The temperature effect and correction models for using electrical resistivity to estimate wood moisture variations
•Three temperature correction models for tree electrical resistivity (ER) are examined.•The key function parameter α seems to be independent of the three examined species.•The temporal variations of corrected ER capture the variations in wood moisture. Electrical resistivity (ER) tomography is a use...
Saved in:
Published in | Journal of hydrology (Amsterdam) Vol. 578; p. 124022 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-1694 1879-2707 |
DOI | 10.1016/j.jhydrol.2019.124022 |
Cover
Loading…
Abstract | •Three temperature correction models for tree electrical resistivity (ER) are examined.•The key function parameter α seems to be independent of the three examined species.•The temporal variations of corrected ER capture the variations in wood moisture.
Electrical resistivity (ER) tomography is a useful nondestructive tool to visualize and estimate moisture content distribution in soil and wood. Wood ER is a function of both moisture and temperature, however, it is not known yet how the temperature effect should be corrected in order to use ER tomography to monitor wood moisture variations. This study aims to break this technical barrier. The ER of three trunk sections of different Australian native tree species was measured at varying temperature (control experiments), and for different moisture contents. The results show that wood ER decreases with an increase of temperature in a nonlinear manner, and that the exponential model performs the best to represent the temperature effect on ER in comparison to two other models (the linear model and power function model). The key parameter in the exponential model for sapwood, reflecting temperature sensitivity, fluctuates in a narrow range between 0.032 and 0.036 °C−1. It appears to be independent of tree species, but significantly different from the value recommended in the literature for temperature correction in soil electrical resistivity. The temporal variations of temperature-corrected ER capture wood moisture variations in time. We suggest that it is better to have wood temperature monitoring while ER tomography is taken for living trees so that the temperature effect can be removed from ER tomograms using the exponential model for wood moisture estimation. |
---|---|
AbstractList | •Three temperature correction models for tree electrical resistivity (ER) are examined.•The key function parameter α seems to be independent of the three examined species.•The temporal variations of corrected ER capture the variations in wood moisture.
Electrical resistivity (ER) tomography is a useful nondestructive tool to visualize and estimate moisture content distribution in soil and wood. Wood ER is a function of both moisture and temperature, however, it is not known yet how the temperature effect should be corrected in order to use ER tomography to monitor wood moisture variations. This study aims to break this technical barrier. The ER of three trunk sections of different Australian native tree species was measured at varying temperature (control experiments), and for different moisture contents. The results show that wood ER decreases with an increase of temperature in a nonlinear manner, and that the exponential model performs the best to represent the temperature effect on ER in comparison to two other models (the linear model and power function model). The key parameter in the exponential model for sapwood, reflecting temperature sensitivity, fluctuates in a narrow range between 0.032 and 0.036 °C−1. It appears to be independent of tree species, but significantly different from the value recommended in the literature for temperature correction in soil electrical resistivity. The temporal variations of temperature-corrected ER capture wood moisture variations in time. We suggest that it is better to have wood temperature monitoring while ER tomography is taken for living trees so that the temperature effect can be removed from ER tomograms using the exponential model for wood moisture estimation. Electrical resistivity (ER) tomography is a useful nondestructive tool to visualize and estimate moisture content distribution in soil and wood. Wood ER is a function of both moisture and temperature, however, it is not known yet how the temperature effect should be corrected in order to use ER tomography to monitor wood moisture variations. This study aims to break this technical barrier. The ER of three trunk sections of different Australian native tree species was measured at varying temperature (control experiments), and for different moisture contents. The results show that wood ER decreases with an increase of temperature in a nonlinear manner, and that the exponential model performs the best to represent the temperature effect on ER in comparison to two other models (the linear model and power function model). The key parameter in the exponential model for sapwood, reflecting temperature sensitivity, fluctuates in a narrow range between 0.032 and 0.036 °C⁻¹. It appears to be independent of tree species, but significantly different from the value recommended in the literature for temperature correction in soil electrical resistivity. The temporal variations of temperature-corrected ER capture wood moisture variations in time. We suggest that it is better to have wood temperature monitoring while ER tomography is taken for living trees so that the temperature effect can be removed from ER tomograms using the exponential model for wood moisture estimation. |
ArticleNumber | 124022 |
Author | Luo, Zidong Guan, Huade Zhang, Xinping |
Author_xml | – sequence: 1 givenname: Zidong surname: Luo fullname: Luo, Zidong organization: College of Resources and Environmental Science, Hunan Normal University, Changsha 410081, China – sequence: 2 givenname: Huade orcidid: 0000-0001-5425-6974 surname: Guan fullname: Guan, Huade organization: National Centre for Groundwater Research and Training, College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia – sequence: 3 givenname: Xinping orcidid: 0000-0002-4423-498X surname: Zhang fullname: Zhang, Xinping email: zxp@hunnu.edu.cn organization: College of Resources and Environmental Science, Hunan Normal University, Changsha 410081, China |
BookMark | eNqFkD9PwzAQxS0EEqXwEZA8sqTYSezEYkCo4p9UiaXMlutcqKs0Lme3qN8eh3Zi6S138rv35PtdkfPe90DILWcTzri8X01Wy32DvpvkjKsJz0uW52dkxOtKZXnFqnMyYukp41KVl-QqhBVLVRTliOB8CTTCegNo4haBQtuCjdT0DbUeMc3O93TtG-gCbT3SbXD9F4UuKeis6ShCcCG6nYt7Gj2FNK9NBPrjfZOMSRtydwadGbLCNbloTRfg5tjH5PPleT59y2Yfr-_Tp1lmizKP2cJCIWpmlDCVFblgopZcWiGUKoSUbdGqwpZ8IdiiBZmr0khVF0zaumy4SOKY3B1yN-i_t-lbeu2Cha4zPfht0AkTK5VgrEqr4rBq0YeA0OoNpiNwrznTA2O90kfGemCsD4yT7-Gfz7r4d2VE47qT7seDO6GFnQPUwTroLTRu4K4b704k_ALpOZ-g |
CitedBy_id | crossref_primary_10_1007_s11104_020_04653_7 crossref_primary_10_1088_1361_6501_ac7b6d crossref_primary_10_1016_j_agrformet_2020_108058 crossref_primary_10_3390_f13020295 crossref_primary_10_1007_s00226_021_01281_x crossref_primary_10_1016_j_compag_2024_109585 crossref_primary_10_1007_s13595_021_01078_9 crossref_primary_10_1007_s00468_020_01976_x crossref_primary_10_1016_j_geoderma_2023_116749 crossref_primary_10_3389_frwa_2021_682285 crossref_primary_10_1590_2179_8087_floram_2023_0027 crossref_primary_10_1038_s41598_023_48100_w crossref_primary_10_1007_s00226_020_01212_2 |
Cites_doi | 10.1093/jxb/erl118 10.2136/sssaj2007.0244 10.1007/s11119-009-9156-7 10.1093/treephys/23.4.237 10.1139/x72-039 10.1007/s11104-008-9860-5 10.1016/S0022-1694(02)00145-2 10.1093/treephys/tps128 10.7717/peerj.6444 10.1093/treephys/tpy092 10.1016/j.jhydrol.2018.02.062 10.1016/S0169-7722(00)00117-0 10.1093/treephys/tpt055 10.1093/forestry/cpq040 10.1093/jxb/erl237 10.1111/j.1365-246X.2006.03011.x 10.1016/j.jhydrol.2017.11.025 10.1002/eco.1612 10.1002/2017WR020467 10.14214/sf.1341 10.1111/j.1365-3040.1992.tb00993.x 10.5194/hess-19-2213-2015 10.1029/2000WR900284 10.1016/j.jhydrol.2009.10.032 10.1021/ie50213a022 10.14214/sf.153 10.14214/sf.440 10.3997/1873-0604.2005043 10.1111/j.1365-246X.2006.03010.x 10.1190/1.1468597 10.1139/cjfr-2014-0380 10.1093/treephys/20.15.1057 10.1029/2000JD900719 10.14214/sf.a15508 10.1016/0926-9851(95)90043-8 10.1016/j.jhydrol.2016.03.003 10.1104/pp.19.00057 10.2307/2440008 10.1111/j.1469-8137.2008.02436.x 10.3390/f9090550 10.1139/x01-226 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jhydrol.2019.124022 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1879-2707 |
ExternalDocumentID | 10_1016_j_jhydrol_2019_124022 S0022169419307498 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c342t-bce3580a95a7c525058616c55993566f3f93c41b50bfe6294a698306c84d15f93 |
IEDL.DBID | AIKHN |
ISSN | 0022-1694 |
IngestDate | Thu Sep 04 21:27:02 EDT 2025 Tue Jul 01 01:53:15 EDT 2025 Thu Apr 24 23:06:08 EDT 2025 Fri Feb 23 02:47:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Temperature correction model Electrical resistivity tomography Moisture content Wood temperature |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-bce3580a95a7c525058616c55993566f3f93c41b50bfe6294a698306c84d15f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4423-498X 0000-0001-5425-6974 |
PQID | 2400495007 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2400495007 crossref_primary_10_1016_j_jhydrol_2019_124022 crossref_citationtrail_10_1016_j_jhydrol_2019_124022 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2019_124022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2019 2019-11-00 20191101 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: November 2019 |
PublicationDecade | 2010 |
PublicationTitle | Journal of hydrology (Amsterdam) |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Binley, Cassiani, Deiana (b0020) 2010; 51 Lo Gullo, Salleo (b0120) 1992; 15 Gora, Yanoviak (b0060) 2015; 45 Bär, Hamacher, Ganthaler (b0005) 2019 Yue, Wang, Shi (b0220) 2018; 9 Dick, Tetzlaff, Bradford (b0055) 2018; 559 Nadler, Tyree (b0140) 2008; 72 Repo (b0155) 1988; 22 Srayeddin, Doussan (b0175) 2009; 319 Derby, Gates (b0050) 1966; 53 Hagrey (b0080) 2007; 58 Cassiani, Boaga, Vanella (b0035) 2015; 19 Jones (b0095) 2006; 58 Just, Jacobs (b0100) 1998 Brunet, Clement, Bouvier (b0030) 2010; 380 Stamm (b0180) 1927; 19 Bieker, Rust (b0015) 2010; 44 Stockfors (b0185) 2000; 20 Taylor (b0195) 2001; 106 Kocher, Horna, Leuschner (b0110) 2013; 33 Zhou, Shimada, Sato (b0230) 2001; 37 McDowell, Pockman, Allen (b0135) 2008; 178 Hagrey (b0075) 2006; 4 Humplík, Čermák, Žid (b0090) 2016; 50 Potter, Andresen (b0150) 2002; 32 Daily, Ramirez, LaBrecque (b0040) 1995; 33 Mares, Barnard, Mao (b0130) 2016; 536 Kemnaa, Vanderborghta, Kulessab (b0105) 2002; 267 Tattar, Shigo, Chase (b0190) 1972; 2 Vereecken, Binley, Cassiani (b0205) 2006 Rücker, Günther, Spitzer (b0160) 2006; 166 Wang, Guan, Guyot (b0210) 2016; 9 Günther, Rücker, Spitzer (b0065) 2006; 166 Skelton (b0165) 2019; 179 Brazee, Marra, Gocke (b0025) 2011; 84 Benson, Koeser, Morgenroth (b0010) 2019; 39 Slater, Reeve (b0170) 2002; 67 Wu, Zhou, Liu (b0215) 2009; 28 Ma, McBratney, Whelan (b0125) 2011; 12 Vanella, Cassiani, Busato (b0200) 2018; 556 Guyot, Ostergaard, Lenkopane (b0070) 2013; 33 Phillips, Ryan, Bond (b0145) 2003; 23 Deng, Guan, Hutson (b0045) 2017; 53 Hubbard, Rubin (b0085) 2000; 45 Lin, Chung, Yang (b0115) 2012; 46 Yue, Wang, Wacker (b0225) 2019; 7 Kocher (10.1016/j.jhydrol.2019.124022_b0110) 2013; 33 Lin (10.1016/j.jhydrol.2019.124022_b0115) 2012; 46 Skelton (10.1016/j.jhydrol.2019.124022_b0165) 2019; 179 Brunet (10.1016/j.jhydrol.2019.124022_b0030) 2010; 380 Yue (10.1016/j.jhydrol.2019.124022_b0225) 2019; 7 Bieker (10.1016/j.jhydrol.2019.124022_b0015) 2010; 44 Mares (10.1016/j.jhydrol.2019.124022_b0130) 2016; 536 Wang (10.1016/j.jhydrol.2019.124022_b0210) 2016; 9 Zhou (10.1016/j.jhydrol.2019.124022_b0230) 2001; 37 Yue (10.1016/j.jhydrol.2019.124022_b0220) 2018; 9 Bär (10.1016/j.jhydrol.2019.124022_b0005) 2019 Ma (10.1016/j.jhydrol.2019.124022_b0125) 2011; 12 Vanella (10.1016/j.jhydrol.2019.124022_b0200) 2018; 556 Slater (10.1016/j.jhydrol.2019.124022_b0170) 2002; 67 Gora (10.1016/j.jhydrol.2019.124022_b0060) 2015; 45 Cassiani (10.1016/j.jhydrol.2019.124022_b0035) 2015; 19 Kemnaa (10.1016/j.jhydrol.2019.124022_b0105) 2002; 267 Dick (10.1016/j.jhydrol.2019.124022_b0055) 2018; 559 Tattar (10.1016/j.jhydrol.2019.124022_b0190) 1972; 2 Lo Gullo (10.1016/j.jhydrol.2019.124022_b0120) 1992; 15 Brazee (10.1016/j.jhydrol.2019.124022_b0025) 2011; 84 Guyot (10.1016/j.jhydrol.2019.124022_b0070) 2013; 33 Nadler (10.1016/j.jhydrol.2019.124022_b0140) 2008; 72 Stamm (10.1016/j.jhydrol.2019.124022_b0180) 1927; 19 Humplík (10.1016/j.jhydrol.2019.124022_b0090) 2016; 50 Daily (10.1016/j.jhydrol.2019.124022_b0040) 1995; 33 Hubbard (10.1016/j.jhydrol.2019.124022_b0085) 2000; 45 Phillips (10.1016/j.jhydrol.2019.124022_b0145) 2003; 23 Günther (10.1016/j.jhydrol.2019.124022_b0065) 2006; 166 Hagrey (10.1016/j.jhydrol.2019.124022_b0075) 2006; 4 McDowell (10.1016/j.jhydrol.2019.124022_b0135) 2008; 178 Just (10.1016/j.jhydrol.2019.124022_b0100) 1998 Taylor (10.1016/j.jhydrol.2019.124022_b0195) 2001; 106 Deng (10.1016/j.jhydrol.2019.124022_b0045) 2017; 53 Hagrey (10.1016/j.jhydrol.2019.124022_b0080) 2007; 58 Potter (10.1016/j.jhydrol.2019.124022_b0150) 2002; 32 Rücker (10.1016/j.jhydrol.2019.124022_b0160) 2006; 166 Stockfors (10.1016/j.jhydrol.2019.124022_b0185) 2000; 20 Wu (10.1016/j.jhydrol.2019.124022_b0215) 2009; 28 Repo (10.1016/j.jhydrol.2019.124022_b0155) 1988; 22 Derby (10.1016/j.jhydrol.2019.124022_b0050) 1966; 53 Srayeddin (10.1016/j.jhydrol.2019.124022_b0175) 2009; 319 Benson (10.1016/j.jhydrol.2019.124022_b0010) 2019; 39 Binley (10.1016/j.jhydrol.2019.124022_b0020) 2010; 51 Jones (10.1016/j.jhydrol.2019.124022_b0095) 2006; 58 Vereecken (10.1016/j.jhydrol.2019.124022_b0205) 2006 |
References_xml | – volume: 380 start-page: 146 year: 2010 end-page: 153 ident: b0030 article-title: Monitoring soil water content and deficit using Electrical Resistivity Tomography (ERT)-A case study in the Cevennes area, France publication-title: J. Hydrol. – volume: 9 start-page: 550 year: 2018 ident: b0220 article-title: Investigations on the effects of seasonal temperature changes on the electrical resistance of living trees publication-title: Forests – volume: 28 start-page: 350 year: 2009 end-page: 356 ident: b0215 article-title: Application of electrical resistivity tomography in studying water uptake process in tree trunk (in Chinese) publication-title: Chin. J. Ecol. – volume: 44 start-page: 267 year: 2010 end-page: 273 ident: b0015 article-title: Non-destructive estimation of sapwood and heartwood width in Scots pine ( publication-title: Silva Fenn. – volume: 33 start-page: 227 year: 1995 end-page: 237 ident: b0040 article-title: Electrical resistance tomography experiments at the Oregon Graduate Institute publication-title: J. Appl. Geophys. – volume: 67 start-page: 365 year: 2002 end-page: 378 ident: b0170 article-title: Investigating peatland stratigraphy and hydrogeology using integrated electrical geophysics publication-title: Geophysics – volume: 39 start-page: 484 year: 2019 end-page: 494 ident: b0010 article-title: Estimating conductive sapwood area in diffuse and ring porous trees with electronic resistance tomography publication-title: Tree Physiol. – volume: 33 start-page: 187 year: 2013 end-page: 194 ident: b0070 article-title: Using electrical resistivity tomography to differentiate sapwood from heartwood: application to conifers publication-title: Tree Physiol. – volume: 20 start-page: 1057 year: 2000 end-page: 1062 ident: b0185 article-title: Temperature variation and distribution of living cells within tree stems: implications for stem respiration modeling and scale-up publication-title: Tree Physiol. – start-page: tpz052 year: 2019 ident: b0005 article-title: Electrical resistivity tomography: patterns in publication-title: Tree Physiol. – volume: 22 start-page: 181 year: 1988 end-page: 193 ident: b0155 article-title: Physical and physiological aspects of impedance measurements in plants publication-title: Silva Fenn. – volume: 45 start-page: 3 year: 2000 end-page: 34 ident: b0085 article-title: Hydrogeological parameter estimation using geophysical data: a review of selected techniques publication-title: J. Contam. Hydrol. – volume: 12 start-page: 55 year: 2011 end-page: 66 ident: b0125 article-title: Comparing temperature correction models for soil electrical conductivity measurement publication-title: Precis. Agric. – volume: 7 year: 2019 ident: b0225 article-title: Electric resistance tomography and stress wave tomography for decay detection in trees-a comparison study publication-title: PeerJ – volume: 536 start-page: 327 year: 2016 end-page: 338 ident: b0130 article-title: Examining diel patterns of soil and xylem moisture using electrical resistivity imaging publication-title: J. Hydrol. – volume: 51 start-page: 267 year: 2010 end-page: 284 ident: b0020 article-title: Hydrogeophysics: opportunities and challenges publication-title: Bolletino di Geofisica Teorica ed Applicata – volume: 32 start-page: 548 year: 2002 end-page: 555 ident: b0150 article-title: A finite-difference model of temperatures and heat flow within a tree stem publication-title: Can. J. Forest Res. – volume: 267 start-page: 125 year: 2002 end-page: 146 ident: b0105 article-title: Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models publication-title: J. Hydrol. – volume: 23 start-page: 237 year: 2003 end-page: 245 ident: b0145 article-title: Reliance on stored water increases with tree size in three species in the Pacific Northwest publication-title: Tree Physiol. – volume: 19 start-page: 1021 year: 1927 end-page: 1025 ident: b0180 article-title: The electrical resistance of wood as a measure of its moisture content publication-title: Ind. Eng. Chem. – volume: 50 start-page: 1 year: 2016 end-page: 13 ident: b0090 article-title: Electrical impedance tomography for decay diagnostics of Norway spruce ( publication-title: Silva Fenn. – volume: 166 start-page: 495 year: 2006 end-page: 505 ident: b0160 article-title: Three-dimensional modelling and inversion of dc resistivity data incorporating topography - I publication-title: Modelling. Geophys. J. Int. – volume: 556 start-page: 310 year: 2018 end-page: 324 ident: b0200 article-title: Use of small scale electrical resistivity tomography to identify soil-root interactions during deficit irrigation publication-title: J. Hydrol. – volume: 72 start-page: 1006 year: 2008 end-page: 1013 ident: b0140 article-title: Substituting stem's water content by electrical conductivity for monitoring water status changes publication-title: Soil Sci. Soc. Am. J. – volume: 9 start-page: 83 year: 2016 end-page: 92 ident: b0210 article-title: Quantifying sapwood width for three Australian native species using electrical resistivity tomography publication-title: Ecohydrology – volume: 4 start-page: 179 year: 2006 end-page: 187 ident: b0075 article-title: Electrical resistivity imaging of tree trunks publication-title: Near Surf. Geophys. – volume: 179 start-page: 1433 year: 2019 end-page: 1434 ident: b0165 article-title: Of Storage and Stems: Examining the Role of Stem Water Storage in Plant Water Balance publication-title: Plant Physiol. – volume: 319 start-page: 185 year: 2009 end-page: 207 ident: b0175 article-title: Estimation of the spatial variability of root water uptake of maize and sorghum at the field scale by electrical resistivity tomography publication-title: Plant Soil – volume: 33 start-page: 817 year: 2013 end-page: 832 ident: b0110 article-title: Stem water storage in five coexisting temperate broad-leaved tree species: significance, temporal dynamics and dependence on tree functional traits publication-title: Tree Physiol. – year: 2006 ident: b0205 article-title: Applied Hydrogeophysics – volume: 53 start-page: 580 year: 1966 end-page: 587 ident: b0050 article-title: The temperature of tree trunks-calculated and observed publication-title: Am. J. Bot. – volume: 37 start-page: 273 year: 2001 end-page: 285 ident: b0230 article-title: Three-dimensional spatial and temporal monitoring of soil water content using electrical resistivity tomography publication-title: Water Resour. Res. – volume: 166 start-page: 506 year: 2006 end-page: 517 ident: b0065 article-title: Three-dimensional modelling and inversion of dc resistivity data incorporating topography- II publication-title: Inversion. Geophys. J. Int. – volume: 19 start-page: 2213 year: 2015 end-page: 2225 ident: b0035 article-title: Monitoring and modelling of soil-plant interactions: the joint use of ERT, sap flow and eddy covariance data to characterize the volume of an orange tree root zone publication-title: Hydrol. Earth Syst. Sc. – volume: 45 start-page: 236 year: 2015 end-page: 245 ident: b0060 article-title: Electrical properties of temperate forest trees: a review and quantitative comparison with vines publication-title: Can. J. Forest Res. – volume: 58 start-page: 839 year: 2007 end-page: 854 ident: b0080 article-title: Geophysical imaging of root-zone, trunk, and moisture heterogeneity publication-title: J. Exp. Bot. – volume: 559 start-page: 684 year: 2018 end-page: 697 ident: b0055 article-title: Using repeat electrical resistivity surveys to assess heterogeneity in soil moisture dynamics under contrasting vegetation types publication-title: J. Hydrol. – volume: 15 start-page: 431 year: 1992 end-page: 438 ident: b0120 article-title: Water storage in the wood and xylem cavitation in 1-year-old twigs of publication-title: Plant, Cell Environ. – volume: 84 start-page: 33 year: 2011 end-page: 39 ident: b0025 article-title: Non-destructive assessment of internal decay in three hardwood species of northeastern North America using sonic and electrical impedance tomography publication-title: Forestry – volume: 46 start-page: 415 year: 2012 end-page: 424 ident: b0115 article-title: Detection of electric resistivity tomography and evaluation of the sapwood-heartwood demarcation in three Asia Gymnosperm Species publication-title: Silva Fenn. – year: 1998 ident: b0100 article-title: Elektrische Widerstandstomographie zur Untersuchung des Gesundheitszustandes von Bäumen. Tagungsband des VII. Arbeitsseminars Hochauflösende Geoelektrik, Institut für Geophysik und Geologie der – volume: 58 start-page: 119 year: 2006 end-page: 130 ident: b0095 article-title: Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance publication-title: J. Exp. Bot. – volume: 53 start-page: 4965 year: 2017 end-page: 4983 ident: b0045 article-title: A vegetation-focused soil-plant-atmospheric continuum model to study hydrodynamic soil-plant water relations publication-title: Water Resour. Res. – volume: 178 start-page: 719 year: 2008 end-page: 739 ident: b0135 article-title: Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? publication-title: New Phytologist – volume: 2 start-page: 236 year: 1972 end-page: 243 ident: b0190 article-title: Relationship between the degree of resistance to a pulsed electric current and wood in progressive stages of discoloration and decay in living trees publication-title: Can. J. Forest Res. – volume: 106 start-page: 7183 year: 2001 end-page: 7192 ident: b0195 article-title: Summarizing multiple aspects of model performance in a single diagram publication-title: J. Geophys. Res. Atmos. – volume: 58 start-page: 119 issue: 2 year: 2006 ident: 10.1016/j.jhydrol.2019.124022_b0095 article-title: Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance publication-title: J. Exp. Bot. doi: 10.1093/jxb/erl118 – volume: 72 start-page: 1006 issue: 4 year: 2008 ident: 10.1016/j.jhydrol.2019.124022_b0140 article-title: Substituting stem's water content by electrical conductivity for monitoring water status changes publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2007.0244 – volume: 12 start-page: 55 issue: 1 year: 2011 ident: 10.1016/j.jhydrol.2019.124022_b0125 article-title: Comparing temperature correction models for soil electrical conductivity measurement publication-title: Precis. Agric. doi: 10.1007/s11119-009-9156-7 – start-page: tpz052 year: 2019 ident: 10.1016/j.jhydrol.2019.124022_b0005 article-title: Electrical resistivity tomography: patterns in Betula pendula, Fagus sylvatica, Picea abies and Pinus sylvestris publication-title: Tree Physiol. – volume: 23 start-page: 237 issue: 4 year: 2003 ident: 10.1016/j.jhydrol.2019.124022_b0145 article-title: Reliance on stored water increases with tree size in three species in the Pacific Northwest publication-title: Tree Physiol. doi: 10.1093/treephys/23.4.237 – volume: 51 start-page: 267 issue: 4 year: 2010 ident: 10.1016/j.jhydrol.2019.124022_b0020 article-title: Hydrogeophysics: opportunities and challenges publication-title: Bolletino di Geofisica Teorica ed Applicata – volume: 2 start-page: 236 year: 1972 ident: 10.1016/j.jhydrol.2019.124022_b0190 article-title: Relationship between the degree of resistance to a pulsed electric current and wood in progressive stages of discoloration and decay in living trees publication-title: Can. J. Forest Res. doi: 10.1139/x72-039 – volume: 319 start-page: 185 issue: 1–2 year: 2009 ident: 10.1016/j.jhydrol.2019.124022_b0175 article-title: Estimation of the spatial variability of root water uptake of maize and sorghum at the field scale by electrical resistivity tomography publication-title: Plant Soil doi: 10.1007/s11104-008-9860-5 – volume: 267 start-page: 125 year: 2002 ident: 10.1016/j.jhydrol.2019.124022_b0105 article-title: Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models publication-title: J. Hydrol. doi: 10.1016/S0022-1694(02)00145-2 – volume: 33 start-page: 187 issue: 2 year: 2013 ident: 10.1016/j.jhydrol.2019.124022_b0070 article-title: Using electrical resistivity tomography to differentiate sapwood from heartwood: application to conifers publication-title: Tree Physiol. doi: 10.1093/treephys/tps128 – volume: 7 year: 2019 ident: 10.1016/j.jhydrol.2019.124022_b0225 article-title: Electric resistance tomography and stress wave tomography for decay detection in trees-a comparison study publication-title: PeerJ doi: 10.7717/peerj.6444 – volume: 39 start-page: 484 issue: 3 year: 2019 ident: 10.1016/j.jhydrol.2019.124022_b0010 article-title: Estimating conductive sapwood area in diffuse and ring porous trees with electronic resistance tomography publication-title: Tree Physiol. doi: 10.1093/treephys/tpy092 – year: 1998 ident: 10.1016/j.jhydrol.2019.124022_b0100 – volume: 559 start-page: 684 year: 2018 ident: 10.1016/j.jhydrol.2019.124022_b0055 article-title: Using repeat electrical resistivity surveys to assess heterogeneity in soil moisture dynamics under contrasting vegetation types publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.02.062 – volume: 45 start-page: 3 year: 2000 ident: 10.1016/j.jhydrol.2019.124022_b0085 article-title: Hydrogeological parameter estimation using geophysical data: a review of selected techniques publication-title: J. Contam. Hydrol. doi: 10.1016/S0169-7722(00)00117-0 – volume: 33 start-page: 817 issue: 8 year: 2013 ident: 10.1016/j.jhydrol.2019.124022_b0110 article-title: Stem water storage in five coexisting temperate broad-leaved tree species: significance, temporal dynamics and dependence on tree functional traits publication-title: Tree Physiol. doi: 10.1093/treephys/tpt055 – volume: 84 start-page: 33 issue: 1 year: 2011 ident: 10.1016/j.jhydrol.2019.124022_b0025 article-title: Non-destructive assessment of internal decay in three hardwood species of northeastern North America using sonic and electrical impedance tomography publication-title: Forestry doi: 10.1093/forestry/cpq040 – volume: 58 start-page: 839 issue: 4 year: 2007 ident: 10.1016/j.jhydrol.2019.124022_b0080 article-title: Geophysical imaging of root-zone, trunk, and moisture heterogeneity publication-title: J. Exp. Bot. doi: 10.1093/jxb/erl237 – volume: 166 start-page: 506 issue: 2 year: 2006 ident: 10.1016/j.jhydrol.2019.124022_b0065 article-title: Three-dimensional modelling and inversion of dc resistivity data incorporating topography- II publication-title: Inversion. Geophys. J. Int. doi: 10.1111/j.1365-246X.2006.03011.x – volume: 556 start-page: 310 year: 2018 ident: 10.1016/j.jhydrol.2019.124022_b0200 article-title: Use of small scale electrical resistivity tomography to identify soil-root interactions during deficit irrigation publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.11.025 – volume: 9 start-page: 83 issue: 1 year: 2016 ident: 10.1016/j.jhydrol.2019.124022_b0210 article-title: Quantifying sapwood width for three Australian native species using electrical resistivity tomography publication-title: Ecohydrology doi: 10.1002/eco.1612 – volume: 53 start-page: 4965 issue: 6 year: 2017 ident: 10.1016/j.jhydrol.2019.124022_b0045 article-title: A vegetation-focused soil-plant-atmospheric continuum model to study hydrodynamic soil-plant water relations publication-title: Water Resour. Res. doi: 10.1002/2017WR020467 – volume: 50 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.jhydrol.2019.124022_b0090 article-title: Electrical impedance tomography for decay diagnostics of Norway spruce (Picea abies): possibilities and opportunities publication-title: Silva Fenn. doi: 10.14214/sf.1341 – volume: 15 start-page: 431 year: 1992 ident: 10.1016/j.jhydrol.2019.124022_b0120 article-title: Water storage in the wood and xylem cavitation in 1-year-old twigs of Populus deltoides Bartr publication-title: Plant, Cell Environ. doi: 10.1111/j.1365-3040.1992.tb00993.x – volume: 19 start-page: 2213 issue: 5 year: 2015 ident: 10.1016/j.jhydrol.2019.124022_b0035 article-title: Monitoring and modelling of soil-plant interactions: the joint use of ERT, sap flow and eddy covariance data to characterize the volume of an orange tree root zone publication-title: Hydrol. Earth Syst. Sc. doi: 10.5194/hess-19-2213-2015 – volume: 37 start-page: 273 issue: 2 year: 2001 ident: 10.1016/j.jhydrol.2019.124022_b0230 article-title: Three-dimensional spatial and temporal monitoring of soil water content using electrical resistivity tomography publication-title: Water Resour. Res. doi: 10.1029/2000WR900284 – volume: 380 start-page: 146 issue: 1–2 year: 2010 ident: 10.1016/j.jhydrol.2019.124022_b0030 article-title: Monitoring soil water content and deficit using Electrical Resistivity Tomography (ERT)-A case study in the Cevennes area, France publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.10.032 – volume: 28 start-page: 350 issue: 2 year: 2009 ident: 10.1016/j.jhydrol.2019.124022_b0215 article-title: Application of electrical resistivity tomography in studying water uptake process in tree trunk (in Chinese) publication-title: Chin. J. Ecol. – volume: 19 start-page: 1021 issue: 9 year: 1927 ident: 10.1016/j.jhydrol.2019.124022_b0180 article-title: The electrical resistance of wood as a measure of its moisture content publication-title: Ind. Eng. Chem. doi: 10.1021/ie50213a022 – volume: 44 start-page: 267 issue: 2 year: 2010 ident: 10.1016/j.jhydrol.2019.124022_b0015 article-title: Non-destructive estimation of sapwood and heartwood width in Scots pine (Pinus sylvestris L.) publication-title: Silva Fenn. doi: 10.14214/sf.153 – volume: 46 start-page: 415 issue: 3 year: 2012 ident: 10.1016/j.jhydrol.2019.124022_b0115 article-title: Detection of electric resistivity tomography and evaluation of the sapwood-heartwood demarcation in three Asia Gymnosperm Species publication-title: Silva Fenn. doi: 10.14214/sf.440 – volume: 4 start-page: 179 year: 2006 ident: 10.1016/j.jhydrol.2019.124022_b0075 article-title: Electrical resistivity imaging of tree trunks publication-title: Near Surf. Geophys. doi: 10.3997/1873-0604.2005043 – volume: 166 start-page: 495 issue: 2 year: 2006 ident: 10.1016/j.jhydrol.2019.124022_b0160 article-title: Three-dimensional modelling and inversion of dc resistivity data incorporating topography - I publication-title: Modelling. Geophys. J. Int. doi: 10.1111/j.1365-246X.2006.03010.x – volume: 67 start-page: 365 issue: 2 year: 2002 ident: 10.1016/j.jhydrol.2019.124022_b0170 article-title: Investigating peatland stratigraphy and hydrogeology using integrated electrical geophysics publication-title: Geophysics doi: 10.1190/1.1468597 – volume: 45 start-page: 236 issue: 3 year: 2015 ident: 10.1016/j.jhydrol.2019.124022_b0060 article-title: Electrical properties of temperate forest trees: a review and quantitative comparison with vines publication-title: Can. J. Forest Res. doi: 10.1139/cjfr-2014-0380 – volume: 20 start-page: 1057 issue: 15 year: 2000 ident: 10.1016/j.jhydrol.2019.124022_b0185 article-title: Temperature variation and distribution of living cells within tree stems: implications for stem respiration modeling and scale-up publication-title: Tree Physiol. doi: 10.1093/treephys/20.15.1057 – volume: 106 start-page: 7183 issue: D7 year: 2001 ident: 10.1016/j.jhydrol.2019.124022_b0195 article-title: Summarizing multiple aspects of model performance in a single diagram publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2000JD900719 – volume: 22 start-page: 181 issue: 3 year: 1988 ident: 10.1016/j.jhydrol.2019.124022_b0155 article-title: Physical and physiological aspects of impedance measurements in plants publication-title: Silva Fenn. doi: 10.14214/sf.a15508 – year: 2006 ident: 10.1016/j.jhydrol.2019.124022_b0205 – volume: 33 start-page: 227 year: 1995 ident: 10.1016/j.jhydrol.2019.124022_b0040 article-title: Electrical resistance tomography experiments at the Oregon Graduate Institute publication-title: J. Appl. Geophys. doi: 10.1016/0926-9851(95)90043-8 – volume: 536 start-page: 327 year: 2016 ident: 10.1016/j.jhydrol.2019.124022_b0130 article-title: Examining diel patterns of soil and xylem moisture using electrical resistivity imaging publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.03.003 – volume: 179 start-page: 1433 issue: 4 year: 2019 ident: 10.1016/j.jhydrol.2019.124022_b0165 article-title: Of Storage and Stems: Examining the Role of Stem Water Storage in Plant Water Balance publication-title: Plant Physiol. doi: 10.1104/pp.19.00057 – volume: 53 start-page: 580 issue: 6 year: 1966 ident: 10.1016/j.jhydrol.2019.124022_b0050 article-title: The temperature of tree trunks-calculated and observed publication-title: Am. J. Bot. doi: 10.2307/2440008 – volume: 178 start-page: 719 issue: 4 year: 2008 ident: 10.1016/j.jhydrol.2019.124022_b0135 article-title: Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? publication-title: New Phytologist doi: 10.1111/j.1469-8137.2008.02436.x – volume: 9 start-page: 550 issue: 9 year: 2018 ident: 10.1016/j.jhydrol.2019.124022_b0220 article-title: Investigations on the effects of seasonal temperature changes on the electrical resistance of living trees publication-title: Forests doi: 10.3390/f9090550 – volume: 32 start-page: 548 issue: 3 year: 2002 ident: 10.1016/j.jhydrol.2019.124022_b0150 article-title: A finite-difference model of temperatures and heat flow within a tree stem publication-title: Can. J. Forest Res. doi: 10.1139/x01-226 |
SSID | ssj0000334 |
Score | 2.3982153 |
Snippet | •Three temperature correction models for tree electrical resistivity (ER) are examined.•The key function parameter α seems to be independent of the three... Electrical resistivity (ER) tomography is a useful nondestructive tool to visualize and estimate moisture content distribution in soil and wood. Wood ER is a... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 124022 |
SubjectTerms | electrical resistance Electrical resistivity tomography indigenous species linear models Moisture content monitoring sapwood soil temperature Temperature correction model temporal variation tomography trees water content wood wood moisture Wood temperature |
Title | The temperature effect and correction models for using electrical resistivity to estimate wood moisture variations |
URI | https://dx.doi.org/10.1016/j.jhydrol.2019.124022 https://www.proquest.com/docview/2400495007 |
Volume | 578 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5sPehFfOKzrOA1bbK7eR1FLFXRk4K3ZbPZ2BZJSq2CF3-7M8lGUZCCx02YJczMzs5kHh_AmbW8sLGvPalj4clCFp7O8tizqD06CZNI19P5b--i0YO8fgwfV-Ci7YWhskpn-xubXltr92TguDmYTSbU48t5QH2YKeqpTJMOrHKRRmEXVs-vbkZ33wZZCNkODSeC70aewbQ_Hb_n84qSEEHaDyjXwP-6on4Z6_oGGm7ChnMd2XnzdVuwYsttWHMo5uP3HZijzBnNmnKDkllTrMF0mTNDKBx1DwOrwW9eGHqrjKren1gDhUPSYhh806EnQAm2qBiN4ECX1jKqzEFCfEf7vmGA3fzp24WH4eX9xchzmAqeEZIvvMxYSnzqNNSxoZQmiiOIDM0dE-jZFaJIhZFBFvpZYSOeSh2lCYYVJpF5EOLLPeiWVWn3gVmMNLjJdC59LYW0uLKSx7FvCcXa5wcgWzYq4waOE-7Fs2ory6bKcV8R91XD_QPof5HNmokbywiSVkbqh-oovBWWkZ62MlV4rChXoktbvb4oKq3F2BE9qMP_b38E67RqWhePobuYv9oT9GEWWQ86_Y-g5zT1EyGZ8pc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gHMYF8RTjGSSu3dokfR3RBBrP0yZxi9I0ZZtQO42CtAu_HbtNmUBCkzi2qavKdhy7_mwTcmkMy0zoKkeokDsiE5mjkjR0DGiPivwoUFV3_senYDASd8_-8xrpN7UwCKu0tr-26ZW1tnd6lpu92WSCNb6MeViHGYOeijhaJxvC5yHi-rqfS5yHy7loWobj48synt60Ox0v0nmBKQgv7nqYaWB_HVC_THV1_txsky3rONKr-tt2yJrJd0nbzjAfL_bIHCROsdOUbZNMa6gGVXlKNc7gqCoYaDX65o2Cr0oR8_5C60E4KCsKoTdueRwnQcuCYgMOcGgNRVwOEMIavvcDwuv6P98-Gd1cD_sDx05UcDQXrHQSbTDtqWJfhRoTmiAML9DYdYyDX5fxLOZaeInvJpkJWCxUEEcQVOhIpJ4PiweklRe5OSTUQJzBdKJS4SrBhYErI1gYugZnWLusQ0TDRqltu3GcevEqG1zZVFruS-S-rLnfId1vslndb2MVQdTISP5QHAlnwirSi0amEjYVZkpUbor3N4nAWogcwX86-v_rz0l7MHx8kA-3T_fHZBNX6iLGE9Iq5-_mFLyZMjmrtPULMRjzYg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+temperature+effect+and+correction+models+for+using+electrical+resistivity+to+estimate+wood+moisture+variations&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Luo%2C+Zidong&rft.au=Guan%2C+Huade&rft.au=Zhang%2C+Xinping&rft.date=2019-11-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.eissn=1879-2707&rft.volume=578&rft_id=info:doi/10.1016%2Fj.jhydrol.2019.124022&rft.externalDocID=S0022169419307498 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |