The temperature effect and correction models for using electrical resistivity to estimate wood moisture variations

•Three temperature correction models for tree electrical resistivity (ER) are examined.•The key function parameter α seems to be independent of the three examined species.•The temporal variations of corrected ER capture the variations in wood moisture. Electrical resistivity (ER) tomography is a use...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrology (Amsterdam) Vol. 578; p. 124022
Main Authors Luo, Zidong, Guan, Huade, Zhang, Xinping
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2019
Subjects
Online AccessGet full text
ISSN0022-1694
1879-2707
DOI10.1016/j.jhydrol.2019.124022

Cover

Loading…
Abstract •Three temperature correction models for tree electrical resistivity (ER) are examined.•The key function parameter α seems to be independent of the three examined species.•The temporal variations of corrected ER capture the variations in wood moisture. Electrical resistivity (ER) tomography is a useful nondestructive tool to visualize and estimate moisture content distribution in soil and wood. Wood ER is a function of both moisture and temperature, however, it is not known yet how the temperature effect should be corrected in order to use ER tomography to monitor wood moisture variations. This study aims to break this technical barrier. The ER of three trunk sections of different Australian native tree species was measured at varying temperature (control experiments), and for different moisture contents. The results show that wood ER decreases with an increase of temperature in a nonlinear manner, and that the exponential model performs the best to represent the temperature effect on ER in comparison to two other models (the linear model and power function model). The key parameter in the exponential model for sapwood, reflecting temperature sensitivity, fluctuates in a narrow range between 0.032 and 0.036 °C−1. It appears to be independent of tree species, but significantly different from the value recommended in the literature for temperature correction in soil electrical resistivity. The temporal variations of temperature-corrected ER capture wood moisture variations in time. We suggest that it is better to have wood temperature monitoring while ER tomography is taken for living trees so that the temperature effect can be removed from ER tomograms using the exponential model for wood moisture estimation.
AbstractList •Three temperature correction models for tree electrical resistivity (ER) are examined.•The key function parameter α seems to be independent of the three examined species.•The temporal variations of corrected ER capture the variations in wood moisture. Electrical resistivity (ER) tomography is a useful nondestructive tool to visualize and estimate moisture content distribution in soil and wood. Wood ER is a function of both moisture and temperature, however, it is not known yet how the temperature effect should be corrected in order to use ER tomography to monitor wood moisture variations. This study aims to break this technical barrier. The ER of three trunk sections of different Australian native tree species was measured at varying temperature (control experiments), and for different moisture contents. The results show that wood ER decreases with an increase of temperature in a nonlinear manner, and that the exponential model performs the best to represent the temperature effect on ER in comparison to two other models (the linear model and power function model). The key parameter in the exponential model for sapwood, reflecting temperature sensitivity, fluctuates in a narrow range between 0.032 and 0.036 °C−1. It appears to be independent of tree species, but significantly different from the value recommended in the literature for temperature correction in soil electrical resistivity. The temporal variations of temperature-corrected ER capture wood moisture variations in time. We suggest that it is better to have wood temperature monitoring while ER tomography is taken for living trees so that the temperature effect can be removed from ER tomograms using the exponential model for wood moisture estimation.
Electrical resistivity (ER) tomography is a useful nondestructive tool to visualize and estimate moisture content distribution in soil and wood. Wood ER is a function of both moisture and temperature, however, it is not known yet how the temperature effect should be corrected in order to use ER tomography to monitor wood moisture variations. This study aims to break this technical barrier. The ER of three trunk sections of different Australian native tree species was measured at varying temperature (control experiments), and for different moisture contents. The results show that wood ER decreases with an increase of temperature in a nonlinear manner, and that the exponential model performs the best to represent the temperature effect on ER in comparison to two other models (the linear model and power function model). The key parameter in the exponential model for sapwood, reflecting temperature sensitivity, fluctuates in a narrow range between 0.032 and 0.036 °C⁻¹. It appears to be independent of tree species, but significantly different from the value recommended in the literature for temperature correction in soil electrical resistivity. The temporal variations of temperature-corrected ER capture wood moisture variations in time. We suggest that it is better to have wood temperature monitoring while ER tomography is taken for living trees so that the temperature effect can be removed from ER tomograms using the exponential model for wood moisture estimation.
ArticleNumber 124022
Author Luo, Zidong
Guan, Huade
Zhang, Xinping
Author_xml – sequence: 1
  givenname: Zidong
  surname: Luo
  fullname: Luo, Zidong
  organization: College of Resources and Environmental Science, Hunan Normal University, Changsha 410081, China
– sequence: 2
  givenname: Huade
  orcidid: 0000-0001-5425-6974
  surname: Guan
  fullname: Guan, Huade
  organization: National Centre for Groundwater Research and Training, College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
– sequence: 3
  givenname: Xinping
  orcidid: 0000-0002-4423-498X
  surname: Zhang
  fullname: Zhang, Xinping
  email: zxp@hunnu.edu.cn
  organization: College of Resources and Environmental Science, Hunan Normal University, Changsha 410081, China
BookMark eNqFkD9PwzAQxS0EEqXwEZA8sqTYSezEYkCo4p9UiaXMlutcqKs0Lme3qN8eh3Zi6S138rv35PtdkfPe90DILWcTzri8X01Wy32DvpvkjKsJz0uW52dkxOtKZXnFqnMyYukp41KVl-QqhBVLVRTliOB8CTTCegNo4haBQtuCjdT0DbUeMc3O93TtG-gCbT3SbXD9F4UuKeis6ShCcCG6nYt7Gj2FNK9NBPrjfZOMSRtydwadGbLCNbloTRfg5tjH5PPleT59y2Yfr-_Tp1lmizKP2cJCIWpmlDCVFblgopZcWiGUKoSUbdGqwpZ8IdiiBZmr0khVF0zaumy4SOKY3B1yN-i_t-lbeu2Cha4zPfht0AkTK5VgrEqr4rBq0YeA0OoNpiNwrznTA2O90kfGemCsD4yT7-Gfz7r4d2VE47qT7seDO6GFnQPUwTroLTRu4K4b704k_ALpOZ-g
CitedBy_id crossref_primary_10_1007_s11104_020_04653_7
crossref_primary_10_1088_1361_6501_ac7b6d
crossref_primary_10_1016_j_agrformet_2020_108058
crossref_primary_10_3390_f13020295
crossref_primary_10_1007_s00226_021_01281_x
crossref_primary_10_1016_j_compag_2024_109585
crossref_primary_10_1007_s13595_021_01078_9
crossref_primary_10_1007_s00468_020_01976_x
crossref_primary_10_1016_j_geoderma_2023_116749
crossref_primary_10_3389_frwa_2021_682285
crossref_primary_10_1590_2179_8087_floram_2023_0027
crossref_primary_10_1038_s41598_023_48100_w
crossref_primary_10_1007_s00226_020_01212_2
Cites_doi 10.1093/jxb/erl118
10.2136/sssaj2007.0244
10.1007/s11119-009-9156-7
10.1093/treephys/23.4.237
10.1139/x72-039
10.1007/s11104-008-9860-5
10.1016/S0022-1694(02)00145-2
10.1093/treephys/tps128
10.7717/peerj.6444
10.1093/treephys/tpy092
10.1016/j.jhydrol.2018.02.062
10.1016/S0169-7722(00)00117-0
10.1093/treephys/tpt055
10.1093/forestry/cpq040
10.1093/jxb/erl237
10.1111/j.1365-246X.2006.03011.x
10.1016/j.jhydrol.2017.11.025
10.1002/eco.1612
10.1002/2017WR020467
10.14214/sf.1341
10.1111/j.1365-3040.1992.tb00993.x
10.5194/hess-19-2213-2015
10.1029/2000WR900284
10.1016/j.jhydrol.2009.10.032
10.1021/ie50213a022
10.14214/sf.153
10.14214/sf.440
10.3997/1873-0604.2005043
10.1111/j.1365-246X.2006.03010.x
10.1190/1.1468597
10.1139/cjfr-2014-0380
10.1093/treephys/20.15.1057
10.1029/2000JD900719
10.14214/sf.a15508
10.1016/0926-9851(95)90043-8
10.1016/j.jhydrol.2016.03.003
10.1104/pp.19.00057
10.2307/2440008
10.1111/j.1469-8137.2008.02436.x
10.3390/f9090550
10.1139/x01-226
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2019.124022
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
ExternalDocumentID 10_1016_j_jhydrol_2019_124022
S0022169419307498
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c342t-bce3580a95a7c525058616c55993566f3f93c41b50bfe6294a698306c84d15f93
IEDL.DBID AIKHN
ISSN 0022-1694
IngestDate Thu Sep 04 21:27:02 EDT 2025
Tue Jul 01 01:53:15 EDT 2025
Thu Apr 24 23:06:08 EDT 2025
Fri Feb 23 02:47:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Temperature correction model
Electrical resistivity tomography
Moisture content
Wood temperature
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-bce3580a95a7c525058616c55993566f3f93c41b50bfe6294a698306c84d15f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4423-498X
0000-0001-5425-6974
PQID 2400495007
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2400495007
crossref_primary_10_1016_j_jhydrol_2019_124022
crossref_citationtrail_10_1016_j_jhydrol_2019_124022
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2019_124022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2019
2019-11-00
20191101
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November 2019
PublicationDecade 2010
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Binley, Cassiani, Deiana (b0020) 2010; 51
Lo Gullo, Salleo (b0120) 1992; 15
Gora, Yanoviak (b0060) 2015; 45
Bär, Hamacher, Ganthaler (b0005) 2019
Yue, Wang, Shi (b0220) 2018; 9
Dick, Tetzlaff, Bradford (b0055) 2018; 559
Nadler, Tyree (b0140) 2008; 72
Repo (b0155) 1988; 22
Srayeddin, Doussan (b0175) 2009; 319
Derby, Gates (b0050) 1966; 53
Hagrey (b0080) 2007; 58
Cassiani, Boaga, Vanella (b0035) 2015; 19
Jones (b0095) 2006; 58
Just, Jacobs (b0100) 1998
Brunet, Clement, Bouvier (b0030) 2010; 380
Stamm (b0180) 1927; 19
Bieker, Rust (b0015) 2010; 44
Stockfors (b0185) 2000; 20
Taylor (b0195) 2001; 106
Kocher, Horna, Leuschner (b0110) 2013; 33
Zhou, Shimada, Sato (b0230) 2001; 37
McDowell, Pockman, Allen (b0135) 2008; 178
Hagrey (b0075) 2006; 4
Humplík, Čermák, Žid (b0090) 2016; 50
Potter, Andresen (b0150) 2002; 32
Daily, Ramirez, LaBrecque (b0040) 1995; 33
Mares, Barnard, Mao (b0130) 2016; 536
Kemnaa, Vanderborghta, Kulessab (b0105) 2002; 267
Tattar, Shigo, Chase (b0190) 1972; 2
Vereecken, Binley, Cassiani (b0205) 2006
Rücker, Günther, Spitzer (b0160) 2006; 166
Wang, Guan, Guyot (b0210) 2016; 9
Günther, Rücker, Spitzer (b0065) 2006; 166
Skelton (b0165) 2019; 179
Brazee, Marra, Gocke (b0025) 2011; 84
Benson, Koeser, Morgenroth (b0010) 2019; 39
Slater, Reeve (b0170) 2002; 67
Wu, Zhou, Liu (b0215) 2009; 28
Ma, McBratney, Whelan (b0125) 2011; 12
Vanella, Cassiani, Busato (b0200) 2018; 556
Guyot, Ostergaard, Lenkopane (b0070) 2013; 33
Phillips, Ryan, Bond (b0145) 2003; 23
Deng, Guan, Hutson (b0045) 2017; 53
Hubbard, Rubin (b0085) 2000; 45
Lin, Chung, Yang (b0115) 2012; 46
Yue, Wang, Wacker (b0225) 2019; 7
Kocher (10.1016/j.jhydrol.2019.124022_b0110) 2013; 33
Lin (10.1016/j.jhydrol.2019.124022_b0115) 2012; 46
Skelton (10.1016/j.jhydrol.2019.124022_b0165) 2019; 179
Brunet (10.1016/j.jhydrol.2019.124022_b0030) 2010; 380
Yue (10.1016/j.jhydrol.2019.124022_b0225) 2019; 7
Bieker (10.1016/j.jhydrol.2019.124022_b0015) 2010; 44
Mares (10.1016/j.jhydrol.2019.124022_b0130) 2016; 536
Wang (10.1016/j.jhydrol.2019.124022_b0210) 2016; 9
Zhou (10.1016/j.jhydrol.2019.124022_b0230) 2001; 37
Yue (10.1016/j.jhydrol.2019.124022_b0220) 2018; 9
Bär (10.1016/j.jhydrol.2019.124022_b0005) 2019
Ma (10.1016/j.jhydrol.2019.124022_b0125) 2011; 12
Vanella (10.1016/j.jhydrol.2019.124022_b0200) 2018; 556
Slater (10.1016/j.jhydrol.2019.124022_b0170) 2002; 67
Gora (10.1016/j.jhydrol.2019.124022_b0060) 2015; 45
Cassiani (10.1016/j.jhydrol.2019.124022_b0035) 2015; 19
Kemnaa (10.1016/j.jhydrol.2019.124022_b0105) 2002; 267
Dick (10.1016/j.jhydrol.2019.124022_b0055) 2018; 559
Tattar (10.1016/j.jhydrol.2019.124022_b0190) 1972; 2
Lo Gullo (10.1016/j.jhydrol.2019.124022_b0120) 1992; 15
Brazee (10.1016/j.jhydrol.2019.124022_b0025) 2011; 84
Guyot (10.1016/j.jhydrol.2019.124022_b0070) 2013; 33
Nadler (10.1016/j.jhydrol.2019.124022_b0140) 2008; 72
Stamm (10.1016/j.jhydrol.2019.124022_b0180) 1927; 19
Humplík (10.1016/j.jhydrol.2019.124022_b0090) 2016; 50
Daily (10.1016/j.jhydrol.2019.124022_b0040) 1995; 33
Hubbard (10.1016/j.jhydrol.2019.124022_b0085) 2000; 45
Phillips (10.1016/j.jhydrol.2019.124022_b0145) 2003; 23
Günther (10.1016/j.jhydrol.2019.124022_b0065) 2006; 166
Hagrey (10.1016/j.jhydrol.2019.124022_b0075) 2006; 4
McDowell (10.1016/j.jhydrol.2019.124022_b0135) 2008; 178
Just (10.1016/j.jhydrol.2019.124022_b0100) 1998
Taylor (10.1016/j.jhydrol.2019.124022_b0195) 2001; 106
Deng (10.1016/j.jhydrol.2019.124022_b0045) 2017; 53
Hagrey (10.1016/j.jhydrol.2019.124022_b0080) 2007; 58
Potter (10.1016/j.jhydrol.2019.124022_b0150) 2002; 32
Rücker (10.1016/j.jhydrol.2019.124022_b0160) 2006; 166
Stockfors (10.1016/j.jhydrol.2019.124022_b0185) 2000; 20
Wu (10.1016/j.jhydrol.2019.124022_b0215) 2009; 28
Repo (10.1016/j.jhydrol.2019.124022_b0155) 1988; 22
Derby (10.1016/j.jhydrol.2019.124022_b0050) 1966; 53
Srayeddin (10.1016/j.jhydrol.2019.124022_b0175) 2009; 319
Benson (10.1016/j.jhydrol.2019.124022_b0010) 2019; 39
Binley (10.1016/j.jhydrol.2019.124022_b0020) 2010; 51
Jones (10.1016/j.jhydrol.2019.124022_b0095) 2006; 58
Vereecken (10.1016/j.jhydrol.2019.124022_b0205) 2006
References_xml – volume: 380
  start-page: 146
  year: 2010
  end-page: 153
  ident: b0030
  article-title: Monitoring soil water content and deficit using Electrical Resistivity Tomography (ERT)-A case study in the Cevennes area, France
  publication-title: J. Hydrol.
– volume: 9
  start-page: 550
  year: 2018
  ident: b0220
  article-title: Investigations on the effects of seasonal temperature changes on the electrical resistance of living trees
  publication-title: Forests
– volume: 28
  start-page: 350
  year: 2009
  end-page: 356
  ident: b0215
  article-title: Application of electrical resistivity tomography in studying water uptake process in tree trunk (in Chinese)
  publication-title: Chin. J. Ecol.
– volume: 44
  start-page: 267
  year: 2010
  end-page: 273
  ident: b0015
  article-title: Non-destructive estimation of sapwood and heartwood width in Scots pine (
  publication-title: Silva Fenn.
– volume: 33
  start-page: 227
  year: 1995
  end-page: 237
  ident: b0040
  article-title: Electrical resistance tomography experiments at the Oregon Graduate Institute
  publication-title: J. Appl. Geophys.
– volume: 67
  start-page: 365
  year: 2002
  end-page: 378
  ident: b0170
  article-title: Investigating peatland stratigraphy and hydrogeology using integrated electrical geophysics
  publication-title: Geophysics
– volume: 39
  start-page: 484
  year: 2019
  end-page: 494
  ident: b0010
  article-title: Estimating conductive sapwood area in diffuse and ring porous trees with electronic resistance tomography
  publication-title: Tree Physiol.
– volume: 33
  start-page: 187
  year: 2013
  end-page: 194
  ident: b0070
  article-title: Using electrical resistivity tomography to differentiate sapwood from heartwood: application to conifers
  publication-title: Tree Physiol.
– volume: 20
  start-page: 1057
  year: 2000
  end-page: 1062
  ident: b0185
  article-title: Temperature variation and distribution of living cells within tree stems: implications for stem respiration modeling and scale-up
  publication-title: Tree Physiol.
– start-page: tpz052
  year: 2019
  ident: b0005
  article-title: Electrical resistivity tomography: patterns in
  publication-title: Tree Physiol.
– volume: 22
  start-page: 181
  year: 1988
  end-page: 193
  ident: b0155
  article-title: Physical and physiological aspects of impedance measurements in plants
  publication-title: Silva Fenn.
– volume: 45
  start-page: 3
  year: 2000
  end-page: 34
  ident: b0085
  article-title: Hydrogeological parameter estimation using geophysical data: a review of selected techniques
  publication-title: J. Contam. Hydrol.
– volume: 12
  start-page: 55
  year: 2011
  end-page: 66
  ident: b0125
  article-title: Comparing temperature correction models for soil electrical conductivity measurement
  publication-title: Precis. Agric.
– volume: 7
  year: 2019
  ident: b0225
  article-title: Electric resistance tomography and stress wave tomography for decay detection in trees-a comparison study
  publication-title: PeerJ
– volume: 536
  start-page: 327
  year: 2016
  end-page: 338
  ident: b0130
  article-title: Examining diel patterns of soil and xylem moisture using electrical resistivity imaging
  publication-title: J. Hydrol.
– volume: 51
  start-page: 267
  year: 2010
  end-page: 284
  ident: b0020
  article-title: Hydrogeophysics: opportunities and challenges
  publication-title: Bolletino di Geofisica Teorica ed Applicata
– volume: 32
  start-page: 548
  year: 2002
  end-page: 555
  ident: b0150
  article-title: A finite-difference model of temperatures and heat flow within a tree stem
  publication-title: Can. J. Forest Res.
– volume: 267
  start-page: 125
  year: 2002
  end-page: 146
  ident: b0105
  article-title: Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models
  publication-title: J. Hydrol.
– volume: 23
  start-page: 237
  year: 2003
  end-page: 245
  ident: b0145
  article-title: Reliance on stored water increases with tree size in three species in the Pacific Northwest
  publication-title: Tree Physiol.
– volume: 19
  start-page: 1021
  year: 1927
  end-page: 1025
  ident: b0180
  article-title: The electrical resistance of wood as a measure of its moisture content
  publication-title: Ind. Eng. Chem.
– volume: 50
  start-page: 1
  year: 2016
  end-page: 13
  ident: b0090
  article-title: Electrical impedance tomography for decay diagnostics of Norway spruce (
  publication-title: Silva Fenn.
– volume: 166
  start-page: 495
  year: 2006
  end-page: 505
  ident: b0160
  article-title: Three-dimensional modelling and inversion of dc resistivity data incorporating topography - I
  publication-title: Modelling. Geophys. J. Int.
– volume: 556
  start-page: 310
  year: 2018
  end-page: 324
  ident: b0200
  article-title: Use of small scale electrical resistivity tomography to identify soil-root interactions during deficit irrigation
  publication-title: J. Hydrol.
– volume: 72
  start-page: 1006
  year: 2008
  end-page: 1013
  ident: b0140
  article-title: Substituting stem's water content by electrical conductivity for monitoring water status changes
  publication-title: Soil Sci. Soc. Am. J.
– volume: 9
  start-page: 83
  year: 2016
  end-page: 92
  ident: b0210
  article-title: Quantifying sapwood width for three Australian native species using electrical resistivity tomography
  publication-title: Ecohydrology
– volume: 4
  start-page: 179
  year: 2006
  end-page: 187
  ident: b0075
  article-title: Electrical resistivity imaging of tree trunks
  publication-title: Near Surf. Geophys.
– volume: 179
  start-page: 1433
  year: 2019
  end-page: 1434
  ident: b0165
  article-title: Of Storage and Stems: Examining the Role of Stem Water Storage in Plant Water Balance
  publication-title: Plant Physiol.
– volume: 319
  start-page: 185
  year: 2009
  end-page: 207
  ident: b0175
  article-title: Estimation of the spatial variability of root water uptake of maize and sorghum at the field scale by electrical resistivity tomography
  publication-title: Plant Soil
– volume: 33
  start-page: 817
  year: 2013
  end-page: 832
  ident: b0110
  article-title: Stem water storage in five coexisting temperate broad-leaved tree species: significance, temporal dynamics and dependence on tree functional traits
  publication-title: Tree Physiol.
– year: 2006
  ident: b0205
  article-title: Applied Hydrogeophysics
– volume: 53
  start-page: 580
  year: 1966
  end-page: 587
  ident: b0050
  article-title: The temperature of tree trunks-calculated and observed
  publication-title: Am. J. Bot.
– volume: 37
  start-page: 273
  year: 2001
  end-page: 285
  ident: b0230
  article-title: Three-dimensional spatial and temporal monitoring of soil water content using electrical resistivity tomography
  publication-title: Water Resour. Res.
– volume: 166
  start-page: 506
  year: 2006
  end-page: 517
  ident: b0065
  article-title: Three-dimensional modelling and inversion of dc resistivity data incorporating topography- II
  publication-title: Inversion. Geophys. J. Int.
– volume: 19
  start-page: 2213
  year: 2015
  end-page: 2225
  ident: b0035
  article-title: Monitoring and modelling of soil-plant interactions: the joint use of ERT, sap flow and eddy covariance data to characterize the volume of an orange tree root zone
  publication-title: Hydrol. Earth Syst. Sc.
– volume: 45
  start-page: 236
  year: 2015
  end-page: 245
  ident: b0060
  article-title: Electrical properties of temperate forest trees: a review and quantitative comparison with vines
  publication-title: Can. J. Forest Res.
– volume: 58
  start-page: 839
  year: 2007
  end-page: 854
  ident: b0080
  article-title: Geophysical imaging of root-zone, trunk, and moisture heterogeneity
  publication-title: J. Exp. Bot.
– volume: 559
  start-page: 684
  year: 2018
  end-page: 697
  ident: b0055
  article-title: Using repeat electrical resistivity surveys to assess heterogeneity in soil moisture dynamics under contrasting vegetation types
  publication-title: J. Hydrol.
– volume: 15
  start-page: 431
  year: 1992
  end-page: 438
  ident: b0120
  article-title: Water storage in the wood and xylem cavitation in 1-year-old twigs of
  publication-title: Plant, Cell Environ.
– volume: 84
  start-page: 33
  year: 2011
  end-page: 39
  ident: b0025
  article-title: Non-destructive assessment of internal decay in three hardwood species of northeastern North America using sonic and electrical impedance tomography
  publication-title: Forestry
– volume: 46
  start-page: 415
  year: 2012
  end-page: 424
  ident: b0115
  article-title: Detection of electric resistivity tomography and evaluation of the sapwood-heartwood demarcation in three Asia Gymnosperm Species
  publication-title: Silva Fenn.
– year: 1998
  ident: b0100
  article-title: Elektrische Widerstandstomographie zur Untersuchung des Gesundheitszustandes von Bäumen. Tagungsband des VII. Arbeitsseminars Hochauflösende Geoelektrik, Institut für Geophysik und Geologie der
– volume: 58
  start-page: 119
  year: 2006
  end-page: 130
  ident: b0095
  article-title: Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance
  publication-title: J. Exp. Bot.
– volume: 53
  start-page: 4965
  year: 2017
  end-page: 4983
  ident: b0045
  article-title: A vegetation-focused soil-plant-atmospheric continuum model to study hydrodynamic soil-plant water relations
  publication-title: Water Resour. Res.
– volume: 178
  start-page: 719
  year: 2008
  end-page: 739
  ident: b0135
  article-title: Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?
  publication-title: New Phytologist
– volume: 2
  start-page: 236
  year: 1972
  end-page: 243
  ident: b0190
  article-title: Relationship between the degree of resistance to a pulsed electric current and wood in progressive stages of discoloration and decay in living trees
  publication-title: Can. J. Forest Res.
– volume: 106
  start-page: 7183
  year: 2001
  end-page: 7192
  ident: b0195
  article-title: Summarizing multiple aspects of model performance in a single diagram
  publication-title: J. Geophys. Res. Atmos.
– volume: 58
  start-page: 119
  issue: 2
  year: 2006
  ident: 10.1016/j.jhydrol.2019.124022_b0095
  article-title: Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erl118
– volume: 72
  start-page: 1006
  issue: 4
  year: 2008
  ident: 10.1016/j.jhydrol.2019.124022_b0140
  article-title: Substituting stem's water content by electrical conductivity for monitoring water status changes
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2007.0244
– volume: 12
  start-page: 55
  issue: 1
  year: 2011
  ident: 10.1016/j.jhydrol.2019.124022_b0125
  article-title: Comparing temperature correction models for soil electrical conductivity measurement
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-009-9156-7
– start-page: tpz052
  year: 2019
  ident: 10.1016/j.jhydrol.2019.124022_b0005
  article-title: Electrical resistivity tomography: patterns in Betula pendula, Fagus sylvatica, Picea abies and Pinus sylvestris
  publication-title: Tree Physiol.
– volume: 23
  start-page: 237
  issue: 4
  year: 2003
  ident: 10.1016/j.jhydrol.2019.124022_b0145
  article-title: Reliance on stored water increases with tree size in three species in the Pacific Northwest
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/23.4.237
– volume: 51
  start-page: 267
  issue: 4
  year: 2010
  ident: 10.1016/j.jhydrol.2019.124022_b0020
  article-title: Hydrogeophysics: opportunities and challenges
  publication-title: Bolletino di Geofisica Teorica ed Applicata
– volume: 2
  start-page: 236
  year: 1972
  ident: 10.1016/j.jhydrol.2019.124022_b0190
  article-title: Relationship between the degree of resistance to a pulsed electric current and wood in progressive stages of discoloration and decay in living trees
  publication-title: Can. J. Forest Res.
  doi: 10.1139/x72-039
– volume: 319
  start-page: 185
  issue: 1–2
  year: 2009
  ident: 10.1016/j.jhydrol.2019.124022_b0175
  article-title: Estimation of the spatial variability of root water uptake of maize and sorghum at the field scale by electrical resistivity tomography
  publication-title: Plant Soil
  doi: 10.1007/s11104-008-9860-5
– volume: 267
  start-page: 125
  year: 2002
  ident: 10.1016/j.jhydrol.2019.124022_b0105
  article-title: Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(02)00145-2
– volume: 33
  start-page: 187
  issue: 2
  year: 2013
  ident: 10.1016/j.jhydrol.2019.124022_b0070
  article-title: Using electrical resistivity tomography to differentiate sapwood from heartwood: application to conifers
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/tps128
– volume: 7
  year: 2019
  ident: 10.1016/j.jhydrol.2019.124022_b0225
  article-title: Electric resistance tomography and stress wave tomography for decay detection in trees-a comparison study
  publication-title: PeerJ
  doi: 10.7717/peerj.6444
– volume: 39
  start-page: 484
  issue: 3
  year: 2019
  ident: 10.1016/j.jhydrol.2019.124022_b0010
  article-title: Estimating conductive sapwood area in diffuse and ring porous trees with electronic resistance tomography
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/tpy092
– year: 1998
  ident: 10.1016/j.jhydrol.2019.124022_b0100
– volume: 559
  start-page: 684
  year: 2018
  ident: 10.1016/j.jhydrol.2019.124022_b0055
  article-title: Using repeat electrical resistivity surveys to assess heterogeneity in soil moisture dynamics under contrasting vegetation types
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.02.062
– volume: 45
  start-page: 3
  year: 2000
  ident: 10.1016/j.jhydrol.2019.124022_b0085
  article-title: Hydrogeological parameter estimation using geophysical data: a review of selected techniques
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/S0169-7722(00)00117-0
– volume: 33
  start-page: 817
  issue: 8
  year: 2013
  ident: 10.1016/j.jhydrol.2019.124022_b0110
  article-title: Stem water storage in five coexisting temperate broad-leaved tree species: significance, temporal dynamics and dependence on tree functional traits
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/tpt055
– volume: 84
  start-page: 33
  issue: 1
  year: 2011
  ident: 10.1016/j.jhydrol.2019.124022_b0025
  article-title: Non-destructive assessment of internal decay in three hardwood species of northeastern North America using sonic and electrical impedance tomography
  publication-title: Forestry
  doi: 10.1093/forestry/cpq040
– volume: 58
  start-page: 839
  issue: 4
  year: 2007
  ident: 10.1016/j.jhydrol.2019.124022_b0080
  article-title: Geophysical imaging of root-zone, trunk, and moisture heterogeneity
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erl237
– volume: 166
  start-page: 506
  issue: 2
  year: 2006
  ident: 10.1016/j.jhydrol.2019.124022_b0065
  article-title: Three-dimensional modelling and inversion of dc resistivity data incorporating topography- II
  publication-title: Inversion. Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2006.03011.x
– volume: 556
  start-page: 310
  year: 2018
  ident: 10.1016/j.jhydrol.2019.124022_b0200
  article-title: Use of small scale electrical resistivity tomography to identify soil-root interactions during deficit irrigation
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.11.025
– volume: 9
  start-page: 83
  issue: 1
  year: 2016
  ident: 10.1016/j.jhydrol.2019.124022_b0210
  article-title: Quantifying sapwood width for three Australian native species using electrical resistivity tomography
  publication-title: Ecohydrology
  doi: 10.1002/eco.1612
– volume: 53
  start-page: 4965
  issue: 6
  year: 2017
  ident: 10.1016/j.jhydrol.2019.124022_b0045
  article-title: A vegetation-focused soil-plant-atmospheric continuum model to study hydrodynamic soil-plant water relations
  publication-title: Water Resour. Res.
  doi: 10.1002/2017WR020467
– volume: 50
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.jhydrol.2019.124022_b0090
  article-title: Electrical impedance tomography for decay diagnostics of Norway spruce (Picea abies): possibilities and opportunities
  publication-title: Silva Fenn.
  doi: 10.14214/sf.1341
– volume: 15
  start-page: 431
  year: 1992
  ident: 10.1016/j.jhydrol.2019.124022_b0120
  article-title: Water storage in the wood and xylem cavitation in 1-year-old twigs of Populus deltoides Bartr
  publication-title: Plant, Cell Environ.
  doi: 10.1111/j.1365-3040.1992.tb00993.x
– volume: 19
  start-page: 2213
  issue: 5
  year: 2015
  ident: 10.1016/j.jhydrol.2019.124022_b0035
  article-title: Monitoring and modelling of soil-plant interactions: the joint use of ERT, sap flow and eddy covariance data to characterize the volume of an orange tree root zone
  publication-title: Hydrol. Earth Syst. Sc.
  doi: 10.5194/hess-19-2213-2015
– volume: 37
  start-page: 273
  issue: 2
  year: 2001
  ident: 10.1016/j.jhydrol.2019.124022_b0230
  article-title: Three-dimensional spatial and temporal monitoring of soil water content using electrical resistivity tomography
  publication-title: Water Resour. Res.
  doi: 10.1029/2000WR900284
– volume: 380
  start-page: 146
  issue: 1–2
  year: 2010
  ident: 10.1016/j.jhydrol.2019.124022_b0030
  article-title: Monitoring soil water content and deficit using Electrical Resistivity Tomography (ERT)-A case study in the Cevennes area, France
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.10.032
– volume: 28
  start-page: 350
  issue: 2
  year: 2009
  ident: 10.1016/j.jhydrol.2019.124022_b0215
  article-title: Application of electrical resistivity tomography in studying water uptake process in tree trunk (in Chinese)
  publication-title: Chin. J. Ecol.
– volume: 19
  start-page: 1021
  issue: 9
  year: 1927
  ident: 10.1016/j.jhydrol.2019.124022_b0180
  article-title: The electrical resistance of wood as a measure of its moisture content
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50213a022
– volume: 44
  start-page: 267
  issue: 2
  year: 2010
  ident: 10.1016/j.jhydrol.2019.124022_b0015
  article-title: Non-destructive estimation of sapwood and heartwood width in Scots pine (Pinus sylvestris L.)
  publication-title: Silva Fenn.
  doi: 10.14214/sf.153
– volume: 46
  start-page: 415
  issue: 3
  year: 2012
  ident: 10.1016/j.jhydrol.2019.124022_b0115
  article-title: Detection of electric resistivity tomography and evaluation of the sapwood-heartwood demarcation in three Asia Gymnosperm Species
  publication-title: Silva Fenn.
  doi: 10.14214/sf.440
– volume: 4
  start-page: 179
  year: 2006
  ident: 10.1016/j.jhydrol.2019.124022_b0075
  article-title: Electrical resistivity imaging of tree trunks
  publication-title: Near Surf. Geophys.
  doi: 10.3997/1873-0604.2005043
– volume: 166
  start-page: 495
  issue: 2
  year: 2006
  ident: 10.1016/j.jhydrol.2019.124022_b0160
  article-title: Three-dimensional modelling and inversion of dc resistivity data incorporating topography - I
  publication-title: Modelling. Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2006.03010.x
– volume: 67
  start-page: 365
  issue: 2
  year: 2002
  ident: 10.1016/j.jhydrol.2019.124022_b0170
  article-title: Investigating peatland stratigraphy and hydrogeology using integrated electrical geophysics
  publication-title: Geophysics
  doi: 10.1190/1.1468597
– volume: 45
  start-page: 236
  issue: 3
  year: 2015
  ident: 10.1016/j.jhydrol.2019.124022_b0060
  article-title: Electrical properties of temperate forest trees: a review and quantitative comparison with vines
  publication-title: Can. J. Forest Res.
  doi: 10.1139/cjfr-2014-0380
– volume: 20
  start-page: 1057
  issue: 15
  year: 2000
  ident: 10.1016/j.jhydrol.2019.124022_b0185
  article-title: Temperature variation and distribution of living cells within tree stems: implications for stem respiration modeling and scale-up
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/20.15.1057
– volume: 106
  start-page: 7183
  issue: D7
  year: 2001
  ident: 10.1016/j.jhydrol.2019.124022_b0195
  article-title: Summarizing multiple aspects of model performance in a single diagram
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2000JD900719
– volume: 22
  start-page: 181
  issue: 3
  year: 1988
  ident: 10.1016/j.jhydrol.2019.124022_b0155
  article-title: Physical and physiological aspects of impedance measurements in plants
  publication-title: Silva Fenn.
  doi: 10.14214/sf.a15508
– year: 2006
  ident: 10.1016/j.jhydrol.2019.124022_b0205
– volume: 33
  start-page: 227
  year: 1995
  ident: 10.1016/j.jhydrol.2019.124022_b0040
  article-title: Electrical resistance tomography experiments at the Oregon Graduate Institute
  publication-title: J. Appl. Geophys.
  doi: 10.1016/0926-9851(95)90043-8
– volume: 536
  start-page: 327
  year: 2016
  ident: 10.1016/j.jhydrol.2019.124022_b0130
  article-title: Examining diel patterns of soil and xylem moisture using electrical resistivity imaging
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.03.003
– volume: 179
  start-page: 1433
  issue: 4
  year: 2019
  ident: 10.1016/j.jhydrol.2019.124022_b0165
  article-title: Of Storage and Stems: Examining the Role of Stem Water Storage in Plant Water Balance
  publication-title: Plant Physiol.
  doi: 10.1104/pp.19.00057
– volume: 53
  start-page: 580
  issue: 6
  year: 1966
  ident: 10.1016/j.jhydrol.2019.124022_b0050
  article-title: The temperature of tree trunks-calculated and observed
  publication-title: Am. J. Bot.
  doi: 10.2307/2440008
– volume: 178
  start-page: 719
  issue: 4
  year: 2008
  ident: 10.1016/j.jhydrol.2019.124022_b0135
  article-title: Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2008.02436.x
– volume: 9
  start-page: 550
  issue: 9
  year: 2018
  ident: 10.1016/j.jhydrol.2019.124022_b0220
  article-title: Investigations on the effects of seasonal temperature changes on the electrical resistance of living trees
  publication-title: Forests
  doi: 10.3390/f9090550
– volume: 32
  start-page: 548
  issue: 3
  year: 2002
  ident: 10.1016/j.jhydrol.2019.124022_b0150
  article-title: A finite-difference model of temperatures and heat flow within a tree stem
  publication-title: Can. J. Forest Res.
  doi: 10.1139/x01-226
SSID ssj0000334
Score 2.3982153
Snippet •Three temperature correction models for tree electrical resistivity (ER) are examined.•The key function parameter α seems to be independent of the three...
Electrical resistivity (ER) tomography is a useful nondestructive tool to visualize and estimate moisture content distribution in soil and wood. Wood ER is a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 124022
SubjectTerms electrical resistance
Electrical resistivity tomography
indigenous species
linear models
Moisture content
monitoring
sapwood
soil
temperature
Temperature correction model
temporal variation
tomography
trees
water content
wood
wood moisture
Wood temperature
Title The temperature effect and correction models for using electrical resistivity to estimate wood moisture variations
URI https://dx.doi.org/10.1016/j.jhydrol.2019.124022
https://www.proquest.com/docview/2400495007
Volume 578
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5sPehFfOKzrOA1bbK7eR1FLFXRk4K3ZbPZ2BZJSq2CF3-7M8lGUZCCx02YJczMzs5kHh_AmbW8sLGvPalj4clCFp7O8tizqD06CZNI19P5b--i0YO8fgwfV-Ci7YWhskpn-xubXltr92TguDmYTSbU48t5QH2YKeqpTJMOrHKRRmEXVs-vbkZ33wZZCNkODSeC70aewbQ_Hb_n84qSEEHaDyjXwP-6on4Z6_oGGm7ChnMd2XnzdVuwYsttWHMo5uP3HZijzBnNmnKDkllTrMF0mTNDKBx1DwOrwW9eGHqrjKren1gDhUPSYhh806EnQAm2qBiN4ECX1jKqzEFCfEf7vmGA3fzp24WH4eX9xchzmAqeEZIvvMxYSnzqNNSxoZQmiiOIDM0dE-jZFaJIhZFBFvpZYSOeSh2lCYYVJpF5EOLLPeiWVWn3gVmMNLjJdC59LYW0uLKSx7FvCcXa5wcgWzYq4waOE-7Fs2ory6bKcV8R91XD_QPof5HNmokbywiSVkbqh-oovBWWkZ62MlV4rChXoktbvb4oKq3F2BE9qMP_b38E67RqWhePobuYv9oT9GEWWQ86_Y-g5zT1EyGZ8pc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gHMYF8RTjGSSu3dokfR3RBBrP0yZxi9I0ZZtQO42CtAu_HbtNmUBCkzi2qavKdhy7_mwTcmkMy0zoKkeokDsiE5mjkjR0DGiPivwoUFV3_senYDASd8_-8xrpN7UwCKu0tr-26ZW1tnd6lpu92WSCNb6MeViHGYOeijhaJxvC5yHi-rqfS5yHy7loWobj48synt60Ox0v0nmBKQgv7nqYaWB_HVC_THV1_txsky3rONKr-tt2yJrJd0nbzjAfL_bIHCROsdOUbZNMa6gGVXlKNc7gqCoYaDX65o2Cr0oR8_5C60E4KCsKoTdueRwnQcuCYgMOcGgNRVwOEMIavvcDwuv6P98-Gd1cD_sDx05UcDQXrHQSbTDtqWJfhRoTmiAML9DYdYyDX5fxLOZaeInvJpkJWCxUEEcQVOhIpJ4PiweklRe5OSTUQJzBdKJS4SrBhYErI1gYugZnWLusQ0TDRqltu3GcevEqG1zZVFruS-S-rLnfId1vslndb2MVQdTISP5QHAlnwirSi0amEjYVZkpUbor3N4nAWogcwX86-v_rz0l7MHx8kA-3T_fHZBNX6iLGE9Iq5-_mFLyZMjmrtPULMRjzYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+temperature+effect+and+correction+models+for+using+electrical+resistivity+to+estimate+wood+moisture+variations&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Luo%2C+Zidong&rft.au=Guan%2C+Huade&rft.au=Zhang%2C+Xinping&rft.date=2019-11-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.eissn=1879-2707&rft.volume=578&rft_id=info:doi/10.1016%2Fj.jhydrol.2019.124022&rft.externalDocID=S0022169419307498
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon