More fragmentized urban form more CO2 emissions? A comprehensive relationship from the combination analysis across different scales
Scientifically delineating the spatial heterogeneity of urban landscape fragmentation in relation to CO2 emissions helps the urban carbon mitigation strategy. The combination analysis across spatial resolutions, which is rare, helps explore the comprehensive relationship between urban fragmentation...
Saved in:
Published in | Journal of cleaner production Vol. 244; p. 118659 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
20.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Scientifically delineating the spatial heterogeneity of urban landscape fragmentation in relation to CO2 emissions helps the urban carbon mitigation strategy. The combination analysis across spatial resolutions, which is rare, helps explore the comprehensive relationship between urban fragmentation and CO2 emissions. This study compared the relationships between urban form fragmentation and CO2 emissions in an urban system through the analytic framework composed of the Pearson correlation analysis, geographically weighted regression (GWR), and geographical detector methods with the use of multi-source data to construct the CO2 emissions maps. As the result, there was less fragmentation with a 500-m spatial resolution (R500m) than with a 30-m spatial resolution (R30m). In terms of the GWR analysis, the coarse resolution resulted in: 1) positive coefficients of fragmentation metric becoming negative, and 2) greater absolute values of negative coefficients. As to the results of Geographical detector, single factor impact powers and interactions among fragmentation factors showed a weakening effect at R30m, but a strengthening and weakening effect at R500m. However, there were common results observed in low-fragmented areas across different scales. That is, in low-fragmented mixed-function areas and industrial areas, the more fragmented the area was, the less the CO2 emission there would be. However, in low-fragmented residential, administrative and public service areas, the more fragmented the area was, the higher the CO2 emission there would be. Therefore, the government should disperse the mixed function zones and industrial parcels with diverse types of land, and build the contiguous residential and public service land in the low fragmentation area of urban system. The results of this study can provide a reference for the other small and medium towns and cities. The analytical framework can be applied to CO2 emissions research in urban agglomerations, megacities, and small towns.
•Use of multi-source data and an analytical framework composed of 3 methods.•Exploration of the impact of 30-m versus 500-m spatial resolution.•Low fragmented mixed and industrial lands affect CO2 emissions negatively.•Low fragmented residential and public lands affect CO2 emissions positively.•Interactions of factors are weaker at a 30-m resolution than at a 500-m resolution. |
---|---|
AbstractList | Scientifically delineating the spatial heterogeneity of urban landscape fragmentation in relation to CO₂ emissions helps the urban carbon mitigation strategy. The combination analysis across spatial resolutions, which is rare, helps explore the comprehensive relationship between urban fragmentation and CO₂ emissions. This study compared the relationships between urban form fragmentation and CO₂ emissions in an urban system through the analytic framework composed of the Pearson correlation analysis, geographically weighted regression (GWR), and geographical detector methods with the use of multi-source data to construct the CO₂ emissions maps. As the result, there was less fragmentation with a 500-m spatial resolution (R₅₀₀ₘ) than with a 30-m spatial resolution (R₃₀ₘ). In terms of the GWR analysis, the coarse resolution resulted in: 1) positive coefficients of fragmentation metric becoming negative, and 2) greater absolute values of negative coefficients. As to the results of Geographical detector, single factor impact powers and interactions among fragmentation factors showed a weakening effect at R₃₀ₘ, but a strengthening and weakening effect at R₅₀₀ₘ. However, there were common results observed in low-fragmented areas across different scales. That is, in low-fragmented mixed-function areas and industrial areas, the more fragmented the area was, the less the CO₂ emission there would be. However, in low-fragmented residential, administrative and public service areas, the more fragmented the area was, the higher the CO₂ emission there would be. Therefore, the government should disperse the mixed function zones and industrial parcels with diverse types of land, and build the contiguous residential and public service land in the low fragmentation area of urban system. The results of this study can provide a reference for the other small and medium towns and cities. The analytical framework can be applied to CO₂ emissions research in urban agglomerations, megacities, and small towns. Scientifically delineating the spatial heterogeneity of urban landscape fragmentation in relation to CO2 emissions helps the urban carbon mitigation strategy. The combination analysis across spatial resolutions, which is rare, helps explore the comprehensive relationship between urban fragmentation and CO2 emissions. This study compared the relationships between urban form fragmentation and CO2 emissions in an urban system through the analytic framework composed of the Pearson correlation analysis, geographically weighted regression (GWR), and geographical detector methods with the use of multi-source data to construct the CO2 emissions maps. As the result, there was less fragmentation with a 500-m spatial resolution (R500m) than with a 30-m spatial resolution (R30m). In terms of the GWR analysis, the coarse resolution resulted in: 1) positive coefficients of fragmentation metric becoming negative, and 2) greater absolute values of negative coefficients. As to the results of Geographical detector, single factor impact powers and interactions among fragmentation factors showed a weakening effect at R30m, but a strengthening and weakening effect at R500m. However, there were common results observed in low-fragmented areas across different scales. That is, in low-fragmented mixed-function areas and industrial areas, the more fragmented the area was, the less the CO2 emission there would be. However, in low-fragmented residential, administrative and public service areas, the more fragmented the area was, the higher the CO2 emission there would be. Therefore, the government should disperse the mixed function zones and industrial parcels with diverse types of land, and build the contiguous residential and public service land in the low fragmentation area of urban system. The results of this study can provide a reference for the other small and medium towns and cities. The analytical framework can be applied to CO2 emissions research in urban agglomerations, megacities, and small towns. •Use of multi-source data and an analytical framework composed of 3 methods.•Exploration of the impact of 30-m versus 500-m spatial resolution.•Low fragmented mixed and industrial lands affect CO2 emissions negatively.•Low fragmented residential and public lands affect CO2 emissions positively.•Interactions of factors are weaker at a 30-m resolution than at a 500-m resolution. |
ArticleNumber | 118659 |
Author | Dai, Shaoqing Ren, Yin Zuo, Shudi |
Author_xml | – sequence: 1 givenname: Shudi surname: Zuo fullname: Zuo, Shudi email: sdzuo@iue.ac.cn organization: Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China – sequence: 2 givenname: Shaoqing surname: Dai fullname: Dai, Shaoqing organization: Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China – sequence: 3 givenname: Yin surname: Ren fullname: Ren, Yin email: yren@iue.ac.cn organization: Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China |
BookMark | eNqFkDtuGzEQhlkoQCQ7RwjA0o0UcrmkuHAhCELiGLDhJqmJWe4worBLKuTKgFPnIDmLTxbqUblxNcX_mJlvRiYhBiTkM2cLzrj6slvsbI_7FBcV482Cc61kMyFT1shmrmSlPpJZzjvG-JIt6yn5-xgTUpfg14Bh9H-wo4fUQqAupoEOR3HzVFEcfM4-hryi69d_Ng77hFsM2T8jTdjDeNS2fl-a4kDHLdLiaX04CRQC9C_ZZwo2xZxp553DVPbRbKHHfE0-OOgzfrrMK_Lz29cfm-_zh6e7-836YW5FXY1zW2vdObDLTtRLcNbqWuq6a6WqGw1CCdBOIzS65VxyUB0TXCrVMMsrJnQrrsjNubfw-X3APJrylsW-h4DxkE0lhOSi7BLFenu2ni5O6Iz14-mbMYHvDWfmyNvszIW3OfI2Z94lLd-k98kPkF7eza3OOSwUnj0mk63HYLHzCe1ouujfafgPP9qlZQ |
CitedBy_id | crossref_primary_10_1007_s11442_024_2261_8 crossref_primary_10_1007_s43621_024_00298_z crossref_primary_10_1016_j_oceaneng_2023_116411 crossref_primary_10_3390_ijerph20032659 crossref_primary_10_1016_j_heliyon_2024_e29647 crossref_primary_10_1016_j_buildenv_2023_111007 crossref_primary_10_1016_j_jes_2020_04_025 crossref_primary_10_3390_land12081585 crossref_primary_10_1016_j_apgeog_2023_102927 crossref_primary_10_1080_12265934_2020_1803105 crossref_primary_10_3390_su151813439 crossref_primary_10_3390_rs12233932 crossref_primary_10_1016_j_landusepol_2024_107117 crossref_primary_10_3390_land13081254 crossref_primary_10_3390_su16010085 crossref_primary_10_3390_su16051870 crossref_primary_10_1016_j_jenvman_2022_116032 crossref_primary_10_1016_j_uclim_2024_102052 crossref_primary_10_1016_j_jclepro_2023_138151 crossref_primary_10_1016_j_compenvurbsys_2024_102214 crossref_primary_10_1038_s43247_024_01991_7 crossref_primary_10_1016_j_jclepro_2020_122547 crossref_primary_10_1016_j_scitotenv_2023_161873 crossref_primary_10_1016_j_jhazmat_2022_130173 crossref_primary_10_1016_j_cities_2022_104181 crossref_primary_10_3390_ijerph20054023 crossref_primary_10_1016_j_jclepro_2022_134947 crossref_primary_10_1016_j_scs_2024_105656 crossref_primary_10_1016_j_ecolind_2024_112700 |
Cites_doi | 10.1016/j.atmosenv.2011.07.040 10.1111/j.1466-822X.2005.00153.x 10.1016/j.apenergy.2015.08.095 10.1016/j.enbuild.2015.02.011 10.1111/j.2041-210x.2012.00253.x 10.1016/j.landurbplan.2008.02.007 10.1016/j.landurbplan.2013.04.009 10.1080/01431160110114493 10.1016/j.apenergy.2017.05.085 10.1016/j.rser.2015.10.140 10.1016/j.rser.2017.06.025 10.1016/j.apenergy.2016.01.105 10.1016/j.enpol.2012.03.070 10.1088/1748-9326/aabb87 10.1007/s10980-015-0288-z 10.1016/j.apenergy.2016.10.052 10.1023/B:LAND.0000021711.40074.ae 10.1007/s10109-006-0028-7 10.1016/j.landurbplan.2013.10.002 10.1111/j.1461-0248.2009.01387.x 10.1016/j.enpol.2013.10.072 10.1016/0304-3800(88)90055-5 10.1007/s10980-015-0248-7 10.1016/j.enpol.2009.08.021 10.1016/j.apgeog.2010.06.003 10.1029/2012GL053087 10.1016/j.apenergy.2012.05.038 10.1007/s10980-005-0063-7 10.1126/science.aac8033 10.1016/j.apgeog.2017.03.007 10.1016/j.ecolmodel.2017.03.002 10.2307/2389612 10.1016/j.enpol.2017.03.072 10.1016/j.envres.2012.11.003 10.1023/A:1020512723753 10.1023/B:LAND.0000021724.60785.65 10.1016/j.rse.2017.06.039 10.1016/j.envpol.2015.07.007 10.1016/j.jclepro.2016.08.155 10.1016/j.apenergy.2014.09.059 10.1016/j.ecolind.2015.12.022 10.1007/s11270-012-1189-2 10.1016/j.ecolind.2016.04.022 10.1016/j.ecolind.2016.02.052 10.1016/j.envpol.2016.06.004 10.1016/j.ecoinf.2014.02.004 10.1016/j.apenergy.2015.11.055 10.1007/s10980-016-0400-z 10.1177/0894439307298925 10.1016/j.enpol.2014.01.024 10.1007/s10980-013-9943-4 10.1080/13658810802443457 10.1007/BF00125351 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jclepro.2019.118659 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_jclepro_2019_118659 S0959652619335292 |
GroupedDBID | --K --M ..I .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AATTM AAXKI AAXUO AAYWO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE J1W JARJE K-O KCYFY KOM LY9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SEN SES SPC SPCBC SSH SSJ SSR SSZ T5K ~G- 29K AAQXK AAYXX ABFNM ABWVN ABXDB ACRPL ADHUB ADMUD ADNMO AEGFY AFJKZ AGQPQ AIGII ASPBG AVWKF AZFZN CITATION D-I FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW WUQ ZY4 7S9 L.6 |
ID | FETCH-LOGICAL-c342t-c488dfac7d347afcc84584db56498a363a8f8ea98b1151a6d03156690c12038b3 |
IEDL.DBID | .~1 |
ISSN | 0959-6526 |
