More fragmentized urban form more CO2 emissions? A comprehensive relationship from the combination analysis across different scales

Scientifically delineating the spatial heterogeneity of urban landscape fragmentation in relation to CO2 emissions helps the urban carbon mitigation strategy. The combination analysis across spatial resolutions, which is rare, helps explore the comprehensive relationship between urban fragmentation...

Full description

Saved in:
Bibliographic Details
Published inJournal of cleaner production Vol. 244; p. 118659
Main Authors Zuo, Shudi, Dai, Shaoqing, Ren, Yin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 20.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Scientifically delineating the spatial heterogeneity of urban landscape fragmentation in relation to CO2 emissions helps the urban carbon mitigation strategy. The combination analysis across spatial resolutions, which is rare, helps explore the comprehensive relationship between urban fragmentation and CO2 emissions. This study compared the relationships between urban form fragmentation and CO2 emissions in an urban system through the analytic framework composed of the Pearson correlation analysis, geographically weighted regression (GWR), and geographical detector methods with the use of multi-source data to construct the CO2 emissions maps. As the result, there was less fragmentation with a 500-m spatial resolution (R500m) than with a 30-m spatial resolution (R30m). In terms of the GWR analysis, the coarse resolution resulted in: 1) positive coefficients of fragmentation metric becoming negative, and 2) greater absolute values of negative coefficients. As to the results of Geographical detector, single factor impact powers and interactions among fragmentation factors showed a weakening effect at R30m, but a strengthening and weakening effect at R500m. However, there were common results observed in low-fragmented areas across different scales. That is, in low-fragmented mixed-function areas and industrial areas, the more fragmented the area was, the less the CO2 emission there would be. However, in low-fragmented residential, administrative and public service areas, the more fragmented the area was, the higher the CO2 emission there would be. Therefore, the government should disperse the mixed function zones and industrial parcels with diverse types of land, and build the contiguous residential and public service land in the low fragmentation area of urban system. The results of this study can provide a reference for the other small and medium towns and cities. The analytical framework can be applied to CO2 emissions research in urban agglomerations, megacities, and small towns. •Use of multi-source data and an analytical framework composed of 3 methods.•Exploration of the impact of 30-m versus 500-m spatial resolution.•Low fragmented mixed and industrial lands affect CO2 emissions negatively.•Low fragmented residential and public lands affect CO2 emissions positively.•Interactions of factors are weaker at a 30-m resolution than at a 500-m resolution.
AbstractList Scientifically delineating the spatial heterogeneity of urban landscape fragmentation in relation to CO₂ emissions helps the urban carbon mitigation strategy. The combination analysis across spatial resolutions, which is rare, helps explore the comprehensive relationship between urban fragmentation and CO₂ emissions. This study compared the relationships between urban form fragmentation and CO₂ emissions in an urban system through the analytic framework composed of the Pearson correlation analysis, geographically weighted regression (GWR), and geographical detector methods with the use of multi-source data to construct the CO₂ emissions maps. As the result, there was less fragmentation with a 500-m spatial resolution (R₅₀₀ₘ) than with a 30-m spatial resolution (R₃₀ₘ). In terms of the GWR analysis, the coarse resolution resulted in: 1) positive coefficients of fragmentation metric becoming negative, and 2) greater absolute values of negative coefficients. As to the results of Geographical detector, single factor impact powers and interactions among fragmentation factors showed a weakening effect at R₃₀ₘ, but a strengthening and weakening effect at R₅₀₀ₘ. However, there were common results observed in low-fragmented areas across different scales. That is, in low-fragmented mixed-function areas and industrial areas, the more fragmented the area was, the less the CO₂ emission there would be. However, in low-fragmented residential, administrative and public service areas, the more fragmented the area was, the higher the CO₂ emission there would be. Therefore, the government should disperse the mixed function zones and industrial parcels with diverse types of land, and build the contiguous residential and public service land in the low fragmentation area of urban system. The results of this study can provide a reference for the other small and medium towns and cities. The analytical framework can be applied to CO₂ emissions research in urban agglomerations, megacities, and small towns.
Scientifically delineating the spatial heterogeneity of urban landscape fragmentation in relation to CO2 emissions helps the urban carbon mitigation strategy. The combination analysis across spatial resolutions, which is rare, helps explore the comprehensive relationship between urban fragmentation and CO2 emissions. This study compared the relationships between urban form fragmentation and CO2 emissions in an urban system through the analytic framework composed of the Pearson correlation analysis, geographically weighted regression (GWR), and geographical detector methods with the use of multi-source data to construct the CO2 emissions maps. As the result, there was less fragmentation with a 500-m spatial resolution (R500m) than with a 30-m spatial resolution (R30m). In terms of the GWR analysis, the coarse resolution resulted in: 1) positive coefficients of fragmentation metric becoming negative, and 2) greater absolute values of negative coefficients. As to the results of Geographical detector, single factor impact powers and interactions among fragmentation factors showed a weakening effect at R30m, but a strengthening and weakening effect at R500m. However, there were common results observed in low-fragmented areas across different scales. That is, in low-fragmented mixed-function areas and industrial areas, the more fragmented the area was, the less the CO2 emission there would be. However, in low-fragmented residential, administrative and public service areas, the more fragmented the area was, the higher the CO2 emission there would be. Therefore, the government should disperse the mixed function zones and industrial parcels with diverse types of land, and build the contiguous residential and public service land in the low fragmentation area of urban system. The results of this study can provide a reference for the other small and medium towns and cities. The analytical framework can be applied to CO2 emissions research in urban agglomerations, megacities, and small towns. •Use of multi-source data and an analytical framework composed of 3 methods.•Exploration of the impact of 30-m versus 500-m spatial resolution.•Low fragmented mixed and industrial lands affect CO2 emissions negatively.•Low fragmented residential and public lands affect CO2 emissions positively.•Interactions of factors are weaker at a 30-m resolution than at a 500-m resolution.
ArticleNumber 118659
Author Dai, Shaoqing
Ren, Yin
Zuo, Shudi
Author_xml – sequence: 1
  givenname: Shudi
  surname: Zuo
  fullname: Zuo, Shudi
  email: sdzuo@iue.ac.cn
  organization: Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
– sequence: 2
  givenname: Shaoqing
  surname: Dai
  fullname: Dai, Shaoqing
  organization: Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
– sequence: 3
  givenname: Yin
  surname: Ren
  fullname: Ren, Yin
  email: yren@iue.ac.cn
  organization: Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
BookMark eNqFkDtuGzEQhlkoQCQ7RwjA0o0UcrmkuHAhCELiGLDhJqmJWe4worBLKuTKgFPnIDmLTxbqUblxNcX_mJlvRiYhBiTkM2cLzrj6slvsbI_7FBcV482Cc61kMyFT1shmrmSlPpJZzjvG-JIt6yn5-xgTUpfg14Bh9H-wo4fUQqAupoEOR3HzVFEcfM4-hryi69d_Ng77hFsM2T8jTdjDeNS2fl-a4kDHLdLiaX04CRQC9C_ZZwo2xZxp553DVPbRbKHHfE0-OOgzfrrMK_Lz29cfm-_zh6e7-836YW5FXY1zW2vdObDLTtRLcNbqWuq6a6WqGw1CCdBOIzS65VxyUB0TXCrVMMsrJnQrrsjNubfw-X3APJrylsW-h4DxkE0lhOSi7BLFenu2ni5O6Iz14-mbMYHvDWfmyNvszIW3OfI2Z94lLd-k98kPkF7eza3OOSwUnj0mk63HYLHzCe1ouujfafgPP9qlZQ
CitedBy_id crossref_primary_10_1007_s11442_024_2261_8
crossref_primary_10_1007_s43621_024_00298_z
crossref_primary_10_1016_j_oceaneng_2023_116411
crossref_primary_10_3390_ijerph20032659
crossref_primary_10_1016_j_heliyon_2024_e29647
crossref_primary_10_1016_j_buildenv_2023_111007
crossref_primary_10_1016_j_jes_2020_04_025
crossref_primary_10_3390_land12081585
crossref_primary_10_1016_j_apgeog_2023_102927
crossref_primary_10_1080_12265934_2020_1803105
crossref_primary_10_3390_su151813439
crossref_primary_10_3390_rs12233932
crossref_primary_10_1016_j_landusepol_2024_107117
crossref_primary_10_3390_land13081254
crossref_primary_10_3390_su16010085
crossref_primary_10_3390_su16051870
crossref_primary_10_1016_j_jenvman_2022_116032
crossref_primary_10_1016_j_uclim_2024_102052
crossref_primary_10_1016_j_jclepro_2023_138151
crossref_primary_10_1016_j_compenvurbsys_2024_102214
crossref_primary_10_1038_s43247_024_01991_7
crossref_primary_10_1016_j_jclepro_2020_122547
crossref_primary_10_1016_j_scitotenv_2023_161873
crossref_primary_10_1016_j_jhazmat_2022_130173
crossref_primary_10_1016_j_cities_2022_104181
crossref_primary_10_3390_ijerph20054023
crossref_primary_10_1016_j_jclepro_2022_134947
crossref_primary_10_1016_j_scs_2024_105656
crossref_primary_10_1016_j_ecolind_2024_112700
Cites_doi 10.1016/j.atmosenv.2011.07.040
10.1111/j.1466-822X.2005.00153.x
10.1016/j.apenergy.2015.08.095
10.1016/j.enbuild.2015.02.011
10.1111/j.2041-210x.2012.00253.x
10.1016/j.landurbplan.2008.02.007
10.1016/j.landurbplan.2013.04.009
10.1080/01431160110114493
10.1016/j.apenergy.2017.05.085
10.1016/j.rser.2015.10.140
10.1016/j.rser.2017.06.025
10.1016/j.apenergy.2016.01.105
10.1016/j.enpol.2012.03.070
10.1088/1748-9326/aabb87
10.1007/s10980-015-0288-z
10.1016/j.apenergy.2016.10.052
10.1023/B:LAND.0000021711.40074.ae
10.1007/s10109-006-0028-7
10.1016/j.landurbplan.2013.10.002
10.1111/j.1461-0248.2009.01387.x
10.1016/j.enpol.2013.10.072
10.1016/0304-3800(88)90055-5
10.1007/s10980-015-0248-7
10.1016/j.enpol.2009.08.021
10.1016/j.apgeog.2010.06.003
10.1029/2012GL053087
10.1016/j.apenergy.2012.05.038
10.1007/s10980-005-0063-7
10.1126/science.aac8033
10.1016/j.apgeog.2017.03.007
10.1016/j.ecolmodel.2017.03.002
10.2307/2389612
10.1016/j.enpol.2017.03.072
10.1016/j.envres.2012.11.003
10.1023/A:1020512723753
10.1023/B:LAND.0000021724.60785.65
10.1016/j.rse.2017.06.039
10.1016/j.envpol.2015.07.007
10.1016/j.jclepro.2016.08.155
10.1016/j.apenergy.2014.09.059
10.1016/j.ecolind.2015.12.022
10.1007/s11270-012-1189-2
10.1016/j.ecolind.2016.04.022
10.1016/j.ecolind.2016.02.052
10.1016/j.envpol.2016.06.004
10.1016/j.ecoinf.2014.02.004
10.1016/j.apenergy.2015.11.055
10.1007/s10980-016-0400-z
10.1177/0894439307298925
10.1016/j.enpol.2014.01.024
10.1007/s10980-013-9943-4
10.1080/13658810802443457
10.1007/BF00125351
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jclepro.2019.118659
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_jclepro_2019_118659
S0959652619335292
GroupedDBID --K
--M
..I
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
J1W
JARJE
K-O
KCYFY
KOM
LY9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SEN
SES
SPC
SPCBC
SSH
SSJ
SSR
SSZ
T5K
~G-
29K
AAQXK
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ADHUB
ADMUD
ADNMO
AEGFY
AFJKZ
AGQPQ
AIGII
ASPBG
AVWKF
AZFZN
CITATION
D-I
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
WUQ
ZY4
7S9
L.6
ID FETCH-LOGICAL-c342t-c488dfac7d347afcc84584db56498a363a8f8ea98b1151a6d03156690c12038b3
IEDL.DBID .~1
ISSN 0959-6526
IngestDate Fri Aug 22 20:19:49 EDT 2025
Thu Jul 03 08:40:47 EDT 2025
Thu Apr 24 22:52:18 EDT 2025
Sat Jul 19 17:11:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Spatial analysis
Fossil fuel CO2 emission
Aggregation effect
Spatial resolution
Urban functional landscape
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-c488dfac7d347afcc84584db56498a363a8f8ea98b1151a6d03156690c12038b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2335133423
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2335133423
crossref_citationtrail_10_1016_j_jclepro_2019_118659
crossref_primary_10_1016_j_jclepro_2019_118659
elsevier_sciencedirect_doi_10_1016_j_jclepro_2019_118659
PublicationCentury 2000
PublicationDate 2020-01-20
PublicationDateYYYYMMDD 2020-01-20
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-20
  day: 20
PublicationDecade 2020
PublicationTitle Journal of cleaner production
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Saura (bib48) 2004; 19
Girvetz, Thorne, Berry, Jaeger (bib20) 2008; 86
Christen, Coops, Crawford, Kellett, Liss, Olchovski (bib11) 2011; 45
Wang, Yin, Zhang, Zhang (bib62) 2012; 100
Argañaraz, Entraigas (bib2) 2014; 22
Liu, Sweeney (bib34) 2012; 46
Ahiablame, Engel, Chaubey (bib1) 2012; 223
Cahill, Mulligan (bib8) 2007; 25
Frazier (bib17) 2016; 31
Raupach, Rayner, Paget (bib45) 2010; 38
Ou, Liu, Li, Chen (bib40) 2013; 28
Wang, Li, Christakos, Liao, Zhang, Gu (bib53) 2010; 24
Ren, Deng, Zuo, Song, Liao, Xu (bib46) 2016; 216
Li, Li, Wu, Cheng (bib31) 2015; 206
Fang, Wang, Li (bib16) 2015; 158
Gao, Li (bib18) 2011; 31
Gong, Yu, Joesting, Chen (bib21) 2013; 117
Li, Li, Wu, Cheng (bib32) 2017; 82
Lin, Sun, Li, Zhao, Zhang, Ge (bib33) 2016; 46
Graf, Bollmann, Suter, Bugmann (bib22) 2005; 20
Luck, Wu (bib35) 2002; 17
Creutzig, Jochem, Edelenbosch, Mattauch, DPv, McCollum (bib12) 2015; 350
Cai, Huang, Song (bib10) 2017; 202
Plotnick, Gardner, Oneill (bib42) 1993; 8
Lee, Lee (bib30) 2014; 68
Wiens (bib63) 1989; 3
Dale, Jager, Gardner, Rosen (bib14) 1988; 42
Wang, Ni, Tenhunen (bib55) 2005; 14
Zhang, Yu, Chen (bib68) 2017; 107
Bradter, Kunin, Altringham, Thom, Benton (bib6) 2013; 4
Wang, Li, Kubota, Han, Zhu, Lu (bib61) 2016; 168
Nordbo, Järvi, Haapanala, Wood, Vesala (bib39) 2012; 39
Wu, Jones, Li, Loucks (bib64) 2006
Shi, Chen, Yu, Xu, Chen, Liu (bib49) 2016; 168
Fan, Myint (bib15) 2014; 121
Bennett, Peterson, Gordon (bib4) 2009; 12
Wang, Li, Fang (bib70) 2018; 81
Dai, Zuo, Ren (bib13) 2019
Torres, Jaeger, Alonso (bib50) 2016; 31
Hartigan, Wong (bib24) 1979; 28
Hu, Li, Wang, Jia, Liao, Lai (bib26) 2012; 7
Wang, Fang, Guan, Pang, Ma (bib56) 2014; 136
Zhou, Xiao, Liu, Li (bib69) 2016; 64
Hamil, Iannone, Huang, Fei, Zhang (bib23) 2016; 31
Qiu, Carpenter, Booth, Motew, Zipper, Kucharik (bib43) 2018; 13
Wang, Zhang, Fu (bib54) 2016; 67
Wu (bib65) 2004; 19
Owens (bib41) 1986
Saura (bib47) 2002; 23
Brunsdon, Fotheringham, Charlton (bib7) 1998; 47
Bitter, Mulligan, Dall’erba (bib5) 2007; 9
Wang, Zhou, Li, Feng (bib59) 2016; 69
Wang, Liu (bib60) 2017; 200
Ye, He, Song, Li, Zhang, Lin (bib67) 2015; 93
Gately, Hutyra (bib19) 2017; 11
Hu, Waller, Al-Hamdan, Crosson, Estes, Estes (bib27) 2013; 121
Wang, Liu, Zhou, Hu, Ou (bib58) 2017; 185
Wang, Fang, Wang (bib57) 2016; 55
Wakefield, Lyons (bib52) 2010
Cai, Zhang (bib9) 2014; 66
He, Xu, Shen, Long, Chen (bib25) 2017; 140
Xia, Zhang, Sun, Li (bib66) 2017; 355
Lin (10.1016/j.jclepro.2019.118659_bib33) 2016; 46
Li (10.1016/j.jclepro.2019.118659_bib31) 2015; 206
Wang (10.1016/j.jclepro.2019.118659_bib58) 2017; 185
Creutzig (10.1016/j.jclepro.2019.118659_bib12) 2015; 350
Fan (10.1016/j.jclepro.2019.118659_bib15) 2014; 121
Hu (10.1016/j.jclepro.2019.118659_bib27) 2013; 121
Argañaraz (10.1016/j.jclepro.2019.118659_bib2) 2014; 22
Frazier (10.1016/j.jclepro.2019.118659_bib17) 2016; 31
Zhou (10.1016/j.jclepro.2019.118659_bib69) 2016; 64
Bennett (10.1016/j.jclepro.2019.118659_bib4) 2009; 12
He (10.1016/j.jclepro.2019.118659_bib25) 2017; 140
Qiu (10.1016/j.jclepro.2019.118659_bib43) 2018; 13
Ren (10.1016/j.jclepro.2019.118659_bib46) 2016; 216
Fang (10.1016/j.jclepro.2019.118659_bib16) 2015; 158
Wang (10.1016/j.jclepro.2019.118659_bib59) 2016; 69
Wang (10.1016/j.jclepro.2019.118659_bib57) 2016; 55
Cai (10.1016/j.jclepro.2019.118659_bib10) 2017; 202
Shi (10.1016/j.jclepro.2019.118659_bib49) 2016; 168
Hamil (10.1016/j.jclepro.2019.118659_bib23) 2016; 31
Dale (10.1016/j.jclepro.2019.118659_bib14) 1988; 42
Luck (10.1016/j.jclepro.2019.118659_bib35) 2002; 17
Wang (10.1016/j.jclepro.2019.118659_bib60) 2017; 200
Ou (10.1016/j.jclepro.2019.118659_bib40) 2013; 28
Xia (10.1016/j.jclepro.2019.118659_bib66) 2017; 355
Wakefield (10.1016/j.jclepro.2019.118659_bib52) 2010
Wiens (10.1016/j.jclepro.2019.118659_bib63) 1989; 3
Cai (10.1016/j.jclepro.2019.118659_bib9) 2014; 66
Li (10.1016/j.jclepro.2019.118659_bib32) 2017; 82
Wang (10.1016/j.jclepro.2019.118659_bib70) 2018; 81
Zhang (10.1016/j.jclepro.2019.118659_bib68) 2017; 107
Girvetz (10.1016/j.jclepro.2019.118659_bib20) 2008; 86
Saura (10.1016/j.jclepro.2019.118659_bib48) 2004; 19
Wang (10.1016/j.jclepro.2019.118659_bib56) 2014; 136
Ahiablame (10.1016/j.jclepro.2019.118659_bib1) 2012; 223
Raupach (10.1016/j.jclepro.2019.118659_bib45) 2010; 38
Dai (10.1016/j.jclepro.2019.118659_bib13) 2019
Christen (10.1016/j.jclepro.2019.118659_bib11) 2011; 45
Graf (10.1016/j.jclepro.2019.118659_bib22) 2005; 20
Nordbo (10.1016/j.jclepro.2019.118659_bib39) 2012; 39
Wang (10.1016/j.jclepro.2019.118659_bib54) 2016; 67
Bradter (10.1016/j.jclepro.2019.118659_bib6) 2013; 4
Wang (10.1016/j.jclepro.2019.118659_bib53) 2010; 24
Wang (10.1016/j.jclepro.2019.118659_bib62) 2012; 100
Gao (10.1016/j.jclepro.2019.118659_bib18) 2011; 31
Liu (10.1016/j.jclepro.2019.118659_bib34) 2012; 46
Wang (10.1016/j.jclepro.2019.118659_bib61) 2016; 168
Wu (10.1016/j.jclepro.2019.118659_bib64) 2006
Ye (10.1016/j.jclepro.2019.118659_bib67) 2015; 93
Hu (10.1016/j.jclepro.2019.118659_bib26) 2012; 7
Hartigan (10.1016/j.jclepro.2019.118659_bib24) 1979; 28
Gong (10.1016/j.jclepro.2019.118659_bib21) 2013; 117
Saura (10.1016/j.jclepro.2019.118659_bib47) 2002; 23
Brunsdon (10.1016/j.jclepro.2019.118659_bib7) 1998; 47
Plotnick (10.1016/j.jclepro.2019.118659_bib42) 1993; 8
Lee (10.1016/j.jclepro.2019.118659_bib30) 2014; 68
Cahill (10.1016/j.jclepro.2019.118659_bib8) 2007; 25
Gately (10.1016/j.jclepro.2019.118659_bib19) 2017; 11
Torres (10.1016/j.jclepro.2019.118659_bib50) 2016; 31
Wang (10.1016/j.jclepro.2019.118659_bib55) 2005; 14
Wu (10.1016/j.jclepro.2019.118659_bib65) 2004; 19
Owens (10.1016/j.jclepro.2019.118659_bib41) 1986
Bitter (10.1016/j.jclepro.2019.118659_bib5) 2007; 9
References_xml – volume: 19
  start-page: 197
  year: 2004
  end-page: 209
  ident: bib48
  article-title: Effects of remote sensor spatial resolution and data aggregation on selected fragmentation indices
  publication-title: Landsc. Ecol.
– volume: 350
  start-page: 911
  year: 2015
  end-page: 912
  ident: bib12
  article-title: Transport: a roadblock to climate change mitigation?
  publication-title: Science
– volume: 93
  start-page: 90
  year: 2015
  end-page: 98
  ident: bib67
  article-title: A sustainable urban form: the challenges of compactness from the viewpoint of energy consumption and carbon emission
  publication-title: Energy Build.
– volume: 168
  start-page: 375
  year: 2016
  end-page: 380
  ident: bib61
  article-title: Does urbanization lead to more carbon emission? Evidence from a panel of BRICS countries
  publication-title: Appl. Energy
– volume: 185
  start-page: 189
  year: 2017
  end-page: 200
  ident: bib58
  article-title: Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO
  publication-title: Appl. Energy
– volume: 121
  start-page: 1
  year: 2013
  end-page: 10
  ident: bib27
  article-title: Estimating ground-level PM
  publication-title: Environ. Res.
– volume: 86
  start-page: 205
  year: 2008
  end-page: 218
  ident: bib20
  article-title: Integration of landscape fragmentation analysis into regional planning: a statewide multi-scale case study from California, USA
  publication-title: Landsc. Urban Plan.
– volume: 4
  start-page: 167
  year: 2013
  end-page: 174
  ident: bib6
  article-title: Identifying appropriate spatial scales of predictors in species distribution models with the random forest algorithm
  publication-title: Methods Evol. Ecol.
– volume: 7
  year: 2012
  ident: bib26
  article-title: Determinants of the incidence of hand, foot and mouth disease in China using geographically weighted regression models
  publication-title: PLoS One
– volume: 68
  start-page: 534
  year: 2014
  end-page: 549
  ident: bib30
  article-title: The influence of urban form on GHG emissions in the U.S. household sector
  publication-title: Energy Policy
– volume: 158
  start-page: 519
  year: 2015
  end-page: 531
  ident: bib16
  article-title: Changing urban forms and carbon dioxide emissions in China: a case study of 30 provincial capital cities
  publication-title: Appl. Energy
– volume: 55
  start-page: 505
  year: 2016
  end-page: 515
  ident: bib57
  article-title: Spatiotemporal variations of energy-related CO
  publication-title: Renew. Sustain. Energy Rev.
– volume: 223
  start-page: 4253
  year: 2012
  end-page: 4273
  ident: bib1
  article-title: Effectiveness of low impact development practices: literature review and suggestions for future research
  publication-title: Water Air Soil Pollut.
– volume: 69
  start-page: 184
  year: 2016
  end-page: 195
  ident: bib59
  article-title: CO2, economic growth, and energy consumption in China’s provinces: investigating the spatiotemporal and econometric characteristics of China’s CO
  publication-title: Ecol. Indicat.
– volume: 100
  start-page: 277
  year: 2012
  end-page: 284
  ident: bib62
  article-title: An empirical research on the influencing factors of regional CO
  publication-title: Appl. Energy
– volume: 24
  start-page: 107
  year: 2010
  end-page: 127
  ident: bib53
  article-title: Geographical Detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China
  publication-title: Int. J. Geogr. Inf. Sci.
– volume: 136
  start-page: 738
  year: 2014
  end-page: 749
  ident: bib56
  article-title: Urbanisation, energy consumption, and carbon dioxide emissions in China: a panel data analysis of China’s provinces
  publication-title: Appl. Energy
– start-page: 537
  year: 2010
  end-page: 554
  ident: bib52
  article-title: Spatial aggregation and the ecological fallacy
  publication-title: Handbook of Spatial Statistics
– volume: 31
  start-page: 351
  year: 2016
  end-page: 363
  ident: bib17
  article-title: Surface metrics: scaling relationships and downscaling behavior
  publication-title: Landsc. Ecol.
– volume: 17
  start-page: 327
  year: 2002
  end-page: 339
  ident: bib35
  article-title: A gradient analysis of urban landscape pattern: a case study from the Phoenix metropolitan region, Arizona, USA
  publication-title: Landsc. Ecol.
– year: 2019
  ident: bib13
  article-title: A Spatial Database of CO
– volume: 107
  start-page: 678
  year: 2017
  end-page: 687
  ident: bib68
  article-title: How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis
  publication-title: Energy Policy
– volume: 25
  start-page: 174
  year: 2007
  end-page: 193
  ident: bib8
  article-title: Using geographically weighted regression to explore local crime patterns
  publication-title: Soc. Sci. Comput. Rev.
– volume: 42
  start-page: 165
  year: 1988
  end-page: 178
  ident: bib14
  article-title: Using sensitivity and uncertainty analyses to improve predictions of broad-scale forest development
  publication-title: Ecol. Model.
– volume: 23
  start-page: 4853
  year: 2002
  end-page: 4880
  ident: bib47
  article-title: Effects of minimum mapping unit on land cover data spatial configuration and composition
  publication-title: Int. J. Remote Sens.
– volume: 38
  start-page: 4756
  year: 2010
  end-page: 4764
  ident: bib45
  article-title: Regional variations in spatial structure of nightlights, population density and fossil-fuel CO
  publication-title: Energy Policy
– volume: 168
  start-page: 523
  year: 2016
  end-page: 533
  ident: bib49
  article-title: Modeling spatiotemporal CO
  publication-title: Appl. Energy
– volume: 66
  start-page: 557
  year: 2014
  end-page: 567
  ident: bib9
  article-title: Urban CO2 emissions in China: spatial boundary and performance comparison
  publication-title: Energy Policy
– volume: 82
  start-page: 101
  year: 2017
  end-page: 114
  ident: bib32
  article-title: Exploring spatially varying and scale-dependent relationships between soil contamination and landscape patterns using geographically weighted regression
  publication-title: Appl. Geogr.
– volume: 31
  start-page: 292
  year: 2011
  end-page: 302
  ident: bib18
  article-title: Detecting spatially non-stationary and scale-dependent relationships between urban landscape fragmentation and related factors using Geographically Weighted Regression
  publication-title: Appl. Geogr.
– volume: 46
  start-page: 359
  year: 2012
  end-page: 369
  ident: bib34
  article-title: Modelling the impact of urban form on household energy demand and related CO
  publication-title: Energy Policy
– volume: 31
  start-page: 2291
  year: 2016
  end-page: 2305
  ident: bib50
  article-title: Multi-scale mismatches between urban sprawl and landscape fragmentation create windows of opportunity for conservation development
  publication-title: Landsc. Ecol.
– volume: 206
  start-page: 264
  year: 2015
  end-page: 274
  ident: bib31
  article-title: Effects of landscape heterogeneity on the elevated trace metal concentrations in agricultural soils at multiple scales in the Pearl River Delta, South China
  publication-title: Environ. Pollut.
– volume: 45
  start-page: 6057
  year: 2011
  end-page: 6069
  ident: bib11
  article-title: Validation of modeled carbon-dioxide emissions from an urban neighborhood with direct eddy-covariance measurements
  publication-title: Atmos. Environ.
– volume: 14
  start-page: 379
  year: 2005
  end-page: 393
  ident: bib55
  article-title: Application of a geographically-weighted regression analysis to estimate net primary production of Chinese forest ecosystems
  publication-title: Glob. Ecol. Biogeogr.
– volume: 3
  start-page: 385
  year: 1989
  end-page: 397
  ident: bib63
  article-title: Spatial scaling in ecology
  publication-title: Funct. Ecol.
– year: 1986
  ident: bib41
  article-title: Energy, Planning and Urban Form
– volume: 9
  start-page: 7
  year: 2007
  end-page: 27
  ident: bib5
  article-title: Incorporating spatial variation in housing attribute prices: a comparison of geographically weighted regression and the spatial expansion method
  publication-title: J. Geogr. Syst.
– volume: 28
  start-page: 1889
  year: 2013
  end-page: 1907
  ident: bib40
  article-title: Quantifying the relationship between urban forms and carbon emissions using panel data analysis
  publication-title: Landsc. Ecol.
– volume: 12
  start-page: 1394
  year: 2009
  end-page: 1404
  ident: bib4
  article-title: Understanding relationships among multiple ecosystem services
  publication-title: Ecol. Lett.
– volume: 67
  start-page: 250
  year: 2016
  end-page: 256
  ident: bib54
  article-title: A measure of spatial stratified heterogeneity
  publication-title: Ecol. Indicat.
– volume: 355
  start-page: 105
  year: 2017
  end-page: 115
  ident: bib66
  article-title: Analyzing the spatial pattern of carbon metabolism and its response to change of urban form
  publication-title: Ecol. Model.
– volume: 200
  start-page: 204
  year: 2017
  end-page: 214
  ident: bib60
  article-title: China’s city-level energy-related CO2 emissions: spatiotemporal patterns and driving forces
  publication-title: Appl. Energy
– volume: 47
  start-page: 431
  year: 1998
  end-page: 443
  ident: bib7
  article-title: Geographically weighted regression—modelling spatial non-stationarity
  publication-title: J. R. Stat. Soc. - Ser. D Statistician
– volume: 8
  start-page: 201
  year: 1993
  end-page: 211
  ident: bib42
  article-title: Lacunarity indexes as measures of landscape texture
  publication-title: Landsc. Ecol.
– volume: 11
  start-page: 242
  year: 2017
  end-page: 260
  ident: bib19
  article-title: Large uncertainties in urban-scale carbon emissions
  publication-title: J. Geophys. Res.: Atmospheres
– volume: 19
  start-page: 125
  year: 2004
  end-page: 138
  ident: bib65
  article-title: Effects of changing scale on landscape pattern analysis: scaling relations
  publication-title: Landsc. Ecol.
– volume: 22
  start-page: 1
  year: 2014
  end-page: 12
  ident: bib2
  article-title: Scaling functions evaluation for estimation of landscape metrics at higher resolutions
  publication-title: Ecol. Inf.
– volume: 64
  start-page: 158
  year: 2016
  end-page: 170
  ident: bib69
  article-title: A weighted aggregation and closeness approach to measuring the compactness of landscape with multiple parts
  publication-title: Ecol. Indicat.
– volume: 20
  start-page: 703
  year: 2005
  end-page: 717
  ident: bib22
  article-title: The importance of spatial scale in habitat models: capercaillie in the Swiss Alps
  publication-title: Landsc. Ecol.
– volume: 216
  start-page: 519
  year: 2016
  end-page: 529
  ident: bib46
  article-title: Quantifying the influences of various ecological factors on land surface temperature of urban forests
  publication-title: Environ. Pollut.
– volume: 39
  year: 2012
  ident: bib39
  article-title: Fraction of natural area as main predictor of net CO2 emissions from cities
  publication-title: Geophys. Res. Lett.
– volume: 13
  year: 2018
  ident: bib43
  article-title: Understanding relationships among ecosystem services across spatial scales and over time
  publication-title: Environ. Res. Lett.
– volume: 28
  start-page: 100
  year: 1979
  end-page: 108
  ident: bib24
  article-title: Algorithm as 136: a K-means clustering algorithm
  publication-title: J. R. Stat. Soc. Ser. C Appl. Stat.
– volume: 140
  start-page: 1719
  year: 2017
  end-page: 1730
  ident: bib25
  article-title: Impact of urbanization on energy related CO2 emission at different development levels: regional difference in China based on panel estimation
  publication-title: J. Clean. Prod.
– volume: 31
  start-page: 7
  year: 2016
  end-page: 18
  ident: bib23
  article-title: Cross-scale contradictions in ecological relationships
  publication-title: Landsc. Ecol.
– volume: 46
  start-page: 22
  year: 2016
  end-page: 30
  ident: bib33
  article-title: Spatial pattern of urban functional landscapes along an urban–rural gradient: a case study in Xiamen City, China
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 81
  start-page: 2144
  year: 2018
  end-page: 2159
  ident: bib70
  article-title: Urbanization, economic growth, energy consumption, and CO2 emissions: Empirical evidence from countries with different income levels.
  publication-title: Renew. Sust. Energ. Rev.
– volume: 202
  start-page: 210
  year: 2017
  end-page: 221
  ident: bib10
  article-title: Using multi-source geospatial big data to identify the structure of polycentric cities
  publication-title: Remote Sens. Environ.
– volume: 121
  start-page: 117
  year: 2014
  end-page: 128
  ident: bib15
  article-title: A comparison of spatial autocorrelation indices and landscape metrics in measuring urban landscape fragmentation
  publication-title: Landsc. Urban Plan.
– volume: 117
  start-page: 57
  year: 2013
  end-page: 65
  ident: bib21
  article-title: Determining socioeconomic drivers of urban forest fragmentation with historical remote sensing images
  publication-title: Landsc. Urban Plan.
– year: 2006
  ident: bib64
  article-title: Scaling and Uncertainty Analysis in Ecology
– volume: 45
  start-page: 6057
  year: 2011
  ident: 10.1016/j.jclepro.2019.118659_bib11
  article-title: Validation of modeled carbon-dioxide emissions from an urban neighborhood with direct eddy-covariance measurements
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2011.07.040
– volume: 14
  start-page: 379
  year: 2005
  ident: 10.1016/j.jclepro.2019.118659_bib55
  article-title: Application of a geographically-weighted regression analysis to estimate net primary production of Chinese forest ecosystems
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/j.1466-822X.2005.00153.x
– volume: 158
  start-page: 519
  year: 2015
  ident: 10.1016/j.jclepro.2019.118659_bib16
  article-title: Changing urban forms and carbon dioxide emissions in China: a case study of 30 provincial capital cities
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.08.095
– volume: 93
  start-page: 90
  year: 2015
  ident: 10.1016/j.jclepro.2019.118659_bib67
  article-title: A sustainable urban form: the challenges of compactness from the viewpoint of energy consumption and carbon emission
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.02.011
– volume: 4
  start-page: 167
  year: 2013
  ident: 10.1016/j.jclepro.2019.118659_bib6
  article-title: Identifying appropriate spatial scales of predictors in species distribution models with the random forest algorithm
  publication-title: Methods Evol. Ecol.
  doi: 10.1111/j.2041-210x.2012.00253.x
– volume: 86
  start-page: 205
  year: 2008
  ident: 10.1016/j.jclepro.2019.118659_bib20
  article-title: Integration of landscape fragmentation analysis into regional planning: a statewide multi-scale case study from California, USA
  publication-title: Landsc. Urban Plan.
  doi: 10.1016/j.landurbplan.2008.02.007
– volume: 117
  start-page: 57
  year: 2013
  ident: 10.1016/j.jclepro.2019.118659_bib21
  article-title: Determining socioeconomic drivers of urban forest fragmentation with historical remote sensing images
  publication-title: Landsc. Urban Plan.
  doi: 10.1016/j.landurbplan.2013.04.009
– volume: 23
  start-page: 4853
  year: 2002
  ident: 10.1016/j.jclepro.2019.118659_bib47
  article-title: Effects of minimum mapping unit on land cover data spatial configuration and composition
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160110114493
– volume: 200
  start-page: 204
  year: 2017
  ident: 10.1016/j.jclepro.2019.118659_bib60
  article-title: China’s city-level energy-related CO2 emissions: spatiotemporal patterns and driving forces
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.05.085
– volume: 55
  start-page: 505
  year: 2016
  ident: 10.1016/j.jclepro.2019.118659_bib57
  article-title: Spatiotemporal variations of energy-related CO2 emissions in China and its influencing factors: an empirical analysis based on provincial panel data
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.10.140
– volume: 81
  start-page: 2144
  year: 2018
  ident: 10.1016/j.jclepro.2019.118659_bib70
  article-title: Urbanization, economic growth, energy consumption, and CO2 emissions: Empirical evidence from countries with different income levels.
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2017.06.025
– volume: 168
  start-page: 375
  year: 2016
  ident: 10.1016/j.jclepro.2019.118659_bib61
  article-title: Does urbanization lead to more carbon emission? Evidence from a panel of BRICS countries
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.01.105
– volume: 46
  start-page: 359
  year: 2012
  ident: 10.1016/j.jclepro.2019.118659_bib34
  article-title: Modelling the impact of urban form on household energy demand and related CO2 emissions in the Greater Dublin Region
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2012.03.070
– volume: 11
  start-page: 242
  year: 2017
  ident: 10.1016/j.jclepro.2019.118659_bib19
  article-title: Large uncertainties in urban-scale carbon emissions
  publication-title: J. Geophys. Res.: Atmospheres
– volume: 13
  year: 2018
  ident: 10.1016/j.jclepro.2019.118659_bib43
  article-title: Understanding relationships among ecosystem services across spatial scales and over time
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aabb87
– volume: 31
  start-page: 7
  year: 2016
  ident: 10.1016/j.jclepro.2019.118659_bib23
  article-title: Cross-scale contradictions in ecological relationships
  publication-title: Landsc. Ecol.
  doi: 10.1007/s10980-015-0288-z
– volume: 185
  start-page: 189
  year: 2017
  ident: 10.1016/j.jclepro.2019.118659_bib58
  article-title: Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.10.052
– year: 2006
  ident: 10.1016/j.jclepro.2019.118659_bib64
– volume: 19
  start-page: 125
  year: 2004
  ident: 10.1016/j.jclepro.2019.118659_bib65
  article-title: Effects of changing scale on landscape pattern analysis: scaling relations
  publication-title: Landsc. Ecol.
  doi: 10.1023/B:LAND.0000021711.40074.ae
– volume: 9
  start-page: 7
  year: 2007
  ident: 10.1016/j.jclepro.2019.118659_bib5
  article-title: Incorporating spatial variation in housing attribute prices: a comparison of geographically weighted regression and the spatial expansion method
  publication-title: J. Geogr. Syst.
  doi: 10.1007/s10109-006-0028-7
– volume: 121
  start-page: 117
  year: 2014
  ident: 10.1016/j.jclepro.2019.118659_bib15
  article-title: A comparison of spatial autocorrelation indices and landscape metrics in measuring urban landscape fragmentation
  publication-title: Landsc. Urban Plan.
  doi: 10.1016/j.landurbplan.2013.10.002
– volume: 12
  start-page: 1394
  year: 2009
  ident: 10.1016/j.jclepro.2019.118659_bib4
  article-title: Understanding relationships among multiple ecosystem services
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2009.01387.x
– volume: 66
  start-page: 557
  year: 2014
  ident: 10.1016/j.jclepro.2019.118659_bib9
  article-title: Urban CO2 emissions in China: spatial boundary and performance comparison
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2013.10.072
– volume: 42
  start-page: 165
  year: 1988
  ident: 10.1016/j.jclepro.2019.118659_bib14
  article-title: Using sensitivity and uncertainty analyses to improve predictions of broad-scale forest development
  publication-title: Ecol. Model.
  doi: 10.1016/0304-3800(88)90055-5
– volume: 31
  start-page: 351
  year: 2016
  ident: 10.1016/j.jclepro.2019.118659_bib17
  article-title: Surface metrics: scaling relationships and downscaling behavior
  publication-title: Landsc. Ecol.
  doi: 10.1007/s10980-015-0248-7
– volume: 38
  start-page: 4756
  year: 2010
  ident: 10.1016/j.jclepro.2019.118659_bib45
  article-title: Regional variations in spatial structure of nightlights, population density and fossil-fuel CO2 emissions
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2009.08.021
– volume: 31
  start-page: 292
  year: 2011
  ident: 10.1016/j.jclepro.2019.118659_bib18
  article-title: Detecting spatially non-stationary and scale-dependent relationships between urban landscape fragmentation and related factors using Geographically Weighted Regression
  publication-title: Appl. Geogr.
  doi: 10.1016/j.apgeog.2010.06.003
– volume: 39
  year: 2012
  ident: 10.1016/j.jclepro.2019.118659_bib39
  article-title: Fraction of natural area as main predictor of net CO2 emissions from cities
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2012GL053087
– volume: 100
  start-page: 277
  year: 2012
  ident: 10.1016/j.jclepro.2019.118659_bib62
  article-title: An empirical research on the influencing factors of regional CO2 emissions: evidence from Beijing city, China
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.05.038
– volume: 47
  start-page: 431
  year: 1998
  ident: 10.1016/j.jclepro.2019.118659_bib7
  article-title: Geographically weighted regression—modelling spatial non-stationarity
  publication-title: J. R. Stat. Soc. - Ser. D Statistician
– volume: 20
  start-page: 703
  year: 2005
  ident: 10.1016/j.jclepro.2019.118659_bib22
  article-title: The importance of spatial scale in habitat models: capercaillie in the Swiss Alps
  publication-title: Landsc. Ecol.
  doi: 10.1007/s10980-005-0063-7
– volume: 350
  start-page: 911
  year: 2015
  ident: 10.1016/j.jclepro.2019.118659_bib12
  article-title: Transport: a roadblock to climate change mitigation?
  publication-title: Science
  doi: 10.1126/science.aac8033
– volume: 82
  start-page: 101
  year: 2017
  ident: 10.1016/j.jclepro.2019.118659_bib32
  article-title: Exploring spatially varying and scale-dependent relationships between soil contamination and landscape patterns using geographically weighted regression
  publication-title: Appl. Geogr.
  doi: 10.1016/j.apgeog.2017.03.007
– volume: 355
  start-page: 105
  year: 2017
  ident: 10.1016/j.jclepro.2019.118659_bib66
  article-title: Analyzing the spatial pattern of carbon metabolism and its response to change of urban form
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2017.03.002
– volume: 3
  start-page: 385
  year: 1989
  ident: 10.1016/j.jclepro.2019.118659_bib63
  article-title: Spatial scaling in ecology
  publication-title: Funct. Ecol.
  doi: 10.2307/2389612
– volume: 107
  start-page: 678
  year: 2017
  ident: 10.1016/j.jclepro.2019.118659_bib68
  article-title: How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2017.03.072
– volume: 121
  start-page: 1
  year: 2013
  ident: 10.1016/j.jclepro.2019.118659_bib27
  article-title: Estimating ground-level PM2.5 concentrations in the southeastern US using Geographically Weighted Regression
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2012.11.003
– year: 1986
  ident: 10.1016/j.jclepro.2019.118659_bib41
– volume: 17
  start-page: 327
  year: 2002
  ident: 10.1016/j.jclepro.2019.118659_bib35
  article-title: A gradient analysis of urban landscape pattern: a case study from the Phoenix metropolitan region, Arizona, USA
  publication-title: Landsc. Ecol.
  doi: 10.1023/A:1020512723753
– volume: 19
  start-page: 197
  year: 2004
  ident: 10.1016/j.jclepro.2019.118659_bib48
  article-title: Effects of remote sensor spatial resolution and data aggregation on selected fragmentation indices
  publication-title: Landsc. Ecol.
  doi: 10.1023/B:LAND.0000021724.60785.65
– volume: 202
  start-page: 210
  year: 2017
  ident: 10.1016/j.jclepro.2019.118659_bib10
  article-title: Using multi-source geospatial big data to identify the structure of polycentric cities
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.039
– volume: 206
  start-page: 264
  year: 2015
  ident: 10.1016/j.jclepro.2019.118659_bib31
  article-title: Effects of landscape heterogeneity on the elevated trace metal concentrations in agricultural soils at multiple scales in the Pearl River Delta, South China
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2015.07.007
– volume: 140
  start-page: 1719
  year: 2017
  ident: 10.1016/j.jclepro.2019.118659_bib25
  article-title: Impact of urbanization on energy related CO2 emission at different development levels: regional difference in China based on panel estimation
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.08.155
– volume: 136
  start-page: 738
  year: 2014
  ident: 10.1016/j.jclepro.2019.118659_bib56
  article-title: Urbanisation, energy consumption, and carbon dioxide emissions in China: a panel data analysis of China’s provinces
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.09.059
– volume: 64
  start-page: 158
  year: 2016
  ident: 10.1016/j.jclepro.2019.118659_bib69
  article-title: A weighted aggregation and closeness approach to measuring the compactness of landscape with multiple parts
  publication-title: Ecol. Indicat.
  doi: 10.1016/j.ecolind.2015.12.022
– volume: 223
  start-page: 4253
  year: 2012
  ident: 10.1016/j.jclepro.2019.118659_bib1
  article-title: Effectiveness of low impact development practices: literature review and suggestions for future research
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-012-1189-2
– volume: 69
  start-page: 184
  year: 2016
  ident: 10.1016/j.jclepro.2019.118659_bib59
  article-title: CO2, economic growth, and energy consumption in China’s provinces: investigating the spatiotemporal and econometric characteristics of China’s CO2 emissions
  publication-title: Ecol. Indicat.
  doi: 10.1016/j.ecolind.2016.04.022
– volume: 67
  start-page: 250
  year: 2016
  ident: 10.1016/j.jclepro.2019.118659_bib54
  article-title: A measure of spatial stratified heterogeneity
  publication-title: Ecol. Indicat.
  doi: 10.1016/j.ecolind.2016.02.052
– volume: 28
  start-page: 100
  issue: 1
  year: 1979
  ident: 10.1016/j.jclepro.2019.118659_bib24
  article-title: Algorithm as 136: a K-means clustering algorithm
  publication-title: J. R. Stat. Soc. Ser. C Appl. Stat.
– volume: 216
  start-page: 519
  year: 2016
  ident: 10.1016/j.jclepro.2019.118659_bib46
  article-title: Quantifying the influences of various ecological factors on land surface temperature of urban forests
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.06.004
– volume: 22
  start-page: 1
  year: 2014
  ident: 10.1016/j.jclepro.2019.118659_bib2
  article-title: Scaling functions evaluation for estimation of landscape metrics at higher resolutions
  publication-title: Ecol. Inf.
  doi: 10.1016/j.ecoinf.2014.02.004
– volume: 168
  start-page: 523
  year: 2016
  ident: 10.1016/j.jclepro.2019.118659_bib49
  article-title: Modeling spatiotemporal CO2 (carbon dioxide) emission dynamics in China from DMSP-OLS nighttime stable light data using panel data analysis
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.11.055
– volume: 31
  start-page: 2291
  year: 2016
  ident: 10.1016/j.jclepro.2019.118659_bib50
  article-title: Multi-scale mismatches between urban sprawl and landscape fragmentation create windows of opportunity for conservation development
  publication-title: Landsc. Ecol.
  doi: 10.1007/s10980-016-0400-z
– volume: 46
  start-page: 22
  year: 2016
  ident: 10.1016/j.jclepro.2019.118659_bib33
  article-title: Spatial pattern of urban functional landscapes along an urban–rural gradient: a case study in Xiamen City, China
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 7
  year: 2012
  ident: 10.1016/j.jclepro.2019.118659_bib26
  article-title: Determinants of the incidence of hand, foot and mouth disease in China using geographically weighted regression models
  publication-title: PLoS One
– volume: 25
  start-page: 174
  year: 2007
  ident: 10.1016/j.jclepro.2019.118659_bib8
  article-title: Using geographically weighted regression to explore local crime patterns
  publication-title: Soc. Sci. Comput. Rev.
  doi: 10.1177/0894439307298925
– volume: 68
  start-page: 534
  year: 2014
  ident: 10.1016/j.jclepro.2019.118659_bib30
  article-title: The influence of urban form on GHG emissions in the U.S. household sector
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2014.01.024
– volume: 28
  start-page: 1889
  year: 2013
  ident: 10.1016/j.jclepro.2019.118659_bib40
  article-title: Quantifying the relationship between urban forms and carbon emissions using panel data analysis
  publication-title: Landsc. Ecol.
  doi: 10.1007/s10980-013-9943-4
– volume: 24
  start-page: 107
  year: 2010
  ident: 10.1016/j.jclepro.2019.118659_bib53
  article-title: Geographical Detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658810802443457
– year: 2019
  ident: 10.1016/j.jclepro.2019.118659_bib13
– start-page: 537
  year: 2010
  ident: 10.1016/j.jclepro.2019.118659_bib52
  article-title: Spatial aggregation and the ecological fallacy
– volume: 8
  start-page: 201
  year: 1993
  ident: 10.1016/j.jclepro.2019.118659_bib42
  article-title: Lacunarity indexes as measures of landscape texture
  publication-title: Landsc. Ecol.
  doi: 10.1007/BF00125351
SSID ssj0017074
Score 2.4566808
Snippet Scientifically delineating the spatial heterogeneity of urban landscape fragmentation in relation to CO2 emissions helps the urban carbon mitigation strategy....
Scientifically delineating the spatial heterogeneity of urban landscape fragmentation in relation to CO₂ emissions helps the urban carbon mitigation strategy....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118659
SubjectTerms Aggregation effect
carbon
carbon dioxide
Fossil fuel CO2 emission
habitat fragmentation
landscapes
Spatial analysis
Spatial resolution
spatial variation
Urban functional landscape
Title More fragmentized urban form more CO2 emissions? A comprehensive relationship from the combination analysis across different scales
URI https://dx.doi.org/10.1016/j.jclepro.2019.118659
https://www.proquest.com/docview/2335133423
Volume 244
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaq9gIHRIGqhbYaJK7Z3diO45zQatVqAbUcoFJvlv_S7qrKrrK7Fw6ceBCepU_Wmfy0UCFV4prEluWZfJ4ZfzPD2AeV-pxzKxKqNJLIIMtEuyASWQqd85GOzlNy8tm5ml7Iz5fZ5Rab9LkwRKvssL_F9AatuyfDbjeHy9ls-I0iWCojD4DyhgrCYSlz0vLBz3uaR5qP2krMFO6irx-yeIbzwRwnQ6AihleB4KEVlSz99_n0CKmb4-f0JXvR2Y0wbpe2y7Zi9Yo9_6Oa4Gv262xRRyhre9VQgH7EAJva2QrILgUi1MLkKwdq8EYhstVHGN_-Jkp5Ha9bGjvUPTXuerYEyjwBtA8Bv0H_uXkBtitiArZZP_QNVtawQmnH1Rt2cXryfTJNuiYLiReSrxOPf3Aorc-DkLktvdd0cxpcpmShrVDC6lJHW2iHtmNqVaC2EAp9ap9ylK8Te2y7WlRxnwEPqdKx4CG3mXReOM5DljsKr4jSF9kBk_3WGt9VIKdGGDemp5rNTScRQxIxrUQO2OB-2LItwfHUAN3LzfylSwaPiaeGvu_lbFAadHliq7jYrAxHJUN_Hq3Pt_8__Tv2jJO_PkoRnQ7Z9rrexCM0atbuuNHaY7Yz_vRlen4Hyp76HA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFMtTyPBMbsb23GcA6qqQrWl3XKglXozfoXuCmVXya4QHDjxQ_gP_Qf8MmYSpzyEVAmp1ySOnJnJvPzNDCHPZepyxgxPsNNIIrwoE2U9T0TJVc5GKliHxcmTQzk-Fm9OspM1ctbXwiCsMur-Tqe32jpeGUZqDhfT6fAdZrBkhhEA1g0VLCIr98PnTxC3NS_3XgGTXzC2-_poZ5zE0QKJ44ItEwdy60vjcs9FbkrnFJ4XeptJUSjDJTeqVMEUyoLHlBrpcRiChEjSpQy-ynJ47xVyVYC6wLEJg6_nuJI0H3WtnzG_htv7VTY0nA1msHvQjAgpK0BbKYk9Uv9tEP8yDa29271FbkZHlW53tLhN1kJ1h9z4rX3hXfJtMq8DLWvzocUcfQmermprKoqOMEUEL915yyhOlMOcXLNFt398Rwx7HU473Dyteyze6XRBsdSFgkNK4RkI2Nsb1MSuKdS0-6f9RJclbUC8QnOPHF8K6e-T9WpehQ1CmU-lCgXzucmEddwy5rPcYj6Hl67INonoSatdbHmOkzc-6h7bNtORIxo5ojuObJLB-bJF1_PjogWq55v-Q3g12KWLlj7r-ayBG3haY6owXzWagVSnHBs0Pvj_1z8l18ZHkwN9sHe4_5BcZ5gsGKWgGh-R9WW9Co_Bo1raJ60EU_L-sn-Znz-YNN8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=More+fragmentized+urban+form+more+CO2+emissions%3F+A%C2%A0comprehensive+relationship+from+the+combination+analysis+across+different+scales&rft.jtitle=Journal+of+cleaner+production&rft.au=Zuo%2C+Shudi&rft.au=Dai%2C+Shaoqing&rft.au=Ren%2C+Yin&rft.date=2020-01-20&rft.issn=0959-6526&rft.volume=244&rft.spage=118659&rft_id=info:doi/10.1016%2Fj.jclepro.2019.118659&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jclepro_2019_118659
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon