Enhancement of efficiencies of cryogenic energy storage packed bed using a novel Referred-Standard-Volume optimization method

•A Reference-Standard-Volume optimization method is proposed to improve CESPB.•The best aspect ratio of CESPB is 2–4 considering efficiencies and pressure drop.•The volume multiple is given at 1.1 with the highest exergy efficiency of 63.72 %.•The thermal and exergy efficiencies are increased by 2.0...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 224; p. 125367
Main Authors She, Xiaohui, Wang, Xingyu, Han, Peng, Li, Yongliang, Wang, Chen
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A Reference-Standard-Volume optimization method is proposed to improve CESPB.•The best aspect ratio of CESPB is 2–4 considering efficiencies and pressure drop.•The volume multiple is given at 1.1 with the highest exergy efficiency of 63.72 %.•The thermal and exergy efficiencies are increased by 2.03 % and 3.65 %, respectively. Cryogenic liquids (e.g., liquid air, liquid hydrogen, liquid carbon dioxide) have gained popularity in electricity storage due to their high energy density, no geographical constraints, and environmental friendliness. The cryogenic energy storage packed bed (CESPB) is widely employed as a cold recovery device to enhance the round-trip efficiency of cryogenic energy storage systems. Nonetheless, the cycle efficiencies of CESPB remain relatively low, with limited research investigating efficient methods for determining the design parameters. To address this, a novel optimization method named as the Reference-Standard-Volume (RSV) approach is introduced to enhance the thermodynamic performance of CESPB. In this paper, the complete optimization process of CESPB is illustrated, presenting the optimization outcomes in the view of heat and mass transfer. The findings reveal that a larger aspect ratio leads to the higher efficiencies but increased pressure drops. An optimal aspect ratio of 3 and a volume multiple of 1.1 is identified, achieving the highest exergy efficiency of 63.72 %. Meanwhile, increasing charging/discharging time enhances heat transfer in CESPB, however, it leads to an increase in external cold dissipation, which gives an optimal charging/discharging time of 3/3 h. By implementing the RSV optimization method, the percentage increase of discharging efficiency, thermal efficiency, and exergy efficiency of CESPB is 2.08 %, 2.03 %, and 3.65 %, respectively. These research outcomes offer valuable reference and guidance for future CESPB design and research.
AbstractList •A Reference-Standard-Volume optimization method is proposed to improve CESPB.•The best aspect ratio of CESPB is 2–4 considering efficiencies and pressure drop.•The volume multiple is given at 1.1 with the highest exergy efficiency of 63.72 %.•The thermal and exergy efficiencies are increased by 2.03 % and 3.65 %, respectively. Cryogenic liquids (e.g., liquid air, liquid hydrogen, liquid carbon dioxide) have gained popularity in electricity storage due to their high energy density, no geographical constraints, and environmental friendliness. The cryogenic energy storage packed bed (CESPB) is widely employed as a cold recovery device to enhance the round-trip efficiency of cryogenic energy storage systems. Nonetheless, the cycle efficiencies of CESPB remain relatively low, with limited research investigating efficient methods for determining the design parameters. To address this, a novel optimization method named as the Reference-Standard-Volume (RSV) approach is introduced to enhance the thermodynamic performance of CESPB. In this paper, the complete optimization process of CESPB is illustrated, presenting the optimization outcomes in the view of heat and mass transfer. The findings reveal that a larger aspect ratio leads to the higher efficiencies but increased pressure drops. An optimal aspect ratio of 3 and a volume multiple of 1.1 is identified, achieving the highest exergy efficiency of 63.72 %. Meanwhile, increasing charging/discharging time enhances heat transfer in CESPB, however, it leads to an increase in external cold dissipation, which gives an optimal charging/discharging time of 3/3 h. By implementing the RSV optimization method, the percentage increase of discharging efficiency, thermal efficiency, and exergy efficiency of CESPB is 2.08 %, 2.03 %, and 3.65 %, respectively. These research outcomes offer valuable reference and guidance for future CESPB design and research.
ArticleNumber 125367
Author Wang, Xingyu
Han, Peng
Wang, Chen
Li, Yongliang
She, Xiaohui
Author_xml – sequence: 1
  givenname: Xiaohui
  surname: She
  fullname: She, Xiaohui
  organization: Cryogenic Energy Conversion, Storage and Transportation Centre, School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang, 050043, China
– sequence: 2
  givenname: Xingyu
  surname: Wang
  fullname: Wang, Xingyu
  organization: Cryogenic Energy Conversion, Storage and Transportation Centre, School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang, 050043, China
– sequence: 3
  givenname: Peng
  surname: Han
  fullname: Han, Peng
  organization: Cryogenic Energy Conversion, Storage and Transportation Centre, School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang, 050043, China
– sequence: 4
  givenname: Yongliang
  surname: Li
  fullname: Li, Yongliang
  organization: Birmingham Centre for Energy Storage, University of Birmingham, Birmingham, B15 2TT, UK
– sequence: 5
  givenname: Chen
  surname: Wang
  fullname: Wang, Chen
  email: wangchen4178@163.com
  organization: Cryogenic Energy Conversion, Storage and Transportation Centre, School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang, 050043, China
BookMark eNqNkMtqQjEQhkOxULV9hyy7OTaX47nsWsTeEAq9bQ9jMtFYTyJJFCz03Xus3XXTxc8wDHz88w1Iz3mHhFxyNuKMF1erkV0tEVILMaYALhoMI8FEPuJiLIvyhPR5VdaZ4FXdI33GeJnVkrMzMohxdVhZXvTJ19QtwSls0SXqDUVjrLLousTDrsLeL9BZRdFhWOxpTD7AAukG1AdqOu-yjdYtKFDnd7imz9g1CaizlwROQ9DZu19vW6R-k2xrPyFZ72iLaen1OTk1sI548TuH5O12-jq5z2ZPdw-Tm1mmZC5SNpeF0N3XRoxBAZbc5DKvzbxUnFcAUhemGMNcFYzXlZQqN6ZQXElRgqgqY-SQXB-5KvgYA5pmE2wLYd9w1hx0Nqvmr87moLM56uwQj0cEdj13trvGH0-obUCVGu3t_2HfoDWQVQ
CitedBy_id crossref_primary_10_1016_j_apenergy_2024_123739
Cites_doi 10.1016/j.applthermaleng.2019.02.106
10.1016/j.est.2021.102873
10.1243/PIME_PROC_1977_191_035_02
10.1016/j.apenergy.2018.03.151
10.1002/aic.690250413
10.1016/j.apenergy.2018.02.053
10.1016/j.ijheatmasstransfer.2022.123798
10.1016/j.energy.2022.123503
10.1016/j.apenergy.2021.117349
10.1016/j.apenergy.2016.12.118
10.1016/j.ijheatmasstransfer.2018.09.126
10.1016/j.est.2023.110282
10.1016/j.applthermaleng.2023.120781
10.1016/j.applthermaleng.2022.118903
10.1016/j.rser.2021.110902
10.1016/j.enpol.2021.112711
10.1016/j.apenergy.2017.12.072
10.1016/j.est.2020.101756
10.1016/j.enconman.2022.115708
10.1016/j.apenergy.2014.07.110
10.1016/j.est.2021.102712
10.1016/j.apenergy.2021.117417
10.1016/j.est.2019.03.004
10.1016/j.ijheatmasstransfer.2023.124325
10.1016/j.enconman.2021.114537
10.1016/j.apenergy.2019.01.073
10.3390/en15010036
10.1016/j.joule.2021.06.018
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ijheatmasstransfer.2024.125367
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2024_125367
S0017931024001984
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABMAC
ABMYL
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
K-O
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29J
6TJ
AAQXK
AAXKI
AAYXX
ABDMP
ABTAH
ABXDB
ACKIV
ACNNM
ADMUD
AFJKZ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
G8K
HVGLF
HZ~
LY6
LY7
M41
R2-
RIG
SAC
SET
T9H
VOH
WUQ
ZY4
ID FETCH-LOGICAL-c342t-b362d101f25acae71f4349fb7c118aa3d6f65abc6019833c4ff6c1c327a288ff3
IEDL.DBID .~1
ISSN 0017-9310
IngestDate Thu Sep 26 19:31:20 EDT 2024
Sat Mar 23 16:41:14 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Reference-Standard-Volume
Cryogenic energy storage packed bed
optimization method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-b362d101f25acae71f4349fb7c118aa3d6f65abc6019833c4ff6c1c327a288ff3
ParticipantIDs crossref_primary_10_1016_j_ijheatmasstransfer_2024_125367
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2024_125367
PublicationCentury 2000
PublicationDate 2024-06-01
2024-06-00
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationTitle International journal of heat and mass transfer
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Peng, She, Cong, Zhang, Li, Li, Wang, Tong, Ding (bib0005) 2018; 221
Cheng, Zhai (bib0012) 2018; 215
Marti, Geissbühler, Becattini, Haselbacher, Steinfeld (bib0019) 2018; 216
Nield, Bejan (bib0025) 2013
Yang, Bai, Wang, Wang (bib0027) 2019; 238
Guo, Ji, Gao, Fan, Wang (bib0010) 2021; 40
Dumont, Frate, Pillai, Lecompte, Lemort (bib0003) 2020; 32
Wang, Bu, Zhou, Gong, Li, Chen (bib0028) 2023; 213
Wang, You, Ding, Zhang, She (bib0014) 2022; 267
Bian, Wang, Wang, Qin, Song, Qu, Xue, Zhang (bib0015) 2022; 15
Tafone, Borri, Cabeza, Romagnoli (bib0011) 2021; 301
COMSOL Multiphysics(R)
Sciacovelli, Vecchi, Ding (bib0009) 2017; 190
Smith (bib0006) 1977; 191
Popov, Fikiin, Stankov, Alvarez, Youbi-Idrissi, Damas, Evans, Brown (bib0007) 2019; 153
Guo, Ji, Fan, Chen, Wang (bib0013) 2024; 82
Hunter, Penev, Reznicek, Eichman, Rustagi, Baldwin (bib0004) 2021; 5
Wang, Bian, You, Luo, Zhang, Peng, Ding, She (bib0008) 2021; 245
Elouali, Kousksou, El Rhafiki, Hamdaoui, Mahdaoui, Allouhi, Zeraouli (bib0024) 2019; 23
Li, Shan, Virguez, Patiño-Echeverri, Gao, Ma (bib0002) 2022; 161
Wijayanta, Ooga, Hironaka, Xue, Fukai (bib0029) 2023; 203
Dutta, Sandilya (bib0016) 2020
.
Tan, Wen (bib0018) 2022; 214
Zanganeh, Pedretti, Haselbacher, Steinfeld (bib0030) 2015; 137
Chen, An, Yang, Wang, Hu (bib0017) 2021; 41
Dixon, Cresswell (bib0026) 1979; 25
Wang, Zhang, You, Zhang, Huang, She (bib0023) 2021; 300
Calderón-Vásquez, Cortés, García, Segovia, Caroca, Sarmiento, Barraza, Cardemil (bib0021) 2021; 143
Xie, Baudin, Soto, Fan, Luo (bib0022) 2022; 247
Anton, Christian, Daniel (bib0032) 1991
Zhang, Liu, Mao, Zhou, Ji, Li (bib0020) 2023; 230
Nazir, Batool, Bolivar Osorio, Isaza-Ruiz, Xu, Vignarooban, Phelan, Inamuddin (bib0001) 2019; 129
Wijayanta (10.1016/j.ijheatmasstransfer.2024.125367_bib0029) 2023; 203
Guo (10.1016/j.ijheatmasstransfer.2024.125367_bib0013) 2024; 82
Sciacovelli (10.1016/j.ijheatmasstransfer.2024.125367_bib0009) 2017; 190
Cheng (10.1016/j.ijheatmasstransfer.2024.125367_bib0012) 2018; 215
Yang (10.1016/j.ijheatmasstransfer.2024.125367_bib0027) 2019; 238
Hunter (10.1016/j.ijheatmasstransfer.2024.125367_bib0004) 2021; 5
Wang (10.1016/j.ijheatmasstransfer.2024.125367_bib0023) 2021; 300
Wang (10.1016/j.ijheatmasstransfer.2024.125367_bib0014) 2022; 267
Nield (10.1016/j.ijheatmasstransfer.2024.125367_bib0025) 2013
Wang (10.1016/j.ijheatmasstransfer.2024.125367_bib0028) 2023; 213
Dutta (10.1016/j.ijheatmasstransfer.2024.125367_bib0016) 2020
Dixon (10.1016/j.ijheatmasstransfer.2024.125367_bib0026) 1979; 25
Xie (10.1016/j.ijheatmasstransfer.2024.125367_bib0022) 2022; 247
Li (10.1016/j.ijheatmasstransfer.2024.125367_bib0002) 2022; 161
Tan (10.1016/j.ijheatmasstransfer.2024.125367_bib0018) 2022; 214
Bian (10.1016/j.ijheatmasstransfer.2024.125367_bib0015) 2022; 15
Dumont (10.1016/j.ijheatmasstransfer.2024.125367_bib0003) 2020; 32
Chen (10.1016/j.ijheatmasstransfer.2024.125367_bib0017) 2021; 41
10.1016/j.ijheatmasstransfer.2024.125367_bib0031
Nazir (10.1016/j.ijheatmasstransfer.2024.125367_bib0001) 2019; 129
Wang (10.1016/j.ijheatmasstransfer.2024.125367_bib0008) 2021; 245
Zanganeh (10.1016/j.ijheatmasstransfer.2024.125367_bib0030) 2015; 137
Elouali (10.1016/j.ijheatmasstransfer.2024.125367_bib0024) 2019; 23
Anton (10.1016/j.ijheatmasstransfer.2024.125367_bib0032) 1991
Calderón-Vásquez (10.1016/j.ijheatmasstransfer.2024.125367_bib0021) 2021; 143
Peng (10.1016/j.ijheatmasstransfer.2024.125367_bib0005) 2018; 221
Tafone (10.1016/j.ijheatmasstransfer.2024.125367_bib0011) 2021; 301
Marti (10.1016/j.ijheatmasstransfer.2024.125367_bib0019) 2018; 216
Smith (10.1016/j.ijheatmasstransfer.2024.125367_bib0006) 1977; 191
Popov (10.1016/j.ijheatmasstransfer.2024.125367_bib0007) 2019; 153
Zhang (10.1016/j.ijheatmasstransfer.2024.125367_bib0020) 2023; 230
Guo (10.1016/j.ijheatmasstransfer.2024.125367_bib0010) 2021; 40
References_xml – volume: 216
  start-page: 694
  year: 2018
  end-page: 708
  ident: bib0019
  article-title: Constrained multi-objective optimization of thermocline packed-bed thermal-energy storage
  publication-title: Appl. Energy
  contributor:
    fullname: Steinfeld
– start-page: 255
  year: 1991
  end-page: 264
  ident: bib0032
  article-title: Experiment for modelling high temperature rock bed storage
  publication-title: Solar Energy Mater.
  contributor:
    fullname: Daniel
– volume: 190
  start-page: 84
  year: 2017
  end-page: 98
  ident: bib0009
  article-title: Liquid air energy storage (LAES) with packed bed cold thermal storage - From component to system level performance through dynamic modelling
  publication-title: Appl. Energy
  contributor:
    fullname: Ding
– volume: 82
  year: 2024
  ident: bib0013
  article-title: Experimental analysis of packed bed cold energy storage in the liquid air energy storage system
  publication-title: J. Energy Storage
  contributor:
    fullname: Wang
– volume: 230
  year: 2023
  ident: bib0020
  article-title: Optimization of capsule diameters in cascade packed-bed thermal energy storage tank with radial porosity oscillations based on genetic algorithm
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Li
– volume: 267
  year: 2022
  ident: bib0014
  article-title: Liquid air energy storage with effective recovery, storage and utilization of cold energy from liquid air evaporation
  publication-title: Energy Convers. Manage
  contributor:
    fullname: She
– year: 2013
  ident: bib0025
  article-title: Convection in Porous Media
  contributor:
    fullname: Bejan
– volume: 161
  year: 2022
  ident: bib0002
  article-title: Energy storage reduces costs and emissions even without large penetration of renewable energy: the case of China Southern Power Grid
  publication-title: Energy Policy
  contributor:
    fullname: Ma
– volume: 25
  start-page: 663
  year: 1979
  end-page: 676
  ident: bib0026
  article-title: Theoretical prediction of effective heat transfer parameters in packed beds
  publication-title: AIChE J.
  contributor:
    fullname: Cresswell
– volume: 32
  year: 2020
  ident: bib0003
  article-title: Carnot battery technology: a state-of-the-art review
  publication-title: J. Energy Storage
  contributor:
    fullname: Lemort
– volume: 245
  year: 2021
  ident: bib0008
  article-title: Dynamic analysis of a novel standalone liquid air energy storage system for industrial applications
  publication-title: Energy Convers. Manage
  contributor:
    fullname: She
– volume: 143
  year: 2021
  ident: bib0021
  article-title: Review on modeling approaches for packed-bed thermal storage systems
  publication-title: Renew. Sustain. Energy Rev.
  contributor:
    fullname: Cardemil
– volume: 191
  start-page: 289
  year: 1977
  end-page: 298
  ident: bib0006
  article-title: Storage of electrical energy using supercritical liquid air
  publication-title: Proc. lnstn. Mech. Eng.
  contributor:
    fullname: Smith
– volume: 213
  year: 2023
  ident: bib0028
  article-title: Pore-scale simulation on flow and heat transfer characteristics in packed beds with internal heat sources at low Reynolds numbers
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Chen
– volume: 41
  year: 2021
  ident: bib0017
  article-title: Construction and optimization of the cold storage process based on phase change materials used for liquid air energy storage system
  publication-title: J. Energy Storage
  contributor:
    fullname: Hu
– volume: 247
  year: 2022
  ident: bib0022
  article-title: Wall impact on efficiency of packed-bed thermocline thermal energy storage system
  publication-title: Energy
  contributor:
    fullname: Luo
– volume: 203
  year: 2023
  ident: bib0029
  article-title: Waste heat for regeneration of a packed bed of zeolite particles
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Fukai
– volume: 129
  start-page: 491
  year: 2019
  end-page: 523
  ident: bib0001
  article-title: Recent developments in phase change materials for energy storage applications: a review
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Inamuddin
– volume: 301
  year: 2021
  ident: bib0011
  article-title: Innovative cryogenic Phase Change Material (PCM) based cold thermal energy storage for Liquid Air Energy Storage (LAES) - Numerical dynamic modelling and experimental study of a packed bed unit
  publication-title: Appl. Energy
  contributor:
    fullname: Romagnoli
– volume: 214
  year: 2022
  ident: bib0018
  article-title: Numerical study on the thermodynamic performance of a packed bed cryogenic energy storage system
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Wen
– volume: 221
  start-page: 86
  year: 2018
  end-page: 99
  ident: bib0005
  article-title: Thermodynamic study on the effect of cold and heat recovery on performance of liquid air energy storage
  publication-title: Appl. Energy
  contributor:
    fullname: Ding
– volume: 137
  start-page: 812
  year: 2015
  end-page: 822
  ident: bib0030
  article-title: Design of packed bed thermal energy storage systems for high-temperature industrial process heat
  publication-title: Appl. Energy
  contributor:
    fullname: Steinfeld
– volume: 15
  start-page: 36
  year: 2022
  ident: bib0015
  article-title: The effect of dynamic cold storage packed bed on liquid air energy storage in an experiment scale
  publication-title: Energies. (Basel)
  contributor:
    fullname: Zhang
– volume: 153
  start-page: 275
  year: 2019
  end-page: 290
  ident: bib0007
  article-title: Cryogenic heat exchangers for process cooling and renewable energy storage: a review
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Brown
– volume: 40
  year: 2021
  ident: bib0010
  article-title: Dynamic characteristics analysis of the cold energy transfer in the liquid air energy storage system based on different modes of packed bed
  publication-title: J. Energy Storage
  contributor:
    fullname: Wang
– volume: 23
  start-page: 69
  year: 2019
  end-page: 78
  ident: bib0024
  article-title: Physical models for packed bed: sensible heat storage systems
  publication-title: J. Energy Storage
  contributor:
    fullname: Zeraouli
– volume: 300
  year: 2021
  ident: bib0023
  article-title: The effect of air purification on liquid air energy storage – an analysis from molecular to systematic modelling
  publication-title: Appl. Energy
  contributor:
    fullname: She
– volume: 238
  start-page: 135
  year: 2019
  end-page: 146
  ident: bib0027
  article-title: Study on standby process of an air-based solid packed bed for flexible high-temperature heat storage: experimental results and modelling
  publication-title: Appl. Energy
  contributor:
    fullname: Wang
– year: 2020
  ident: bib0016
  article-title: Experimental investigations on cold recovery efficiency of packed-bed in cryogenic energy storage system
  publication-title: IOP Conference Series: Materials Science and Engineering
  contributor:
    fullname: Sandilya
– volume: 215
  start-page: 566
  year: 2018
  end-page: 576
  ident: bib0012
  article-title: Thermal performance analysis and optimization of a cascaded packed bed cool thermal energy storage unit using multiple phase change materials
  publication-title: Appl. Energy
  contributor:
    fullname: Zhai
– volume: 5
  start-page: 2077
  year: 2021
  end-page: 2101
  ident: bib0004
  article-title: Techno-economic analysis of long-duration energy storage and flexible power generation technologies to support high-variable renewable energy grids
  publication-title: Joule
  contributor:
    fullname: Baldwin
– ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0031
– volume: 153
  start-page: 275
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0007
  article-title: Cryogenic heat exchangers for process cooling and renewable energy storage: a review
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.02.106
  contributor:
    fullname: Popov
– volume: 41
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0017
  article-title: Construction and optimization of the cold storage process based on phase change materials used for liquid air energy storage system
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.102873
  contributor:
    fullname: Chen
– volume: 191
  start-page: 289
  year: 1977
  ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0006
  article-title: Storage of electrical energy using supercritical liquid air
  publication-title: Proc. lnstn. Mech. Eng.
  doi: 10.1243/PIME_PROC_1977_191_035_02
  contributor:
    fullname: Smith
– volume: 221
  start-page: 86
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0005
  article-title: Thermodynamic study on the effect of cold and heat recovery on performance of liquid air energy storage
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.03.151
  contributor:
    fullname: Peng
– volume: 25
  start-page: 663
  issue: 4
  year: 1979
  ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0026
  article-title: Theoretical prediction of effective heat transfer parameters in packed beds
  publication-title: AIChE J.
  doi: 10.1002/aic.690250413
  contributor:
    fullname: Dixon
– volume: 215
  start-page: 566
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0012
  article-title: Thermal performance analysis and optimization of a cascaded packed bed cool thermal energy storage unit using multiple phase change materials
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.02.053
  contributor:
    fullname: Cheng
– year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0025
  contributor:
    fullname: Nield
– volume: 203
  year: 2023
  ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0029
  article-title: Waste heat for regeneration of a packed bed of zeolite particles
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2022.123798
  contributor:
    fullname: Wijayanta
– volume: 247
  year: 2022
  ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0022
  article-title: Wall impact on efficiency of packed-bed thermocline thermal energy storage system
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123503
  contributor:
    fullname: Xie
– volume: 300
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0023
  article-title: The effect of air purification on liquid air energy storage – an analysis from molecular to systematic modelling
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117349
  contributor:
    fullname: Wang
– volume: 190
  start-page: 84
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0009
  article-title: Liquid air energy storage (LAES) with packed bed cold thermal storage - From component to system level performance through dynamic modelling
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.12.118
  contributor:
    fullname: Sciacovelli
– volume: 129
  start-page: 491
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0001
  article-title: Recent developments in phase change materials for energy storage applications: a review
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.09.126
  contributor:
    fullname: Nazir
– volume: 82
  year: 2024
  ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0013
  article-title: Experimental analysis of packed bed cold energy storage in the liquid air energy storage system
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.110282
  contributor:
    fullname: Guo
– volume: 230
  year: 2023
  ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0020
  article-title: Optimization of capsule diameters in cascade packed-bed thermal energy storage tank with radial porosity oscillations based on genetic algorithm
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2023.120781
  contributor:
    fullname: Zhang
– year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0016
  article-title: Experimental investigations on cold recovery efficiency of packed-bed in cryogenic energy storage system
  contributor:
    fullname: Dutta
– volume: 214
  year: 2022
  ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0018
  article-title: Numerical study on the thermodynamic performance of a packed bed cryogenic energy storage system
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.118903
  contributor:
    fullname: Tan
– start-page: 255
  issue: 1–4
  year: 1991
  ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0032
  article-title: Experiment for modelling high temperature rock bed storage
  publication-title: Solar Energy Mater.
  contributor:
    fullname: Anton
– volume: 143
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0021
  article-title: Review on modeling approaches for packed-bed thermal storage systems
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.110902
  contributor:
    fullname: Calderón-Vásquez
– volume: 161
  year: 2022
  ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0002
  article-title: Energy storage reduces costs and emissions even without large penetration of renewable energy: the case of China Southern Power Grid
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2021.112711
  contributor:
    fullname: Li
– volume: 216
  start-page: 694
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0019
  article-title: Constrained multi-objective optimization of thermocline packed-bed thermal-energy storage
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.12.072
  contributor:
    fullname: Marti
– volume: 32
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0003
  article-title: Carnot battery technology: a state-of-the-art review
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2020.101756
  contributor:
    fullname: Dumont
– volume: 267
  year: 2022
  ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0014
  article-title: Liquid air energy storage with effective recovery, storage and utilization of cold energy from liquid air evaporation
  publication-title: Energy Convers. Manage
  doi: 10.1016/j.enconman.2022.115708
  contributor:
    fullname: Wang
– volume: 137
  start-page: 812
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0030
  article-title: Design of packed bed thermal energy storage systems for high-temperature industrial process heat
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.07.110
  contributor:
    fullname: Zanganeh
– volume: 40
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0010
  article-title: Dynamic characteristics analysis of the cold energy transfer in the liquid air energy storage system based on different modes of packed bed
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.102712
  contributor:
    fullname: Guo
– volume: 301
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0011
  article-title: Innovative cryogenic Phase Change Material (PCM) based cold thermal energy storage for Liquid Air Energy Storage (LAES) - Numerical dynamic modelling and experimental study of a packed bed unit
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117417
  contributor:
    fullname: Tafone
– volume: 23
  start-page: 69
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0024
  article-title: Physical models for packed bed: sensible heat storage systems
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2019.03.004
  contributor:
    fullname: Elouali
– volume: 213
  year: 2023
  ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0028
  article-title: Pore-scale simulation on flow and heat transfer characteristics in packed beds with internal heat sources at low Reynolds numbers
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2023.124325
  contributor:
    fullname: Wang
– volume: 245
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0008
  article-title: Dynamic analysis of a novel standalone liquid air energy storage system for industrial applications
  publication-title: Energy Convers. Manage
  doi: 10.1016/j.enconman.2021.114537
  contributor:
    fullname: Wang
– volume: 238
  start-page: 135
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0027
  article-title: Study on standby process of an air-based solid packed bed for flexible high-temperature heat storage: experimental results and modelling
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.073
  contributor:
    fullname: Yang
– volume: 15
  start-page: 36
  issue: 1
  year: 2022
  ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0015
  article-title: The effect of dynamic cold storage packed bed on liquid air energy storage in an experiment scale
  publication-title: Energies. (Basel)
  doi: 10.3390/en15010036
  contributor:
    fullname: Bian
– volume: 5
  start-page: 2077
  issue: 8
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0004
  article-title: Techno-economic analysis of long-duration energy storage and flexible power generation technologies to support high-variable renewable energy grids
  publication-title: Joule
  doi: 10.1016/j.joule.2021.06.018
  contributor:
    fullname: Hunter
SSID ssj0017046
Score 2.4987206
Snippet •A Reference-Standard-Volume optimization method is proposed to improve CESPB.•The best aspect ratio of CESPB is 2–4 considering efficiencies and pressure...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 125367
SubjectTerms Cryogenic energy storage packed bed
optimization method
Reference-Standard-Volume
Title Enhancement of efficiencies of cryogenic energy storage packed bed using a novel Referred-Standard-Volume optimization method
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2024.125367
Volume 224
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQEYgF8RRveWBgcSGJ4zRjVRUVKjrw7BbZjg0pkFRtQWKA386dk_IQDAwMUeIosqK703d31nd3hOwbrjwufcuQA8W4ER6TsYyZsJ7RVqoo1JgonvVE54qf9sP-DGlNa2GQVllhf4npDq2rN4eVNA-HWYY1vmhcHjbpgjilgT1BObg_sOn62wfNw4uOymIdRGP8ep4cfHK8sgEi3iOEqRMXJhrsEOrzOnj9wE2e_8VVfXE_x0tksYobabP8tWUyY_IVMuf4m3q8Sl7b-R3qD8_6aGGpcZ0hDE7eHeNaj14KMJVMU-OK_SiSIgFKKKTM9yalCi6kwN9SSfPi2TxQ14F2ZFJ2UR02sGsHZLQAkHmsqjdpOYB6jVwdty9bHVZNVmA64P6EKXBbKcjA-qHU0kSe5QGPrYo05BtSBqmwIpRKCxRsEGhurdCeDvxI-o2GtcE6qeVFbjYIVdI0IKYMTRwrbnG-VSrSEGujlICno00ST4WYDMsGGsmUWTZIfiogQQUkpQI2SWsq9eSbUSSA93_eZetfdtkmC7gqWWI7pDYZPZldiEcmas8Z3B6ZbZ50Oz28d89vuu8XH-hV
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED5BEY8F8RTl6YGBxUASx2lGVLUqUFhoUbfIdmwoj6RqCxID_HZ8TspDMDAwRMpLUXR3-u6z9d0dwL5m0mPCNxQ1UJRp7lERi5hy42llhIxChQvFi0ve6rKzXtibgvqkFgZllSX2F5ju0Lq8c1Ra82jQ72ONLwaXh026LE-psWmYYciPbVAfvn3oPLzouKjWQTjG1-fg4FPk1b9DyHu0PHXseKLGFqE-O7RpP3Cj53_JVV_yT3MJFkviSE6Kf1uGKZ2twKwTcKrRKrw2slt0IG72kdwQ7VpDaBy9O8JrNXzJbaz0FdGu2o-gKtJiCbFr5nudEmkP1MDfEEGy_Fk_ENeCdqhTelXuNtBrh2QktyjzWJZvkmIC9Rp0m41OvUXL0QpUBcwfU2nzVmptYPxQKKEjz7CAxUZGyi44hAhSbngopOJo2SBQzBiuPBX4kfBrNWOCdahkeaY3gEiha5ZUhjqOJTM44CrlaYjFUZLbs-MqxBMjJoOig0YykZbdJT8dkKADksIBVahPrJ58i4rEAv6fv7L5L1_Zg_lW56KdtE8vz7dgAZ8UkrFtqIyHT3rHkpOx3HXB9w5J8-hL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+efficiencies+of+cryogenic+energy+storage+packed+bed+using+a+novel+Referred-Standard-Volume+optimization+method&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=She%2C+Xiaohui&rft.au=Wang%2C+Xingyu&rft.au=Han%2C+Peng&rft.au=Li%2C+Yongliang&rft.date=2024-06-01&rft.pub=Elsevier+Ltd&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=224&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2024.125367&rft.externalDocID=S0017931024001984
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon