Piezo-driven thermoacoustic refrigerators with dynamic magnifiers

Thermoacoustic refrigeration is an emerging cooling technology which does not rely for in its operation on the use of any moving parts or harmful refrigerants. This technology uses acoustic waves to pump heat across a temperature gradient. The temperature gradient forms across the ends of a porous b...

Full description

Saved in:
Bibliographic Details
Published inApplied acoustics Vol. 83; pp. 86 - 99
Main Authors Nouh, M., Aldraihem, O., Baz, A.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.09.2014
Elsevier
Subjects
Online AccessGet full text
ISSN0003-682X
1872-910X
DOI10.1016/j.apacoust.2014.02.017

Cover

Loading…
Abstract Thermoacoustic refrigeration is an emerging cooling technology which does not rely for in its operation on the use of any moving parts or harmful refrigerants. This technology uses acoustic waves to pump heat across a temperature gradient. The temperature gradient forms across the ends of a porous body, called the stack, enclosed in a resonator. The vast majority of thermoacoustic refrigerators to date have used electromagnetic loudspeakers to generate the acoustic input. In this paper, the design, construction, operation, and modeling of a piezo-driven thermoacoustic refrigerator are detailed. The performance of the refrigerator is significantly enhanced by coupling the acoustic driver with an elastic structure, referred to as a dynamic magnifier. Proper selection of the magnifier parameters can increase the magnitude of the pressure oscillations across the stack, and consequently the temperature difference. The magnified refrigerator demonstrates the effectiveness of piezoelectric actuation in moving 0.3W of heat across a 10°C temperature difference with an input power of 7W. All the theoretical predictions are validated against data from experimental prototypes. The developed theoretical and experimental tools can serve as invaluable means for the design and testing of piezo-driven thermoacoustic refrigerator configurations.
AbstractList Thermoacoustic refrigeration is an emerging cooling technology which does not rely for in its operation on the use of any moving parts or harmful refrigerants. This technology uses acoustic waves to pump heat across a temperature gradient. The temperature gradient forms across the ends of a porous body, called the stack, enclosed in a resonator. The vast majority of thermoacoustic refrigerators to date have used electromagnetic loudspeakers to generate the acoustic input. In this paper, the design, construction, operation, and modeling of a piezo-driven thermoacoustic refrigerator are detailed. The performance of the refrigerator is significantly enhanced by coupling the acoustic driver with an elastic structure, referred to as a dynamic magnifier. Proper selection of the magnifier parameters can increase the magnitude of the pressure oscillations across the stack, and consequently the temperature difference. The magnified refrigerator demonstrates the effectiveness of piezoelectric actuation in moving 0.3W of heat across a 10°C temperature difference with an input power of 7W. All the theoretical predictions are validated against data from experimental prototypes. The developed theoretical and experimental tools can serve as invaluable means for the design and testing of piezo-driven thermoacoustic refrigerator configurations.
Author Baz, A.
Nouh, M.
Aldraihem, O.
Author_xml – sequence: 1
  givenname: M.
  surname: Nouh
  fullname: Nouh, M.
  organization: Mechanical Engineering Department, University of Maryland, College Park, MD 20742, United States
– sequence: 2
  givenname: O.
  surname: Aldraihem
  fullname: Aldraihem, O.
  organization: Mechanical Engineering Department, King Saud University, Riyadh 11421, Saudi Arabia
– sequence: 3
  givenname: A.
  surname: Baz
  fullname: Baz, A.
  email: baz@umd.edu
  organization: Mechanical Engineering Department, University of Maryland, College Park, MD 20742, United States
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28469104$$DView record in Pascal Francis
BookMark eNqFkE1LAzEQhoNUsFb_guzF466TZLMf4MFS_IKCHhR6C9nsbJvS3S1JrNRfb8qqBy89DcO8zwvznJNR13dIyBWFhALNbtaJ2irdfzifMKBpAiwBmp-QMS1yFpcUFiMyBgAeZwVbnJFz59ZhBSbEmExfDX71cW3NDrvIr9C2_VBmdGSxsWaJVvneuujT-FVU7zvVhlOrlp1pDFp3QU4btXF4-TMn5P3h_m32FM9fHp9n03msecp8XJVNnRUVSwue1pArUVaYl7zRoqyFyrgqRMWrSoPAClgJOQpaltCgrgVPseATcj30bpXTatNY1Wnj5NaaVtm9ZEWahV_TkMuGnLa9c-GFvwgFeRAm1_JXmDwIk8BkEBbA23-gNl5503feKrM5jt8NOAYJu2BGOm2w01gbi9rLujfHKr4BzrSPnw
CODEN AACOBL
CitedBy_id crossref_primary_10_1016_j_ijrefrig_2021_04_015
crossref_primary_10_1016_j_rser_2021_111170
crossref_primary_10_1121_10_0023954
crossref_primary_10_1016_j_apacoust_2021_108136
crossref_primary_10_1063_1_4916077
crossref_primary_10_1016_j_applthermaleng_2022_118667
crossref_primary_10_1063_1_4972297
crossref_primary_10_1142_S2010132517500353
crossref_primary_10_1063_5_0019896
Cites_doi 10.1121/1.429324
10.1016/S0011-2275(01)00179-5
10.1121/1.396617
10.1103/PhysRevLett.50.499
10.1117/12.880684
10.2514/3.466
10.1177/1045389X11402706
10.1119/1.1485720
10.1121/1.401432
10.1177/1045389X05055279
10.1016/j.enconman.2008.07.002
10.1080/0305215X.2013.786064
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.apacoust.2014.02.017
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
Applied Sciences
EISSN 1872-910X
EndPage 99
ExternalDocumentID 28469104
10_1016_j_apacoust_2014_02_017
S0003682X14000474
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
ID FETCH-LOGICAL-c342t-b9fd68b24834d07a59be793fc59d5a63a85b3bbc05eb02907e51990fecd534e83
IEDL.DBID AIKHN
ISSN 0003-682X
IngestDate Wed Apr 02 07:28:56 EDT 2025
Tue Jul 01 01:44:59 EDT 2025
Thu Apr 24 23:03:11 EDT 2025
Fri Feb 23 02:19:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Thermoacoustic refrigerator
Dynamic magnification
Piezo-driven
Piezoelectric device
Theoretical study
Thermoacoustic effect
Experimental study
Loudspeaker
Performance
Refrigeration
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-b9fd68b24834d07a59be793fc59d5a63a85b3bbc05eb02907e51990fecd534e83
PageCount 14
ParticipantIDs pascalfrancis_primary_28469104
crossref_primary_10_1016_j_apacoust_2014_02_017
crossref_citationtrail_10_1016_j_apacoust_2014_02_017
elsevier_sciencedirect_doi_10_1016_j_apacoust_2014_02_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-01
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Applied acoustics
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Chinn D, Nouh M, Aldraihem O, Baz A. Piezoelectric driven thermo-acoustic refrigerator. In: Proc. SPIE 7977, Active and Passive Smart Structures and Integrated Systems 2011, 79771T, April 27, 2011.
Nouh, Aldraihem, Baz (b0120) 2011; 134
Babaei, Siddiqui (b0110) 2008; 49
Ma PS, Kim JE, Kim YY. Power amplifying strategy in vibration powered energy harvesters. Active and Passive Smart Structures and Integrated Systems 2010. In: Proceedings of SPIE conference, vol. 7643, Paper #7643-23, San Diego, CA; 2010.
Tijani, Zeegers, de Waele (b0040) 2002; 42
Aldraihem, Baz (b0075) 2011; 22
Garrett, Adeff, Hofler (b0020) 1993; 7
Swift (b0100) 2002
Ward B, Clark J, Swift G. Design environment for low amplitude thermoacoustic energy conversion: DeltaEC – Version 6.2. Users Guide, Los Alamos National Laboratory, LA-CC-01-13
Nouh M, Aldraihem O, Baz A. Optimum design of thermoacoustic-piezoelectric systems with dynamic magnifiers. Eng Opt 2013 [786064, dx.doi.org/10.1080/0305215X.2013.786064].
Direk S. Design of a mini thermo-acoustic refrigerator. Masters thesis. Naval Postgraduate School; 2001.
Wheatley, Hofler, Swift, Migliori (b0005) 1983; 50
Hofler TJ. Thermoacoustic refrigerator design and performance, Ph.D. dissertation. Physics Department, University of California at San Diego; 1986.
Arnott, Bass, Raspet (b0095) 1991; 90
Cornwell, Goethal, Kowko, Damianakis (b0065) 2005; 16
ISL Products Piezo Speaker. PZ-94 Harsh environment loudspeaker system
The Pennsylvania State University. Graduate Program in Acoustics, Thermoacoustics.
Swift (b0015) 1988; 84
.
Chinn D. Piezoelectrically-driven thermoacoustic refrigerator, M.Sc. thesis, University of Maryland, College Park, Maryland; 2010.
Bailliet, Lotton, Bruneau, Gusev (b0090) 2000; 86
Adeff, Hofler (b0025) 2000; 107
McKelvey DJ, Ballister SC. Shipboard electronic thermoacoustic cooler. Masters of Science in Engineering Acoustics and Master of Science in Applied Physics. DTIC Report No. AD A300–514, June 1995.
Russel, Weibull (b0045) 2002; 70
2008.
Arnott (10.1016/j.apacoust.2014.02.017_b0095) 1991; 90
Babaei (10.1016/j.apacoust.2014.02.017_b0110) 2008; 49
Adeff (10.1016/j.apacoust.2014.02.017_b0025) 2000; 107
Nouh (10.1016/j.apacoust.2014.02.017_b0120) 2011; 134
Swift (10.1016/j.apacoust.2014.02.017_b0015) 1988; 84
10.1016/j.apacoust.2014.02.017_b0050
10.1016/j.apacoust.2014.02.017_b0060
Garrett (10.1016/j.apacoust.2014.02.017_b0020) 1993; 7
10.1016/j.apacoust.2014.02.017_b0070
Aldraihem (10.1016/j.apacoust.2014.02.017_b0075) 2011; 22
10.1016/j.apacoust.2014.02.017_b0035
Russel (10.1016/j.apacoust.2014.02.017_b0045) 2002; 70
10.1016/j.apacoust.2014.02.017_b0055
Swift (10.1016/j.apacoust.2014.02.017_b0100) 2002
10.1016/j.apacoust.2014.02.017_b0010
10.1016/j.apacoust.2014.02.017_b0030
Cornwell (10.1016/j.apacoust.2014.02.017_b0065) 2005; 16
10.1016/j.apacoust.2014.02.017_b0085
Tijani (10.1016/j.apacoust.2014.02.017_b0040) 2002; 42
Bailliet (10.1016/j.apacoust.2014.02.017_b0090) 2000; 86
Wheatley (10.1016/j.apacoust.2014.02.017_b0005) 1983; 50
10.1016/j.apacoust.2014.02.017_b0105
10.1016/j.apacoust.2014.02.017_b0115
References_xml – volume: 22
  start-page: 521
  year: 2011
  end-page: 530
  ident: b0075
  article-title: Energy harvester with a dynamic magnifier
  publication-title: J Intell Mater Syst Struct
– volume: 86
  start-page: 363
  year: 2000
  end-page: 373
  ident: b0090
  article-title: Coupling between electrodynamic loudspeakers and thermoacoustic cavities
  publication-title: ACUSTICA
– reference: Direk S. Design of a mini thermo-acoustic refrigerator. Masters thesis. Naval Postgraduate School; 2001.
– reference: Chinn D, Nouh M, Aldraihem O, Baz A. Piezoelectric driven thermo-acoustic refrigerator. In: Proc. SPIE 7977, Active and Passive Smart Structures and Integrated Systems 2011, 79771T, April 27, 2011.
– volume: 7
  start-page: 595
  year: 1993
  end-page: 599
  ident: b0020
  article-title: Thermoacoustic refrigerator for space applications
  publication-title: J Thermophys Heat Transf (AIAA)
– year: 2002
  ident: b0100
  article-title: Thermoacoustics: a unifying perspective for some engines and refrigerators
– volume: 50
  start-page: 499
  year: 1983
  end-page: 502
  ident: b0005
  article-title: Experiments with an intrinsically irreversible acoustic heat engine
  publication-title: Phys Rev Lett
– volume: 49
  start-page: 3585
  year: 2008
  end-page: 3598
  ident: b0110
  article-title: Design and optimization of thermoacoustic devices
  publication-title: Energy Convers Manage
– reference: >); 2008.
– reference: Ma PS, Kim JE, Kim YY. Power amplifying strategy in vibration powered energy harvesters. Active and Passive Smart Structures and Integrated Systems 2010. In: Proceedings of SPIE conference, vol. 7643, Paper #7643-23, San Diego, CA; 2010.
– reference: Chinn D. Piezoelectrically-driven thermoacoustic refrigerator, M.Sc. thesis, University of Maryland, College Park, Maryland; 2010.
– reference: The Pennsylvania State University. Graduate Program in Acoustics, Thermoacoustics. (<
– reference: ISL Products Piezo Speaker. PZ-94 Harsh environment loudspeaker system, <
– volume: 107
  start-page: 37
  year: 2000
  end-page: 42
  ident: b0025
  article-title: Design and construction of a solar-powered, thermoacoustically driven thermoacoustic refrigerator
  publication-title: J Acoust Soc Am
– reference: Nouh M, Aldraihem O, Baz A. Optimum design of thermoacoustic-piezoelectric systems with dynamic magnifiers. Eng Opt 2013 [786064, dx.doi.org/10.1080/0305215X.2013.786064].
– volume: 84
  start-page: 1145
  year: 1988
  end-page: 1180
  ident: b0015
  article-title: Thermoacoustic engines
  publication-title: J Acoust Soc Am
– reference: >.
– reference: Hofler TJ. Thermoacoustic refrigerator design and performance, Ph.D. dissertation. Physics Department, University of California at San Diego; 1986.
– volume: 134
  year: 2011
  ident: b0120
  article-title: Energy harvesting of thermoacoustic-piezo systems with a dynamic magnifier
  publication-title: J Vibr Acoust
– volume: 70
  start-page: 1231
  year: 2002
  end-page: 1233
  ident: b0045
  article-title: Tabletop thermoacoustic refrigerator for demonstrations
  publication-title: Am J Phys
– volume: 42
  start-page: 49
  year: 2002
  end-page: 57
  ident: b0040
  article-title: Construction and performance of a thermoacoustic refrigerator
  publication-title: Cryogenics
– reference: >).
– volume: 90
  start-page: 3228
  year: 1991
  end-page: 3237
  ident: b0095
  article-title: General formulation of thermoacoustics for stacks having arbitrarily shaped pore cross sections
  publication-title: J Acoust Soc Am
– reference: Ward B, Clark J, Swift G. Design environment for low amplitude thermoacoustic energy conversion: DeltaEC – Version 6.2. Users Guide, Los Alamos National Laboratory, LA-CC-01-13 (<
– reference: McKelvey DJ, Ballister SC. Shipboard electronic thermoacoustic cooler. Masters of Science in Engineering Acoustics and Master of Science in Applied Physics. DTIC Report No. AD A300–514, June 1995.
– volume: 16
  start-page: 825
  year: 2005
  end-page: 834
  ident: b0065
  article-title: Enhancing power harvesting using a tuned auxiliary structure
  publication-title: J Intell Mater Syst Struct
– ident: 10.1016/j.apacoust.2014.02.017_b0105
– volume: 107
  start-page: 37
  issue: 6
  year: 2000
  ident: 10.1016/j.apacoust.2014.02.017_b0025
  article-title: Design and construction of a solar-powered, thermoacoustically driven thermoacoustic refrigerator
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.429324
– year: 2002
  ident: 10.1016/j.apacoust.2014.02.017_b0100
– volume: 42
  start-page: 49
  year: 2002
  ident: 10.1016/j.apacoust.2014.02.017_b0040
  article-title: Construction and performance of a thermoacoustic refrigerator
  publication-title: Cryogenics
  doi: 10.1016/S0011-2275(01)00179-5
– volume: 134
  year: 2011
  ident: 10.1016/j.apacoust.2014.02.017_b0120
  article-title: Energy harvesting of thermoacoustic-piezo systems with a dynamic magnifier
  publication-title: J Vibr Acoust
– ident: 10.1016/j.apacoust.2014.02.017_b0115
– volume: 84
  start-page: 1145
  issue: 4
  year: 1988
  ident: 10.1016/j.apacoust.2014.02.017_b0015
  article-title: Thermoacoustic engines
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.396617
– volume: 50
  start-page: 499
  issue: 7
  year: 1983
  ident: 10.1016/j.apacoust.2014.02.017_b0005
  article-title: Experiments with an intrinsically irreversible acoustic heat engine
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.50.499
– ident: 10.1016/j.apacoust.2014.02.017_b0060
  doi: 10.1117/12.880684
– ident: 10.1016/j.apacoust.2014.02.017_b0035
– ident: 10.1016/j.apacoust.2014.02.017_b0010
– volume: 7
  start-page: 595
  issue: 4
  year: 1993
  ident: 10.1016/j.apacoust.2014.02.017_b0020
  article-title: Thermoacoustic refrigerator for space applications
  publication-title: J Thermophys Heat Transf (AIAA)
  doi: 10.2514/3.466
– volume: 22
  start-page: 521
  issue: 6
  year: 2011
  ident: 10.1016/j.apacoust.2014.02.017_b0075
  article-title: Energy harvester with a dynamic magnifier
  publication-title: J Intell Mater Syst Struct
  doi: 10.1177/1045389X11402706
– ident: 10.1016/j.apacoust.2014.02.017_b0030
– volume: 70
  start-page: 1231
  issue: 12
  year: 2002
  ident: 10.1016/j.apacoust.2014.02.017_b0045
  article-title: Tabletop thermoacoustic refrigerator for demonstrations
  publication-title: Am J Phys
  doi: 10.1119/1.1485720
– volume: 90
  start-page: 3228
  issue: 6
  year: 1991
  ident: 10.1016/j.apacoust.2014.02.017_b0095
  article-title: General formulation of thermoacoustics for stacks having arbitrarily shaped pore cross sections
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.401432
– ident: 10.1016/j.apacoust.2014.02.017_b0055
– volume: 16
  start-page: 825
  year: 2005
  ident: 10.1016/j.apacoust.2014.02.017_b0065
  article-title: Enhancing power harvesting using a tuned auxiliary structure
  publication-title: J Intell Mater Syst Struct
  doi: 10.1177/1045389X05055279
– volume: 49
  start-page: 3585
  year: 2008
  ident: 10.1016/j.apacoust.2014.02.017_b0110
  article-title: Design and optimization of thermoacoustic devices
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2008.07.002
– ident: 10.1016/j.apacoust.2014.02.017_b0070
– ident: 10.1016/j.apacoust.2014.02.017_b0050
– ident: 10.1016/j.apacoust.2014.02.017_b0085
  doi: 10.1080/0305215X.2013.786064
– volume: 86
  start-page: 363
  year: 2000
  ident: 10.1016/j.apacoust.2014.02.017_b0090
  article-title: Coupling between electrodynamic loudspeakers and thermoacoustic cavities
  publication-title: ACUSTICA
SSID ssj0000255
Score 2.101187
Snippet Thermoacoustic refrigeration is an emerging cooling technology which does not rely for in its operation on the use of any moving parts or harmful refrigerants....
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 86
SubjectTerms Acoustics
Applied sciences
Cryogenics
Dynamic magnification
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Piezo-driven
Refrigerating engineering. Cryogenics. Food conservation
Thermoacoustic refrigerator
Transduction; acoustical devices for the generation and reproduction of sound
Title Piezo-driven thermoacoustic refrigerators with dynamic magnifiers
URI https://dx.doi.org/10.1016/j.apacoust.2014.02.017
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60IigiWhXro-TgNW3cV7PHUpSqKB4Uegv7iqTYB229ePC3O5tHrSD04DGByS7f7n4zk50HwBWLqaUWD6AQnShkVndC7RgNFTWRQR-Xm9Tf6D4-if4rux_wwQb0qlwYH1ZZcn_B6Tlbl2_aJZrtaZb5HF9k35gM0EXwNQ_ZJmwRKgWvwVb37qH_9EPIhPOqcZ4XWEkUHrZQJZmJz25ATcjy8p1577I_ddTeVM0RubRoebGih24PYL80IINuMcdD2HDjOuyulBWsw3Ye1mnmR9B9ztznJLQzz2mBt_VGk2IimQlwXHTNXX7PPg_8D9nAFv3pg5F6G2ep75J9DK-3Ny-9flg2TQgNZWQRaplaEWvifxLaqKO41A7PYGq4tFwJqmKuqdYm4k5HBF1jhzacjFJnLKfMxfQEauPJ2J1CIIVGqkRkCVFMoiuhZMcyR7WNlGIibgCvYEpMWVHcN7Z4T6rQsWFSwZt4eJOIJAhvA9pLuWlRU2OthKxWIfm1OxIk_rWyzV_LthwSFbNAY4md_ePj57Djn4qgswuoLWYf7hKtlIVuwmbr67pZ7sVv78noRg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFH5URVREXHF3Dl7HDpNlJkcpStUqHlroLWQbGdG22Hrx4G_3ZZbagtCD15nJJHxJ3pK89z6AS5oSSyxuQM6TKKRWJ6F2lISKmMigj8tM5m90H594u0fv-6zfgFadC-PDKivZX8r0QlpXT5oVms1RnvscX5S-adxHF8HXPKRLsEIZSXxc39X3b5yHN5pr2jz_-Uya8OsVKiQz9LkNqAdpUbyzYC77U0NtjtQYcctKwosZLXS7DVuV-RhclyPcgYYb7MLGTFHBXVgtgjrNeA-un3P3NQzth5dogbf03oflQHITYL_omLviln0c-OPYwJbs9MG7ehnkmefI3ofe7U231Q4ryoTQEBpPQi0yy1Md-yNCGyWKCe1wB2aGCcsUJyplmmhtIuZ0FKNj7NCCE1HmjGWEupQcwPJgOHCHEAiuUVAirnGsqEBHQonEUke0jZSiPD0CVsMkTVVP3NNavMk6cOxV1vBKD6-MYonwHkFz2m5UVtRY2ELUsyDn1oZEsb-w7fnctE27RLXM0VSix__4-QWstbuPHdm5e3o4gXX_pgw_O4XlycenO0N7ZaLPi_X4A-fY6RE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piezo-driven+thermoacoustic+refrigerators+with+dynamic+magnifiers&rft.jtitle=Applied+acoustics&rft.au=Nouh%2C+M.&rft.au=Aldraihem%2C+O.&rft.au=Baz%2C+A.&rft.date=2014-09-01&rft.pub=Elsevier+Ltd&rft.issn=0003-682X&rft.eissn=1872-910X&rft.volume=83&rft.spage=86&rft.epage=99&rft_id=info:doi/10.1016%2Fj.apacoust.2014.02.017&rft.externalDocID=S0003682X14000474
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-682X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-682X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-682X&client=summon