Novel pickering high internal phase emulsion gels stabilized solely by soy β-conglycinin
There is fast increasing interest in the development of food-grade high internal phase emulsions (HIPEs). In the work, we reported that native soy β-conglycinin (β-CG; a major 7S globulin in soybeans) could perform as an outstanding Pickering-type stabilizer for oil-in-water HIPEs. The protein conce...
Saved in:
Published in | Food hydrocolloids Vol. 88; pp. 21 - 30 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There is fast increasing interest in the development of food-grade high internal phase emulsions (HIPEs). In the work, we reported that native soy β-conglycinin (β-CG; a major 7S globulin in soybeans) could perform as an outstanding Pickering-type stabilizer for oil-in-water HIPEs. The protein concentration in the continuous phase (c) for the formation of homogenous and gel-like HIPEs could be as low as 0.2 wt%; and increasing the c from 0.2 to 1.0 wt% led to a progressive decrease in droplet size, but a progressive increase in stiffness of the HIPEs. The fabricated HIPEs at low c values (e.g., 0.2–0.5 wt%) were a kind of HIPE gels in essence with a gel network that could not be disrupted by 6 M urea, while the HIPE at c = 1.0 wt% was a highly concentrated emulsion that could be diluted by water. All the HIPEs at c values of 0.2–1.0 wt% were extremely stable against heating (at 100 °C for 15 min), or an elongated storage up to 60 days, but they were very prone to a freeze-thawing treatment. The freeze-thawed HIPEs could be repeatedly recovered back to a similar state to the untreated ones, when subject to another emulsification, indicating an extraordinary temperature-responsiveness. The β-CG molecules suffered a structural dissociation at the quaternary conformational level into separate subunits when adsorbed at the oil-water interface. The dissociated subunits from adsorbed β-CG showed a similar tertiary and secondary conformation to that of native β-CG, confirming the Pickering-nature of these subunits. All the HIPEs exhibited a surface coverage of around 60% in regard to the subunits of β-CG. The findings would be of importance not only for extending the knowledge about the Pickering stabilization of HIPEs by native oligomeric globulins, but also for the development of novel, eco-friendly and sustainable HIPEs for food, cosmetic and medicine formulations.
[Display omitted]
•Native β-conglycinin (β-CG) was demonstrated to be an outstanding Pickering nanostabilizer for HIPEs.•A kind of HIPE gels could be facilely formed at low concentrations (0.2–0.5 wt%).•The HIPEs or HIPE gels exhibited extraordinary stability against heating and storage.•The HIPEs were susceptibile to freeze-thawing, but could be recovered by another homogenization.•Dissociated subunits of β-CG at the interface were the factual stabilizers for the HIPEs. |
---|---|
AbstractList | There is fast increasing interest in the development of food-grade high internal phase emulsions (HIPEs). In the work, we reported that native soy β-conglycinin (β-CG; a major 7S globulin in soybeans) could perform as an outstanding Pickering-type stabilizer for oil-in-water HIPEs. The protein concentration in the continuous phase (c) for the formation of homogenous and gel-like HIPEs could be as low as 0.2 wt%; and increasing the c from 0.2 to 1.0 wt% led to a progressive decrease in droplet size, but a progressive increase in stiffness of the HIPEs. The fabricated HIPEs at low c values (e.g., 0.2–0.5 wt%) were a kind of HIPE gels in essence with a gel network that could not be disrupted by 6 M urea, while the HIPE at c = 1.0 wt% was a highly concentrated emulsion that could be diluted by water. All the HIPEs at c values of 0.2–1.0 wt% were extremely stable against heating (at 100 °C for 15 min), or an elongated storage up to 60 days, but they were very prone to a freeze-thawing treatment. The freeze-thawed HIPEs could be repeatedly recovered back to a similar state to the untreated ones, when subject to another emulsification, indicating an extraordinary temperature-responsiveness. The β-CG molecules suffered a structural dissociation at the quaternary conformational level into separate subunits when adsorbed at the oil-water interface. The dissociated subunits from adsorbed β-CG showed a similar tertiary and secondary conformation to that of native β-CG, confirming the Pickering-nature of these subunits. All the HIPEs exhibited a surface coverage of around 60% in regard to the subunits of β-CG. The findings would be of importance not only for extending the knowledge about the Pickering stabilization of HIPEs by native oligomeric globulins, but also for the development of novel, eco-friendly and sustainable HIPEs for food, cosmetic and medicine formulations. There is fast increasing interest in the development of food-grade high internal phase emulsions (HIPEs). In the work, we reported that native soy β-conglycinin (β-CG; a major 7S globulin in soybeans) could perform as an outstanding Pickering-type stabilizer for oil-in-water HIPEs. The protein concentration in the continuous phase (c) for the formation of homogenous and gel-like HIPEs could be as low as 0.2 wt%; and increasing the c from 0.2 to 1.0 wt% led to a progressive decrease in droplet size, but a progressive increase in stiffness of the HIPEs. The fabricated HIPEs at low c values (e.g., 0.2–0.5 wt%) were a kind of HIPE gels in essence with a gel network that could not be disrupted by 6 M urea, while the HIPE at c = 1.0 wt% was a highly concentrated emulsion that could be diluted by water. All the HIPEs at c values of 0.2–1.0 wt% were extremely stable against heating (at 100 °C for 15 min), or an elongated storage up to 60 days, but they were very prone to a freeze-thawing treatment. The freeze-thawed HIPEs could be repeatedly recovered back to a similar state to the untreated ones, when subject to another emulsification, indicating an extraordinary temperature-responsiveness. The β-CG molecules suffered a structural dissociation at the quaternary conformational level into separate subunits when adsorbed at the oil-water interface. The dissociated subunits from adsorbed β-CG showed a similar tertiary and secondary conformation to that of native β-CG, confirming the Pickering-nature of these subunits. All the HIPEs exhibited a surface coverage of around 60% in regard to the subunits of β-CG. The findings would be of importance not only for extending the knowledge about the Pickering stabilization of HIPEs by native oligomeric globulins, but also for the development of novel, eco-friendly and sustainable HIPEs for food, cosmetic and medicine formulations. [Display omitted] •Native β-conglycinin (β-CG) was demonstrated to be an outstanding Pickering nanostabilizer for HIPEs.•A kind of HIPE gels could be facilely formed at low concentrations (0.2–0.5 wt%).•The HIPEs or HIPE gels exhibited extraordinary stability against heating and storage.•The HIPEs were susceptibile to freeze-thawing, but could be recovered by another homogenization.•Dissociated subunits of β-CG at the interface were the factual stabilizers for the HIPEs. |
Author | Xu, Yan-Teng Liu, Tong-Xun Tang, Chuan-He |
Author_xml | – sequence: 1 givenname: Yan-Teng surname: Xu fullname: Xu, Yan-Teng – sequence: 2 givenname: Tong-Xun surname: Liu fullname: Liu, Tong-Xun email: txliu@scut.edu.cn – sequence: 3 givenname: Chuan-He surname: Tang fullname: Tang, Chuan-He email: chtang@scut.edu.cn |
BookMark | eNqFkM1qGzEQx0VIoHbSRyjo2Mtu9JH9ED2UYpqkENpLCu1JKNKsPY4sudI6sHmsPEieKQr2qRdfZobh_xuG35ychhiAkE-c1Zzx9nJdDzG61eRqwXhfM1UzyU_IjPedrDouu1MyY6LtK8aaPx_IPOc1Y7xjnM_I35_xCTzdon2EhGFJV7hcUQwjpGDKfmUyUNjsfMYY6BJ8pnk0D-jxGRzN0YOf6MNUpom-vlQ2hqWfLAYMF-RsMD7Dx0M_J7-vv98vbqu7Xzc_Ft_uKiuvxFiqtaoZWuiGoVWu_GWVBCMcFz2wxijDRQvctbZTythBgblSTEqupBPW9PKcfN7f3ab4bwd51BvMFrw3AeIua8F71che9KpEm33UpphzgkFvE25MmjRn-l2lXuuDSv2uUjOli8rCffmPsziasRgZk0F_lP66p4s8eEJIOluEYMFhAjtqF_HIhTf_oJge |
CitedBy_id | crossref_primary_10_1016_j_foodhyd_2023_108937 crossref_primary_10_1016_j_foodchem_2024_140829 crossref_primary_10_1016_j_colsurfa_2021_126320 crossref_primary_10_1016_j_foodhyd_2021_106995 crossref_primary_10_1016_j_cocis_2020_03_002 crossref_primary_10_1007_s11483_022_09722_1 crossref_primary_10_1016_j_foodhyd_2019_105254 crossref_primary_10_1016_j_foodhyd_2024_109751 crossref_primary_10_1016_j_fochx_2023_100698 crossref_primary_10_1016_j_foodhyd_2023_109115 crossref_primary_10_1016_j_foodhyd_2023_108820 crossref_primary_10_1002_jsfa_12971 crossref_primary_10_1016_j_fochx_2023_100694 crossref_primary_10_1016_j_foodhyd_2021_106748 crossref_primary_10_1016_j_foodhyd_2020_105811 crossref_primary_10_1016_j_foodchem_2024_142564 crossref_primary_10_1016_j_jfoodeng_2023_111548 crossref_primary_10_1016_j_colsurfa_2021_126797 crossref_primary_10_1016_j_ultsonch_2024_106843 crossref_primary_10_1016_j_foodhyd_2021_107151 crossref_primary_10_1016_j_foodchem_2022_132874 crossref_primary_10_1016_j_tifs_2021_04_054 crossref_primary_10_1016_j_foodres_2025_115878 crossref_primary_10_1111_ijfs_17568 crossref_primary_10_1016_j_foodhyd_2020_106117 crossref_primary_10_1016_j_foodres_2022_111451 crossref_primary_10_1016_j_molliq_2022_119511 crossref_primary_10_1016_j_tifs_2020_05_024 crossref_primary_10_1021_acs_jafc_1c04615 crossref_primary_10_3390_foods12030482 crossref_primary_10_1016_j_colsurfb_2019_110459 crossref_primary_10_1016_j_foodchem_2023_136192 crossref_primary_10_1016_j_foodchem_2021_131939 crossref_primary_10_1016_j_foodhyd_2023_109495 crossref_primary_10_3390_polym14020353 crossref_primary_10_3390_molecules25184188 crossref_primary_10_3390_foods11020229 crossref_primary_10_1016_j_foodhyd_2020_106329 crossref_primary_10_1016_j_cis_2024_103086 crossref_primary_10_1016_j_foodhyd_2021_106884 crossref_primary_10_1016_j_ijbiomac_2021_04_002 crossref_primary_10_1016_j_foodhyd_2019_105285 crossref_primary_10_1016_j_foodres_2023_112467 crossref_primary_10_1016_j_foodres_2024_114703 crossref_primary_10_1016_j_lwt_2022_113091 crossref_primary_10_1016_j_foodhyd_2019_05_038 crossref_primary_10_1002_jsfa_13050 crossref_primary_10_1016_j_jfoodeng_2021_110905 crossref_primary_10_1021_acs_jafc_1c04865 crossref_primary_10_1016_j_foodhyd_2024_110391 crossref_primary_10_1111_1750_3841_15952 crossref_primary_10_1002_aocs_12782 crossref_primary_10_1021_acs_macromol_8b02576 crossref_primary_10_1016_j_jtice_2023_105219 crossref_primary_10_1021_acs_jafc_9b03356 crossref_primary_10_1016_j_colsurfa_2022_128820 crossref_primary_10_1016_j_foodhyd_2020_106151 crossref_primary_10_1016_j_ultsonch_2021_105847 crossref_primary_10_1016_j_ijbiomac_2024_138796 crossref_primary_10_1016_j_ijbiomac_2024_135398 crossref_primary_10_1016_j_jfoodeng_2024_112049 crossref_primary_10_1016_j_cocis_2020_04_004 crossref_primary_10_1016_j_foodhyd_2024_110264 crossref_primary_10_1002_ange_202210050 crossref_primary_10_1016_j_foodres_2023_112458 crossref_primary_10_3389_fnut_2021_795396 crossref_primary_10_1016_j_fochx_2023_100651 crossref_primary_10_1016_j_carbpol_2020_116875 crossref_primary_10_1002_star_202100046 crossref_primary_10_1016_j_jfoodeng_2020_110275 crossref_primary_10_1016_j_foodhyd_2021_106784 crossref_primary_10_1016_j_colsurfa_2021_127688 crossref_primary_10_1007_s10853_020_05261_7 crossref_primary_10_1021_acs_jafc_1c03070 crossref_primary_10_1016_j_ijbiomac_2024_138898 crossref_primary_10_1016_j_foodhyd_2022_108211 crossref_primary_10_1111_1541_4337_70157 crossref_primary_10_1021_acsami_4c03069 crossref_primary_10_1016_j_foodhyd_2023_109607 crossref_primary_10_1007_s00217_021_03827_6 crossref_primary_10_1016_j_carbpol_2024_123117 crossref_primary_10_1016_j_jfoodeng_2023_111458 crossref_primary_10_1080_87559129_2020_1858313 crossref_primary_10_1016_j_partic_2021_07_003 crossref_primary_10_1016_j_foodres_2024_114212 crossref_primary_10_1016_j_ijbiomac_2023_128093 crossref_primary_10_1016_j_ijbiomac_2024_134171 crossref_primary_10_1016_j_foodhyd_2022_108001 crossref_primary_10_1016_j_foodhyd_2023_109059 crossref_primary_10_1111_ijfs_16628 crossref_primary_10_1016_j_foodhyd_2023_108528 crossref_primary_10_1016_j_ijbiomac_2025_140560 crossref_primary_10_1016_j_tifs_2021_03_041 crossref_primary_10_1002_jsfa_13529 crossref_primary_10_1016_j_foodhyd_2019_01_012 crossref_primary_10_1016_j_crfs_2024_100686 crossref_primary_10_1016_j_foodhyd_2023_109185 crossref_primary_10_1016_j_foodhyd_2019_105520 crossref_primary_10_1016_j_colsurfa_2025_136694 crossref_primary_10_1016_j_foodhyd_2020_105968 crossref_primary_10_1016_j_foodchem_2019_125932 crossref_primary_10_1016_j_foodhyd_2021_106679 crossref_primary_10_1016_j_lwt_2022_114114 crossref_primary_10_1016_j_foodchem_2022_134424 crossref_primary_10_1016_j_foodhyd_2020_105664 crossref_primary_10_1002_jsfa_13898 crossref_primary_10_3389_fnut_2021_770218 crossref_primary_10_1016_j_polymer_2021_124108 crossref_primary_10_3390_polym15214272 crossref_primary_10_1016_j_ijbiomac_2024_138192 crossref_primary_10_1016_j_carbpol_2024_122041 crossref_primary_10_1021_acs_jafc_9b04009 crossref_primary_10_1515_ijfe_2021_0367 crossref_primary_10_1016_j_lwt_2023_114638 crossref_primary_10_1016_j_fochx_2023_100609 crossref_primary_10_1111_ijfs_17175 crossref_primary_10_1016_j_fochx_2022_100455 crossref_primary_10_1021_acsami_9b23430 crossref_primary_10_1016_j_foodhyd_2020_105655 crossref_primary_10_1016_j_jcis_2020_07_054 crossref_primary_10_1016_j_molliq_2022_120495 crossref_primary_10_1016_j_foodhyd_2020_105672 crossref_primary_10_1016_j_foodhyd_2020_106083 crossref_primary_10_1039_C9FO02434D crossref_primary_10_1016_j_ijbiomac_2022_12_223 crossref_primary_10_1016_j_ijbiomac_2020_02_175 crossref_primary_10_1016_j_colsurfb_2020_111294 crossref_primary_10_1016_j_foodhyd_2022_108133 crossref_primary_10_1016_j_foodhyd_2019_105307 crossref_primary_10_1021_acsami_0c04121 crossref_primary_10_1111_ijfs_15424 crossref_primary_10_3389_fnut_2022_890188 crossref_primary_10_1111_1750_3841_15414 crossref_primary_10_1016_j_lwt_2021_111340 crossref_primary_10_1016_j_lwt_2021_112554 crossref_primary_10_1016_j_foodhyd_2019_03_035 crossref_primary_10_1016_j_foodhyd_2021_107342 crossref_primary_10_1002_anie_202210050 crossref_primary_10_1021_acs_chemmater_9b04952 crossref_primary_10_1016_j_colsurfa_2021_126866 crossref_primary_10_1021_acs_jafc_4c02232 crossref_primary_10_1016_j_ifset_2022_103029 crossref_primary_10_1021_acs_jafc_3c05653 crossref_primary_10_1016_j_foostr_2022_100290 crossref_primary_10_1016_j_colsurfa_2020_124712 crossref_primary_10_1016_j_foodhyd_2023_109532 crossref_primary_10_1016_j_fochx_2022_100436 crossref_primary_10_1016_j_foodres_2020_109509 crossref_primary_10_1016_j_ijbiomac_2022_11_217 crossref_primary_10_1016_j_tifs_2020_02_008 crossref_primary_10_1021_acs_jafc_1c01877 crossref_primary_10_1016_j_foodhyd_2021_107455 crossref_primary_10_1016_j_foodchem_2023_135824 crossref_primary_10_1016_j_colsurfa_2021_126853 crossref_primary_10_1007_s12034_020_02163_x crossref_primary_10_1016_j_ijbiomac_2024_132971 crossref_primary_10_1016_j_foodhyd_2019_01_050 crossref_primary_10_1016_j_jafr_2023_100604 crossref_primary_10_1016_j_foodhyd_2019_105444 crossref_primary_10_1016_j_colsurfa_2020_125596 crossref_primary_10_1021_acs_jafc_8b03398 crossref_primary_10_1016_j_foodchem_2024_140996 crossref_primary_10_1016_j_foodhyd_2021_106913 crossref_primary_10_1021_acsfoodscitech_2c00031 crossref_primary_10_3390_foods12142706 crossref_primary_10_1016_j_cjche_2022_03_011 crossref_primary_10_1016_j_foodhyd_2022_107646 crossref_primary_10_1016_j_colsurfa_2022_129993 crossref_primary_10_1016_j_fbio_2022_101751 crossref_primary_10_1016_j_foodres_2023_112858 crossref_primary_10_1016_j_tifs_2020_10_016 crossref_primary_10_1016_j_foodres_2023_113386 crossref_primary_10_1016_j_tifs_2020_07_005 crossref_primary_10_1016_j_indcrop_2019_111733 crossref_primary_10_1016_j_foodhyd_2020_106306 crossref_primary_10_1016_j_ijbiomac_2024_129202 crossref_primary_10_1016_j_foodchem_2021_131362 crossref_primary_10_1016_j_foodhyd_2020_106445 crossref_primary_10_1016_j_ijbiomac_2019_12_269 crossref_primary_10_1016_j_ijbiomac_2024_130896 crossref_primary_10_1080_01932691_2020_1724801 crossref_primary_10_1016_j_ijbiomac_2025_139531 crossref_primary_10_1016_j_jfoodeng_2022_111400 crossref_primary_10_3390_foods11111625 crossref_primary_10_1016_j_foodchem_2021_130954 crossref_primary_10_1016_j_foodhyd_2023_108474 crossref_primary_10_1039_D1FO02202D crossref_primary_10_1016_j_foodres_2022_111309 crossref_primary_10_1016_j_ijbiomac_2023_125893 crossref_primary_10_1016_j_foodhyd_2021_106612 crossref_primary_10_1016_j_foodhyd_2021_106731 crossref_primary_10_1002_mame_202000285 crossref_primary_10_1016_j_commatsci_2024_113305 crossref_primary_10_1002_jsfa_11976 crossref_primary_10_1155_2024_8603356 crossref_primary_10_1016_j_lwt_2020_110538 crossref_primary_10_1016_j_lwt_2022_113160 crossref_primary_10_1021_acs_macromol_1c00225 crossref_primary_10_1039_D2SM01481E crossref_primary_10_1111_1541_4337_12570 crossref_primary_10_1016_j_foodhyd_2020_106303 crossref_primary_10_1016_j_lwt_2023_115533 crossref_primary_10_1016_j_foodchem_2021_129163 crossref_primary_10_1016_j_foodhyd_2020_105694 crossref_primary_10_1016_j_jfoodeng_2023_111607 crossref_primary_10_1021_acs_jafc_0c03586 crossref_primary_10_1016_j_foodhyd_2024_110989 crossref_primary_10_1016_j_indcrop_2023_116932 crossref_primary_10_1016_j_jcis_2020_10_093 crossref_primary_10_1002_advs_202408150 crossref_primary_10_1016_j_foodchem_2021_131349 crossref_primary_10_1002_fsn3_3962 crossref_primary_10_1016_j_foodhyd_2021_106839 crossref_primary_10_1016_j_foodhyd_2020_106536 crossref_primary_10_1016_j_ijbiomac_2023_124101 |
Cites_doi | 10.1021/bm5010417 10.1039/c2cc38200h 10.1021/la203384f 10.1021/acs.jafc.8b02183 10.1016/j.tifs.2011.09.006 10.1016/S0924-2244(00)89083-4 10.1002/anie.200902103 10.1016/j.foodhyd.2016.05.028 10.1016/j.progpolymsci.2013.07.003 10.1016/j.cocis.2009.11.001 10.1039/C4SM00179F 10.1080/10408398.2015.1067594 10.1016/j.cocis.2014.11.003 10.1016/j.cis.2003.10.002 10.1016/j.cis.2015.01.008 10.1021/bm301871k 10.1021/la200971f 10.1021/jf403847k 10.1039/C6FO01027J 10.1039/C7TB00145B 10.1007/s11483-014-9386-8 10.1016/S1359-0294(02)00008-0 10.1021/acs.biomac.5b01413 10.1021/acs.iecr.6b00039 10.1016/j.colsurfa.2013.02.054 10.1021/jf300409y 10.1021/la00055a014 10.1039/c3sm51375k 10.1016/j.jcis.2004.03.001 10.1016/j.foodhyd.2016.11.011 10.1016/j.ijbiomac.2006.06.013 10.1002/marc.201200553 10.1016/j.foodhyd.2017.09.005 10.1021/am503341j 10.1039/C4RA02119C 10.1002/anie.200503131 10.1021/jf00018a004 10.1039/C6SM01465H 10.1016/S0963-9969(99)00061-7 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.foodhyd.2018.09.031 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Medicine |
EISSN | 1873-7137 |
EndPage | 30 |
ExternalDocumentID | 10_1016_j_foodhyd_2018_09_031 S0268005X18312360 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLY HVGLF HZ~ IHE J1W KOM M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCE SDF SDG SES SEW SPC SPCBC SSA SSG SSZ T5K UHS UNMZH WH7 Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c342t-c3cc95f6e7ff69d017c93ea2d128e05a9a126e1d6c799acf9ea49033193d2ca83 |
IEDL.DBID | .~1 |
ISSN | 0268-005X |
IngestDate | Fri Jul 11 16:32:52 EDT 2025 Tue Jul 01 02:19:44 EDT 2025 Thu Apr 24 23:08:05 EDT 2025 Fri Feb 23 02:48:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pickering stabilizer High internal phase emulsions (HIPEs) HIPE gels Bridged emulsions Soy β-conglycinin |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-c3cc95f6e7ff69d017c93ea2d128e05a9a126e1d6c799acf9ea49033193d2ca83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2189538289 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2189538289 crossref_primary_10_1016_j_foodhyd_2018_09_031 crossref_citationtrail_10_1016_j_foodhyd_2018_09_031 elsevier_sciencedirect_doi_10_1016_j_foodhyd_2018_09_031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2019 2019-03-00 20190301 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: March 2019 |
PublicationDecade | 2010 |
PublicationTitle | Food hydrocolloids |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Destribats, Rouvet, Gehin-Delval, Schmitt, Binks (bib11) 2014; 10 Horozov, Binks (bib16) 2006; 45 Dickinson (bib12) 2010; 15 Cohen-Addad, Hӧhler (bib8) 2014; 19 Chen, Ballard, Bon (bib4) 2013; 49 Li, Ming, Wang, Ngai (bib22) 2009; 48 Xu, Tang, Liu, Liu (bib40) 2018; 66 Hu, Yin, Zhu, Qi, Guo, Wu (bib17) 2016; 61 Liu, Jin, Chen, Gao, Shi, Cheng (bib23) 2017; 5 Patel, Rodriguez, Lesaffer, Dewettinck (bib30) 2014; 4 Marcone (bib26) 1999; 32 Arditty, Schmitt, Giermanska-Kahn, Leal-Calderon (bib1) 2004; 275 Chevalier, Bolzinger (bib7) 2013; 439 Ridel, Bolzinger, Gilon-Delepine, Dugas, Chevalier (bib32) 2016; 12 Tan, Sun, Lin, Mu, Ngai (bib36) 2014; 6 David, Zagury, Livney (bib9) 2015; 10 Guo, Yang, He, Wu, Wang, Gu (bib15) 2012; 60 Ikem, Menner, Bismarck (bib18) 2009; 121 Li, Xiao, Wang, Ngai (bib25) 2013; 34 Mine (bib27) 1995; 6 Kalashnikova, Bizot, Cathala, Capron (bib19) 2011; 27 Silverstein (bib33) 2014; 39 Dickinson (bib13) 2012; 24 Wijaya, van der Meeren, Wijaya, Patel (bib38) 2017; 8 Binks (bib2) 2002; 7 Chen, Zheng, Xu, Yin, Liu, Tang (bib5) 2018; 75 Utsumi, Matsumura, Mori (bib37) 1997 Nagano, Hirotsuka, Mori, Kohyama, Nishinari (bib29) 1992; 40 Tang (bib34) 2017; 57 Miras, Vílchez, Solans, Tadros, Esquena (bib28) 2013; 9 Dimitrova, Leal-Calderon (bib14) 2004; 108–109 Lee, Chan, Mohraz (bib20) 2012; 28 Perrin, Bizot, Cathala, Capron (bib31) 2014; 15 Tang, Choi, Ma (bib35) 2007; 40 Liu, Ou, Tang (bib24) 2017; 65 Zhang, Xu, Wu, Guo (bib41) 2016; 55 Capron, Cathala (bib3) 2013; 14 Cherhal, Cousin, Capron (bib6) 2016; 17 Delahaije, Gruppen, Giuseppin, Wierenga (bib10) 2015; 219 Liang, Tang (bib21) 2013; 61 Williams (bib39) 1991; 7 Tang (10.1016/j.foodhyd.2018.09.031_bib35) 2007; 40 Silverstein (10.1016/j.foodhyd.2018.09.031_bib33) 2014; 39 Kalashnikova (10.1016/j.foodhyd.2018.09.031_bib19) 2011; 27 Li (10.1016/j.foodhyd.2018.09.031_bib25) 2013; 34 Capron (10.1016/j.foodhyd.2018.09.031_bib3) 2013; 14 David (10.1016/j.foodhyd.2018.09.031_bib9) 2015; 10 Liu (10.1016/j.foodhyd.2018.09.031_bib23) 2017; 5 Wijaya (10.1016/j.foodhyd.2018.09.031_bib38) 2017; 8 Zhang (10.1016/j.foodhyd.2018.09.031_bib41) 2016; 55 Binks (10.1016/j.foodhyd.2018.09.031_bib2) 2002; 7 Cherhal (10.1016/j.foodhyd.2018.09.031_bib6) 2016; 17 Li (10.1016/j.foodhyd.2018.09.031_bib22) 2009; 48 Chen (10.1016/j.foodhyd.2018.09.031_bib4) 2013; 49 Delahaije (10.1016/j.foodhyd.2018.09.031_bib10) 2015; 219 Tan (10.1016/j.foodhyd.2018.09.031_bib36) 2014; 6 Xu (10.1016/j.foodhyd.2018.09.031_bib40) 2018; 66 Chen (10.1016/j.foodhyd.2018.09.031_bib5) 2018; 75 Dickinson (10.1016/j.foodhyd.2018.09.031_bib12) 2010; 15 Tang (10.1016/j.foodhyd.2018.09.031_bib34) 2017; 57 Cohen-Addad (10.1016/j.foodhyd.2018.09.031_bib8) 2014; 19 Ridel (10.1016/j.foodhyd.2018.09.031_bib32) 2016; 12 Williams (10.1016/j.foodhyd.2018.09.031_bib39) 1991; 7 Miras (10.1016/j.foodhyd.2018.09.031_bib28) 2013; 9 Marcone (10.1016/j.foodhyd.2018.09.031_bib26) 1999; 32 Perrin (10.1016/j.foodhyd.2018.09.031_bib31) 2014; 15 Guo (10.1016/j.foodhyd.2018.09.031_bib15) 2012; 60 Hu (10.1016/j.foodhyd.2018.09.031_bib17) 2016; 61 Dimitrova (10.1016/j.foodhyd.2018.09.031_bib14) 2004; 108–109 Lee (10.1016/j.foodhyd.2018.09.031_bib20) 2012; 28 Liu (10.1016/j.foodhyd.2018.09.031_bib24) 2017; 65 Nagano (10.1016/j.foodhyd.2018.09.031_bib29) 1992; 40 Destribats (10.1016/j.foodhyd.2018.09.031_bib11) 2014; 10 Patel (10.1016/j.foodhyd.2018.09.031_bib30) 2014; 4 Liang (10.1016/j.foodhyd.2018.09.031_bib21) 2013; 61 Horozov (10.1016/j.foodhyd.2018.09.031_bib16) 2006; 45 Chevalier (10.1016/j.foodhyd.2018.09.031_bib7) 2013; 439 Utsumi (10.1016/j.foodhyd.2018.09.031_bib37) 1997 Ikem (10.1016/j.foodhyd.2018.09.031_bib18) 2009; 121 Mine (10.1016/j.foodhyd.2018.09.031_bib27) 1995; 6 Arditty (10.1016/j.foodhyd.2018.09.031_bib1) 2004; 275 Dickinson (10.1016/j.foodhyd.2018.09.031_bib13) 2012; 24 |
References_xml | – volume: 6 start-page: 225 year: 1995 end-page: 232 ident: bib27 article-title: Recent advances in the understanding of egg white protein functionality publication-title: Trends in Food Science & Technology – volume: 275 start-page: 659 year: 2004 end-page: 664 ident: bib1 article-title: Materials based on solid-stabilized emulsions publication-title: Journal of Colloid and Interface Science – volume: 9 start-page: 8678 year: 2013 end-page: 8686 ident: bib28 article-title: Kinetics of chitosan hydrogel formation in high internal phase oil-in-water emulsions (HIPEs) using viscoelastic measurements publication-title: Soft Matter – volume: 40 start-page: 941 year: 1992 end-page: 944 ident: bib29 article-title: Dynamic viscoelastic study on the gelation of 7S globulin from soybeans publication-title: Journal of Agricultural and Food Chemistry – volume: 4 start-page: 18136 year: 2014 end-page: 18140 ident: bib30 article-title: High internal phase emulsion gels (HIPE-gels) prepared using food-grade components publication-title: RSC Advances – volume: 24 start-page: 4 year: 2012 end-page: 12 ident: bib13 article-title: Use of nanoparticles and microparticles in the formation and stabilization of food emulsions publication-title: Trends in Food Science & Technology – volume: 34 start-page: 169 year: 2013 end-page: 174 ident: bib25 article-title: Pure protein scaffolds from Pickering high internal phase emulsion template publication-title: Macromolecular Rapid Communications – volume: 7 start-page: 21 year: 2002 end-page: 41 ident: bib2 article-title: Particles as surfactants-similarities and differences publication-title: Current Opinion in Colloid & Interface Science – volume: 108–109 start-page: 49 year: 2004 end-page: 61 ident: bib14 article-title: Rheological properties of highly concentrated protein-stabilized emulsions publication-title: Advances in Colloid and Interface Science – volume: 19 start-page: 536 year: 2014 end-page: 548 ident: bib8 article-title: Rheology of foams and highly concentrated emulsions publication-title: Current Opinion in Colloid & Interface Science – volume: 5 start-page: 2671 year: 2017 end-page: 2678 ident: bib23 article-title: High internal phase emulsions stabilised by supramolecular cellulose nanocrystals and their application as cell-adhesive macroporous hydrogel monoliths publication-title: Journal of Materials Chemistry B – volume: 66 start-page: 8795 year: 2018 end-page: 8804 ident: bib40 article-title: Ovalbumin as an outstanding Pickering nano-stabilizer for high internal phase emulsions publication-title: Journal of Agricultural and Food Chemistry – volume: 12 start-page: 7564 year: 2016 end-page: 7576 ident: bib32 article-title: Pickering emulsions stabilized by charged nanoparticles publication-title: Soft Matter – volume: 7 start-page: 1370 year: 1991 end-page: 1377 ident: bib39 article-title: High internal phase water-in-oil emulsions: Influence of surfactants and cosurfactants on emulsion stability and foam quality publication-title: Langmuir – volume: 6 start-page: 13977 year: 2014 end-page: 13984 ident: bib36 article-title: Gelatin particle-stabilized high internal phase emulsions as nutraceutical containers publication-title: ACS Applied Materials and Interfaces – volume: 60 start-page: 3782 year: 2012 end-page: 3791 ident: bib15 article-title: Limited aggregation behavior of publication-title: Journal of Agricultural and Food Chemistry – volume: 10 start-page: 195 year: 2015 end-page: 206 ident: bib9 article-title: Soy publication-title: Food Biophysics – volume: 14 start-page: 291 year: 2013 end-page: 296 ident: bib3 article-title: Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals publication-title: Biomacromolecules – volume: 61 start-page: 11140 year: 2013 end-page: 11150 ident: bib21 article-title: Emulsifying and interfacial properties of vicilins: Role of conformational flexibility at quaternary and/or tertiary levels publication-title: Journal of Agricultural and Food Chemistry – volume: 27 start-page: 7471 year: 2011 end-page: 7479 ident: bib19 article-title: New Pickering emulsions stabilized by bacterial cellulose nanocrystals publication-title: Langmuir – volume: 15 start-page: 3766 year: 2014 end-page: 3771 ident: bib31 article-title: Chitin nanocrystals for Pickering high internal phase emulsions publication-title: Biomacromolecules – volume: 28 start-page: 3085 year: 2012 end-page: 3091 ident: bib20 article-title: Characteristics of Pickering emulsion gels formed by droplet bridging publication-title: Langmuir – volume: 55 start-page: 4499 year: 2016 end-page: 4505 ident: bib41 article-title: Assembled block copolymer stabilized high internal phase emulsion hydrogels for enhancing oil safety publication-title: Industrial & Engineering Chemistry Research – volume: 40 start-page: 96 year: 2007 end-page: 104 ident: bib35 article-title: Study of thermal properties and aggregation/denaturation of soy protein isolates by modulated differential scanning calorimetry publication-title: International Journal of Biological Macromolecules – volume: 75 start-page: 125 year: 2018 end-page: 130 ident: bib5 article-title: Surface modification improves fabrication of pickering high internal phase emulsions stabilized by cellulose nanocrystals publication-title: Food Hydrocolloids – volume: 10 start-page: 6941 year: 2014 end-page: 6954 ident: bib11 article-title: Emulsions stabilised by whey protein microgel particles: Towards food-grade pickering emulsions publication-title: Soft Matter – volume: 15 start-page: 40 year: 2010 end-page: 49 ident: bib12 article-title: Food emulsions and foams: Stabilization by particles publication-title: Current Opinion in Colloid & Interface Science – volume: 61 start-page: 300 year: 2016 end-page: 310 ident: bib17 article-title: Fabrication and characterization of novel Pickering emulsions and Pickering high internal emulsions stabilized by gliadin colloidal particles publication-title: Food Hydrocolloids – volume: 17 start-page: 496 year: 2016 end-page: 502 ident: bib6 article-title: Structural description of the interface of Pickering emulsions stabilized by cellulose nanocrystals publication-title: Biomacromolecules – volume: 65 start-page: 175 year: 2017 end-page: 186 ident: bib24 article-title: Ca publication-title: Food Hydrocolloids – volume: 45 start-page: 773 year: 2006 end-page: 776 ident: bib16 article-title: Particle-stabilized emulsions: A bilayer or a bridging monolayer? publication-title: Angewandte Chemie International Edition – start-page: 257 year: 1997 end-page: 292 ident: bib37 article-title: Structure-function relationships of soy proteins publication-title: Food proteins and their applications – volume: 39 start-page: 199 year: 2014 end-page: 234 ident: bib33 article-title: PolyHIPEs: Recent advances in emulsion-templeted porous polymers publication-title: Progress in Polymer Science – volume: 49 start-page: 1524 year: 2013 end-page: 1526 ident: bib4 article-title: Moldable high internal phase emulsion hydrogel objects from non-covalently crosslinked poly(N-isopropylacrylamide) nanogel dispersions publication-title: Chemical Communications – volume: 8 start-page: 584 year: 2017 end-page: 594 ident: bib38 article-title: High internal phase emulsions stabilized solely by whey protein isolate-low methoxyl pectin complexes: Effect of pH and polymer concentration publication-title: Food and Function – volume: 219 start-page: 1 year: 2015 end-page: 9 ident: bib10 article-title: Towards predicting the stability of protein-stabilized emulsions publication-title: Advances in Colloid and Interface Science – volume: 48 start-page: 8490 year: 2009 end-page: 8493 ident: bib22 article-title: High internal phase emulsions stabilized solely by microgel particles publication-title: Angewandte Chemie International Edition – volume: 57 start-page: 2636 year: 2017 end-page: 2679 ident: bib34 article-title: Emulsifying properties of soy proteins: A critical review with emphasis on the role of conformational flexibility publication-title: Critical Reviews in Food Science and Nutrition – volume: 439 start-page: 23 year: 2013 end-page: 34 ident: bib7 article-title: Emulsions stabilized with solid nanoparticles: Pickering emulsions publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects – volume: 32 start-page: 79 year: 1999 end-page: 92 ident: bib26 article-title: Biochemical and biophysical properties of plant storage proteins: A current understanding with emphasis on 11S seed globulins publication-title: Food Research International – volume: 121 start-page: 8277 year: 2009 end-page: 8279 ident: bib18 article-title: High internal phase emulsions stabilized solely by functionalized silica particles publication-title: Angewandte Chemie International Edition – volume: 15 start-page: 3766 issue: 10 year: 2014 ident: 10.1016/j.foodhyd.2018.09.031_bib31 article-title: Chitin nanocrystals for Pickering high internal phase emulsions publication-title: Biomacromolecules doi: 10.1021/bm5010417 – volume: 49 start-page: 1524 issue: 15 year: 2013 ident: 10.1016/j.foodhyd.2018.09.031_bib4 article-title: Moldable high internal phase emulsion hydrogel objects from non-covalently crosslinked poly(N-isopropylacrylamide) nanogel dispersions publication-title: Chemical Communications doi: 10.1039/c2cc38200h – volume: 28 start-page: 3085 issue: 6 year: 2012 ident: 10.1016/j.foodhyd.2018.09.031_bib20 article-title: Characteristics of Pickering emulsion gels formed by droplet bridging publication-title: Langmuir doi: 10.1021/la203384f – volume: 66 start-page: 8795 issue: 33 year: 2018 ident: 10.1016/j.foodhyd.2018.09.031_bib40 article-title: Ovalbumin as an outstanding Pickering nano-stabilizer for high internal phase emulsions publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/acs.jafc.8b02183 – volume: 24 start-page: 4 issue: 1 year: 2012 ident: 10.1016/j.foodhyd.2018.09.031_bib13 article-title: Use of nanoparticles and microparticles in the formation and stabilization of food emulsions publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2011.09.006 – volume: 121 start-page: 8277 issue: 4 year: 2009 ident: 10.1016/j.foodhyd.2018.09.031_bib18 article-title: High internal phase emulsions stabilized solely by functionalized silica particles publication-title: Angewandte Chemie International Edition – volume: 6 start-page: 225 issue: 7 year: 1995 ident: 10.1016/j.foodhyd.2018.09.031_bib27 article-title: Recent advances in the understanding of egg white protein functionality publication-title: Trends in Food Science & Technology doi: 10.1016/S0924-2244(00)89083-4 – volume: 48 start-page: 8490 issue: 45 year: 2009 ident: 10.1016/j.foodhyd.2018.09.031_bib22 article-title: High internal phase emulsions stabilized solely by microgel particles publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.200902103 – volume: 61 start-page: 300 year: 2016 ident: 10.1016/j.foodhyd.2018.09.031_bib17 article-title: Fabrication and characterization of novel Pickering emulsions and Pickering high internal emulsions stabilized by gliadin colloidal particles publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2016.05.028 – volume: 39 start-page: 199 issue: 1 year: 2014 ident: 10.1016/j.foodhyd.2018.09.031_bib33 article-title: PolyHIPEs: Recent advances in emulsion-templeted porous polymers publication-title: Progress in Polymer Science doi: 10.1016/j.progpolymsci.2013.07.003 – volume: 15 start-page: 40 issue: 1–2 year: 2010 ident: 10.1016/j.foodhyd.2018.09.031_bib12 article-title: Food emulsions and foams: Stabilization by particles publication-title: Current Opinion in Colloid & Interface Science doi: 10.1016/j.cocis.2009.11.001 – volume: 10 start-page: 6941 issue: 36 year: 2014 ident: 10.1016/j.foodhyd.2018.09.031_bib11 article-title: Emulsions stabilised by whey protein microgel particles: Towards food-grade pickering emulsions publication-title: Soft Matter doi: 10.1039/C4SM00179F – volume: 57 start-page: 2636 issue: 12 year: 2017 ident: 10.1016/j.foodhyd.2018.09.031_bib34 article-title: Emulsifying properties of soy proteins: A critical review with emphasis on the role of conformational flexibility publication-title: Critical Reviews in Food Science and Nutrition doi: 10.1080/10408398.2015.1067594 – volume: 19 start-page: 536 issue: 6 year: 2014 ident: 10.1016/j.foodhyd.2018.09.031_bib8 article-title: Rheology of foams and highly concentrated emulsions publication-title: Current Opinion in Colloid & Interface Science doi: 10.1016/j.cocis.2014.11.003 – volume: 108–109 start-page: 49 year: 2004 ident: 10.1016/j.foodhyd.2018.09.031_bib14 article-title: Rheological properties of highly concentrated protein-stabilized emulsions publication-title: Advances in Colloid and Interface Science doi: 10.1016/j.cis.2003.10.002 – volume: 219 start-page: 1 year: 2015 ident: 10.1016/j.foodhyd.2018.09.031_bib10 article-title: Towards predicting the stability of protein-stabilized emulsions publication-title: Advances in Colloid and Interface Science doi: 10.1016/j.cis.2015.01.008 – volume: 14 start-page: 291 issue: 2 year: 2013 ident: 10.1016/j.foodhyd.2018.09.031_bib3 article-title: Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals publication-title: Biomacromolecules doi: 10.1021/bm301871k – volume: 27 start-page: 7471 issue: 12 year: 2011 ident: 10.1016/j.foodhyd.2018.09.031_bib19 article-title: New Pickering emulsions stabilized by bacterial cellulose nanocrystals publication-title: Langmuir doi: 10.1021/la200971f – volume: 61 start-page: 11140 issue: 46 year: 2013 ident: 10.1016/j.foodhyd.2018.09.031_bib21 article-title: Emulsifying and interfacial properties of vicilins: Role of conformational flexibility at quaternary and/or tertiary levels publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf403847k – volume: 8 start-page: 584 issue: 2 year: 2017 ident: 10.1016/j.foodhyd.2018.09.031_bib38 article-title: High internal phase emulsions stabilized solely by whey protein isolate-low methoxyl pectin complexes: Effect of pH and polymer concentration publication-title: Food and Function doi: 10.1039/C6FO01027J – volume: 5 start-page: 2671 issue: 14 year: 2017 ident: 10.1016/j.foodhyd.2018.09.031_bib23 article-title: High internal phase emulsions stabilised by supramolecular cellulose nanocrystals and their application as cell-adhesive macroporous hydrogel monoliths publication-title: Journal of Materials Chemistry B doi: 10.1039/C7TB00145B – volume: 10 start-page: 195 issue: 2 year: 2015 ident: 10.1016/j.foodhyd.2018.09.031_bib9 article-title: Soy β-conglycinin-curcumin nanocomplexes for enrichment of clear beverages publication-title: Food Biophysics doi: 10.1007/s11483-014-9386-8 – volume: 7 start-page: 21 issue: 1–2 year: 2002 ident: 10.1016/j.foodhyd.2018.09.031_bib2 article-title: Particles as surfactants-similarities and differences publication-title: Current Opinion in Colloid & Interface Science doi: 10.1016/S1359-0294(02)00008-0 – volume: 17 start-page: 496 issue: 2 year: 2016 ident: 10.1016/j.foodhyd.2018.09.031_bib6 article-title: Structural description of the interface of Pickering emulsions stabilized by cellulose nanocrystals publication-title: Biomacromolecules doi: 10.1021/acs.biomac.5b01413 – start-page: 257 year: 1997 ident: 10.1016/j.foodhyd.2018.09.031_bib37 article-title: Structure-function relationships of soy proteins – volume: 55 start-page: 4499 issue: 16 year: 2016 ident: 10.1016/j.foodhyd.2018.09.031_bib41 article-title: Assembled block copolymer stabilized high internal phase emulsion hydrogels for enhancing oil safety publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/acs.iecr.6b00039 – volume: 439 start-page: 23 year: 2013 ident: 10.1016/j.foodhyd.2018.09.031_bib7 article-title: Emulsions stabilized with solid nanoparticles: Pickering emulsions publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects doi: 10.1016/j.colsurfa.2013.02.054 – volume: 60 start-page: 3782 issue: 14 year: 2012 ident: 10.1016/j.foodhyd.2018.09.031_bib15 article-title: Limited aggregation behavior of β-conglycinin and its terminating effect on glycinin aggregation during heating at pH 7.0 publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf300409y – volume: 7 start-page: 1370 issue: 7 year: 1991 ident: 10.1016/j.foodhyd.2018.09.031_bib39 article-title: High internal phase water-in-oil emulsions: Influence of surfactants and cosurfactants on emulsion stability and foam quality publication-title: Langmuir doi: 10.1021/la00055a014 – volume: 9 start-page: 8678 issue: 36 year: 2013 ident: 10.1016/j.foodhyd.2018.09.031_bib28 article-title: Kinetics of chitosan hydrogel formation in high internal phase oil-in-water emulsions (HIPEs) using viscoelastic measurements publication-title: Soft Matter doi: 10.1039/c3sm51375k – volume: 275 start-page: 659 issue: 2 year: 2004 ident: 10.1016/j.foodhyd.2018.09.031_bib1 article-title: Materials based on solid-stabilized emulsions publication-title: Journal of Colloid and Interface Science doi: 10.1016/j.jcis.2004.03.001 – volume: 65 start-page: 175 year: 2017 ident: 10.1016/j.foodhyd.2018.09.031_bib24 article-title: Ca2+-induced soy protein nanoparticles as pickering stabilizers: Fabrication and characterization publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2016.11.011 – volume: 40 start-page: 96 issue: 2 year: 2007 ident: 10.1016/j.foodhyd.2018.09.031_bib35 article-title: Study of thermal properties and aggregation/denaturation of soy protein isolates by modulated differential scanning calorimetry publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2006.06.013 – volume: 34 start-page: 169 issue: 2 year: 2013 ident: 10.1016/j.foodhyd.2018.09.031_bib25 article-title: Pure protein scaffolds from Pickering high internal phase emulsion template publication-title: Macromolecular Rapid Communications doi: 10.1002/marc.201200553 – volume: 75 start-page: 125 year: 2018 ident: 10.1016/j.foodhyd.2018.09.031_bib5 article-title: Surface modification improves fabrication of pickering high internal phase emulsions stabilized by cellulose nanocrystals publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2017.09.005 – volume: 6 start-page: 13977 issue: 16 year: 2014 ident: 10.1016/j.foodhyd.2018.09.031_bib36 article-title: Gelatin particle-stabilized high internal phase emulsions as nutraceutical containers publication-title: ACS Applied Materials and Interfaces doi: 10.1021/am503341j – volume: 4 start-page: 18136 issue: 35 year: 2014 ident: 10.1016/j.foodhyd.2018.09.031_bib30 article-title: High internal phase emulsion gels (HIPE-gels) prepared using food-grade components publication-title: RSC Advances doi: 10.1039/C4RA02119C – volume: 45 start-page: 773 issue: 5 year: 2006 ident: 10.1016/j.foodhyd.2018.09.031_bib16 article-title: Particle-stabilized emulsions: A bilayer or a bridging monolayer? publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.200503131 – volume: 40 start-page: 941 issue: 6 year: 1992 ident: 10.1016/j.foodhyd.2018.09.031_bib29 article-title: Dynamic viscoelastic study on the gelation of 7S globulin from soybeans publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf00018a004 – volume: 12 start-page: 7564 issue: 36 year: 2016 ident: 10.1016/j.foodhyd.2018.09.031_bib32 article-title: Pickering emulsions stabilized by charged nanoparticles publication-title: Soft Matter doi: 10.1039/C6SM01465H – volume: 32 start-page: 79 issue: 2 year: 1999 ident: 10.1016/j.foodhyd.2018.09.031_bib26 article-title: Biochemical and biophysical properties of plant storage proteins: A current understanding with emphasis on 11S seed globulins publication-title: Food Research International doi: 10.1016/S0963-9969(99)00061-7 |
SSID | ssj0017011 |
Score | 2.6265645 |
Snippet | There is fast increasing interest in the development of food-grade high internal phase emulsions (HIPEs). In the work, we reported that native soy... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 21 |
SubjectTerms | beta-conglycinin Bridged emulsions dissociation droplet size emulsifying emulsions gels globulins High internal phase emulsions (HIPEs) HIPE gels hydrocolloids medicine oil-water interface Pickering stabilizer Soy β-conglycinin soybeans stabilizers urea |
Title | Novel pickering high internal phase emulsion gels stabilized solely by soy β-conglycinin |
URI | https://dx.doi.org/10.1016/j.foodhyd.2018.09.031 https://www.proquest.com/docview/2189538289 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF6Mc2kPpUlamjYxG8hVliWtHns0JsFtUlPaGtzTstod2Q6KZVq7oBzyo_JD8psyo0f6gGLoRY9FqxWzs_PS7DeMnRlItPETcNDaMI4QInZSawMHUFfJOEOHrKoN-HESjafiwyycddio3QtDaZWN7K9leiWtmxa3oaa7Xi7dL-g9oLUTzpApCUKE_HYciri8f_eU5kFw414dZ0kcevrXLh73up8VhV2UBBjqJTXcqfcv_fSXpK7Uz8VL9qKxG_mw_rR91oHVAXv-G5rgIfs2KX5CztdLypTAFk5QxHxZh_ywfYEKi8PNNqcAGZ_joBxNQ0qOvQXLkQchL3la4lXJH-4ddJTneWmogMQrNr04_zoaO03lBMcEwt_g0RgZZhHEWRZJi1QwMgDtW9RGMAi11J4fgWcjE0upTSZBCzkIcDkG1jc6CV6z7qpYwRvGNYQCIAp9oC1xIpU69iykcZICWjNJdsRESy9lGlhxqm6RqzZ_7Fo1ZFZEZjWQCsl8xPpP3dY1rsauDkk7GeoPBlEo-3d1PW0nT-HioT8iegXF9odC-0aixEen8-3_v_4de4Z3sk5MO2bdzfctnKClskl7FSv22N5w9PnqE53fX44nj66c7S0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWq9gAcEKsoq5G4pm0SZ_ERIVCBtheKVE6WY0-gVWgqaJHCZ_EhfBPjJmGTUCUuUeRk4mg8nsUevyHkREEolROChd6GshhjgRVp7VqAtooHMQZk89qA3Z7fvmVXA29QIWflWRiTVlno_lynz7V10dIsuNmcDIfNG4we0NvxBiiUBkIE4_aaQafyqqR2ennd7n1uJgSteRle875lCL4O8jRHjThN9UNmMEPtMEc8tf8yUb-U9dwCXayR1cJ1pKf5362TCow3yMo3QMFNctdLXyChk6FJlsAWatCI6TBf9cP2B7RZFB5niVkjo_fYKUXv0OTHvoKmKIaQZDTK8C6j728Wxsr3SaZMDYktcntx3j9rW0XxBEu5zJniVSnuxT4EcexzjVxQ3AXpaDRI0PIkl7bjg619FXAuVcxBMt5ycUa62lEydLdJdZyOYYdQCR4D8D0HzKk4FnEZ2BqiIIwAHZowrhNW8kuoAlncFLhIRJlCNhIFm4Vhs2hxgWyuk8Yn2SSH1lhEEJaDIX7IiED1v4j0uBw8gfPHbIrIMaSzZ4EuDkelj3Hn7v8_f0SW2v1uR3Que9d7ZBmf8DxPbZ9Up08zOEDHZRodFoL5AVrd7kk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+pickering+high+internal+phase+emulsion+gels+stabilized+solely+by+soy+%CE%B2-conglycinin&rft.jtitle=Food+hydrocolloids&rft.au=Xu%2C+Yan-Teng&rft.au=Liu%2C+Tong-Xun&rft.au=Tang%2C+Chuan-He&rft.date=2019-03-01&rft.issn=0268-005X&rft.volume=88&rft.spage=21&rft.epage=30&rft_id=info:doi/10.1016%2Fj.foodhyd.2018.09.031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_foodhyd_2018_09_031 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-005X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-005X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-005X&client=summon |