Enhancement of efficiencies of cryogenic energy storage packed bed using a novel Referred-Standard-Volume optimization method
•A Reference-Standard-Volume optimization method is proposed to improve CESPB.•The best aspect ratio of CESPB is 2–4 considering efficiencies and pressure drop.•The volume multiple is given at 1.1 with the highest exergy efficiency of 63.72 %.•The thermal and exergy efficiencies are increased by 2.0...
Saved in:
Published in | International journal of heat and mass transfer Vol. 224; p. 125367 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A Reference-Standard-Volume optimization method is proposed to improve CESPB.•The best aspect ratio of CESPB is 2–4 considering efficiencies and pressure drop.•The volume multiple is given at 1.1 with the highest exergy efficiency of 63.72 %.•The thermal and exergy efficiencies are increased by 2.03 % and 3.65 %, respectively.
Cryogenic liquids (e.g., liquid air, liquid hydrogen, liquid carbon dioxide) have gained popularity in electricity storage due to their high energy density, no geographical constraints, and environmental friendliness. The cryogenic energy storage packed bed (CESPB) is widely employed as a cold recovery device to enhance the round-trip efficiency of cryogenic energy storage systems. Nonetheless, the cycle efficiencies of CESPB remain relatively low, with limited research investigating efficient methods for determining the design parameters. To address this, a novel optimization method named as the Reference-Standard-Volume (RSV) approach is introduced to enhance the thermodynamic performance of CESPB. In this paper, the complete optimization process of CESPB is illustrated, presenting the optimization outcomes in the view of heat and mass transfer. The findings reveal that a larger aspect ratio leads to the higher efficiencies but increased pressure drops. An optimal aspect ratio of 3 and a volume multiple of 1.1 is identified, achieving the highest exergy efficiency of 63.72 %. Meanwhile, increasing charging/discharging time enhances heat transfer in CESPB, however, it leads to an increase in external cold dissipation, which gives an optimal charging/discharging time of 3/3 h. By implementing the RSV optimization method, the percentage increase of discharging efficiency, thermal efficiency, and exergy efficiency of CESPB is 2.08 %, 2.03 %, and 3.65 %, respectively. These research outcomes offer valuable reference and guidance for future CESPB design and research. |
---|---|
AbstractList | •A Reference-Standard-Volume optimization method is proposed to improve CESPB.•The best aspect ratio of CESPB is 2–4 considering efficiencies and pressure drop.•The volume multiple is given at 1.1 with the highest exergy efficiency of 63.72 %.•The thermal and exergy efficiencies are increased by 2.03 % and 3.65 %, respectively.
Cryogenic liquids (e.g., liquid air, liquid hydrogen, liquid carbon dioxide) have gained popularity in electricity storage due to their high energy density, no geographical constraints, and environmental friendliness. The cryogenic energy storage packed bed (CESPB) is widely employed as a cold recovery device to enhance the round-trip efficiency of cryogenic energy storage systems. Nonetheless, the cycle efficiencies of CESPB remain relatively low, with limited research investigating efficient methods for determining the design parameters. To address this, a novel optimization method named as the Reference-Standard-Volume (RSV) approach is introduced to enhance the thermodynamic performance of CESPB. In this paper, the complete optimization process of CESPB is illustrated, presenting the optimization outcomes in the view of heat and mass transfer. The findings reveal that a larger aspect ratio leads to the higher efficiencies but increased pressure drops. An optimal aspect ratio of 3 and a volume multiple of 1.1 is identified, achieving the highest exergy efficiency of 63.72 %. Meanwhile, increasing charging/discharging time enhances heat transfer in CESPB, however, it leads to an increase in external cold dissipation, which gives an optimal charging/discharging time of 3/3 h. By implementing the RSV optimization method, the percentage increase of discharging efficiency, thermal efficiency, and exergy efficiency of CESPB is 2.08 %, 2.03 %, and 3.65 %, respectively. These research outcomes offer valuable reference and guidance for future CESPB design and research. |
ArticleNumber | 125367 |
Author | Wang, Xingyu Han, Peng Wang, Chen Li, Yongliang She, Xiaohui |
Author_xml | – sequence: 1 givenname: Xiaohui surname: She fullname: She, Xiaohui organization: Cryogenic Energy Conversion, Storage and Transportation Centre, School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang, 050043, China – sequence: 2 givenname: Xingyu surname: Wang fullname: Wang, Xingyu organization: Cryogenic Energy Conversion, Storage and Transportation Centre, School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang, 050043, China – sequence: 3 givenname: Peng surname: Han fullname: Han, Peng organization: Cryogenic Energy Conversion, Storage and Transportation Centre, School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang, 050043, China – sequence: 4 givenname: Yongliang surname: Li fullname: Li, Yongliang organization: Birmingham Centre for Energy Storage, University of Birmingham, Birmingham, B15 2TT, UK – sequence: 5 givenname: Chen surname: Wang fullname: Wang, Chen email: wangchen4178@163.com organization: Cryogenic Energy Conversion, Storage and Transportation Centre, School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang, 050043, China |
BookMark | eNqNkMtqQjEQhkOxULV9hyy7OTaX47nsWsTeEAq9bQ9jMtFYTyJJFCz03Xus3XXTxc8wDHz88w1Iz3mHhFxyNuKMF1erkV0tEVILMaYALhoMI8FEPuJiLIvyhPR5VdaZ4FXdI33GeJnVkrMzMohxdVhZXvTJ19QtwSls0SXqDUVjrLLousTDrsLeL9BZRdFhWOxpTD7AAukG1AdqOu-yjdYtKFDnd7imz9g1CaizlwROQ9DZu19vW6R-k2xrPyFZ72iLaen1OTk1sI548TuH5O12-jq5z2ZPdw-Tm1mmZC5SNpeF0N3XRoxBAZbc5DKvzbxUnFcAUhemGMNcFYzXlZQqN6ZQXElRgqgqY-SQXB-5KvgYA5pmE2wLYd9w1hx0Nqvmr87moLM56uwQj0cEdj13trvGH0-obUCVGu3t_2HfoDWQVQ |
CitedBy_id | crossref_primary_10_1016_j_apenergy_2024_123739 |
Cites_doi | 10.1016/j.applthermaleng.2019.02.106 10.1016/j.est.2021.102873 10.1243/PIME_PROC_1977_191_035_02 10.1016/j.apenergy.2018.03.151 10.1002/aic.690250413 10.1016/j.apenergy.2018.02.053 10.1016/j.ijheatmasstransfer.2022.123798 10.1016/j.energy.2022.123503 10.1016/j.apenergy.2021.117349 10.1016/j.apenergy.2016.12.118 10.1016/j.ijheatmasstransfer.2018.09.126 10.1016/j.est.2023.110282 10.1016/j.applthermaleng.2023.120781 10.1016/j.applthermaleng.2022.118903 10.1016/j.rser.2021.110902 10.1016/j.enpol.2021.112711 10.1016/j.apenergy.2017.12.072 10.1016/j.est.2020.101756 10.1016/j.enconman.2022.115708 10.1016/j.apenergy.2014.07.110 10.1016/j.est.2021.102712 10.1016/j.apenergy.2021.117417 10.1016/j.est.2019.03.004 10.1016/j.ijheatmasstransfer.2023.124325 10.1016/j.enconman.2021.114537 10.1016/j.apenergy.2019.01.073 10.3390/en15010036 10.1016/j.joule.2021.06.018 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijheatmasstransfer.2024.125367 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1879-2189 |
ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2024_125367 S0017931024001984 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABMAC ABMYL ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA K-O KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29J 6TJ AAQXK AAXKI AAYXX ABDMP ABTAH ABXDB ACKIV ACNNM ADMUD AFJKZ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 G8K HVGLF HZ~ LY6 LY7 M41 R2- RIG SAC SET T9H VOH WUQ ZY4 |
ID | FETCH-LOGICAL-c342t-b362d101f25acae71f4349fb7c118aa3d6f65abc6019833c4ff6c1c327a288ff3 |
IEDL.DBID | .~1 |
ISSN | 0017-9310 |
IngestDate | Thu Sep 26 19:31:20 EDT 2024 Sat Mar 23 16:41:14 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Reference-Standard-Volume Cryogenic energy storage packed bed optimization method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-b362d101f25acae71f4349fb7c118aa3d6f65abc6019833c4ff6c1c327a288ff3 |
ParticipantIDs | crossref_primary_10_1016_j_ijheatmasstransfer_2024_125367 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2024_125367 |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 2024-06-00 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | International journal of heat and mass transfer |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Peng, She, Cong, Zhang, Li, Li, Wang, Tong, Ding (bib0005) 2018; 221 Cheng, Zhai (bib0012) 2018; 215 Marti, Geissbühler, Becattini, Haselbacher, Steinfeld (bib0019) 2018; 216 Nield, Bejan (bib0025) 2013 Yang, Bai, Wang, Wang (bib0027) 2019; 238 Guo, Ji, Gao, Fan, Wang (bib0010) 2021; 40 Dumont, Frate, Pillai, Lecompte, Lemort (bib0003) 2020; 32 Wang, Bu, Zhou, Gong, Li, Chen (bib0028) 2023; 213 Wang, You, Ding, Zhang, She (bib0014) 2022; 267 Bian, Wang, Wang, Qin, Song, Qu, Xue, Zhang (bib0015) 2022; 15 Tafone, Borri, Cabeza, Romagnoli (bib0011) 2021; 301 COMSOL Multiphysics(R) Sciacovelli, Vecchi, Ding (bib0009) 2017; 190 Smith (bib0006) 1977; 191 Popov, Fikiin, Stankov, Alvarez, Youbi-Idrissi, Damas, Evans, Brown (bib0007) 2019; 153 Guo, Ji, Fan, Chen, Wang (bib0013) 2024; 82 Hunter, Penev, Reznicek, Eichman, Rustagi, Baldwin (bib0004) 2021; 5 Wang, Bian, You, Luo, Zhang, Peng, Ding, She (bib0008) 2021; 245 Elouali, Kousksou, El Rhafiki, Hamdaoui, Mahdaoui, Allouhi, Zeraouli (bib0024) 2019; 23 Li, Shan, Virguez, Patiño-Echeverri, Gao, Ma (bib0002) 2022; 161 Wijayanta, Ooga, Hironaka, Xue, Fukai (bib0029) 2023; 203 Dutta, Sandilya (bib0016) 2020 . Tan, Wen (bib0018) 2022; 214 Zanganeh, Pedretti, Haselbacher, Steinfeld (bib0030) 2015; 137 Chen, An, Yang, Wang, Hu (bib0017) 2021; 41 Dixon, Cresswell (bib0026) 1979; 25 Wang, Zhang, You, Zhang, Huang, She (bib0023) 2021; 300 Calderón-Vásquez, Cortés, García, Segovia, Caroca, Sarmiento, Barraza, Cardemil (bib0021) 2021; 143 Xie, Baudin, Soto, Fan, Luo (bib0022) 2022; 247 Anton, Christian, Daniel (bib0032) 1991 Zhang, Liu, Mao, Zhou, Ji, Li (bib0020) 2023; 230 Nazir, Batool, Bolivar Osorio, Isaza-Ruiz, Xu, Vignarooban, Phelan, Inamuddin (bib0001) 2019; 129 Wijayanta (10.1016/j.ijheatmasstransfer.2024.125367_bib0029) 2023; 203 Guo (10.1016/j.ijheatmasstransfer.2024.125367_bib0013) 2024; 82 Sciacovelli (10.1016/j.ijheatmasstransfer.2024.125367_bib0009) 2017; 190 Cheng (10.1016/j.ijheatmasstransfer.2024.125367_bib0012) 2018; 215 Yang (10.1016/j.ijheatmasstransfer.2024.125367_bib0027) 2019; 238 Hunter (10.1016/j.ijheatmasstransfer.2024.125367_bib0004) 2021; 5 Wang (10.1016/j.ijheatmasstransfer.2024.125367_bib0023) 2021; 300 Wang (10.1016/j.ijheatmasstransfer.2024.125367_bib0014) 2022; 267 Nield (10.1016/j.ijheatmasstransfer.2024.125367_bib0025) 2013 Wang (10.1016/j.ijheatmasstransfer.2024.125367_bib0028) 2023; 213 Dutta (10.1016/j.ijheatmasstransfer.2024.125367_bib0016) 2020 Dixon (10.1016/j.ijheatmasstransfer.2024.125367_bib0026) 1979; 25 Xie (10.1016/j.ijheatmasstransfer.2024.125367_bib0022) 2022; 247 Li (10.1016/j.ijheatmasstransfer.2024.125367_bib0002) 2022; 161 Tan (10.1016/j.ijheatmasstransfer.2024.125367_bib0018) 2022; 214 Bian (10.1016/j.ijheatmasstransfer.2024.125367_bib0015) 2022; 15 Dumont (10.1016/j.ijheatmasstransfer.2024.125367_bib0003) 2020; 32 Chen (10.1016/j.ijheatmasstransfer.2024.125367_bib0017) 2021; 41 10.1016/j.ijheatmasstransfer.2024.125367_bib0031 Nazir (10.1016/j.ijheatmasstransfer.2024.125367_bib0001) 2019; 129 Wang (10.1016/j.ijheatmasstransfer.2024.125367_bib0008) 2021; 245 Zanganeh (10.1016/j.ijheatmasstransfer.2024.125367_bib0030) 2015; 137 Elouali (10.1016/j.ijheatmasstransfer.2024.125367_bib0024) 2019; 23 Anton (10.1016/j.ijheatmasstransfer.2024.125367_bib0032) 1991 Calderón-Vásquez (10.1016/j.ijheatmasstransfer.2024.125367_bib0021) 2021; 143 Peng (10.1016/j.ijheatmasstransfer.2024.125367_bib0005) 2018; 221 Tafone (10.1016/j.ijheatmasstransfer.2024.125367_bib0011) 2021; 301 Marti (10.1016/j.ijheatmasstransfer.2024.125367_bib0019) 2018; 216 Smith (10.1016/j.ijheatmasstransfer.2024.125367_bib0006) 1977; 191 Popov (10.1016/j.ijheatmasstransfer.2024.125367_bib0007) 2019; 153 Zhang (10.1016/j.ijheatmasstransfer.2024.125367_bib0020) 2023; 230 Guo (10.1016/j.ijheatmasstransfer.2024.125367_bib0010) 2021; 40 |
References_xml | – volume: 216 start-page: 694 year: 2018 end-page: 708 ident: bib0019 article-title: Constrained multi-objective optimization of thermocline packed-bed thermal-energy storage publication-title: Appl. Energy contributor: fullname: Steinfeld – start-page: 255 year: 1991 end-page: 264 ident: bib0032 article-title: Experiment for modelling high temperature rock bed storage publication-title: Solar Energy Mater. contributor: fullname: Daniel – volume: 190 start-page: 84 year: 2017 end-page: 98 ident: bib0009 article-title: Liquid air energy storage (LAES) with packed bed cold thermal storage - From component to system level performance through dynamic modelling publication-title: Appl. Energy contributor: fullname: Ding – volume: 82 year: 2024 ident: bib0013 article-title: Experimental analysis of packed bed cold energy storage in the liquid air energy storage system publication-title: J. Energy Storage contributor: fullname: Wang – volume: 230 year: 2023 ident: bib0020 article-title: Optimization of capsule diameters in cascade packed-bed thermal energy storage tank with radial porosity oscillations based on genetic algorithm publication-title: Appl. Therm. Eng. contributor: fullname: Li – volume: 267 year: 2022 ident: bib0014 article-title: Liquid air energy storage with effective recovery, storage and utilization of cold energy from liquid air evaporation publication-title: Energy Convers. Manage contributor: fullname: She – year: 2013 ident: bib0025 article-title: Convection in Porous Media contributor: fullname: Bejan – volume: 161 year: 2022 ident: bib0002 article-title: Energy storage reduces costs and emissions even without large penetration of renewable energy: the case of China Southern Power Grid publication-title: Energy Policy contributor: fullname: Ma – volume: 25 start-page: 663 year: 1979 end-page: 676 ident: bib0026 article-title: Theoretical prediction of effective heat transfer parameters in packed beds publication-title: AIChE J. contributor: fullname: Cresswell – volume: 32 year: 2020 ident: bib0003 article-title: Carnot battery technology: a state-of-the-art review publication-title: J. Energy Storage contributor: fullname: Lemort – volume: 245 year: 2021 ident: bib0008 article-title: Dynamic analysis of a novel standalone liquid air energy storage system for industrial applications publication-title: Energy Convers. Manage contributor: fullname: She – volume: 143 year: 2021 ident: bib0021 article-title: Review on modeling approaches for packed-bed thermal storage systems publication-title: Renew. Sustain. Energy Rev. contributor: fullname: Cardemil – volume: 191 start-page: 289 year: 1977 end-page: 298 ident: bib0006 article-title: Storage of electrical energy using supercritical liquid air publication-title: Proc. lnstn. Mech. Eng. contributor: fullname: Smith – volume: 213 year: 2023 ident: bib0028 article-title: Pore-scale simulation on flow and heat transfer characteristics in packed beds with internal heat sources at low Reynolds numbers publication-title: Int. J. Heat Mass Transf. contributor: fullname: Chen – volume: 41 year: 2021 ident: bib0017 article-title: Construction and optimization of the cold storage process based on phase change materials used for liquid air energy storage system publication-title: J. Energy Storage contributor: fullname: Hu – volume: 247 year: 2022 ident: bib0022 article-title: Wall impact on efficiency of packed-bed thermocline thermal energy storage system publication-title: Energy contributor: fullname: Luo – volume: 203 year: 2023 ident: bib0029 article-title: Waste heat for regeneration of a packed bed of zeolite particles publication-title: Int. J. Heat Mass Transf. contributor: fullname: Fukai – volume: 129 start-page: 491 year: 2019 end-page: 523 ident: bib0001 article-title: Recent developments in phase change materials for energy storage applications: a review publication-title: Int. J. Heat Mass Transf. contributor: fullname: Inamuddin – volume: 301 year: 2021 ident: bib0011 article-title: Innovative cryogenic Phase Change Material (PCM) based cold thermal energy storage for Liquid Air Energy Storage (LAES) - Numerical dynamic modelling and experimental study of a packed bed unit publication-title: Appl. Energy contributor: fullname: Romagnoli – volume: 214 year: 2022 ident: bib0018 article-title: Numerical study on the thermodynamic performance of a packed bed cryogenic energy storage system publication-title: Appl. Therm. Eng. contributor: fullname: Wen – volume: 221 start-page: 86 year: 2018 end-page: 99 ident: bib0005 article-title: Thermodynamic study on the effect of cold and heat recovery on performance of liquid air energy storage publication-title: Appl. Energy contributor: fullname: Ding – volume: 137 start-page: 812 year: 2015 end-page: 822 ident: bib0030 article-title: Design of packed bed thermal energy storage systems for high-temperature industrial process heat publication-title: Appl. Energy contributor: fullname: Steinfeld – volume: 15 start-page: 36 year: 2022 ident: bib0015 article-title: The effect of dynamic cold storage packed bed on liquid air energy storage in an experiment scale publication-title: Energies. (Basel) contributor: fullname: Zhang – volume: 153 start-page: 275 year: 2019 end-page: 290 ident: bib0007 article-title: Cryogenic heat exchangers for process cooling and renewable energy storage: a review publication-title: Appl. Therm. Eng. contributor: fullname: Brown – volume: 40 year: 2021 ident: bib0010 article-title: Dynamic characteristics analysis of the cold energy transfer in the liquid air energy storage system based on different modes of packed bed publication-title: J. Energy Storage contributor: fullname: Wang – volume: 23 start-page: 69 year: 2019 end-page: 78 ident: bib0024 article-title: Physical models for packed bed: sensible heat storage systems publication-title: J. Energy Storage contributor: fullname: Zeraouli – volume: 300 year: 2021 ident: bib0023 article-title: The effect of air purification on liquid air energy storage – an analysis from molecular to systematic modelling publication-title: Appl. Energy contributor: fullname: She – volume: 238 start-page: 135 year: 2019 end-page: 146 ident: bib0027 article-title: Study on standby process of an air-based solid packed bed for flexible high-temperature heat storage: experimental results and modelling publication-title: Appl. Energy contributor: fullname: Wang – year: 2020 ident: bib0016 article-title: Experimental investigations on cold recovery efficiency of packed-bed in cryogenic energy storage system publication-title: IOP Conference Series: Materials Science and Engineering contributor: fullname: Sandilya – volume: 215 start-page: 566 year: 2018 end-page: 576 ident: bib0012 article-title: Thermal performance analysis and optimization of a cascaded packed bed cool thermal energy storage unit using multiple phase change materials publication-title: Appl. Energy contributor: fullname: Zhai – volume: 5 start-page: 2077 year: 2021 end-page: 2101 ident: bib0004 article-title: Techno-economic analysis of long-duration energy storage and flexible power generation technologies to support high-variable renewable energy grids publication-title: Joule contributor: fullname: Baldwin – ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0031 – volume: 153 start-page: 275 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0007 article-title: Cryogenic heat exchangers for process cooling and renewable energy storage: a review publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.02.106 contributor: fullname: Popov – volume: 41 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0017 article-title: Construction and optimization of the cold storage process based on phase change materials used for liquid air energy storage system publication-title: J. Energy Storage doi: 10.1016/j.est.2021.102873 contributor: fullname: Chen – volume: 191 start-page: 289 year: 1977 ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0006 article-title: Storage of electrical energy using supercritical liquid air publication-title: Proc. lnstn. Mech. Eng. doi: 10.1243/PIME_PROC_1977_191_035_02 contributor: fullname: Smith – volume: 221 start-page: 86 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0005 article-title: Thermodynamic study on the effect of cold and heat recovery on performance of liquid air energy storage publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.03.151 contributor: fullname: Peng – volume: 25 start-page: 663 issue: 4 year: 1979 ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0026 article-title: Theoretical prediction of effective heat transfer parameters in packed beds publication-title: AIChE J. doi: 10.1002/aic.690250413 contributor: fullname: Dixon – volume: 215 start-page: 566 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0012 article-title: Thermal performance analysis and optimization of a cascaded packed bed cool thermal energy storage unit using multiple phase change materials publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.02.053 contributor: fullname: Cheng – year: 2013 ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0025 contributor: fullname: Nield – volume: 203 year: 2023 ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0029 article-title: Waste heat for regeneration of a packed bed of zeolite particles publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2022.123798 contributor: fullname: Wijayanta – volume: 247 year: 2022 ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0022 article-title: Wall impact on efficiency of packed-bed thermocline thermal energy storage system publication-title: Energy doi: 10.1016/j.energy.2022.123503 contributor: fullname: Xie – volume: 300 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0023 article-title: The effect of air purification on liquid air energy storage – an analysis from molecular to systematic modelling publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117349 contributor: fullname: Wang – volume: 190 start-page: 84 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0009 article-title: Liquid air energy storage (LAES) with packed bed cold thermal storage - From component to system level performance through dynamic modelling publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.12.118 contributor: fullname: Sciacovelli – volume: 129 start-page: 491 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0001 article-title: Recent developments in phase change materials for energy storage applications: a review publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.09.126 contributor: fullname: Nazir – volume: 82 year: 2024 ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0013 article-title: Experimental analysis of packed bed cold energy storage in the liquid air energy storage system publication-title: J. Energy Storage doi: 10.1016/j.est.2023.110282 contributor: fullname: Guo – volume: 230 year: 2023 ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0020 article-title: Optimization of capsule diameters in cascade packed-bed thermal energy storage tank with radial porosity oscillations based on genetic algorithm publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2023.120781 contributor: fullname: Zhang – year: 2020 ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0016 article-title: Experimental investigations on cold recovery efficiency of packed-bed in cryogenic energy storage system contributor: fullname: Dutta – volume: 214 year: 2022 ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0018 article-title: Numerical study on the thermodynamic performance of a packed bed cryogenic energy storage system publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.118903 contributor: fullname: Tan – start-page: 255 issue: 1–4 year: 1991 ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0032 article-title: Experiment for modelling high temperature rock bed storage publication-title: Solar Energy Mater. contributor: fullname: Anton – volume: 143 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0021 article-title: Review on modeling approaches for packed-bed thermal storage systems publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.110902 contributor: fullname: Calderón-Vásquez – volume: 161 year: 2022 ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0002 article-title: Energy storage reduces costs and emissions even without large penetration of renewable energy: the case of China Southern Power Grid publication-title: Energy Policy doi: 10.1016/j.enpol.2021.112711 contributor: fullname: Li – volume: 216 start-page: 694 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0019 article-title: Constrained multi-objective optimization of thermocline packed-bed thermal-energy storage publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.12.072 contributor: fullname: Marti – volume: 32 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0003 article-title: Carnot battery technology: a state-of-the-art review publication-title: J. Energy Storage doi: 10.1016/j.est.2020.101756 contributor: fullname: Dumont – volume: 267 year: 2022 ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0014 article-title: Liquid air energy storage with effective recovery, storage and utilization of cold energy from liquid air evaporation publication-title: Energy Convers. Manage doi: 10.1016/j.enconman.2022.115708 contributor: fullname: Wang – volume: 137 start-page: 812 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0030 article-title: Design of packed bed thermal energy storage systems for high-temperature industrial process heat publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.07.110 contributor: fullname: Zanganeh – volume: 40 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0010 article-title: Dynamic characteristics analysis of the cold energy transfer in the liquid air energy storage system based on different modes of packed bed publication-title: J. Energy Storage doi: 10.1016/j.est.2021.102712 contributor: fullname: Guo – volume: 301 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0011 article-title: Innovative cryogenic Phase Change Material (PCM) based cold thermal energy storage for Liquid Air Energy Storage (LAES) - Numerical dynamic modelling and experimental study of a packed bed unit publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117417 contributor: fullname: Tafone – volume: 23 start-page: 69 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0024 article-title: Physical models for packed bed: sensible heat storage systems publication-title: J. Energy Storage doi: 10.1016/j.est.2019.03.004 contributor: fullname: Elouali – volume: 213 year: 2023 ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0028 article-title: Pore-scale simulation on flow and heat transfer characteristics in packed beds with internal heat sources at low Reynolds numbers publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2023.124325 contributor: fullname: Wang – volume: 245 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0008 article-title: Dynamic analysis of a novel standalone liquid air energy storage system for industrial applications publication-title: Energy Convers. Manage doi: 10.1016/j.enconman.2021.114537 contributor: fullname: Wang – volume: 238 start-page: 135 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0027 article-title: Study on standby process of an air-based solid packed bed for flexible high-temperature heat storage: experimental results and modelling publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.073 contributor: fullname: Yang – volume: 15 start-page: 36 issue: 1 year: 2022 ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0015 article-title: The effect of dynamic cold storage packed bed on liquid air energy storage in an experiment scale publication-title: Energies. (Basel) doi: 10.3390/en15010036 contributor: fullname: Bian – volume: 5 start-page: 2077 issue: 8 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2024.125367_bib0004 article-title: Techno-economic analysis of long-duration energy storage and flexible power generation technologies to support high-variable renewable energy grids publication-title: Joule doi: 10.1016/j.joule.2021.06.018 contributor: fullname: Hunter |
SSID | ssj0017046 |
Score | 2.4987206 |
Snippet | •A Reference-Standard-Volume optimization method is proposed to improve CESPB.•The best aspect ratio of CESPB is 2–4 considering efficiencies and pressure... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 125367 |
SubjectTerms | Cryogenic energy storage packed bed optimization method Reference-Standard-Volume |
Title | Enhancement of efficiencies of cryogenic energy storage packed bed using a novel Referred-Standard-Volume optimization method |
URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2024.125367 |
Volume | 224 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQEYgF8RRveWBgcSGJ4zRjVRUVKjrw7BbZjg0pkFRtQWKA386dk_IQDAwMUeIosqK703d31nd3hOwbrjwufcuQA8W4ER6TsYyZsJ7RVqoo1JgonvVE54qf9sP-DGlNa2GQVllhf4npDq2rN4eVNA-HWYY1vmhcHjbpgjilgT1BObg_sOn62wfNw4uOymIdRGP8ep4cfHK8sgEi3iOEqRMXJhrsEOrzOnj9wE2e_8VVfXE_x0tksYobabP8tWUyY_IVMuf4m3q8Sl7b-R3qD8_6aGGpcZ0hDE7eHeNaj14KMJVMU-OK_SiSIgFKKKTM9yalCi6kwN9SSfPi2TxQ14F2ZFJ2UR02sGsHZLQAkHmsqjdpOYB6jVwdty9bHVZNVmA64P6EKXBbKcjA-qHU0kSe5QGPrYo05BtSBqmwIpRKCxRsEGhurdCeDvxI-o2GtcE6qeVFbjYIVdI0IKYMTRwrbnG-VSrSEGujlICno00ST4WYDMsGGsmUWTZIfiogQQUkpQI2SWsq9eSbUSSA93_eZetfdtkmC7gqWWI7pDYZPZldiEcmas8Z3B6ZbZ50Oz28d89vuu8XH-hV |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED5BEY8F8RTl6YGBxUASx2lGVLUqUFhoUbfIdmwoj6RqCxID_HZ8TspDMDAwRMpLUXR3-u6z9d0dwL5m0mPCNxQ1UJRp7lERi5hy42llhIxChQvFi0ve6rKzXtibgvqkFgZllSX2F5ju0Lq8c1Ra82jQ72ONLwaXh026LE-psWmYYciPbVAfvn3oPLzouKjWQTjG1-fg4FPk1b9DyHu0PHXseKLGFqE-O7RpP3Cj53_JVV_yT3MJFkviSE6Kf1uGKZ2twKwTcKrRKrw2slt0IG72kdwQ7VpDaBy9O8JrNXzJbaz0FdGu2o-gKtJiCbFr5nudEmkP1MDfEEGy_Fk_ENeCdqhTelXuNtBrh2QktyjzWJZvkmIC9Rp0m41OvUXL0QpUBcwfU2nzVmptYPxQKKEjz7CAxUZGyi44hAhSbngopOJo2SBQzBiuPBX4kfBrNWOCdahkeaY3gEiha5ZUhjqOJTM44CrlaYjFUZLbs-MqxBMjJoOig0YykZbdJT8dkKADksIBVahPrJ58i4rEAv6fv7L5L1_Zg_lW56KdtE8vz7dgAZ8UkrFtqIyHT3rHkpOx3HXB9w5J8-hL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+efficiencies+of+cryogenic+energy+storage+packed+bed+using+a+novel+Referred-Standard-Volume+optimization+method&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=She%2C+Xiaohui&rft.au=Wang%2C+Xingyu&rft.au=Han%2C+Peng&rft.au=Li%2C+Yongliang&rft.date=2024-06-01&rft.pub=Elsevier+Ltd&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=224&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2024.125367&rft.externalDocID=S0017931024001984 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |