gwb1_NbuIMeps2_dGn4GPMT7WA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gray%E2%80%93white+matter+contrast+reversal+on+T1-weighted+spin-echo+in+postmortem+brain&rft.jtitle=Forensic+science+international&rft.au=Kojima%2C+Masatoshi&rft.au=Makino%2C+Yohsuke&rft.au=Yamaguchi%2C+Rutsuko&rft.au=Motomura%2C+Ayumi&rft.date=2024-07-01&rft.pub=Elsevier+B.V&rft.issn=0379-0738&rft.eissn=1872-6283&rft.volume=360&rft_id=info:doi/10.1016%2Fj.forsciint.2024.112031&rft.externalDocID=S0379073824001129
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0379-0738&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0379-0738&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0379-0738&client=summon