IngestDate | Fri Aug 22 20:19:49 EDT 2025 Thu Jul 03 08:40:47 EDT 2025 Thu Apr 24 22:52:18 EDT 2025 Sat Jul 19 17:11:48 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Spatial analysis Fossil fuel CO2 emission Aggregation effect Spatial resolution Urban functional landscape |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-c488dfac7d347afcc84584db56498a363a8f8ea98b1151a6d03156690c12038b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2335133423 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2335133423 crossref_citationtrail_10_1016_j_jclepro_2019_118659 crossref_primary_10_1016_j_jclepro_2019_118659 elsevier_sciencedirect_doi_10_1016_j_jclepro_2019_118659 |
PublicationCentury | 2000 |
PublicationDate | 2020-01-20 |
PublicationDateYYYYMMDD | 2020-01-20 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | Journal of cleaner production |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Saura (bib48) 2004; 19 Girvetz, Thorne, Berry, Jaeger (bib20) 2008; 86 Christen, Coops, Crawford, Kellett, Liss, Olchovski (bib11) 2011; 45 Wang, Yin, Zhang, Zhang (bib62) 2012; 100 Argañaraz, Entraigas (bib2) 2014; 22 Liu, Sweeney (bib34) 2012; 46 Ahiablame, Engel, Chaubey (bib1) 2012; 223 Cahill, Mulligan (bib8) 2007; 25 Frazier (bib17) 2016; 31 Raupach, Rayner, Paget (bib45) 2010; 38 Ou, Liu, Li, Chen (bib40) 2013; 28 Wang, Li, Christakos, Liao, Zhang, Gu (bib53) 2010; 24 Ren, Deng, Zuo, Song, Liao, Xu (bib46) 2016; 216 Li, Li, Wu, Cheng (bib31) 2015; 206 Fang, Wang, Li (bib16) 2015; 158 Gao, Li (bib18) 2011; 31 Gong, Yu, Joesting, Chen (bib21) 2013; 117 Li, Li, Wu, Cheng (bib32) 2017; 82 Lin, Sun, Li, Zhao, Zhang, Ge (bib33) 2016; 46 Graf, Bollmann, Suter, Bugmann (bib22) 2005; 20 Luck, Wu (bib35) 2002; 17 Creutzig, Jochem, Edelenbosch, Mattauch, DPv, McCollum (bib12) 2015; 350 Cai, Huang, Song (bib10) 2017; 202 Plotnick, Gardner, Oneill (bib42) 1993; 8 Lee, Lee (bib30) 2014; 68 Wiens (bib63) 1989; 3 Dale, Jager, Gardner, Rosen (bib14) 1988; 42 Wang, Ni, Tenhunen (bib55) 2005; 14 Zhang, Yu, Chen (bib68) 2017; 107 Bradter, Kunin, Altringham, Thom, Benton (bib6) 2013; 4 Wang, Li, Kubota, Han, Zhu, Lu (bib61) 2016; 168 Nordbo, Järvi, Haapanala, Wood, Vesala (bib39) 2012; 39 Wu, Jones, Li, Loucks (bib64) 2006 Shi, Chen, Yu, Xu, Chen, Liu (bib49) 2016; 168 Fan, Myint (bib15) 2014; 121 Bennett, Peterson, Gordon (bib4) 2009; 12 Wang, Li, Fang (bib70) 2018; 81 Dai, Zuo, Ren (bib13) 2019 Torres, Jaeger, Alonso (bib50) 2016; 31 Hartigan, Wong (bib24) 1979; 28 Hu, Li, Wang, Jia, Liao, Lai (bib26) 2012; 7 Wang, Fang, Guan, Pang, Ma (bib56) 2014; 136 Zhou, Xiao, Liu, Li (bib69) 2016; 64 Hamil, Iannone, Huang, Fei, Zhang (bib23) 2016; 31 Qiu, Carpenter, Booth, Motew, Zipper, Kucharik (bib43) 2018; 13 Wang, Zhang, Fu (bib54) 2016; 67 Wu (bib65) 2004; 19 Owens (bib41) 1986 Saura (bib47) 2002; 23 Brunsdon, Fotheringham, Charlton (bib7) 1998; 47 Bitter, Mulligan, Dall’erba (bib5) 2007; 9 Wang, Zhou, Li, Feng (bib59) 2016; 69 Wang, Liu (bib60) 2017; 200 Ye, He, Song, Li, Zhang, Lin (bib67) 2015; 93 Gately, Hutyra (bib19) 2017; 11 Hu, Waller, Al-Hamdan, Crosson, Estes, Estes (bib27) 2013; 121 Wang, Liu, Zhou, Hu, Ou (bib58) 2017; 185 Wang, Fang, Wang (bib57) 2016; 55 Wakefield, Lyons (bib52) 2010 Cai, Zhang (bib9) 2014; 66 He, Xu, Shen, Long, Chen (bib25) 2017; 140 Xia, Zhang, Sun, Li (bib66) 2017; 355 Lin (10.1016/j.jclepro.2019.118659_bib33) 2016; 46 Li (10.1016/j.jclepro.2019.118659_bib31) 2015; 206 Wang (10.1016/j.jclepro.2019.118659_bib58) 2017; 185 Creutzig (10.1016/j.jclepro.2019.118659_bib12) 2015; 350 Fan (10.1016/j.jclepro.2019.118659_bib15) 2014; 121 Hu (10.1016/j.jclepro.2019.118659_bib27) 2013; 121 Argañaraz (10.1016/j.jclepro.2019.118659_bib2) 2014; 22 Frazier (10.1016/j.jclepro.2019.118659_bib17) 2016; 31 Zhou (10.1016/j.jclepro.2019.118659_bib69) 2016; 64 Bennett (10.1016/j.jclepro.2019.118659_bib4) 2009; 12 He (10.1016/j.jclepro.2019.118659_bib25) 2017; 140 Qiu (10.1016/j.jclepro.2019.118659_bib43) 2018; 13 Ren (10.1016/j.jclepro.2019.118659_bib46) 2016; 216 Fang (10.1016/j.jclepro.2019.118659_bib16) 2015; 158 Wang (10.1016/j.jclepro.2019.118659_bib59) 2016; 69 Wang (10.1016/j.jclepro.2019.118659_bib57) 2016; 55 Cai (10.1016/j.jclepro.2019.118659_bib10) 2017; 202 Shi (10.1016/j.jclepro.2019.118659_bib49) 2016; 168 Hamil (10.1016/j.jclepro.2019.118659_bib23) 2016; 31 Dale (10.1016/j.jclepro.2019.118659_bib14) 1988; 42 Luck (10.1016/j.jclepro.2019.118659_bib35) 2002; 17 Wang (10.1016/j.jclepro.2019.118659_bib60) 2017; 200 Ou (10.1016/j.jclepro.2019.118659_bib40) 2013; 28 Xia (10.1016/j.jclepro.2019.118659_bib66) 2017; 355 Wakefield (10.1016/j.jclepro.2019.118659_bib52) 2010 Wiens (10.1016/j.jclepro.2019.118659_bib63) 1989; 3 Cai (10.1016/j.jclepro.2019.118659_bib9) 2014; 66 Li (10.1016/j.jclepro.2019.118659_bib32) 2017; 82 Wang (10.1016/j.jclepro.2019.118659_bib70) 2018; 81 Zhang (10.1016/j.jclepro.2019.118659_bib68) 2017; 107 Girvetz (10.1016/j.jclepro.2019.118659_bib20) 2008; 86 Saura (10.1016/j.jclepro.2019.118659_bib48) 2004; 19 Wang (10.1016/j.jclepro.2019.118659_bib56) 2014; 136 Ahiablame (10.1016/j.jclepro.2019.118659_bib1) 2012; 223 Raupach (10.1016/j.jclepro.2019.118659_bib45) 2010; 38 Dai (10.1016/j.jclepro.2019.118659_bib13) 2019 Christen (10.1016/j.jclepro.2019.118659_bib11) 2011; 45 Graf (10.1016/j.jclepro.2019.118659_bib22) 2005; 20 Nordbo (10.1016/j.jclepro.2019.118659_bib39) 2012; 39 Wang (10.1016/j.jclepro.2019.118659_bib54) 2016; 67 Bradter (10.1016/j.jclepro.2019.118659_bib6) 2013; 4 Wang (10.1016/j.jclepro.2019.118659_bib53) 2010; 24 Wang (10.1016/j.jclepro.2019.118659_bib62) 2012; 100 Gao (10.1016/j.jclepro.2019.118659_bib18) 2011; 31 Liu (10.1016/j.jclepro.2019.118659_bib34) 2012; 46 Wang (10.1016/j.jclepro.2019.118659_bib61) 2016; 168 Wu (10.1016/j.jclepro.2019.118659_bib64) 2006 Ye (10.1016/j.jclepro.2019.118659_bib67) 2015; 93 Hu (10.1016/j.jclepro.2019.118659_bib26) 2012; 7 Hartigan (10.1016/j.jclepro.2019.118659_bib24) 1979; 28 Gong (10.1016/j.jclepro.2019.118659_bib21) 2013; 117 Saura (10.1016/j.jclepro.2019.118659_bib47) 2002; 23 Brunsdon (10.1016/j.jclepro.2019.118659_bib7) 1998; 47 Plotnick (10.1016/j.jclepro.2019.118659_bib42) 1993; 8 Lee (10.1016/j.jclepro.2019.118659_bib30) 2014; 68 Cahill (10.1016/j.jclepro.2019.118659_bib8) 2007; 25 Gately (10.1016/j.jclepro.2019.118659_bib19) 2017; 11 Torres (10.1016/j.jclepro.2019.118659_bib50) 2016; 31 Wang (10.1016/j.jclepro.2019.118659_bib55) 2005; 14 Wu (10.1016/j.jclepro.2019.118659_bib65) 2004; 19 Owens (10.1016/j.jclepro.2019.118659_bib41) 1986 Bitter (10.1016/j.jclepro.2019.118659_bib5) 2007; 9 |
References_xml | – volume: 19 start-page: 197 year: 2004 end-page: 209 ident: bib48 article-title: Effects of remote sensor spatial resolution and data aggregation on selected fragmentation indices publication-title: Landsc. Ecol. – volume: 350 start-page: 911 year: 2015 end-page: 912 ident: bib12 article-title: Transport: a roadblock to climate change mitigation? publication-title: Science – volume: 93 start-page: 90 year: 2015 end-page: 98 ident: bib67 article-title: A sustainable urban form: the challenges of compactness from the viewpoint of energy consumption and carbon emission publication-title: Energy Build. – volume: 168 start-page: 375 year: 2016 end-page: 380 ident: bib61 article-title: Does urbanization lead to more carbon emission? Evidence from a panel of BRICS countries publication-title: Appl. Energy – volume: 185 start-page: 189 year: 2017 end-page: 200 ident: bib58 article-title: Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO publication-title: Appl. Energy – volume: 121 start-page: 1 year: 2013 end-page: 10 ident: bib27 article-title: Estimating ground-level PM publication-title: Environ. Res. – volume: 86 start-page: 205 year: 2008 end-page: 218 ident: bib20 article-title: Integration of landscape fragmentation analysis into regional planning: a statewide multi-scale case study from California, USA publication-title: Landsc. Urban Plan. – volume: 4 start-page: 167 year: 2013 end-page: 174 ident: bib6 article-title: Identifying appropriate spatial scales of predictors in species distribution models with the random forest algorithm publication-title: Methods Evol. Ecol. – volume: 7 year: 2012 ident: bib26 article-title: Determinants of the incidence of hand, foot and mouth disease in China using geographically weighted regression models publication-title: PLoS One – volume: 68 start-page: 534 year: 2014 end-page: 549 ident: bib30 article-title: The influence of urban form on GHG emissions in the U.S. household sector publication-title: Energy Policy – volume: 158 start-page: 519 year: 2015 end-page: 531 ident: bib16 article-title: Changing urban forms and carbon dioxide emissions in China: a case study of 30 provincial capital cities publication-title: Appl. Energy – volume: 55 start-page: 505 year: 2016 end-page: 515 ident: bib57 article-title: Spatiotemporal variations of energy-related CO publication-title: Renew. Sustain. Energy Rev. – volume: 223 start-page: 4253 year: 2012 end-page: 4273 ident: bib1 article-title: Effectiveness of low impact development practices: literature review and suggestions for future research publication-title: Water Air Soil Pollut. – volume: 69 start-page: 184 year: 2016 end-page: 195 ident: bib59 article-title: CO2, economic growth, and energy consumption in China’s provinces: investigating the spatiotemporal and econometric characteristics of China’s CO publication-title: Ecol. Indicat. – volume: 100 start-page: 277 year: 2012 end-page: 284 ident: bib62 article-title: An empirical research on the influencing factors of regional CO publication-title: Appl. Energy – volume: 24 start-page: 107 year: 2010 end-page: 127 ident: bib53 article-title: Geographical Detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China publication-title: Int. J. Geogr. Inf. Sci. – volume: 136 start-page: 738 year: 2014 end-page: 749 ident: bib56 article-title: Urbanisation, energy consumption, and carbon dioxide emissions in China: a panel data analysis of China’s provinces publication-title: Appl. Energy – start-page: 537 year: 2010 end-page: 554 ident: bib52 article-title: Spatial aggregation and the ecological fallacy publication-title: Handbook of Spatial Statistics – volume: 31 start-page: 351 year: 2016 end-page: 363 ident: bib17 article-title: Surface metrics: scaling relationships and downscaling behavior publication-title: Landsc. Ecol. – volume: 17 start-page: 327 year: 2002 end-page: 339 ident: bib35 article-title: A gradient analysis of urban landscape pattern: a case study from the Phoenix metropolitan region, Arizona, USA publication-title: Landsc. Ecol. – year: 2019 ident: bib13 article-title: A Spatial Database of CO – volume: 107 start-page: 678 year: 2017 end-page: 687 ident: bib68 article-title: How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis publication-title: Energy Policy – volume: 25 start-page: 174 year: 2007 end-page: 193 ident: bib8 article-title: Using geographically weighted regression to explore local crime patterns publication-title: Soc. Sci. Comput. Rev. – volume: 42 start-page: 165 year: 1988 end-page: 178 ident: bib14 article-title: Using sensitivity and uncertainty analyses to improve predictions of broad-scale forest development publication-title: Ecol. Model. – volume: 23 start-page: 4853 year: 2002 end-page: 4880 ident: bib47 article-title: Effects of minimum mapping unit on land cover data spatial configuration and composition publication-title: Int. J. Remote Sens. – volume: 38 start-page: 4756 year: 2010 end-page: 4764 ident: bib45 article-title: Regional variations in spatial structure of nightlights, population density and fossil-fuel CO publication-title: Energy Policy – volume: 168 start-page: 523 year: 2016 end-page: 533 ident: bib49 article-title: Modeling spatiotemporal CO publication-title: Appl. Energy – volume: 66 start-page: 557 year: 2014 end-page: 567 ident: bib9 article-title: Urban CO2 emissions in China: spatial boundary and performance comparison publication-title: Energy Policy – volume: 82 start-page: 101 year: 2017 end-page: 114 ident: bib32 article-title: Exploring spatially varying and scale-dependent relationships between soil contamination and landscape patterns using geographically weighted regression publication-title: Appl. Geogr. – volume: 31 start-page: 292 year: 2011 end-page: 302 ident: bib18 article-title: Detecting spatially non-stationary and scale-dependent relationships between urban landscape fragmentation and related factors using Geographically Weighted Regression publication-title: Appl. Geogr. – volume: 46 start-page: 359 year: 2012 end-page: 369 ident: bib34 article-title: Modelling the impact of urban form on household energy demand and related CO publication-title: Energy Policy – volume: 31 start-page: 2291 year: 2016 end-page: 2305 ident: bib50 article-title: Multi-scale mismatches between urban sprawl and landscape fragmentation create windows of opportunity for conservation development publication-title: Landsc. Ecol. – volume: 206 start-page: 264 year: 2015 end-page: 274 ident: bib31 article-title: Effects of landscape heterogeneity on the elevated trace metal concentrations in agricultural soils at multiple scales in the Pearl River Delta, South China publication-title: Environ. Pollut. – volume: 45 start-page: 6057 year: 2011 end-page: 6069 ident: bib11 article-title: Validation of modeled carbon-dioxide emissions from an urban neighborhood with direct eddy-covariance measurements publication-title: Atmos. Environ. – volume: 14 start-page: 379 year: 2005 end-page: 393 ident: bib55 article-title: Application of a geographically-weighted regression analysis to estimate net primary production of Chinese forest ecosystems publication-title: Glob. Ecol. Biogeogr. – volume: 3 start-page: 385 year: 1989 end-page: 397 ident: bib63 article-title: Spatial scaling in ecology publication-title: Funct. Ecol. – year: 1986 ident: bib41 article-title: Energy, Planning and Urban Form – volume: 9 start-page: 7 year: 2007 end-page: 27 ident: bib5 article-title: Incorporating spatial variation in housing attribute prices: a comparison of geographically weighted regression and the spatial expansion method publication-title: J. Geogr. Syst. – volume: 28 start-page: 1889 year: 2013 end-page: 1907 ident: bib40 article-title: Quantifying the relationship between urban forms and carbon emissions using panel data analysis publication-title: Landsc. Ecol. – volume: 12 start-page: 1394 year: 2009 end-page: 1404 ident: bib4 article-title: Understanding relationships among multiple ecosystem services publication-title: Ecol. Lett. – volume: 67 start-page: 250 year: 2016 end-page: 256 ident: bib54 article-title: A measure of spatial stratified heterogeneity publication-title: Ecol. Indicat. – volume: 355 start-page: 105 year: 2017 end-page: 115 ident: bib66 article-title: Analyzing the spatial pattern of carbon metabolism and its response to change of urban form publication-title: Ecol. Model. – volume: 200 start-page: 204 year: 2017 end-page: 214 ident: bib60 article-title: China’s city-level energy-related CO2 emissions: spatiotemporal patterns and driving forces publication-title: Appl. Energy – volume: 47 start-page: 431 year: 1998 end-page: 443 ident: bib7 article-title: Geographically weighted regression—modelling spatial non-stationarity publication-title: J. R. Stat. Soc. - Ser. D Statistician – volume: 8 start-page: 201 year: 1993 end-page: 211 ident: bib42 article-title: Lacunarity indexes as measures of landscape texture publication-title: Landsc. Ecol. – volume: 11 start-page: 242 year: 2017 end-page: 260 ident: bib19 article-title: Large uncertainties in urban-scale carbon emissions publication-title: J. Geophys. Res.: Atmospheres – volume: 19 start-page: 125 year: 2004 end-page: 138 ident: bib65 article-title: Effects of changing scale on landscape pattern analysis: scaling relations publication-title: Landsc. Ecol. – volume: 22 start-page: 1 year: 2014 end-page: 12 ident: bib2 article-title: Scaling functions evaluation for estimation of landscape metrics at higher resolutions publication-title: Ecol. Inf. – volume: 64 start-page: 158 year: 2016 end-page: 170 ident: bib69 article-title: A weighted aggregation and closeness approach to measuring the compactness of landscape with multiple parts publication-title: Ecol. Indicat. – volume: 20 start-page: 703 year: 2005 end-page: 717 ident: bib22 article-title: The importance of spatial scale in habitat models: capercaillie in the Swiss Alps publication-title: Landsc. Ecol. – volume: 216 start-page: 519 year: 2016 end-page: 529 ident: bib46 article-title: Quantifying the influences of various ecological factors on land surface temperature of urban forests publication-title: Environ. Pollut. – volume: 39 year: 2012 ident: bib39 article-title: Fraction of natural area as main predictor of net CO2 emissions from cities publication-title: Geophys. Res. Lett. – volume: 13 year: 2018 ident: bib43 article-title: Understanding relationships among ecosystem services across spatial scales and over time publication-title: Environ. Res. Lett. – volume: 28 start-page: 100 year: 1979 end-page: 108 ident: bib24 article-title: Algorithm as 136: a K-means clustering algorithm publication-title: J. R. Stat. Soc. Ser. C Appl. Stat. – volume: 140 start-page: 1719 year: 2017 end-page: 1730 ident: bib25 article-title: Impact of urbanization on energy related CO2 emission at different development levels: regional difference in China based on panel estimation publication-title: J. Clean. Prod. – volume: 31 start-page: 7 year: 2016 end-page: 18 ident: bib23 article-title: Cross-scale contradictions in ecological relationships publication-title: Landsc. Ecol. – volume: 46 start-page: 22 year: 2016 end-page: 30 ident: bib33 article-title: Spatial pattern of urban functional landscapes along an urban–rural gradient: a case study in Xiamen City, China publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 81 start-page: 2144 year: 2018 end-page: 2159 ident: bib70 article-title: Urbanization, economic growth, energy consumption, and CO2 emissions: Empirical evidence from countries with different income levels. publication-title: Renew. Sust. Energ. Rev. – volume: 202 start-page: 210 year: 2017 end-page: 221 ident: bib10 article-title: Using multi-source geospatial big data to identify the structure of polycentric cities publication-title: Remote Sens. Environ. – volume: 121 start-page: 117 year: 2014 end-page: 128 ident: bib15 article-title: A comparison of spatial autocorrelation indices and landscape metrics in measuring urban landscape fragmentation publication-title: Landsc. Urban Plan. – volume: 117 start-page: 57 year: 2013 end-page: 65 ident: bib21 article-title: Determining socioeconomic drivers of urban forest fragmentation with historical remote sensing images publication-title: Landsc. Urban Plan. – year: 2006 ident: bib64 article-title: Scaling and Uncertainty Analysis in Ecology – volume: 45 start-page: 6057 year: 2011 ident: 10.1016/j.jclepro.2019.118659_bib11 article-title: Validation of modeled carbon-dioxide emissions from an urban neighborhood with direct eddy-covariance measurements publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2011.07.040 – volume: 14 start-page: 379 year: 2005 ident: 10.1016/j.jclepro.2019.118659_bib55 article-title: Application of a geographically-weighted regression analysis to estimate net primary production of Chinese forest ecosystems publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/j.1466-822X.2005.00153.x – volume: 158 start-page: 519 year: 2015 ident: 10.1016/j.jclepro.2019.118659_bib16 article-title: Changing urban forms and carbon dioxide emissions in China: a case study of 30 provincial capital cities publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.08.095 – volume: 93 start-page: 90 year: 2015 ident: 10.1016/j.jclepro.2019.118659_bib67 article-title: A sustainable urban form: the challenges of compactness from the viewpoint of energy consumption and carbon emission publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.02.011 – volume: 4 start-page: 167 year: 2013 ident: 10.1016/j.jclepro.2019.118659_bib6 article-title: Identifying appropriate spatial scales of predictors in species distribution models with the random forest algorithm publication-title: Methods Evol. Ecol. doi: 10.1111/j.2041-210x.2012.00253.x – volume: 86 start-page: 205 year: 2008 ident: 10.1016/j.jclepro.2019.118659_bib20 article-title: Integration of landscape fragmentation analysis into regional planning: a statewide multi-scale case study from California, USA publication-title: Landsc. Urban Plan. doi: 10.1016/j.landurbplan.2008.02.007 – volume: 117 start-page: 57 year: 2013 ident: 10.1016/j.jclepro.2019.118659_bib21 article-title: Determining socioeconomic drivers of urban forest fragmentation with historical remote sensing images publication-title: Landsc. Urban Plan. doi: 10.1016/j.landurbplan.2013.04.009 – volume: 23 start-page: 4853 year: 2002 ident: 10.1016/j.jclepro.2019.118659_bib47 article-title: Effects of minimum mapping unit on land cover data spatial configuration and composition publication-title: Int. J. Remote Sens. doi: 10.1080/01431160110114493 – volume: 200 start-page: 204 year: 2017 ident: 10.1016/j.jclepro.2019.118659_bib60 article-title: China’s city-level energy-related CO2 emissions: spatiotemporal patterns and driving forces publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.05.085 – volume: 55 start-page: 505 year: 2016 ident: 10.1016/j.jclepro.2019.118659_bib57 article-title: Spatiotemporal variations of energy-related CO2 emissions in China and its influencing factors: an empirical analysis based on provincial panel data publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.10.140 – volume: 81 start-page: 2144 year: 2018 ident: 10.1016/j.jclepro.2019.118659_bib70 article-title: Urbanization, economic growth, energy consumption, and CO2 emissions: Empirical evidence from countries with different income levels. publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2017.06.025 – volume: 168 start-page: 375 year: 2016 ident: 10.1016/j.jclepro.2019.118659_bib61 article-title: Does urbanization lead to more carbon emission? Evidence from a panel of BRICS countries publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.01.105 – volume: 46 start-page: 359 year: 2012 ident: 10.1016/j.jclepro.2019.118659_bib34 article-title: Modelling the impact of urban form on household energy demand and related CO2 emissions in the Greater Dublin Region publication-title: Energy Policy doi: 10.1016/j.enpol.2012.03.070 – volume: 11 start-page: 242 year: 2017 ident: 10.1016/j.jclepro.2019.118659_bib19 article-title: Large uncertainties in urban-scale carbon emissions publication-title: J. Geophys. Res.: Atmospheres – volume: 13 year: 2018 ident: 10.1016/j.jclepro.2019.118659_bib43 article-title: Understanding relationships among ecosystem services across spatial scales and over time publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aabb87 – volume: 31 start-page: 7 year: 2016 ident: 10.1016/j.jclepro.2019.118659_bib23 article-title: Cross-scale contradictions in ecological relationships publication-title: Landsc. Ecol. doi: 10.1007/s10980-015-0288-z – volume: 185 start-page: 189 year: 2017 ident: 10.1016/j.jclepro.2019.118659_bib58 article-title: Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.10.052 – year: 2006 ident: 10.1016/j.jclepro.2019.118659_bib64 – volume: 19 start-page: 125 year: 2004 ident: 10.1016/j.jclepro.2019.118659_bib65 article-title: Effects of changing scale on landscape pattern analysis: scaling relations publication-title: Landsc. Ecol. doi: 10.1023/B:LAND.0000021711.40074.ae – volume: 9 start-page: 7 year: 2007 ident: 10.1016/j.jclepro.2019.118659_bib5 article-title: Incorporating spatial variation in housing attribute prices: a comparison of geographically weighted regression and the spatial expansion method publication-title: J. Geogr. Syst. doi: 10.1007/s10109-006-0028-7 – volume: 121 start-page: 117 year: 2014 ident: 10.1016/j.jclepro.2019.118659_bib15 article-title: A comparison of spatial autocorrelation indices and landscape metrics in measuring urban landscape fragmentation publication-title: Landsc. Urban Plan. doi: 10.1016/j.landurbplan.2013.10.002 – volume: 12 start-page: 1394 year: 2009 ident: 10.1016/j.jclepro.2019.118659_bib4 article-title: Understanding relationships among multiple ecosystem services publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2009.01387.x – volume: 66 start-page: 557 year: 2014 ident: 10.1016/j.jclepro.2019.118659_bib9 article-title: Urban CO2 emissions in China: spatial boundary and performance comparison publication-title: Energy Policy doi: 10.1016/j.enpol.2013.10.072 – volume: 42 start-page: 165 year: 1988 ident: 10.1016/j.jclepro.2019.118659_bib14 article-title: Using sensitivity and uncertainty analyses to improve predictions of broad-scale forest development publication-title: Ecol. Model. doi: 10.1016/0304-3800(88)90055-5 – volume: 31 start-page: 351 year: 2016 ident: 10.1016/j.jclepro.2019.118659_bib17 article-title: Surface metrics: scaling relationships and downscaling behavior publication-title: Landsc. Ecol. doi: 10.1007/s10980-015-0248-7 – volume: 38 start-page: 4756 year: 2010 ident: 10.1016/j.jclepro.2019.118659_bib45 article-title: Regional variations in spatial structure of nightlights, population density and fossil-fuel CO2 emissions publication-title: Energy Policy doi: 10.1016/j.enpol.2009.08.021 – volume: 31 start-page: 292 year: 2011 ident: 10.1016/j.jclepro.2019.118659_bib18 article-title: Detecting spatially non-stationary and scale-dependent relationships between urban landscape fragmentation and related factors using Geographically Weighted Regression publication-title: Appl. Geogr. doi: 10.1016/j.apgeog.2010.06.003 – volume: 39 year: 2012 ident: 10.1016/j.jclepro.2019.118659_bib39 article-title: Fraction of natural area as main predictor of net CO2 emissions from cities publication-title: Geophys. Res. Lett. doi: 10.1029/2012GL053087 – volume: 100 start-page: 277 year: 2012 ident: 10.1016/j.jclepro.2019.118659_bib62 article-title: An empirical research on the influencing factors of regional CO2 emissions: evidence from Beijing city, China publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.05.038 – volume: 47 start-page: 431 year: 1998 ident: 10.1016/j.jclepro.2019.118659_bib7 article-title: Geographically weighted regression—modelling spatial non-stationarity publication-title: J. R. Stat. Soc. - Ser. D Statistician – volume: 20 start-page: 703 year: 2005 ident: 10.1016/j.jclepro.2019.118659_bib22 article-title: The importance of spatial scale in habitat models: capercaillie in the Swiss Alps publication-title: Landsc. Ecol. doi: 10.1007/s10980-005-0063-7 – volume: 350 start-page: 911 year: 2015 ident: 10.1016/j.jclepro.2019.118659_bib12 article-title: Transport: a roadblock to climate change mitigation? publication-title: Science doi: 10.1126/science.aac8033 – volume: 82 start-page: 101 year: 2017 ident: 10.1016/j.jclepro.2019.118659_bib32 article-title: Exploring spatially varying and scale-dependent relationships between soil contamination and landscape patterns using geographically weighted regression publication-title: Appl. Geogr. doi: 10.1016/j.apgeog.2017.03.007 – volume: 355 start-page: 105 year: 2017 ident: 10.1016/j.jclepro.2019.118659_bib66 article-title: Analyzing the spatial pattern of carbon metabolism and its response to change of urban form publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2017.03.002 – volume: 3 start-page: 385 year: 1989 ident: 10.1016/j.jclepro.2019.118659_bib63 article-title: Spatial scaling in ecology publication-title: Funct. Ecol. doi: 10.2307/2389612 – volume: 107 start-page: 678 year: 2017 ident: 10.1016/j.jclepro.2019.118659_bib68 article-title: How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis publication-title: Energy Policy doi: 10.1016/j.enpol.2017.03.072 – volume: 121 start-page: 1 year: 2013 ident: 10.1016/j.jclepro.2019.118659_bib27 article-title: Estimating ground-level PM2.5 concentrations in the southeastern US using Geographically Weighted Regression publication-title: Environ. Res. doi: 10.1016/j.envres.2012.11.003 – year: 1986 ident: 10.1016/j.jclepro.2019.118659_bib41 – volume: 17 start-page: 327 year: 2002 ident: 10.1016/j.jclepro.2019.118659_bib35 article-title: A gradient analysis of urban landscape pattern: a case study from the Phoenix metropolitan region, Arizona, USA publication-title: Landsc. Ecol. doi: 10.1023/A:1020512723753 – volume: 19 start-page: 197 year: 2004 ident: 10.1016/j.jclepro.2019.118659_bib48 article-title: Effects of remote sensor spatial resolution and data aggregation on selected fragmentation indices publication-title: Landsc. Ecol. doi: 10.1023/B:LAND.0000021724.60785.65 – volume: 202 start-page: 210 year: 2017 ident: 10.1016/j.jclepro.2019.118659_bib10 article-title: Using multi-source geospatial big data to identify the structure of polycentric cities publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.039 – volume: 206 start-page: 264 year: 2015 ident: 10.1016/j.jclepro.2019.118659_bib31 article-title: Effects of landscape heterogeneity on the elevated trace metal concentrations in agricultural soils at multiple scales in the Pearl River Delta, South China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2015.07.007 – volume: 140 start-page: 1719 year: 2017 ident: 10.1016/j.jclepro.2019.118659_bib25 article-title: Impact of urbanization on energy related CO2 emission at different development levels: regional difference in China based on panel estimation publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.08.155 – volume: 136 start-page: 738 year: 2014 ident: 10.1016/j.jclepro.2019.118659_bib56 article-title: Urbanisation, energy consumption, and carbon dioxide emissions in China: a panel data analysis of China’s provinces publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.09.059 – volume: 64 start-page: 158 year: 2016 ident: 10.1016/j.jclepro.2019.118659_bib69 article-title: A weighted aggregation and closeness approach to measuring the compactness of landscape with multiple parts publication-title: Ecol. Indicat. doi: 10.1016/j.ecolind.2015.12.022 – volume: 223 start-page: 4253 year: 2012 ident: 10.1016/j.jclepro.2019.118659_bib1 article-title: Effectiveness of low impact development practices: literature review and suggestions for future research publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-012-1189-2 – volume: 69 start-page: 184 year: 2016 ident: 10.1016/j.jclepro.2019.118659_bib59 article-title: CO2, economic growth, and energy consumption in China’s provinces: investigating the spatiotemporal and econometric characteristics of China’s CO2 emissions publication-title: Ecol. Indicat. doi: 10.1016/j.ecolind.2016.04.022 – volume: 67 start-page: 250 year: 2016 ident: 10.1016/j.jclepro.2019.118659_bib54 article-title: A measure of spatial stratified heterogeneity publication-title: Ecol. Indicat. doi: 10.1016/j.ecolind.2016.02.052 – volume: 28 start-page: 100 issue: 1 year: 1979 ident: 10.1016/j.jclepro.2019.118659_bib24 article-title: Algorithm as 136: a K-means clustering algorithm publication-title: J. R. Stat. Soc. Ser. C Appl. Stat. – volume: 216 start-page: 519 year: 2016 ident: 10.1016/j.jclepro.2019.118659_bib46 article-title: Quantifying the influences of various ecological factors on land surface temperature of urban forests publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.06.004 – volume: 22 start-page: 1 year: 2014 ident: 10.1016/j.jclepro.2019.118659_bib2 article-title: Scaling functions evaluation for estimation of landscape metrics at higher resolutions publication-title: Ecol. Inf. doi: 10.1016/j.ecoinf.2014.02.004 – volume: 168 start-page: 523 year: 2016 ident: 10.1016/j.jclepro.2019.118659_bib49 article-title: Modeling spatiotemporal CO2 (carbon dioxide) emission dynamics in China from DMSP-OLS nighttime stable light data using panel data analysis publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.11.055 – volume: 31 start-page: 2291 year: 2016 ident: 10.1016/j.jclepro.2019.118659_bib50 article-title: Multi-scale mismatches between urban sprawl and landscape fragmentation create windows of opportunity for conservation development publication-title: Landsc. Ecol. doi: 10.1007/s10980-016-0400-z – volume: 46 start-page: 22 year: 2016 ident: 10.1016/j.jclepro.2019.118659_bib33 article-title: Spatial pattern of urban functional landscapes along an urban–rural gradient: a case study in Xiamen City, China publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 7 year: 2012 ident: 10.1016/j.jclepro.2019.118659_bib26 article-title: Determinants of the incidence of hand, foot and mouth disease in China using geographically weighted regression models publication-title: PLoS One – volume: 25 start-page: 174 year: 2007 ident: 10.1016/j.jclepro.2019.118659_bib8 article-title: Using geographically weighted regression to explore local crime patterns publication-title: Soc. Sci. Comput. Rev. doi: 10.1177/0894439307298925 – volume: 68 start-page: 534 year: 2014 ident: 10.1016/j.jclepro.2019.118659_bib30 article-title: The influence of urban form on GHG emissions in the U.S. household sector publication-title: Energy Policy doi: 10.1016/j.enpol.2014.01.024 – volume: 28 start-page: 1889 year: 2013 ident: 10.1016/j.jclepro.2019.118659_bib40 article-title: Quantifying the relationship between urban forms and carbon emissions using panel data analysis publication-title: Landsc. Ecol. doi: 10.1007/s10980-013-9943-4 – volume: 24 start-page: 107 year: 2010 ident: 10.1016/j.jclepro.2019.118659_bib53 article-title: Geographical Detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658810802443457 – year: 2019 ident: 10.1016/j.jclepro.2019.118659_bib13 – start-page: 537 year: 2010 ident: 10.1016/j.jclepro.2019.118659_bib52 article-title: Spatial aggregation and the ecological fallacy – volume: 8 start-page: 201 year: 1993 ident: 10.1016/j.jclepro.2019.118659_bib42 article-title: Lacunarity indexes as measures of landscape texture publication-title: Landsc. Ecol. doi: 10.1007/BF00125351 |
SSID | ssj0017074 |
Score | 2.4566808 |
Snippet | Scientifically delineating the spatial heterogeneity of urban landscape fragmentation in relation to CO2 emissions helps the urban carbon mitigation strategy.... Scientifically delineating the spatial heterogeneity of urban landscape fragmentation in relation to CO₂ emissions helps the urban carbon mitigation strategy.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 118659 |
SubjectTerms | Aggregation effect carbon carbon dioxide Fossil fuel CO2 emission habitat fragmentation landscapes Spatial analysis Spatial resolution spatial variation Urban functional landscape |
Title | More fragmentized urban form more CO2 emissions? A comprehensive relationship from the combination analysis across different scales |
URI | https://dx.doi.org/10.1016/j.jclepro.2019.118659 https://www.proquest.com/docview/2335133423 |
Volume | 244 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaq9gIHRIGqhbYaJK7Z3diO45zQatVqAbUcoFJvlv_S7qrKrrK7Fw6ceBCepU_Wmfy0UCFV4prEluWZfJ4ZfzPD2AeV-pxzKxKqNJLIIMtEuyASWQqd85GOzlNy8tm5ml7Iz5fZ5Rab9LkwRKvssL_F9AatuyfDbjeHy9ls-I0iWCojD4DyhgrCYSlz0vLBz3uaR5qP2krMFO6irx-yeIbzwRwnQ6AihleB4KEVlSz99_n0CKmb4-f0JXvR2Y0wbpe2y7Zi9Yo9_6Oa4Gv262xRRyhre9VQgH7EAJva2QrILgUi1MLkKwdq8EYhstVHGN_-Jkp5Ha9bGjvUPTXuerYEyjwBtA8Bv0H_uXkBtitiArZZP_QNVtawQmnH1Rt2cXryfTJNuiYLiReSrxOPf3Aorc-DkLktvdd0cxpcpmShrVDC6lJHW2iHtmNqVaC2EAp9ap9ylK8Te2y7WlRxnwEPqdKx4CG3mXReOM5DljsKr4jSF9kBk_3WGt9VIKdGGDemp5rNTScRQxIxrUQO2OB-2LItwfHUAN3LzfylSwaPiaeGvu_lbFAadHliq7jYrAxHJUN_Hq3Pt_8__Tv2jJO_PkoRnQ7Z9rrexCM0atbuuNHaY7Yz_vRlen4Hyp76HA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFMtTyPBMbsb23GcA6qqQrWl3XKglXozfoXuCmVXya4QHDjxQ_gP_Qf8MmYSpzyEVAmp1ySOnJnJvPzNDCHPZepyxgxPsNNIIrwoE2U9T0TJVc5GKliHxcmTQzk-Fm9OspM1ctbXwiCsMur-Tqe32jpeGUZqDhfT6fAdZrBkhhEA1g0VLCIr98PnTxC3NS_3XgGTXzC2-_poZ5zE0QKJ44ItEwdy60vjcs9FbkrnFJ4XeptJUSjDJTeqVMEUyoLHlBrpcRiChEjSpQy-ynJ47xVyVYC6wLEJg6_nuJI0H3WtnzG_htv7VTY0nA1msHvQjAgpK0BbKYk9Uv9tEP8yDa29271FbkZHlW53tLhN1kJ1h9z4rX3hXfJtMq8DLWvzocUcfQmermprKoqOMEUEL915yyhOlMOcXLNFt398Rwx7HU473Dyteyze6XRBsdSFgkNK4RkI2Nsb1MSuKdS0-6f9RJclbUC8QnOPHF8K6e-T9WpehQ1CmU-lCgXzucmEddwy5rPcYj6Hl67INonoSatdbHmOkzc-6h7bNtORIxo5ojuObJLB-bJF1_PjogWq55v-Q3g12KWLlj7r-ayBG3haY6owXzWagVSnHBs0Pvj_1z8l18ZHkwN9sHe4_5BcZ5gsGKWgGh-R9WW9Co_Bo1raJ60EU_L-sn-Znz-YNN8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=More+fragmentized+urban+form+more+CO2+emissions%3F+A%C2%A0comprehensive+relationship+from+the+combination+analysis+across+different+scales&rft.jtitle=Journal+of+cleaner+production&rft.au=Zuo%2C+Shudi&rft.au=Dai%2C+Shaoqing&rft.au=Ren%2C+Yin&rft.date=2020-01-20&rft.issn=0959-6526&rft.volume=244&rft.spage=118659&rft_id=info:doi/10.1016%2Fj.jclepro.2019.118659&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jclepro_2019_118659 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon |