Novel pickering high internal phase emulsion gels stabilized solely by soy β-conglycinin

There is fast increasing interest in the development of food-grade high internal phase emulsions (HIPEs). In the work, we reported that native soy β-conglycinin (β-CG; a major 7S globulin in soybeans) could perform as an outstanding Pickering-type stabilizer for oil-in-water HIPEs. The protein conce...

Full description

Saved in:
Bibliographic Details
Published inFood hydrocolloids Vol. 88; pp. 21 - 30
Main Authors Xu, Yan-Teng, Liu, Tong-Xun, Tang, Chuan-He
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There is fast increasing interest in the development of food-grade high internal phase emulsions (HIPEs). In the work, we reported that native soy β-conglycinin (β-CG; a major 7S globulin in soybeans) could perform as an outstanding Pickering-type stabilizer for oil-in-water HIPEs. The protein concentration in the continuous phase (c) for the formation of homogenous and gel-like HIPEs could be as low as 0.2 wt%; and increasing the c from 0.2 to 1.0 wt% led to a progressive decrease in droplet size, but a progressive increase in stiffness of the HIPEs. The fabricated HIPEs at low c values (e.g., 0.2–0.5 wt%) were a kind of HIPE gels in essence with a gel network that could not be disrupted by 6 M urea, while the HIPE at c = 1.0 wt% was a highly concentrated emulsion that could be diluted by water. All the HIPEs at c values of 0.2–1.0 wt% were extremely stable against heating (at 100 °C for 15 min), or an elongated storage up to 60 days, but they were very prone to a freeze-thawing treatment. The freeze-thawed HIPEs could be repeatedly recovered back to a similar state to the untreated ones, when subject to another emulsification, indicating an extraordinary temperature-responsiveness. The β-CG molecules suffered a structural dissociation at the quaternary conformational level into separate subunits when adsorbed at the oil-water interface. The dissociated subunits from adsorbed β-CG showed a similar tertiary and secondary conformation to that of native β-CG, confirming the Pickering-nature of these subunits. All the HIPEs exhibited a surface coverage of around 60% in regard to the subunits of β-CG. The findings would be of importance not only for extending the knowledge about the Pickering stabilization of HIPEs by native oligomeric globulins, but also for the development of novel, eco-friendly and sustainable HIPEs for food, cosmetic and medicine formulations. [Display omitted] •Native β-conglycinin (β-CG) was demonstrated to be an outstanding Pickering nanostabilizer for HIPEs.•A kind of HIPE gels could be facilely formed at low concentrations (0.2–0.5 wt%).•The HIPEs or HIPE gels exhibited extraordinary stability against heating and storage.•The HIPEs were susceptibile to freeze-thawing, but could be recovered by another homogenization.•Dissociated subunits of β-CG at the interface were the factual stabilizers for the HIPEs.
AbstractList There is fast increasing interest in the development of food-grade high internal phase emulsions (HIPEs). In the work, we reported that native soy β-conglycinin (β-CG; a major 7S globulin in soybeans) could perform as an outstanding Pickering-type stabilizer for oil-in-water HIPEs. The protein concentration in the continuous phase (c) for the formation of homogenous and gel-like HIPEs could be as low as 0.2 wt%; and increasing the c from 0.2 to 1.0 wt% led to a progressive decrease in droplet size, but a progressive increase in stiffness of the HIPEs. The fabricated HIPEs at low c values (e.g., 0.2–0.5 wt%) were a kind of HIPE gels in essence with a gel network that could not be disrupted by 6 M urea, while the HIPE at c = 1.0 wt% was a highly concentrated emulsion that could be diluted by water. All the HIPEs at c values of 0.2–1.0 wt% were extremely stable against heating (at 100 °C for 15 min), or an elongated storage up to 60 days, but they were very prone to a freeze-thawing treatment. The freeze-thawed HIPEs could be repeatedly recovered back to a similar state to the untreated ones, when subject to another emulsification, indicating an extraordinary temperature-responsiveness. The β-CG molecules suffered a structural dissociation at the quaternary conformational level into separate subunits when adsorbed at the oil-water interface. The dissociated subunits from adsorbed β-CG showed a similar tertiary and secondary conformation to that of native β-CG, confirming the Pickering-nature of these subunits. All the HIPEs exhibited a surface coverage of around 60% in regard to the subunits of β-CG. The findings would be of importance not only for extending the knowledge about the Pickering stabilization of HIPEs by native oligomeric globulins, but also for the development of novel, eco-friendly and sustainable HIPEs for food, cosmetic and medicine formulations.
There is fast increasing interest in the development of food-grade high internal phase emulsions (HIPEs). In the work, we reported that native soy β-conglycinin (β-CG; a major 7S globulin in soybeans) could perform as an outstanding Pickering-type stabilizer for oil-in-water HIPEs. The protein concentration in the continuous phase (c) for the formation of homogenous and gel-like HIPEs could be as low as 0.2 wt%; and increasing the c from 0.2 to 1.0 wt% led to a progressive decrease in droplet size, but a progressive increase in stiffness of the HIPEs. The fabricated HIPEs at low c values (e.g., 0.2–0.5 wt%) were a kind of HIPE gels in essence with a gel network that could not be disrupted by 6 M urea, while the HIPE at c = 1.0 wt% was a highly concentrated emulsion that could be diluted by water. All the HIPEs at c values of 0.2–1.0 wt% were extremely stable against heating (at 100 °C for 15 min), or an elongated storage up to 60 days, but they were very prone to a freeze-thawing treatment. The freeze-thawed HIPEs could be repeatedly recovered back to a similar state to the untreated ones, when subject to another emulsification, indicating an extraordinary temperature-responsiveness. The β-CG molecules suffered a structural dissociation at the quaternary conformational level into separate subunits when adsorbed at the oil-water interface. The dissociated subunits from adsorbed β-CG showed a similar tertiary and secondary conformation to that of native β-CG, confirming the Pickering-nature of these subunits. All the HIPEs exhibited a surface coverage of around 60% in regard to the subunits of β-CG. The findings would be of importance not only for extending the knowledge about the Pickering stabilization of HIPEs by native oligomeric globulins, but also for the development of novel, eco-friendly and sustainable HIPEs for food, cosmetic and medicine formulations. [Display omitted] •Native β-conglycinin (β-CG) was demonstrated to be an outstanding Pickering nanostabilizer for HIPEs.•A kind of HIPE gels could be facilely formed at low concentrations (0.2–0.5 wt%).•The HIPEs or HIPE gels exhibited extraordinary stability against heating and storage.•The HIPEs were susceptibile to freeze-thawing, but could be recovered by another homogenization.•Dissociated subunits of β-CG at the interface were the factual stabilizers for the HIPEs.
Author Xu, Yan-Teng
Liu, Tong-Xun
Tang, Chuan-He
Author_xml – sequence: 1
  givenname: Yan-Teng
  surname: Xu
  fullname: Xu, Yan-Teng
– sequence: 2
  givenname: Tong-Xun
  surname: Liu
  fullname: Liu, Tong-Xun
  email: txliu@scut.edu.cn
– sequence: 3
  givenname: Chuan-He
  surname: Tang
  fullname: Tang, Chuan-He
  email: chtang@scut.edu.cn
BookMark eNqFkM1qGzEQx0VIoHbSRyjo2Mtu9JH9ED2UYpqkENpLCu1JKNKsPY4sudI6sHmsPEieKQr2qRdfZobh_xuG35ychhiAkE-c1Zzx9nJdDzG61eRqwXhfM1UzyU_IjPedrDouu1MyY6LtK8aaPx_IPOc1Y7xjnM_I35_xCTzdon2EhGFJV7hcUQwjpGDKfmUyUNjsfMYY6BJ8pnk0D-jxGRzN0YOf6MNUpom-vlQ2hqWfLAYMF-RsMD7Dx0M_J7-vv98vbqu7Xzc_Ft_uKiuvxFiqtaoZWuiGoVWu_GWVBCMcFz2wxijDRQvctbZTythBgblSTEqupBPW9PKcfN7f3ab4bwd51BvMFrw3AeIua8F71che9KpEm33UpphzgkFvE25MmjRn-l2lXuuDSv2uUjOli8rCffmPsziasRgZk0F_lP66p4s8eEJIOluEYMFhAjtqF_HIhTf_oJge
CitedBy_id crossref_primary_10_1016_j_foodhyd_2023_108937
crossref_primary_10_1016_j_foodchem_2024_140829
crossref_primary_10_1016_j_colsurfa_2021_126320
crossref_primary_10_1016_j_foodhyd_2021_106995
crossref_primary_10_1016_j_cocis_2020_03_002
crossref_primary_10_1007_s11483_022_09722_1
crossref_primary_10_1016_j_foodhyd_2019_105254
crossref_primary_10_1016_j_foodhyd_2024_109751
crossref_primary_10_1016_j_fochx_2023_100698
crossref_primary_10_1016_j_foodhyd_2023_109115
crossref_primary_10_1016_j_foodhyd_2023_108820
crossref_primary_10_1002_jsfa_12971
crossref_primary_10_1016_j_fochx_2023_100694
crossref_primary_10_1016_j_foodhyd_2021_106748
crossref_primary_10_1016_j_foodhyd_2020_105811
crossref_primary_10_1016_j_foodchem_2024_142564
crossref_primary_10_1016_j_jfoodeng_2023_111548
crossref_primary_10_1016_j_colsurfa_2021_126797
crossref_primary_10_1016_j_ultsonch_2024_106843
crossref_primary_10_1016_j_foodhyd_2021_107151
crossref_primary_10_1016_j_foodchem_2022_132874
crossref_primary_10_1016_j_tifs_2021_04_054
crossref_primary_10_1016_j_foodres_2025_115878
crossref_primary_10_1111_ijfs_17568
crossref_primary_10_1016_j_foodhyd_2020_106117
crossref_primary_10_1016_j_foodres_2022_111451
crossref_primary_10_1016_j_molliq_2022_119511
crossref_primary_10_1016_j_tifs_2020_05_024
crossref_primary_10_1021_acs_jafc_1c04615
crossref_primary_10_3390_foods12030482
crossref_primary_10_1016_j_colsurfb_2019_110459
crossref_primary_10_1016_j_foodchem_2023_136192
crossref_primary_10_1016_j_foodchem_2021_131939
crossref_primary_10_1016_j_foodhyd_2023_109495
crossref_primary_10_3390_polym14020353
crossref_primary_10_3390_molecules25184188
crossref_primary_10_3390_foods11020229
crossref_primary_10_1016_j_foodhyd_2020_106329
crossref_primary_10_1016_j_cis_2024_103086
crossref_primary_10_1016_j_foodhyd_2021_106884
crossref_primary_10_1016_j_ijbiomac_2021_04_002
crossref_primary_10_1016_j_foodhyd_2019_105285
crossref_primary_10_1016_j_foodres_2023_112467
crossref_primary_10_1016_j_foodres_2024_114703
crossref_primary_10_1016_j_lwt_2022_113091
crossref_primary_10_1016_j_foodhyd_2019_05_038
crossref_primary_10_1002_jsfa_13050
crossref_primary_10_1016_j_jfoodeng_2021_110905
crossref_primary_10_1021_acs_jafc_1c04865
crossref_primary_10_1016_j_foodhyd_2024_110391
crossref_primary_10_1111_1750_3841_15952
crossref_primary_10_1002_aocs_12782
crossref_primary_10_1021_acs_macromol_8b02576
crossref_primary_10_1016_j_jtice_2023_105219
crossref_primary_10_1021_acs_jafc_9b03356
crossref_primary_10_1016_j_colsurfa_2022_128820
crossref_primary_10_1016_j_foodhyd_2020_106151
crossref_primary_10_1016_j_ultsonch_2021_105847
crossref_primary_10_1016_j_ijbiomac_2024_138796
crossref_primary_10_1016_j_ijbiomac_2024_135398
crossref_primary_10_1016_j_jfoodeng_2024_112049
crossref_primary_10_1016_j_cocis_2020_04_004
crossref_primary_10_1016_j_foodhyd_2024_110264
crossref_primary_10_1002_ange_202210050
crossref_primary_10_1016_j_foodres_2023_112458
crossref_primary_10_3389_fnut_2021_795396
crossref_primary_10_1016_j_fochx_2023_100651
crossref_primary_10_1016_j_carbpol_2020_116875
crossref_primary_10_1002_star_202100046
crossref_primary_10_1016_j_jfoodeng_2020_110275
crossref_primary_10_1016_j_foodhyd_2021_106784
crossref_primary_10_1016_j_colsurfa_2021_127688
crossref_primary_10_1007_s10853_020_05261_7
crossref_primary_10_1021_acs_jafc_1c03070
crossref_primary_10_1016_j_ijbiomac_2024_138898
crossref_primary_10_1016_j_foodhyd_2022_108211
crossref_primary_10_1111_1541_4337_70157
crossref_primary_10_1021_acsami_4c03069
crossref_primary_10_1016_j_foodhyd_2023_109607
crossref_primary_10_1007_s00217_021_03827_6
crossref_primary_10_1016_j_carbpol_2024_123117
crossref_primary_10_1016_j_jfoodeng_2023_111458
crossref_primary_10_1080_87559129_2020_1858313
crossref_primary_10_1016_j_partic_2021_07_003
crossref_primary_10_1016_j_foodres_2024_114212
crossref_primary_10_1016_j_ijbiomac_2023_128093
crossref_primary_10_1016_j_ijbiomac_2024_134171
crossref_primary_10_1016_j_foodhyd_2022_108001
crossref_primary_10_1016_j_foodhyd_2023_109059
crossref_primary_10_1111_ijfs_16628
crossref_primary_10_1016_j_foodhyd_2023_108528
crossref_primary_10_1016_j_ijbiomac_2025_140560
crossref_primary_10_1016_j_tifs_2021_03_041
crossref_primary_10_1002_jsfa_13529
crossref_primary_10_1016_j_foodhyd_2019_01_012
crossref_primary_10_1016_j_crfs_2024_100686
crossref_primary_10_1016_j_foodhyd_2023_109185
crossref_primary_10_1016_j_foodhyd_2019_105520
crossref_primary_10_1016_j_colsurfa_2025_136694
crossref_primary_10_1016_j_foodhyd_2020_105968
crossref_primary_10_1016_j_foodchem_2019_125932
crossref_primary_10_1016_j_foodhyd_2021_106679
crossref_primary_10_1016_j_lwt_2022_114114
crossref_primary_10_1016_j_foodchem_2022_134424
crossref_primary_10_1016_j_foodhyd_2020_105664
crossref_primary_10_1002_jsfa_13898
crossref_primary_10_3389_fnut_2021_770218
crossref_primary_10_1016_j_polymer_2021_124108
crossref_primary_10_3390_polym15214272
crossref_primary_10_1016_j_ijbiomac_2024_138192
crossref_primary_10_1016_j_carbpol_2024_122041
crossref_primary_10_1021_acs_jafc_9b04009
crossref_primary_10_1515_ijfe_2021_0367
crossref_primary_10_1016_j_lwt_2023_114638
crossref_primary_10_1016_j_fochx_2023_100609
crossref_primary_10_1111_ijfs_17175
crossref_primary_10_1016_j_fochx_2022_100455
crossref_primary_10_1021_acsami_9b23430
crossref_primary_10_1016_j_foodhyd_2020_105655
crossref_primary_10_1016_j_jcis_2020_07_054
crossref_primary_10_1016_j_molliq_2022_120495
crossref_primary_10_1016_j_foodhyd_2020_105672
crossref_primary_10_1016_j_foodhyd_2020_106083
crossref_primary_10_1039_C9FO02434D
crossref_primary_10_1016_j_ijbiomac_2022_12_223
crossref_primary_10_1016_j_ijbiomac_2020_02_175
crossref_primary_10_1016_j_colsurfb_2020_111294
crossref_primary_10_1016_j_foodhyd_2022_108133
crossref_primary_10_1016_j_foodhyd_2019_105307
crossref_primary_10_1021_acsami_0c04121
crossref_primary_10_1111_ijfs_15424
crossref_primary_10_3389_fnut_2022_890188
crossref_primary_10_1111_1750_3841_15414
crossref_primary_10_1016_j_lwt_2021_111340
crossref_primary_10_1016_j_lwt_2021_112554
crossref_primary_10_1016_j_foodhyd_2019_03_035
crossref_primary_10_1016_j_foodhyd_2021_107342
crossref_primary_10_1002_anie_202210050
crossref_primary_10_1021_acs_chemmater_9b04952
crossref_primary_10_1016_j_colsurfa_2021_126866
crossref_primary_10_1021_acs_jafc_4c02232
crossref_primary_10_1016_j_ifset_2022_103029
crossref_primary_10_1021_acs_jafc_3c05653
crossref_primary_10_1016_j_foostr_2022_100290
crossref_primary_10_1016_j_colsurfa_2020_124712
crossref_primary_10_1016_j_foodhyd_2023_109532
crossref_primary_10_1016_j_fochx_2022_100436
crossref_primary_10_1016_j_foodres_2020_109509
crossref_primary_10_1016_j_ijbiomac_2022_11_217
crossref_primary_10_1016_j_tifs_2020_02_008
crossref_primary_10_1021_acs_jafc_1c01877
crossref_primary_10_1016_j_foodhyd_2021_107455
crossref_primary_10_1016_j_foodchem_2023_135824
crossref_primary_10_1016_j_colsurfa_2021_126853
crossref_primary_10_1007_s12034_020_02163_x
crossref_primary_10_1016_j_ijbiomac_2024_132971
crossref_primary_10_1016_j_foodhyd_2019_01_050
crossref_primary_10_1016_j_jafr_2023_100604
crossref_primary_10_1016_j_foodhyd_2019_105444
crossref_primary_10_1016_j_colsurfa_2020_125596
crossref_primary_10_1021_acs_jafc_8b03398
crossref_primary_10_1016_j_foodchem_2024_140996
crossref_primary_10_1016_j_foodhyd_2021_106913
crossref_primary_10_1021_acsfoodscitech_2c00031
crossref_primary_10_3390_foods12142706
crossref_primary_10_1016_j_cjche_2022_03_011
crossref_primary_10_1016_j_foodhyd_2022_107646
crossref_primary_10_1016_j_colsurfa_2022_129993
crossref_primary_10_1016_j_fbio_2022_101751
crossref_primary_10_1016_j_foodres_2023_112858
crossref_primary_10_1016_j_tifs_2020_10_016
crossref_primary_10_1016_j_foodres_2023_113386
crossref_primary_10_1016_j_tifs_2020_07_005
crossref_primary_10_1016_j_indcrop_2019_111733
crossref_primary_10_1016_j_foodhyd_2020_106306
crossref_primary_10_1016_j_ijbiomac_2024_129202
crossref_primary_10_1016_j_foodchem_2021_131362
crossref_primary_10_1016_j_foodhyd_2020_106445
crossref_primary_10_1016_j_ijbiomac_2019_12_269
crossref_primary_10_1016_j_ijbiomac_2024_130896
crossref_primary_10_1080_01932691_2020_1724801
crossref_primary_10_1016_j_ijbiomac_2025_139531
crossref_primary_10_1016_j_jfoodeng_2022_111400
crossref_primary_10_3390_foods11111625
crossref_primary_10_1016_j_foodchem_2021_130954
crossref_primary_10_1016_j_foodhyd_2023_108474
crossref_primary_10_1039_D1FO02202D
crossref_primary_10_1016_j_foodres_2022_111309
crossref_primary_10_1016_j_ijbiomac_2023_125893
crossref_primary_10_1016_j_foodhyd_2021_106612
crossref_primary_10_1016_j_foodhyd_2021_106731
crossref_primary_10_1002_mame_202000285
crossref_primary_10_1016_j_commatsci_2024_113305
crossref_primary_10_1002_jsfa_11976
crossref_primary_10_1155_2024_8603356
crossref_primary_10_1016_j_lwt_2020_110538
crossref_primary_10_1016_j_lwt_2022_113160
crossref_primary_10_1021_acs_macromol_1c00225
crossref_primary_10_1039_D2SM01481E
crossref_primary_10_1111_1541_4337_12570
crossref_primary_10_1016_j_foodhyd_2020_106303
crossref_primary_10_1016_j_lwt_2023_115533
crossref_primary_10_1016_j_foodchem_2021_129163
crossref_primary_10_1016_j_foodhyd_2020_105694
crossref_primary_10_1016_j_jfoodeng_2023_111607
crossref_primary_10_1021_acs_jafc_0c03586
crossref_primary_10_1016_j_foodhyd_2024_110989
crossref_primary_10_1016_j_indcrop_2023_116932
crossref_primary_10_1016_j_jcis_2020_10_093
crossref_primary_10_1002_advs_202408150
crossref_primary_10_1016_j_foodchem_2021_131349
crossref_primary_10_1002_fsn3_3962
crossref_primary_10_1016_j_foodhyd_2021_106839
crossref_primary_10_1016_j_foodhyd_2020_106536
crossref_primary_10_1016_j_ijbiomac_2023_124101
Cites_doi 10.1021/bm5010417
10.1039/c2cc38200h
10.1021/la203384f
10.1021/acs.jafc.8b02183
10.1016/j.tifs.2011.09.006
10.1016/S0924-2244(00)89083-4
10.1002/anie.200902103
10.1016/j.foodhyd.2016.05.028
10.1016/j.progpolymsci.2013.07.003
10.1016/j.cocis.2009.11.001
10.1039/C4SM00179F
10.1080/10408398.2015.1067594
10.1016/j.cocis.2014.11.003
10.1016/j.cis.2003.10.002
10.1016/j.cis.2015.01.008
10.1021/bm301871k
10.1021/la200971f
10.1021/jf403847k
10.1039/C6FO01027J
10.1039/C7TB00145B
10.1007/s11483-014-9386-8
10.1016/S1359-0294(02)00008-0
10.1021/acs.biomac.5b01413
10.1021/acs.iecr.6b00039
10.1016/j.colsurfa.2013.02.054
10.1021/jf300409y
10.1021/la00055a014
10.1039/c3sm51375k
10.1016/j.jcis.2004.03.001
10.1016/j.foodhyd.2016.11.011
10.1016/j.ijbiomac.2006.06.013
10.1002/marc.201200553
10.1016/j.foodhyd.2017.09.005
10.1021/am503341j
10.1039/C4RA02119C
10.1002/anie.200503131
10.1021/jf00018a004
10.1039/C6SM01465H
10.1016/S0963-9969(99)00061-7
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.foodhyd.2018.09.031
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Medicine
EISSN 1873-7137
EndPage 30
ExternalDocumentID 10_1016_j_foodhyd_2018_09_031
S0268005X18312360
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLY
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCE
SDF
SDG
SES
SEW
SPC
SPCBC
SSA
SSG
SSZ
T5K
UHS
UNMZH
WH7
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c342t-c3cc95f6e7ff69d017c93ea2d128e05a9a126e1d6c799acf9ea49033193d2ca83
IEDL.DBID .~1
ISSN 0268-005X
IngestDate Fri Jul 11 16:32:52 EDT 2025
Tue Jul 01 02:19:44 EDT 2025
Thu Apr 24 23:08:05 EDT 2025
Fri Feb 23 02:48:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Pickering stabilizer
High internal phase emulsions (HIPEs)
HIPE gels
Bridged emulsions
Soy β-conglycinin
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-c3cc95f6e7ff69d017c93ea2d128e05a9a126e1d6c799acf9ea49033193d2ca83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2189538289
PQPubID 24069
PageCount 10
ParticipantIDs proquest_miscellaneous_2189538289
crossref_primary_10_1016_j_foodhyd_2018_09_031
crossref_citationtrail_10_1016_j_foodhyd_2018_09_031
elsevier_sciencedirect_doi_10_1016_j_foodhyd_2018_09_031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2019
2019-03-00
20190301
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: March 2019
PublicationDecade 2010
PublicationTitle Food hydrocolloids
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Destribats, Rouvet, Gehin-Delval, Schmitt, Binks (bib11) 2014; 10
Horozov, Binks (bib16) 2006; 45
Dickinson (bib12) 2010; 15
Cohen-Addad, Hӧhler (bib8) 2014; 19
Chen, Ballard, Bon (bib4) 2013; 49
Li, Ming, Wang, Ngai (bib22) 2009; 48
Xu, Tang, Liu, Liu (bib40) 2018; 66
Hu, Yin, Zhu, Qi, Guo, Wu (bib17) 2016; 61
Liu, Jin, Chen, Gao, Shi, Cheng (bib23) 2017; 5
Patel, Rodriguez, Lesaffer, Dewettinck (bib30) 2014; 4
Marcone (bib26) 1999; 32
Arditty, Schmitt, Giermanska-Kahn, Leal-Calderon (bib1) 2004; 275
Chevalier, Bolzinger (bib7) 2013; 439
Ridel, Bolzinger, Gilon-Delepine, Dugas, Chevalier (bib32) 2016; 12
Tan, Sun, Lin, Mu, Ngai (bib36) 2014; 6
David, Zagury, Livney (bib9) 2015; 10
Guo, Yang, He, Wu, Wang, Gu (bib15) 2012; 60
Ikem, Menner, Bismarck (bib18) 2009; 121
Li, Xiao, Wang, Ngai (bib25) 2013; 34
Mine (bib27) 1995; 6
Kalashnikova, Bizot, Cathala, Capron (bib19) 2011; 27
Silverstein (bib33) 2014; 39
Dickinson (bib13) 2012; 24
Wijaya, van der Meeren, Wijaya, Patel (bib38) 2017; 8
Binks (bib2) 2002; 7
Chen, Zheng, Xu, Yin, Liu, Tang (bib5) 2018; 75
Utsumi, Matsumura, Mori (bib37) 1997
Nagano, Hirotsuka, Mori, Kohyama, Nishinari (bib29) 1992; 40
Tang (bib34) 2017; 57
Miras, Vílchez, Solans, Tadros, Esquena (bib28) 2013; 9
Dimitrova, Leal-Calderon (bib14) 2004; 108–109
Lee, Chan, Mohraz (bib20) 2012; 28
Perrin, Bizot, Cathala, Capron (bib31) 2014; 15
Tang, Choi, Ma (bib35) 2007; 40
Liu, Ou, Tang (bib24) 2017; 65
Zhang, Xu, Wu, Guo (bib41) 2016; 55
Capron, Cathala (bib3) 2013; 14
Cherhal, Cousin, Capron (bib6) 2016; 17
Delahaije, Gruppen, Giuseppin, Wierenga (bib10) 2015; 219
Liang, Tang (bib21) 2013; 61
Williams (bib39) 1991; 7
Tang (10.1016/j.foodhyd.2018.09.031_bib35) 2007; 40
Silverstein (10.1016/j.foodhyd.2018.09.031_bib33) 2014; 39
Kalashnikova (10.1016/j.foodhyd.2018.09.031_bib19) 2011; 27
Li (10.1016/j.foodhyd.2018.09.031_bib25) 2013; 34
Capron (10.1016/j.foodhyd.2018.09.031_bib3) 2013; 14
David (10.1016/j.foodhyd.2018.09.031_bib9) 2015; 10
Liu (10.1016/j.foodhyd.2018.09.031_bib23) 2017; 5
Wijaya (10.1016/j.foodhyd.2018.09.031_bib38) 2017; 8
Zhang (10.1016/j.foodhyd.2018.09.031_bib41) 2016; 55
Binks (10.1016/j.foodhyd.2018.09.031_bib2) 2002; 7
Cherhal (10.1016/j.foodhyd.2018.09.031_bib6) 2016; 17
Li (10.1016/j.foodhyd.2018.09.031_bib22) 2009; 48
Chen (10.1016/j.foodhyd.2018.09.031_bib4) 2013; 49
Delahaije (10.1016/j.foodhyd.2018.09.031_bib10) 2015; 219
Tan (10.1016/j.foodhyd.2018.09.031_bib36) 2014; 6
Xu (10.1016/j.foodhyd.2018.09.031_bib40) 2018; 66
Chen (10.1016/j.foodhyd.2018.09.031_bib5) 2018; 75
Dickinson (10.1016/j.foodhyd.2018.09.031_bib12) 2010; 15
Tang (10.1016/j.foodhyd.2018.09.031_bib34) 2017; 57
Cohen-Addad (10.1016/j.foodhyd.2018.09.031_bib8) 2014; 19
Ridel (10.1016/j.foodhyd.2018.09.031_bib32) 2016; 12
Williams (10.1016/j.foodhyd.2018.09.031_bib39) 1991; 7
Miras (10.1016/j.foodhyd.2018.09.031_bib28) 2013; 9
Marcone (10.1016/j.foodhyd.2018.09.031_bib26) 1999; 32
Perrin (10.1016/j.foodhyd.2018.09.031_bib31) 2014; 15
Guo (10.1016/j.foodhyd.2018.09.031_bib15) 2012; 60
Hu (10.1016/j.foodhyd.2018.09.031_bib17) 2016; 61
Dimitrova (10.1016/j.foodhyd.2018.09.031_bib14) 2004; 108–109
Lee (10.1016/j.foodhyd.2018.09.031_bib20) 2012; 28
Liu (10.1016/j.foodhyd.2018.09.031_bib24) 2017; 65
Nagano (10.1016/j.foodhyd.2018.09.031_bib29) 1992; 40
Destribats (10.1016/j.foodhyd.2018.09.031_bib11) 2014; 10
Patel (10.1016/j.foodhyd.2018.09.031_bib30) 2014; 4
Liang (10.1016/j.foodhyd.2018.09.031_bib21) 2013; 61
Horozov (10.1016/j.foodhyd.2018.09.031_bib16) 2006; 45
Chevalier (10.1016/j.foodhyd.2018.09.031_bib7) 2013; 439
Utsumi (10.1016/j.foodhyd.2018.09.031_bib37) 1997
Ikem (10.1016/j.foodhyd.2018.09.031_bib18) 2009; 121
Mine (10.1016/j.foodhyd.2018.09.031_bib27) 1995; 6
Arditty (10.1016/j.foodhyd.2018.09.031_bib1) 2004; 275
Dickinson (10.1016/j.foodhyd.2018.09.031_bib13) 2012; 24
References_xml – volume: 6
  start-page: 225
  year: 1995
  end-page: 232
  ident: bib27
  article-title: Recent advances in the understanding of egg white protein functionality
  publication-title: Trends in Food Science & Technology
– volume: 275
  start-page: 659
  year: 2004
  end-page: 664
  ident: bib1
  article-title: Materials based on solid-stabilized emulsions
  publication-title: Journal of Colloid and Interface Science
– volume: 9
  start-page: 8678
  year: 2013
  end-page: 8686
  ident: bib28
  article-title: Kinetics of chitosan hydrogel formation in high internal phase oil-in-water emulsions (HIPEs) using viscoelastic measurements
  publication-title: Soft Matter
– volume: 40
  start-page: 941
  year: 1992
  end-page: 944
  ident: bib29
  article-title: Dynamic viscoelastic study on the gelation of 7S globulin from soybeans
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 4
  start-page: 18136
  year: 2014
  end-page: 18140
  ident: bib30
  article-title: High internal phase emulsion gels (HIPE-gels) prepared using food-grade components
  publication-title: RSC Advances
– volume: 24
  start-page: 4
  year: 2012
  end-page: 12
  ident: bib13
  article-title: Use of nanoparticles and microparticles in the formation and stabilization of food emulsions
  publication-title: Trends in Food Science & Technology
– volume: 34
  start-page: 169
  year: 2013
  end-page: 174
  ident: bib25
  article-title: Pure protein scaffolds from Pickering high internal phase emulsion template
  publication-title: Macromolecular Rapid Communications
– volume: 7
  start-page: 21
  year: 2002
  end-page: 41
  ident: bib2
  article-title: Particles as surfactants-similarities and differences
  publication-title: Current Opinion in Colloid & Interface Science
– volume: 108–109
  start-page: 49
  year: 2004
  end-page: 61
  ident: bib14
  article-title: Rheological properties of highly concentrated protein-stabilized emulsions
  publication-title: Advances in Colloid and Interface Science
– volume: 19
  start-page: 536
  year: 2014
  end-page: 548
  ident: bib8
  article-title: Rheology of foams and highly concentrated emulsions
  publication-title: Current Opinion in Colloid & Interface Science
– volume: 5
  start-page: 2671
  year: 2017
  end-page: 2678
  ident: bib23
  article-title: High internal phase emulsions stabilised by supramolecular cellulose nanocrystals and their application as cell-adhesive macroporous hydrogel monoliths
  publication-title: Journal of Materials Chemistry B
– volume: 66
  start-page: 8795
  year: 2018
  end-page: 8804
  ident: bib40
  article-title: Ovalbumin as an outstanding Pickering nano-stabilizer for high internal phase emulsions
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 12
  start-page: 7564
  year: 2016
  end-page: 7576
  ident: bib32
  article-title: Pickering emulsions stabilized by charged nanoparticles
  publication-title: Soft Matter
– volume: 7
  start-page: 1370
  year: 1991
  end-page: 1377
  ident: bib39
  article-title: High internal phase water-in-oil emulsions: Influence of surfactants and cosurfactants on emulsion stability and foam quality
  publication-title: Langmuir
– volume: 6
  start-page: 13977
  year: 2014
  end-page: 13984
  ident: bib36
  article-title: Gelatin particle-stabilized high internal phase emulsions as nutraceutical containers
  publication-title: ACS Applied Materials and Interfaces
– volume: 60
  start-page: 3782
  year: 2012
  end-page: 3791
  ident: bib15
  article-title: Limited aggregation behavior of
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 10
  start-page: 195
  year: 2015
  end-page: 206
  ident: bib9
  article-title: Soy
  publication-title: Food Biophysics
– volume: 14
  start-page: 291
  year: 2013
  end-page: 296
  ident: bib3
  article-title: Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals
  publication-title: Biomacromolecules
– volume: 61
  start-page: 11140
  year: 2013
  end-page: 11150
  ident: bib21
  article-title: Emulsifying and interfacial properties of vicilins: Role of conformational flexibility at quaternary and/or tertiary levels
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 27
  start-page: 7471
  year: 2011
  end-page: 7479
  ident: bib19
  article-title: New Pickering emulsions stabilized by bacterial cellulose nanocrystals
  publication-title: Langmuir
– volume: 15
  start-page: 3766
  year: 2014
  end-page: 3771
  ident: bib31
  article-title: Chitin nanocrystals for Pickering high internal phase emulsions
  publication-title: Biomacromolecules
– volume: 28
  start-page: 3085
  year: 2012
  end-page: 3091
  ident: bib20
  article-title: Characteristics of Pickering emulsion gels formed by droplet bridging
  publication-title: Langmuir
– volume: 55
  start-page: 4499
  year: 2016
  end-page: 4505
  ident: bib41
  article-title: Assembled block copolymer stabilized high internal phase emulsion hydrogels for enhancing oil safety
  publication-title: Industrial & Engineering Chemistry Research
– volume: 40
  start-page: 96
  year: 2007
  end-page: 104
  ident: bib35
  article-title: Study of thermal properties and aggregation/denaturation of soy protein isolates by modulated differential scanning calorimetry
  publication-title: International Journal of Biological Macromolecules
– volume: 75
  start-page: 125
  year: 2018
  end-page: 130
  ident: bib5
  article-title: Surface modification improves fabrication of pickering high internal phase emulsions stabilized by cellulose nanocrystals
  publication-title: Food Hydrocolloids
– volume: 10
  start-page: 6941
  year: 2014
  end-page: 6954
  ident: bib11
  article-title: Emulsions stabilised by whey protein microgel particles: Towards food-grade pickering emulsions
  publication-title: Soft Matter
– volume: 15
  start-page: 40
  year: 2010
  end-page: 49
  ident: bib12
  article-title: Food emulsions and foams: Stabilization by particles
  publication-title: Current Opinion in Colloid & Interface Science
– volume: 61
  start-page: 300
  year: 2016
  end-page: 310
  ident: bib17
  article-title: Fabrication and characterization of novel Pickering emulsions and Pickering high internal emulsions stabilized by gliadin colloidal particles
  publication-title: Food Hydrocolloids
– volume: 17
  start-page: 496
  year: 2016
  end-page: 502
  ident: bib6
  article-title: Structural description of the interface of Pickering emulsions stabilized by cellulose nanocrystals
  publication-title: Biomacromolecules
– volume: 65
  start-page: 175
  year: 2017
  end-page: 186
  ident: bib24
  article-title: Ca
  publication-title: Food Hydrocolloids
– volume: 45
  start-page: 773
  year: 2006
  end-page: 776
  ident: bib16
  article-title: Particle-stabilized emulsions: A bilayer or a bridging monolayer?
  publication-title: Angewandte Chemie International Edition
– start-page: 257
  year: 1997
  end-page: 292
  ident: bib37
  article-title: Structure-function relationships of soy proteins
  publication-title: Food proteins and their applications
– volume: 39
  start-page: 199
  year: 2014
  end-page: 234
  ident: bib33
  article-title: PolyHIPEs: Recent advances in emulsion-templeted porous polymers
  publication-title: Progress in Polymer Science
– volume: 49
  start-page: 1524
  year: 2013
  end-page: 1526
  ident: bib4
  article-title: Moldable high internal phase emulsion hydrogel objects from non-covalently crosslinked poly(N-isopropylacrylamide) nanogel dispersions
  publication-title: Chemical Communications
– volume: 8
  start-page: 584
  year: 2017
  end-page: 594
  ident: bib38
  article-title: High internal phase emulsions stabilized solely by whey protein isolate-low methoxyl pectin complexes: Effect of pH and polymer concentration
  publication-title: Food and Function
– volume: 219
  start-page: 1
  year: 2015
  end-page: 9
  ident: bib10
  article-title: Towards predicting the stability of protein-stabilized emulsions
  publication-title: Advances in Colloid and Interface Science
– volume: 48
  start-page: 8490
  year: 2009
  end-page: 8493
  ident: bib22
  article-title: High internal phase emulsions stabilized solely by microgel particles
  publication-title: Angewandte Chemie International Edition
– volume: 57
  start-page: 2636
  year: 2017
  end-page: 2679
  ident: bib34
  article-title: Emulsifying properties of soy proteins: A critical review with emphasis on the role of conformational flexibility
  publication-title: Critical Reviews in Food Science and Nutrition
– volume: 439
  start-page: 23
  year: 2013
  end-page: 34
  ident: bib7
  article-title: Emulsions stabilized with solid nanoparticles: Pickering emulsions
  publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects
– volume: 32
  start-page: 79
  year: 1999
  end-page: 92
  ident: bib26
  article-title: Biochemical and biophysical properties of plant storage proteins: A current understanding with emphasis on 11S seed globulins
  publication-title: Food Research International
– volume: 121
  start-page: 8277
  year: 2009
  end-page: 8279
  ident: bib18
  article-title: High internal phase emulsions stabilized solely by functionalized silica particles
  publication-title: Angewandte Chemie International Edition
– volume: 15
  start-page: 3766
  issue: 10
  year: 2014
  ident: 10.1016/j.foodhyd.2018.09.031_bib31
  article-title: Chitin nanocrystals for Pickering high internal phase emulsions
  publication-title: Biomacromolecules
  doi: 10.1021/bm5010417
– volume: 49
  start-page: 1524
  issue: 15
  year: 2013
  ident: 10.1016/j.foodhyd.2018.09.031_bib4
  article-title: Moldable high internal phase emulsion hydrogel objects from non-covalently crosslinked poly(N-isopropylacrylamide) nanogel dispersions
  publication-title: Chemical Communications
  doi: 10.1039/c2cc38200h
– volume: 28
  start-page: 3085
  issue: 6
  year: 2012
  ident: 10.1016/j.foodhyd.2018.09.031_bib20
  article-title: Characteristics of Pickering emulsion gels formed by droplet bridging
  publication-title: Langmuir
  doi: 10.1021/la203384f
– volume: 66
  start-page: 8795
  issue: 33
  year: 2018
  ident: 10.1016/j.foodhyd.2018.09.031_bib40
  article-title: Ovalbumin as an outstanding Pickering nano-stabilizer for high internal phase emulsions
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/acs.jafc.8b02183
– volume: 24
  start-page: 4
  issue: 1
  year: 2012
  ident: 10.1016/j.foodhyd.2018.09.031_bib13
  article-title: Use of nanoparticles and microparticles in the formation and stabilization of food emulsions
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2011.09.006
– volume: 121
  start-page: 8277
  issue: 4
  year: 2009
  ident: 10.1016/j.foodhyd.2018.09.031_bib18
  article-title: High internal phase emulsions stabilized solely by functionalized silica particles
  publication-title: Angewandte Chemie International Edition
– volume: 6
  start-page: 225
  issue: 7
  year: 1995
  ident: 10.1016/j.foodhyd.2018.09.031_bib27
  article-title: Recent advances in the understanding of egg white protein functionality
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/S0924-2244(00)89083-4
– volume: 48
  start-page: 8490
  issue: 45
  year: 2009
  ident: 10.1016/j.foodhyd.2018.09.031_bib22
  article-title: High internal phase emulsions stabilized solely by microgel particles
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/anie.200902103
– volume: 61
  start-page: 300
  year: 2016
  ident: 10.1016/j.foodhyd.2018.09.031_bib17
  article-title: Fabrication and characterization of novel Pickering emulsions and Pickering high internal emulsions stabilized by gliadin colloidal particles
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2016.05.028
– volume: 39
  start-page: 199
  issue: 1
  year: 2014
  ident: 10.1016/j.foodhyd.2018.09.031_bib33
  article-title: PolyHIPEs: Recent advances in emulsion-templeted porous polymers
  publication-title: Progress in Polymer Science
  doi: 10.1016/j.progpolymsci.2013.07.003
– volume: 15
  start-page: 40
  issue: 1–2
  year: 2010
  ident: 10.1016/j.foodhyd.2018.09.031_bib12
  article-title: Food emulsions and foams: Stabilization by particles
  publication-title: Current Opinion in Colloid & Interface Science
  doi: 10.1016/j.cocis.2009.11.001
– volume: 10
  start-page: 6941
  issue: 36
  year: 2014
  ident: 10.1016/j.foodhyd.2018.09.031_bib11
  article-title: Emulsions stabilised by whey protein microgel particles: Towards food-grade pickering emulsions
  publication-title: Soft Matter
  doi: 10.1039/C4SM00179F
– volume: 57
  start-page: 2636
  issue: 12
  year: 2017
  ident: 10.1016/j.foodhyd.2018.09.031_bib34
  article-title: Emulsifying properties of soy proteins: A critical review with emphasis on the role of conformational flexibility
  publication-title: Critical Reviews in Food Science and Nutrition
  doi: 10.1080/10408398.2015.1067594
– volume: 19
  start-page: 536
  issue: 6
  year: 2014
  ident: 10.1016/j.foodhyd.2018.09.031_bib8
  article-title: Rheology of foams and highly concentrated emulsions
  publication-title: Current Opinion in Colloid & Interface Science
  doi: 10.1016/j.cocis.2014.11.003
– volume: 108–109
  start-page: 49
  year: 2004
  ident: 10.1016/j.foodhyd.2018.09.031_bib14
  article-title: Rheological properties of highly concentrated protein-stabilized emulsions
  publication-title: Advances in Colloid and Interface Science
  doi: 10.1016/j.cis.2003.10.002
– volume: 219
  start-page: 1
  year: 2015
  ident: 10.1016/j.foodhyd.2018.09.031_bib10
  article-title: Towards predicting the stability of protein-stabilized emulsions
  publication-title: Advances in Colloid and Interface Science
  doi: 10.1016/j.cis.2015.01.008
– volume: 14
  start-page: 291
  issue: 2
  year: 2013
  ident: 10.1016/j.foodhyd.2018.09.031_bib3
  article-title: Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals
  publication-title: Biomacromolecules
  doi: 10.1021/bm301871k
– volume: 27
  start-page: 7471
  issue: 12
  year: 2011
  ident: 10.1016/j.foodhyd.2018.09.031_bib19
  article-title: New Pickering emulsions stabilized by bacterial cellulose nanocrystals
  publication-title: Langmuir
  doi: 10.1021/la200971f
– volume: 61
  start-page: 11140
  issue: 46
  year: 2013
  ident: 10.1016/j.foodhyd.2018.09.031_bib21
  article-title: Emulsifying and interfacial properties of vicilins: Role of conformational flexibility at quaternary and/or tertiary levels
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf403847k
– volume: 8
  start-page: 584
  issue: 2
  year: 2017
  ident: 10.1016/j.foodhyd.2018.09.031_bib38
  article-title: High internal phase emulsions stabilized solely by whey protein isolate-low methoxyl pectin complexes: Effect of pH and polymer concentration
  publication-title: Food and Function
  doi: 10.1039/C6FO01027J
– volume: 5
  start-page: 2671
  issue: 14
  year: 2017
  ident: 10.1016/j.foodhyd.2018.09.031_bib23
  article-title: High internal phase emulsions stabilised by supramolecular cellulose nanocrystals and their application as cell-adhesive macroporous hydrogel monoliths
  publication-title: Journal of Materials Chemistry B
  doi: 10.1039/C7TB00145B
– volume: 10
  start-page: 195
  issue: 2
  year: 2015
  ident: 10.1016/j.foodhyd.2018.09.031_bib9
  article-title: Soy β-conglycinin-curcumin nanocomplexes for enrichment of clear beverages
  publication-title: Food Biophysics
  doi: 10.1007/s11483-014-9386-8
– volume: 7
  start-page: 21
  issue: 1–2
  year: 2002
  ident: 10.1016/j.foodhyd.2018.09.031_bib2
  article-title: Particles as surfactants-similarities and differences
  publication-title: Current Opinion in Colloid & Interface Science
  doi: 10.1016/S1359-0294(02)00008-0
– volume: 17
  start-page: 496
  issue: 2
  year: 2016
  ident: 10.1016/j.foodhyd.2018.09.031_bib6
  article-title: Structural description of the interface of Pickering emulsions stabilized by cellulose nanocrystals
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.5b01413
– start-page: 257
  year: 1997
  ident: 10.1016/j.foodhyd.2018.09.031_bib37
  article-title: Structure-function relationships of soy proteins
– volume: 55
  start-page: 4499
  issue: 16
  year: 2016
  ident: 10.1016/j.foodhyd.2018.09.031_bib41
  article-title: Assembled block copolymer stabilized high internal phase emulsion hydrogels for enhancing oil safety
  publication-title: Industrial & Engineering Chemistry Research
  doi: 10.1021/acs.iecr.6b00039
– volume: 439
  start-page: 23
  year: 2013
  ident: 10.1016/j.foodhyd.2018.09.031_bib7
  article-title: Emulsions stabilized with solid nanoparticles: Pickering emulsions
  publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects
  doi: 10.1016/j.colsurfa.2013.02.054
– volume: 60
  start-page: 3782
  issue: 14
  year: 2012
  ident: 10.1016/j.foodhyd.2018.09.031_bib15
  article-title: Limited aggregation behavior of β-conglycinin and its terminating effect on glycinin aggregation during heating at pH 7.0
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf300409y
– volume: 7
  start-page: 1370
  issue: 7
  year: 1991
  ident: 10.1016/j.foodhyd.2018.09.031_bib39
  article-title: High internal phase water-in-oil emulsions: Influence of surfactants and cosurfactants on emulsion stability and foam quality
  publication-title: Langmuir
  doi: 10.1021/la00055a014
– volume: 9
  start-page: 8678
  issue: 36
  year: 2013
  ident: 10.1016/j.foodhyd.2018.09.031_bib28
  article-title: Kinetics of chitosan hydrogel formation in high internal phase oil-in-water emulsions (HIPEs) using viscoelastic measurements
  publication-title: Soft Matter
  doi: 10.1039/c3sm51375k
– volume: 275
  start-page: 659
  issue: 2
  year: 2004
  ident: 10.1016/j.foodhyd.2018.09.031_bib1
  article-title: Materials based on solid-stabilized emulsions
  publication-title: Journal of Colloid and Interface Science
  doi: 10.1016/j.jcis.2004.03.001
– volume: 65
  start-page: 175
  year: 2017
  ident: 10.1016/j.foodhyd.2018.09.031_bib24
  article-title: Ca2+-induced soy protein nanoparticles as pickering stabilizers: Fabrication and characterization
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2016.11.011
– volume: 40
  start-page: 96
  issue: 2
  year: 2007
  ident: 10.1016/j.foodhyd.2018.09.031_bib35
  article-title: Study of thermal properties and aggregation/denaturation of soy protein isolates by modulated differential scanning calorimetry
  publication-title: International Journal of Biological Macromolecules
  doi: 10.1016/j.ijbiomac.2006.06.013
– volume: 34
  start-page: 169
  issue: 2
  year: 2013
  ident: 10.1016/j.foodhyd.2018.09.031_bib25
  article-title: Pure protein scaffolds from Pickering high internal phase emulsion template
  publication-title: Macromolecular Rapid Communications
  doi: 10.1002/marc.201200553
– volume: 75
  start-page: 125
  year: 2018
  ident: 10.1016/j.foodhyd.2018.09.031_bib5
  article-title: Surface modification improves fabrication of pickering high internal phase emulsions stabilized by cellulose nanocrystals
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2017.09.005
– volume: 6
  start-page: 13977
  issue: 16
  year: 2014
  ident: 10.1016/j.foodhyd.2018.09.031_bib36
  article-title: Gelatin particle-stabilized high internal phase emulsions as nutraceutical containers
  publication-title: ACS Applied Materials and Interfaces
  doi: 10.1021/am503341j
– volume: 4
  start-page: 18136
  issue: 35
  year: 2014
  ident: 10.1016/j.foodhyd.2018.09.031_bib30
  article-title: High internal phase emulsion gels (HIPE-gels) prepared using food-grade components
  publication-title: RSC Advances
  doi: 10.1039/C4RA02119C
– volume: 45
  start-page: 773
  issue: 5
  year: 2006
  ident: 10.1016/j.foodhyd.2018.09.031_bib16
  article-title: Particle-stabilized emulsions: A bilayer or a bridging monolayer?
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/anie.200503131
– volume: 40
  start-page: 941
  issue: 6
  year: 1992
  ident: 10.1016/j.foodhyd.2018.09.031_bib29
  article-title: Dynamic viscoelastic study on the gelation of 7S globulin from soybeans
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf00018a004
– volume: 12
  start-page: 7564
  issue: 36
  year: 2016
  ident: 10.1016/j.foodhyd.2018.09.031_bib32
  article-title: Pickering emulsions stabilized by charged nanoparticles
  publication-title: Soft Matter
  doi: 10.1039/C6SM01465H
– volume: 32
  start-page: 79
  issue: 2
  year: 1999
  ident: 10.1016/j.foodhyd.2018.09.031_bib26
  article-title: Biochemical and biophysical properties of plant storage proteins: A current understanding with emphasis on 11S seed globulins
  publication-title: Food Research International
  doi: 10.1016/S0963-9969(99)00061-7
SSID ssj0017011
Score 2.6265645
Snippet There is fast increasing interest in the development of food-grade high internal phase emulsions (HIPEs). In the work, we reported that native soy...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 21
SubjectTerms beta-conglycinin
Bridged emulsions
dissociation
droplet size
emulsifying
emulsions
gels
globulins
High internal phase emulsions (HIPEs)
HIPE gels
hydrocolloids
medicine
oil-water interface
Pickering stabilizer
Soy β-conglycinin
soybeans
stabilizers
urea
Title Novel pickering high internal phase emulsion gels stabilized solely by soy β-conglycinin
URI https://dx.doi.org/10.1016/j.foodhyd.2018.09.031
https://www.proquest.com/docview/2189538289
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF6Mc2kPpUlamjYxG8hVliWtHns0JsFtUlPaGtzTstod2Q6KZVq7oBzyo_JD8psyo0f6gGLoRY9FqxWzs_PS7DeMnRlItPETcNDaMI4QInZSawMHUFfJOEOHrKoN-HESjafiwyycddio3QtDaZWN7K9leiWtmxa3oaa7Xi7dL-g9oLUTzpApCUKE_HYciri8f_eU5kFw414dZ0kcevrXLh73up8VhV2UBBjqJTXcqfcv_fSXpK7Uz8VL9qKxG_mw_rR91oHVAXv-G5rgIfs2KX5CztdLypTAFk5QxHxZh_ywfYEKi8PNNqcAGZ_joBxNQ0qOvQXLkQchL3la4lXJH-4ddJTneWmogMQrNr04_zoaO03lBMcEwt_g0RgZZhHEWRZJi1QwMgDtW9RGMAi11J4fgWcjE0upTSZBCzkIcDkG1jc6CV6z7qpYwRvGNYQCIAp9oC1xIpU69iykcZICWjNJdsRESy9lGlhxqm6RqzZ_7Fo1ZFZEZjWQCsl8xPpP3dY1rsauDkk7GeoPBlEo-3d1PW0nT-HioT8iegXF9odC-0aixEen8-3_v_4de4Z3sk5MO2bdzfctnKClskl7FSv22N5w9PnqE53fX44nj66c7S0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWq9gAcEKsoq5G4pm0SZ_ERIVCBtheKVE6WY0-gVWgqaJHCZ_EhfBPjJmGTUCUuUeRk4mg8nsUevyHkREEolROChd6GshhjgRVp7VqAtooHMQZk89qA3Z7fvmVXA29QIWflWRiTVlno_lynz7V10dIsuNmcDIfNG4we0NvxBiiUBkIE4_aaQafyqqR2ennd7n1uJgSteRle875lCL4O8jRHjThN9UNmMEPtMEc8tf8yUb-U9dwCXayR1cJ1pKf5362TCow3yMo3QMFNctdLXyChk6FJlsAWatCI6TBf9cP2B7RZFB5niVkjo_fYKUXv0OTHvoKmKIaQZDTK8C6j728Wxsr3SaZMDYktcntx3j9rW0XxBEu5zJniVSnuxT4EcexzjVxQ3AXpaDRI0PIkl7bjg619FXAuVcxBMt5ycUa62lEydLdJdZyOYYdQCR4D8D0HzKk4FnEZ2BqiIIwAHZowrhNW8kuoAlncFLhIRJlCNhIFm4Vhs2hxgWyuk8Yn2SSH1lhEEJaDIX7IiED1v4j0uBw8gfPHbIrIMaSzZ4EuDkelj3Hn7v8_f0SW2v1uR3Que9d7ZBmf8DxPbZ9Up08zOEDHZRodFoL5AVrd7kk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+pickering+high+internal+phase+emulsion+gels+stabilized+solely+by+soy+%CE%B2-conglycinin&rft.jtitle=Food+hydrocolloids&rft.au=Xu%2C+Yan-Teng&rft.au=Liu%2C+Tong-Xun&rft.au=Tang%2C+Chuan-He&rft.date=2019-03-01&rft.issn=0268-005X&rft.volume=88&rft.spage=21&rft.epage=30&rft_id=info:doi/10.1016%2Fj.foodhyd.2018.09.031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_foodhyd_2018_09_031
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-005X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-005X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-005X&client=summon