Piezo-driven thermoacoustic refrigerators with dynamic magnifiers
Thermoacoustic refrigeration is an emerging cooling technology which does not rely for in its operation on the use of any moving parts or harmful refrigerants. This technology uses acoustic waves to pump heat across a temperature gradient. The temperature gradient forms across the ends of a porous b...
Saved in:
Published in | Applied acoustics Vol. 83; pp. 86 - 99 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.09.2014
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0003-682X 1872-910X |
DOI | 10.1016/j.apacoust.2014.02.017 |
Cover
Loading…
Abstract | Thermoacoustic refrigeration is an emerging cooling technology which does not rely for in its operation on the use of any moving parts or harmful refrigerants. This technology uses acoustic waves to pump heat across a temperature gradient. The temperature gradient forms across the ends of a porous body, called the stack, enclosed in a resonator. The vast majority of thermoacoustic refrigerators to date have used electromagnetic loudspeakers to generate the acoustic input. In this paper, the design, construction, operation, and modeling of a piezo-driven thermoacoustic refrigerator are detailed. The performance of the refrigerator is significantly enhanced by coupling the acoustic driver with an elastic structure, referred to as a dynamic magnifier. Proper selection of the magnifier parameters can increase the magnitude of the pressure oscillations across the stack, and consequently the temperature difference. The magnified refrigerator demonstrates the effectiveness of piezoelectric actuation in moving 0.3W of heat across a 10°C temperature difference with an input power of 7W. All the theoretical predictions are validated against data from experimental prototypes. The developed theoretical and experimental tools can serve as invaluable means for the design and testing of piezo-driven thermoacoustic refrigerator configurations. |
---|---|
AbstractList | Thermoacoustic refrigeration is an emerging cooling technology which does not rely for in its operation on the use of any moving parts or harmful refrigerants. This technology uses acoustic waves to pump heat across a temperature gradient. The temperature gradient forms across the ends of a porous body, called the stack, enclosed in a resonator. The vast majority of thermoacoustic refrigerators to date have used electromagnetic loudspeakers to generate the acoustic input. In this paper, the design, construction, operation, and modeling of a piezo-driven thermoacoustic refrigerator are detailed. The performance of the refrigerator is significantly enhanced by coupling the acoustic driver with an elastic structure, referred to as a dynamic magnifier. Proper selection of the magnifier parameters can increase the magnitude of the pressure oscillations across the stack, and consequently the temperature difference. The magnified refrigerator demonstrates the effectiveness of piezoelectric actuation in moving 0.3W of heat across a 10°C temperature difference with an input power of 7W. All the theoretical predictions are validated against data from experimental prototypes. The developed theoretical and experimental tools can serve as invaluable means for the design and testing of piezo-driven thermoacoustic refrigerator configurations. |
Author | Baz, A. Nouh, M. Aldraihem, O. |
Author_xml | – sequence: 1 givenname: M. surname: Nouh fullname: Nouh, M. organization: Mechanical Engineering Department, University of Maryland, College Park, MD 20742, United States – sequence: 2 givenname: O. surname: Aldraihem fullname: Aldraihem, O. organization: Mechanical Engineering Department, King Saud University, Riyadh 11421, Saudi Arabia – sequence: 3 givenname: A. surname: Baz fullname: Baz, A. email: baz@umd.edu organization: Mechanical Engineering Department, University of Maryland, College Park, MD 20742, United States |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28469104$$DView record in Pascal Francis |
BookMark | eNqFkE1LAzEQhoNUsFb_guzF466TZLMf4MFS_IKCHhR6C9nsbJvS3S1JrNRfb8qqBy89DcO8zwvznJNR13dIyBWFhALNbtaJ2irdfzifMKBpAiwBmp-QMS1yFpcUFiMyBgAeZwVbnJFz59ZhBSbEmExfDX71cW3NDrvIr9C2_VBmdGSxsWaJVvneuujT-FVU7zvVhlOrlp1pDFp3QU4btXF4-TMn5P3h_m32FM9fHp9n03msecp8XJVNnRUVSwue1pArUVaYl7zRoqyFyrgqRMWrSoPAClgJOQpaltCgrgVPseATcj30bpXTatNY1Wnj5NaaVtm9ZEWahV_TkMuGnLa9c-GFvwgFeRAm1_JXmDwIk8BkEBbA23-gNl5503feKrM5jt8NOAYJu2BGOm2w01gbi9rLujfHKr4BzrSPnw |
CODEN | AACOBL |
CitedBy_id | crossref_primary_10_1016_j_ijrefrig_2021_04_015 crossref_primary_10_1016_j_rser_2021_111170 crossref_primary_10_1121_10_0023954 crossref_primary_10_1016_j_apacoust_2021_108136 crossref_primary_10_1063_1_4916077 crossref_primary_10_1016_j_applthermaleng_2022_118667 crossref_primary_10_1063_1_4972297 crossref_primary_10_1142_S2010132517500353 crossref_primary_10_1063_5_0019896 |
Cites_doi | 10.1121/1.429324 10.1016/S0011-2275(01)00179-5 10.1121/1.396617 10.1103/PhysRevLett.50.499 10.1117/12.880684 10.2514/3.466 10.1177/1045389X11402706 10.1119/1.1485720 10.1121/1.401432 10.1177/1045389X05055279 10.1016/j.enconman.2008.07.002 10.1080/0305215X.2013.786064 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW |
DOI | 10.1016/j.apacoust.2014.02.017 |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics Applied Sciences |
EISSN | 1872-910X |
EndPage | 99 |
ExternalDocumentID | 28469104 10_1016_j_apacoust_2014_02_017 S0003682X14000474 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K VH1 WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW |
ID | FETCH-LOGICAL-c342t-b9fd68b24834d07a59be793fc59d5a63a85b3bbc05eb02907e51990fecd534e83 |
IEDL.DBID | AIKHN |
ISSN | 0003-682X |
IngestDate | Wed Apr 02 07:28:56 EDT 2025 Tue Jul 01 01:44:59 EDT 2025 Thu Apr 24 23:03:11 EDT 2025 Fri Feb 23 02:19:40 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Thermoacoustic refrigerator Dynamic magnification Piezo-driven Piezoelectric device Theoretical study Thermoacoustic effect Experimental study Loudspeaker Performance Refrigeration |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-b9fd68b24834d07a59be793fc59d5a63a85b3bbc05eb02907e51990fecd534e83 |
PageCount | 14 |
ParticipantIDs | pascalfrancis_primary_28469104 crossref_primary_10_1016_j_apacoust_2014_02_017 crossref_citationtrail_10_1016_j_apacoust_2014_02_017 elsevier_sciencedirect_doi_10_1016_j_apacoust_2014_02_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-01 |
PublicationDateYYYYMMDD | 2014-09-01 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Applied acoustics |
PublicationYear | 2014 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Chinn D, Nouh M, Aldraihem O, Baz A. Piezoelectric driven thermo-acoustic refrigerator. In: Proc. SPIE 7977, Active and Passive Smart Structures and Integrated Systems 2011, 79771T, April 27, 2011. Nouh, Aldraihem, Baz (b0120) 2011; 134 Babaei, Siddiqui (b0110) 2008; 49 Ma PS, Kim JE, Kim YY. Power amplifying strategy in vibration powered energy harvesters. Active and Passive Smart Structures and Integrated Systems 2010. In: Proceedings of SPIE conference, vol. 7643, Paper #7643-23, San Diego, CA; 2010. Tijani, Zeegers, de Waele (b0040) 2002; 42 Aldraihem, Baz (b0075) 2011; 22 Garrett, Adeff, Hofler (b0020) 1993; 7 Swift (b0100) 2002 Ward B, Clark J, Swift G. Design environment for low amplitude thermoacoustic energy conversion: DeltaEC – Version 6.2. Users Guide, Los Alamos National Laboratory, LA-CC-01-13 Nouh M, Aldraihem O, Baz A. Optimum design of thermoacoustic-piezoelectric systems with dynamic magnifiers. Eng Opt 2013 [786064, dx.doi.org/10.1080/0305215X.2013.786064]. Direk S. Design of a mini thermo-acoustic refrigerator. Masters thesis. Naval Postgraduate School; 2001. Wheatley, Hofler, Swift, Migliori (b0005) 1983; 50 Hofler TJ. Thermoacoustic refrigerator design and performance, Ph.D. dissertation. Physics Department, University of California at San Diego; 1986. Arnott, Bass, Raspet (b0095) 1991; 90 Cornwell, Goethal, Kowko, Damianakis (b0065) 2005; 16 ISL Products Piezo Speaker. PZ-94 Harsh environment loudspeaker system The Pennsylvania State University. Graduate Program in Acoustics, Thermoacoustics. Swift (b0015) 1988; 84 . Chinn D. Piezoelectrically-driven thermoacoustic refrigerator, M.Sc. thesis, University of Maryland, College Park, Maryland; 2010. Bailliet, Lotton, Bruneau, Gusev (b0090) 2000; 86 Adeff, Hofler (b0025) 2000; 107 McKelvey DJ, Ballister SC. Shipboard electronic thermoacoustic cooler. Masters of Science in Engineering Acoustics and Master of Science in Applied Physics. DTIC Report No. AD A300–514, June 1995. Russel, Weibull (b0045) 2002; 70 2008. Arnott (10.1016/j.apacoust.2014.02.017_b0095) 1991; 90 Babaei (10.1016/j.apacoust.2014.02.017_b0110) 2008; 49 Adeff (10.1016/j.apacoust.2014.02.017_b0025) 2000; 107 Nouh (10.1016/j.apacoust.2014.02.017_b0120) 2011; 134 Swift (10.1016/j.apacoust.2014.02.017_b0015) 1988; 84 10.1016/j.apacoust.2014.02.017_b0050 10.1016/j.apacoust.2014.02.017_b0060 Garrett (10.1016/j.apacoust.2014.02.017_b0020) 1993; 7 10.1016/j.apacoust.2014.02.017_b0070 Aldraihem (10.1016/j.apacoust.2014.02.017_b0075) 2011; 22 10.1016/j.apacoust.2014.02.017_b0035 Russel (10.1016/j.apacoust.2014.02.017_b0045) 2002; 70 10.1016/j.apacoust.2014.02.017_b0055 Swift (10.1016/j.apacoust.2014.02.017_b0100) 2002 10.1016/j.apacoust.2014.02.017_b0010 10.1016/j.apacoust.2014.02.017_b0030 Cornwell (10.1016/j.apacoust.2014.02.017_b0065) 2005; 16 10.1016/j.apacoust.2014.02.017_b0085 Tijani (10.1016/j.apacoust.2014.02.017_b0040) 2002; 42 Bailliet (10.1016/j.apacoust.2014.02.017_b0090) 2000; 86 Wheatley (10.1016/j.apacoust.2014.02.017_b0005) 1983; 50 10.1016/j.apacoust.2014.02.017_b0105 10.1016/j.apacoust.2014.02.017_b0115 |
References_xml | – volume: 22 start-page: 521 year: 2011 end-page: 530 ident: b0075 article-title: Energy harvester with a dynamic magnifier publication-title: J Intell Mater Syst Struct – volume: 86 start-page: 363 year: 2000 end-page: 373 ident: b0090 article-title: Coupling between electrodynamic loudspeakers and thermoacoustic cavities publication-title: ACUSTICA – reference: Direk S. Design of a mini thermo-acoustic refrigerator. Masters thesis. Naval Postgraduate School; 2001. – reference: Chinn D, Nouh M, Aldraihem O, Baz A. Piezoelectric driven thermo-acoustic refrigerator. In: Proc. SPIE 7977, Active and Passive Smart Structures and Integrated Systems 2011, 79771T, April 27, 2011. – volume: 7 start-page: 595 year: 1993 end-page: 599 ident: b0020 article-title: Thermoacoustic refrigerator for space applications publication-title: J Thermophys Heat Transf (AIAA) – year: 2002 ident: b0100 article-title: Thermoacoustics: a unifying perspective for some engines and refrigerators – volume: 50 start-page: 499 year: 1983 end-page: 502 ident: b0005 article-title: Experiments with an intrinsically irreversible acoustic heat engine publication-title: Phys Rev Lett – volume: 49 start-page: 3585 year: 2008 end-page: 3598 ident: b0110 article-title: Design and optimization of thermoacoustic devices publication-title: Energy Convers Manage – reference: >); 2008. – reference: Ma PS, Kim JE, Kim YY. Power amplifying strategy in vibration powered energy harvesters. Active and Passive Smart Structures and Integrated Systems 2010. In: Proceedings of SPIE conference, vol. 7643, Paper #7643-23, San Diego, CA; 2010. – reference: Chinn D. Piezoelectrically-driven thermoacoustic refrigerator, M.Sc. thesis, University of Maryland, College Park, Maryland; 2010. – reference: The Pennsylvania State University. Graduate Program in Acoustics, Thermoacoustics. (< – reference: ISL Products Piezo Speaker. PZ-94 Harsh environment loudspeaker system, < – volume: 107 start-page: 37 year: 2000 end-page: 42 ident: b0025 article-title: Design and construction of a solar-powered, thermoacoustically driven thermoacoustic refrigerator publication-title: J Acoust Soc Am – reference: Nouh M, Aldraihem O, Baz A. Optimum design of thermoacoustic-piezoelectric systems with dynamic magnifiers. Eng Opt 2013 [786064, dx.doi.org/10.1080/0305215X.2013.786064]. – volume: 84 start-page: 1145 year: 1988 end-page: 1180 ident: b0015 article-title: Thermoacoustic engines publication-title: J Acoust Soc Am – reference: >. – reference: Hofler TJ. Thermoacoustic refrigerator design and performance, Ph.D. dissertation. Physics Department, University of California at San Diego; 1986. – volume: 134 year: 2011 ident: b0120 article-title: Energy harvesting of thermoacoustic-piezo systems with a dynamic magnifier publication-title: J Vibr Acoust – volume: 70 start-page: 1231 year: 2002 end-page: 1233 ident: b0045 article-title: Tabletop thermoacoustic refrigerator for demonstrations publication-title: Am J Phys – volume: 42 start-page: 49 year: 2002 end-page: 57 ident: b0040 article-title: Construction and performance of a thermoacoustic refrigerator publication-title: Cryogenics – reference: >). – volume: 90 start-page: 3228 year: 1991 end-page: 3237 ident: b0095 article-title: General formulation of thermoacoustics for stacks having arbitrarily shaped pore cross sections publication-title: J Acoust Soc Am – reference: Ward B, Clark J, Swift G. Design environment for low amplitude thermoacoustic energy conversion: DeltaEC – Version 6.2. Users Guide, Los Alamos National Laboratory, LA-CC-01-13 (< – reference: McKelvey DJ, Ballister SC. Shipboard electronic thermoacoustic cooler. Masters of Science in Engineering Acoustics and Master of Science in Applied Physics. DTIC Report No. AD A300–514, June 1995. – volume: 16 start-page: 825 year: 2005 end-page: 834 ident: b0065 article-title: Enhancing power harvesting using a tuned auxiliary structure publication-title: J Intell Mater Syst Struct – ident: 10.1016/j.apacoust.2014.02.017_b0105 – volume: 107 start-page: 37 issue: 6 year: 2000 ident: 10.1016/j.apacoust.2014.02.017_b0025 article-title: Design and construction of a solar-powered, thermoacoustically driven thermoacoustic refrigerator publication-title: J Acoust Soc Am doi: 10.1121/1.429324 – year: 2002 ident: 10.1016/j.apacoust.2014.02.017_b0100 – volume: 42 start-page: 49 year: 2002 ident: 10.1016/j.apacoust.2014.02.017_b0040 article-title: Construction and performance of a thermoacoustic refrigerator publication-title: Cryogenics doi: 10.1016/S0011-2275(01)00179-5 – volume: 134 year: 2011 ident: 10.1016/j.apacoust.2014.02.017_b0120 article-title: Energy harvesting of thermoacoustic-piezo systems with a dynamic magnifier publication-title: J Vibr Acoust – ident: 10.1016/j.apacoust.2014.02.017_b0115 – volume: 84 start-page: 1145 issue: 4 year: 1988 ident: 10.1016/j.apacoust.2014.02.017_b0015 article-title: Thermoacoustic engines publication-title: J Acoust Soc Am doi: 10.1121/1.396617 – volume: 50 start-page: 499 issue: 7 year: 1983 ident: 10.1016/j.apacoust.2014.02.017_b0005 article-title: Experiments with an intrinsically irreversible acoustic heat engine publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.50.499 – ident: 10.1016/j.apacoust.2014.02.017_b0060 doi: 10.1117/12.880684 – ident: 10.1016/j.apacoust.2014.02.017_b0035 – ident: 10.1016/j.apacoust.2014.02.017_b0010 – volume: 7 start-page: 595 issue: 4 year: 1993 ident: 10.1016/j.apacoust.2014.02.017_b0020 article-title: Thermoacoustic refrigerator for space applications publication-title: J Thermophys Heat Transf (AIAA) doi: 10.2514/3.466 – volume: 22 start-page: 521 issue: 6 year: 2011 ident: 10.1016/j.apacoust.2014.02.017_b0075 article-title: Energy harvester with a dynamic magnifier publication-title: J Intell Mater Syst Struct doi: 10.1177/1045389X11402706 – ident: 10.1016/j.apacoust.2014.02.017_b0030 – volume: 70 start-page: 1231 issue: 12 year: 2002 ident: 10.1016/j.apacoust.2014.02.017_b0045 article-title: Tabletop thermoacoustic refrigerator for demonstrations publication-title: Am J Phys doi: 10.1119/1.1485720 – volume: 90 start-page: 3228 issue: 6 year: 1991 ident: 10.1016/j.apacoust.2014.02.017_b0095 article-title: General formulation of thermoacoustics for stacks having arbitrarily shaped pore cross sections publication-title: J Acoust Soc Am doi: 10.1121/1.401432 – ident: 10.1016/j.apacoust.2014.02.017_b0055 – volume: 16 start-page: 825 year: 2005 ident: 10.1016/j.apacoust.2014.02.017_b0065 article-title: Enhancing power harvesting using a tuned auxiliary structure publication-title: J Intell Mater Syst Struct doi: 10.1177/1045389X05055279 – volume: 49 start-page: 3585 year: 2008 ident: 10.1016/j.apacoust.2014.02.017_b0110 article-title: Design and optimization of thermoacoustic devices publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2008.07.002 – ident: 10.1016/j.apacoust.2014.02.017_b0070 – ident: 10.1016/j.apacoust.2014.02.017_b0050 – ident: 10.1016/j.apacoust.2014.02.017_b0085 doi: 10.1080/0305215X.2013.786064 – volume: 86 start-page: 363 year: 2000 ident: 10.1016/j.apacoust.2014.02.017_b0090 article-title: Coupling between electrodynamic loudspeakers and thermoacoustic cavities publication-title: ACUSTICA |
SSID | ssj0000255 |
Score | 2.101187 |
Snippet | Thermoacoustic refrigeration is an emerging cooling technology which does not rely for in its operation on the use of any moving parts or harmful refrigerants.... |
SourceID | pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 86 |
SubjectTerms | Acoustics Applied sciences Cryogenics Dynamic magnification Energy Energy. Thermal use of fuels Exact sciences and technology Fundamental areas of phenomenology (including applications) Physics Piezo-driven Refrigerating engineering. Cryogenics. Food conservation Thermoacoustic refrigerator Transduction; acoustical devices for the generation and reproduction of sound |
Title | Piezo-driven thermoacoustic refrigerators with dynamic magnifiers |
URI | https://dx.doi.org/10.1016/j.apacoust.2014.02.017 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60IigiWhXro-TgNW3cV7PHUpSqKB4Uegv7iqTYB229ePC3O5tHrSD04DGByS7f7n4zk50HwBWLqaUWD6AQnShkVndC7RgNFTWRQR-Xm9Tf6D4-if4rux_wwQb0qlwYH1ZZcn_B6Tlbl2_aJZrtaZb5HF9k35gM0EXwNQ_ZJmwRKgWvwVb37qH_9EPIhPOqcZ4XWEkUHrZQJZmJz25ATcjy8p1577I_ddTeVM0RubRoebGih24PYL80IINuMcdD2HDjOuyulBWsw3Ye1mnmR9B9ztznJLQzz2mBt_VGk2IimQlwXHTNXX7PPg_8D9nAFv3pg5F6G2ep75J9DK-3Ny-9flg2TQgNZWQRaplaEWvifxLaqKO41A7PYGq4tFwJqmKuqdYm4k5HBF1jhzacjFJnLKfMxfQEauPJ2J1CIIVGqkRkCVFMoiuhZMcyR7WNlGIibgCvYEpMWVHcN7Z4T6rQsWFSwZt4eJOIJAhvA9pLuWlRU2OthKxWIfm1OxIk_rWyzV_LthwSFbNAY4md_ePj57Djn4qgswuoLWYf7hKtlIVuwmbr67pZ7sVv78noRg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFH5URVREXHF3Dl7HDpNlJkcpStUqHlroLWQbGdG22Hrx4G_3ZZbagtCD15nJJHxJ3pK89z6AS5oSSyxuQM6TKKRWJ6F2lISKmMigj8tM5m90H594u0fv-6zfgFadC-PDKivZX8r0QlpXT5oVms1RnvscX5S-adxHF8HXPKRLsEIZSXxc39X3b5yHN5pr2jz_-Uya8OsVKiQz9LkNqAdpUbyzYC77U0NtjtQYcctKwosZLXS7DVuV-RhclyPcgYYb7MLGTFHBXVgtgjrNeA-un3P3NQzth5dogbf03oflQHITYL_omLviln0c-OPYwJbs9MG7ehnkmefI3ofe7U231Q4ryoTQEBpPQi0yy1Md-yNCGyWKCe1wB2aGCcsUJyplmmhtIuZ0FKNj7NCCE1HmjGWEupQcwPJgOHCHEAiuUVAirnGsqEBHQonEUke0jZSiPD0CVsMkTVVP3NNavMk6cOxV1vBKD6-MYonwHkFz2m5UVtRY2ELUsyDn1oZEsb-w7fnctE27RLXM0VSix__4-QWstbuPHdm5e3o4gXX_pgw_O4XlycenO0N7ZaLPi_X4A-fY6RE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piezo-driven+thermoacoustic+refrigerators+with+dynamic+magnifiers&rft.jtitle=Applied+acoustics&rft.au=Nouh%2C+M.&rft.au=Aldraihem%2C+O.&rft.au=Baz%2C+A.&rft.date=2014-09-01&rft.pub=Elsevier+Ltd&rft.issn=0003-682X&rft.eissn=1872-910X&rft.volume=83&rft.spage=86&rft.epage=99&rft_id=info:doi/10.1016%2Fj.apacoust.2014.02.017&rft.externalDocID=S0003682X14000474 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-682X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-682X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-682X&client=summon |