Rotational flow and thermal behavior of ternary hybrid nanomaterials at small and high Prandtl numbers
In this study, rotational flow and heat transfer characteristics of Al2O3 + SiC + MWCNT + water composite nanofluid towards a stretched surface emplaced in a Darcy-Forchheimer medium have been investigated. Energy equation is modeled by considering radiative heat flow and viscous dissipation effects...
Saved in:
Published in | International communications in heat and mass transfer Vol. 138; p. 106337 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, rotational flow and heat transfer characteristics of Al2O3 + SiC + MWCNT + water composite nanofluid towards a stretched surface emplaced in a Darcy-Forchheimer medium have been investigated. Energy equation is modeled by considering radiative heat flow and viscous dissipation effects. Suction mechanism and convective boundary heating are taken into consideration. Fourth order Runge-Kutta method along with shooting approach is used to produce the appropriate numerical solution. A comparison of our findings with previous research reveals a remarkable degree of concordance. For both ternary (Al2O3, SiC and MWCNT) and unary (Al2O3) nanoparticles, relevant characteristics are described on velocity, temperature, local skin friction, and Nusselt number profiles. Numerical results conveyed that prominent decelerated flow of ternary hybrid nanofluid is attained due to amplification of rotation parameter in Darcy-Forchheimer medium subject to both low Pr(Pr = 0.01) and high Pr(Pr = 10000) than unary nanofluid. Axial velocity peters out by 11.76% (at low Pr (Pr = 0.01)) and 12.5% (at high Pr (Pr = 10000)) for ternary hybrid nanofluid (THNF) while it whittles down by 21.42% (at low Pr) and 20% (high Pr) for unary nanofluid (UNF) subject to fluid (UNF/THNF) flows in Darcy medium (Fr = 0) and non-Darcy medium (Fr = 3). In addition, heat transfer rate from the rotating surface emaciates significantly by 119% for THNF at Br = 1.5, Bi = 1 from low Pr(Pr = 0.01) to high Pr(Pr = 10000).
•A mathematical model has been developed to discuss the outcomes of the influence of Darcy-Forchheimer effect on rotational motion of ternary hybrid nanofluid (THNF) and unary nanofluid (UNF).•To investigate the impact of extremely low and extremely high Prandtl numbers on rotational flow and heat transfer.•Biomimetic energy systems based on Darcy-Forchheimer flow and nanotechnology can benefit from the model's outputs, which can also be used as a benchmark for more sophisticated computational multiphysics simulations and experimental studies. |
---|---|
AbstractList | In this study, rotational flow and heat transfer characteristics of Al2O3 + SiC + MWCNT + water composite nanofluid towards a stretched surface emplaced in a Darcy-Forchheimer medium have been investigated. Energy equation is modeled by considering radiative heat flow and viscous dissipation effects. Suction mechanism and convective boundary heating are taken into consideration. Fourth order Runge-Kutta method along with shooting approach is used to produce the appropriate numerical solution. A comparison of our findings with previous research reveals a remarkable degree of concordance. For both ternary (Al2O3, SiC and MWCNT) and unary (Al2O3) nanoparticles, relevant characteristics are described on velocity, temperature, local skin friction, and Nusselt number profiles. Numerical results conveyed that prominent decelerated flow of ternary hybrid nanofluid is attained due to amplification of rotation parameter in Darcy-Forchheimer medium subject to both low Pr(Pr = 0.01) and high Pr(Pr = 10000) than unary nanofluid. Axial velocity peters out by 11.76% (at low Pr (Pr = 0.01)) and 12.5% (at high Pr (Pr = 10000)) for ternary hybrid nanofluid (THNF) while it whittles down by 21.42% (at low Pr) and 20% (high Pr) for unary nanofluid (UNF) subject to fluid (UNF/THNF) flows in Darcy medium (Fr = 0) and non-Darcy medium (Fr = 3). In addition, heat transfer rate from the rotating surface emaciates significantly by 119% for THNF at Br = 1.5, Bi = 1 from low Pr(Pr = 0.01) to high Pr(Pr = 10000).
•A mathematical model has been developed to discuss the outcomes of the influence of Darcy-Forchheimer effect on rotational motion of ternary hybrid nanofluid (THNF) and unary nanofluid (UNF).•To investigate the impact of extremely low and extremely high Prandtl numbers on rotational flow and heat transfer.•Biomimetic energy systems based on Darcy-Forchheimer flow and nanotechnology can benefit from the model's outputs, which can also be used as a benchmark for more sophisticated computational multiphysics simulations and experimental studies. |
ArticleNumber | 106337 |
Author | Sarangi, M.K. Nayak, M.K. Azam, M. Prakash, J. Ramesh, K. Thatoi, D.N. |
Author_xml | – sequence: 1 givenname: M.K. surname: Sarangi fullname: Sarangi, M.K. organization: Department of Mechanical Engineering, FET, ITER, Siksha ‘O’ Anusandhan University, Bhubaneswar 751030, India – sequence: 2 givenname: D.N. surname: Thatoi fullname: Thatoi, D.N. organization: Department of Mechanical Engineering, FET, ITER, Siksha ‘O’ Anusandhan University, Bhubaneswar 751030, India – sequence: 3 givenname: M.K. surname: Nayak fullname: Nayak, M.K. organization: Department of Mechanical Engineering, FET, ITER, Siksha ‘O’ Anusandhan University, Bhubaneswar 751030, India – sequence: 4 givenname: J. surname: Prakash fullname: Prakash, J. email: prakashjayavel@yahoo.co.in organization: Department of Mathematics, Avvaiyar Government College for Women, Karaikal 609 602, U.T of Puducherry, India – sequence: 5 givenname: K. surname: Ramesh fullname: Ramesh, K. organization: Department of Mathematics, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, India – sequence: 6 givenname: M. surname: Azam fullname: Azam, M. organization: School of Mathematics and Statistics, Yulin University, Yulin 719000, PR China |
BookMark | eNqVkE1PwzAMhiM0JLbBf8iRS0fSrGl7A02MD00CIThXXuLSTG2CkjC0f0_GOMEFTpZe24_sZ0JG1lkk5JyzGWdcXmxmRnUIcYAQogcbWvSznOV5akshyiMy5lVZZ4yX1YiMWSmKjNdCnJBJCBvGGK94NSbtk4sQjbPQ07Z3HxSsprFDP6RgjR1sjfPUtTSit-B3tNutvdHUgnUDpNBAHyhEGtJC_7XdmdeOPqaTdOypfR_W6MMpOW7TIJ591yl5WV4_L26z1cPN3eJqlSkxz2MGrcxlUc3zWpZKKKlVIXXBoKo0tsiKQqBGLkQx17rOoUTAqpYyL0AqKKUWU7I8cJV3IXhsG2UO_yVHpm84a_b2mk3z216zt9cc7CXQ5Q_QmzdDEvAfxP0BgenhrUndoAxahdp4VLHRzvwd9gm28KAU |
CitedBy_id | crossref_primary_10_1016_j_icheatmasstransfer_2023_106854 crossref_primary_10_1016_j_heliyon_2023_e17641 crossref_primary_10_1016_j_heliyon_2023_e18376 crossref_primary_10_1016_j_fuel_2023_128174 crossref_primary_10_1016_j_jmmm_2023_171174 crossref_primary_10_1142_S0217979224501029 crossref_primary_10_3390_sym15020429 crossref_primary_10_1080_10407782_2024_2383400 crossref_primary_10_1515_ntrev_2024_0081 crossref_primary_10_1016_j_molliq_2023_123412 crossref_primary_10_1080_10407790_2023_2211731 crossref_primary_10_1002_zamm_202300194 crossref_primary_10_1016_j_asej_2024_102628 crossref_primary_10_1016_j_rineng_2024_101980 crossref_primary_10_1080_01430750_2023_2200434 crossref_primary_10_1007_s41939_025_00753_y crossref_primary_10_1016_j_csite_2023_103102 crossref_primary_10_1177_09544089241253734 crossref_primary_10_1016_j_csite_2024_104235 crossref_primary_10_1142_S0217984925501015 crossref_primary_10_1142_S0217979224503727 crossref_primary_10_1007_s12668_024_01599_3 crossref_primary_10_1016_j_csite_2023_103446 crossref_primary_10_1007_s10973_024_12979_y crossref_primary_10_1016_j_mseb_2022_116124 crossref_primary_10_1142_S0217979224501418 crossref_primary_10_1016_j_csite_2024_105012 crossref_primary_10_1016_j_jmmm_2023_171223 crossref_primary_10_1166_jon_2023_2012 crossref_primary_10_1016_j_jmmm_2023_170353 crossref_primary_10_1080_02286203_2023_2259514 crossref_primary_10_1016_j_inoche_2023_111671 crossref_primary_10_1080_10407782_2024_2378384 crossref_primary_10_1080_10407790_2024_2364783 crossref_primary_10_1016_j_rineng_2025_104284 crossref_primary_10_1080_01430750_2023_2224339 crossref_primary_10_1007_s10973_024_13146_z crossref_primary_10_1080_10407790_2023_2289505 crossref_primary_10_1142_S0217979224502345 crossref_primary_10_1002_htj_23096 crossref_primary_10_1016_j_csite_2024_104449 crossref_primary_10_1016_j_aej_2024_07_071 crossref_primary_10_1080_02286203_2024_2349506 crossref_primary_10_1016_j_est_2023_107335 crossref_primary_10_1142_S0217984924504967 crossref_primary_10_1016_j_icheatmasstransfer_2024_108397 |
Cites_doi | 10.1016/j.powtec.2017.04.017 10.3390/ma15010028 10.1016/j.icheatmasstransfer.2021.105816 10.1088/1572-9494/ac3bc8 10.1115/1.4050228 10.1007/BF00945764 10.1080/10407782.2020.1835089 10.1016/j.icheatmasstransfer.2019.104451 10.1016/j.ijmecsci.2017.03.014 10.1016/j.powtec.2020.05.013 10.1016/j.ijheatmasstransfer.2010.01.032 10.1016/j.ijheatmasstransfer.2018.11.124 10.1166/jon.2021.1778 10.1016/j.icheatmasstransfer.2020.104996 10.1016/j.jmmm.2019.165646 10.1016/j.cmpb.2019.105131 10.1016/j.jtice.2021.06.021 10.1080/17455030.2022.2032474 10.3390/nano12030439 10.12732/ijpam.v112i1.4 10.1016/j.mvr.2020.104065 10.1002/ese3.982 10.1016/j.jtice.2010.02.002 10.1016/j.renene.2018.08.096 10.1007/s13204-020-01634-1 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.icheatmasstransfer.2022.106337 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-0178 |
ExternalDocumentID | 10_1016_j_icheatmasstransfer_2022_106337 S0735193322004596 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSG SST SSZ T5K WUQ XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c342t-af6265842967c3c6dc56d50a88defe0553ede13354dd92a7eae896625a6ca76d3 |
IEDL.DBID | .~1 |
ISSN | 0735-1933 |
IngestDate | Tue Jul 01 04:24:44 EDT 2025 Thu Apr 24 22:50:08 EDT 2025 Fri Feb 23 02:38:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ternary hybrid nanofluid Darcy Forchheimer effect Low and high Prandtl numbers Rotational flow Non linear thermal radiation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-af6265842967c3c6dc56d50a88defe0553ede13354dd92a7eae896625a6ca76d3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_icheatmasstransfer_2022_106337 crossref_primary_10_1016_j_icheatmasstransfer_2022_106337 elsevier_sciencedirect_doi_10_1016_j_icheatmasstransfer_2022_106337 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2022 2022-11-00 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
PublicationDecade | 2020 |
PublicationTitle | International communications in heat and mass transfer |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Hayat, Aziz, Muhammad, Alsaedi (bb0165) 2022 Sahoo (bb0190) 2020; 370 Wang (bb0175) 1988; 39 Nayak, Abdul Hakeem, Ganga, Ijaz Khan, Waqas, Makinde (bb0060) 2020; 186 Sahoo, Kumar (bb0145) 2020; 111 Prakash, Siva, Tripathi, Kuharat, Bég (bb0040) 2019; 133 Sundar, Chandra Mouli, Said, Sousa (bb0155) 2021; 13 Izaz Khan, Chu, Tlili, Nayak (bb0070) 2020 Jiang, Zhang, Abdeljawad, Ahmad, Khan, Rehman, Almaliki, El-Shafay (bb0095) 2022; 12 Souby, Bargal, Wang (bb0160) 2021; 9 Abdul Hakeem, Kirusakthika, Ganga, Ijaz Khan, Nayak, Muhammad, Khan (bb0125) 2021 Choi (bb0005) 1995; 231 Ahmad, Nadeem, Khan (bb0100) 2022 Zayan, Rasheed, John, Khalid, Ismail, Aabid, Baig (bb0150) 2021; 15 Salleh, Bachok, Arifin (bb0170) 2017; 112 Nayak (bb0025) 2017; 125 Nayak, Mabood, Dogonchi, Khan (bb0055) 2021; 120 Nayak, Karimi, Chamkha, Sattar Dogonchi, El-Sapa, Galal (bb0135) 2022; 52 Animasaun, Yook, Muhammad, Mathew (bb0130) 2022; 28 Khan, Ahmad, Ahammad, Algahtani, Algarni (bb0090) 2022 Sadeghi, Tahar Tayebib, Dogonchi, Nayak (bb0050) 2020 Khan, Pop (bb0010) 2010; 53 Cortell (bb0185) 2005; 168 Ahmad, Khan, Rehman, Ahmad, Ali (bb0045) 2022; 74 Nayak, Akbar, Pandey, Khan, Tripathi (bb0075) 2017; 315 Acharya, Maity, Kundu (bb0110) 2022 Nayak, Sattar Dogonchi, Elmasry, Karimi, Chamkha, Alhumadeh (bb0065) 2021; 128 Katta, Prakash (bb0035) 2020; 79 Nayak, Mabood, Dogonchi, Ramadan, Tlili, Khan (bb0115) 2022 Shaw, Samantaray, Misra, Nayak, Makinde (bb0120) 2022; 130 Tripathi, Prakash, Tiwari, Ellahi (bb0030) 2020; 132 Ahmad, Nadeem, Rehman (bb0105) 2021; 10 Abbas, Javed, Sajid, Ali (bb0180) 2010; 41 Dogonchi, Waqas, Seyyedi, Tilehnoee, Ganji (bb0015) 2019; 132 Waqas (bb0020) 2020; 493 Wei-Feng Xia, Ahmad, Khan, Ahmad, Rehman, Baili, Gia (bb0080) 2022; 32 Ahmad, Nadeem, Khan (bb0085) 2022; 12 Zidan, Nayak, Nader Karimi, Dogonchi, Chamkha, Hamida, Galal (bb0140) 2022; 53 Acharya (10.1016/j.icheatmasstransfer.2022.106337_bb0110) 2022 Salleh (10.1016/j.icheatmasstransfer.2022.106337_bb0170) 2017; 112 Abbas (10.1016/j.icheatmasstransfer.2022.106337_bb0180) 2010; 41 Ahmad (10.1016/j.icheatmasstransfer.2022.106337_bb0045) 2022; 74 Choi (10.1016/j.icheatmasstransfer.2022.106337_bb0005) 1995; 231 Dogonchi (10.1016/j.icheatmasstransfer.2022.106337_bb0015) 2019; 132 Souby (10.1016/j.icheatmasstransfer.2022.106337_bb0160) 2021; 9 Zayan (10.1016/j.icheatmasstransfer.2022.106337_bb0150) 2021; 15 Animasaun (10.1016/j.icheatmasstransfer.2022.106337_bb0130) 2022; 28 Sundar (10.1016/j.icheatmasstransfer.2022.106337_bb0155) 2021; 13 Ahmad (10.1016/j.icheatmasstransfer.2022.106337_bb0100) 2022 Nayak (10.1016/j.icheatmasstransfer.2022.106337_bb0115) 2022 Izaz Khan (10.1016/j.icheatmasstransfer.2022.106337_bb0070) 2020 Zidan (10.1016/j.icheatmasstransfer.2022.106337_bb0140) 2022; 53 Nayak (10.1016/j.icheatmasstransfer.2022.106337_bb0055) 2021; 120 Nayak (10.1016/j.icheatmasstransfer.2022.106337_bb0025) 2017; 125 Cortell (10.1016/j.icheatmasstransfer.2022.106337_bb0185) 2005; 168 Wang (10.1016/j.icheatmasstransfer.2022.106337_bb0175) 1988; 39 Nayak (10.1016/j.icheatmasstransfer.2022.106337_bb0065) 2021; 128 Nayak (10.1016/j.icheatmasstransfer.2022.106337_bb0075) 2017; 315 Prakash (10.1016/j.icheatmasstransfer.2022.106337_bb0040) 2019; 133 Khan (10.1016/j.icheatmasstransfer.2022.106337_bb0090) 2022 Ahmad (10.1016/j.icheatmasstransfer.2022.106337_bb0105) 2021; 10 Jiang (10.1016/j.icheatmasstransfer.2022.106337_bb0095) 2022; 12 Nayak (10.1016/j.icheatmasstransfer.2022.106337_bb0135) 2022; 52 Katta (10.1016/j.icheatmasstransfer.2022.106337_bb0035) 2020; 79 Sadeghi (10.1016/j.icheatmasstransfer.2022.106337_bb0050) 2020 Khan (10.1016/j.icheatmasstransfer.2022.106337_bb0010) 2010; 53 Waqas (10.1016/j.icheatmasstransfer.2022.106337_bb0020) 2020; 493 Wei-Feng Xia (10.1016/j.icheatmasstransfer.2022.106337_bb0080) 2022; 32 Nayak (10.1016/j.icheatmasstransfer.2022.106337_bb0060) 2020; 186 Hayat (10.1016/j.icheatmasstransfer.2022.106337_bb0165) 2022 Sahoo (10.1016/j.icheatmasstransfer.2022.106337_bb0145) 2020; 111 Sahoo (10.1016/j.icheatmasstransfer.2022.106337_bb0190) 2020; 370 Shaw (10.1016/j.icheatmasstransfer.2022.106337_bb0120) 2022; 130 Abdul Hakeem (10.1016/j.icheatmasstransfer.2022.106337_bb0125) 2021 Tripathi (10.1016/j.icheatmasstransfer.2022.106337_bb0030) 2020; 132 Ahmad (10.1016/j.icheatmasstransfer.2022.106337_bb0085) 2022; 12 |
References_xml | – volume: 315 start-page: 205 year: 2017 end-page: 215 ident: bb0075 article-title: 3D free convective MHD flow of nanofluid over permeable linear stretching sheet with thermal radiation publication-title: Powder Technol. – volume: 12 start-page: 309 year: 2022 end-page: 316 ident: bb0085 article-title: Enhanced transport properties and its theoretical analysis in two-phase hybrid nanofluid publication-title: Appl. Nanosci. – volume: 112 start-page: 57 year: 2017 end-page: 69 ident: bb0170 article-title: Rotating boundary layer flow due to a permeable exponentially shrinking sheet in nanofluid publication-title: Int. J. Pure Appl. Math. – start-page: 1 year: 2022 end-page: 22 ident: bb0115 article-title: Entropy optimized assisting and opposing non-linear radiative flow of hybrid nanofluid publication-title: Waves Random Complex Media – year: 2020 ident: bb0070 article-title: Significance of activation energy, bio-convection and magnetohydrodynamic in flow of third grade fluid (non-Newtonian) towards stretched surface: a Buongiorno model analysis publication-title: Int. Commun. Heat Mass Transf. – year: 2020 ident: bb0050 article-title: Analysis of thermal behavior of magnetic buoyancy-driven flow in ferrofluid–filled wavy enclosure furnished with two circular cylinders publication-title: Int. Comm. Heat Mass Transf. – volume: 74 year: 2022 ident: bb0045 article-title: Impact of Joule heating and multiple slips on a Maxwell nanofluid flow past a slendering surface publication-title: Commun. Theor. Phys. – volume: 52 year: 2022 ident: bb0135 article-title: Efficacy of diverse structures of wavy baffles on heat transfer amplification of double-diffusive natural convection inside a C-shaped enclosure filled with hybrid nanofluid publication-title: Sustain. Energ. Technol. Assess. – volume: 79 start-page: 83 year: 2020 end-page: 110 ident: bb0035 article-title: Heat transfer enhancement in radiative peristaltic propulsion of nanofluid in the presence of induced magnetic field publication-title: Numer. Heat Transf. Part A Appl. – volume: 168 start-page: 557 year: 2005 end-page: 566 ident: bb0185 article-title: A note on magnetohydrodynamic flow of a power-law fluid over a stretching sheet publication-title: Appl. Math. Comput. – year: 2022 ident: bb0110 article-title: Entropy generation optimization of unsteady radiative hybrid nanofluid flow over a slippery spinning disk publication-title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science – volume: 231 start-page: 99 year: 1995 end-page: 106 ident: bb0005 article-title: Enhancing thermal conductivity of fluids withnanoparticles publication-title: ASME Publ. Fed. – volume: 53 year: 2022 ident: bb0140 article-title: Thermal management and natural convection flow of nano encapsulated phase change material (NEPCM)-water suspension in a reverse T-shaped porous cavity enshrining two hot corrugated baffles: a boost to renewable energy storage publication-title: J. Build. Eng. – volume: 10 start-page: 222 year: 2021 end-page: 231 ident: bb0105 article-title: Mathematical analysis of thermal energy distribution in a hybridized mixed convective flow publication-title: J. Nanofluids – volume: 186 year: 2020 ident: bb0060 article-title: Entropy optimized MHD 3D nanomaterial of non-Newtonian fluid: a combined approach to good absorber of solar energy and intensification of heat transport publication-title: Comput. Methods Prog. Biomed. – volume: 493 year: 2020 ident: bb0020 article-title: A mathematical and computational framework for heat transfer analysis of ferromagnetic non-Newtonian liquid subjected to heterogeneous and homogeneous reactions publication-title: J. Magn. Magn. Mater. – volume: 133 start-page: 1308 year: 2019 end-page: 1326 ident: bb0040 article-title: Peristaltic pumping of magnetic nanofluids with thermal radiation and temperature-dependent viscosity effects: modelling a solar magneto-biomimetic nanopump publication-title: Renew. Energy – volume: 15 start-page: 28 year: 2021 ident: bb0150 article-title: Investigation on rheological properties of water-based novel ternary hybrid nanofluids using experimental and Taguchi method publication-title: Materials – volume: 13 year: 2021 ident: bb0155 article-title: Heat transfer and second law analysis of ethylene glycol-based ternary hybrid nanofluid under laminar flow publication-title: J. Therm. Sci. Eng. Appl. – volume: 128 start-page: 288 year: 2021 end-page: 300 ident: bb0065 article-title: Free convection and second law scrutiny of NEPCM suspension inside a wavy-baffle-equipped cylinder under altered Fourier theory publication-title: J. Taiwan Inst. Chem. Eng. – volume: 32 year: 2022 ident: bb0080 article-title: Heat and mass transfer analysis of nonlinear mixed convective hybrid nanofluid flow with multiple slip boundary conditions publication-title: Case Stud. Therm. Eng. – volume: 125 start-page: 185 year: 2017 end-page: 193 ident: bb0025 article-title: MHD 3D flow and heat transfer analysis of nanofluid by shrinking surface inspired by thermal radiation and viscous dissipation publication-title: Int. J. Mech. Sci. – volume: 12 start-page: 439 year: 2022 ident: bb0095 article-title: Blasius-Rayleigh-stokes flow of hybrid nanomaterial liquid past a stretching surface with generalized Fourier’s and Fick’s law publication-title: Nanomaterials – volume: 28 year: 2022 ident: bb0130 article-title: Dynamics of ternary-hybrid nanofluid subject to magnetic flux density and heat source or sink on a convectively heated surface publication-title: Surf. Interf. – volume: 39 start-page: 177 year: 1988 end-page: 185 ident: bb0175 article-title: Stretching a surface in a rotating fluid publication-title: Z. Angew. Math. Phys. – year: 2022 ident: bb0100 article-title: Heat enhancement analysis of the hybridized micropolar nanofluid with Cattaneo-Christov and stratification effects publication-title: Proceedings of the institution of Mechanical Engineers. Part C: Journal of Mechanical Engineering Science – volume: 120 year: 2021 ident: bb0055 article-title: Electromagnetic flow of SWCNT/MWCNT suspensions with optimized entropy generation and cubic auto catalysis chemical reaction publication-title: Int. Comm. Heat Mass Transf. – year: 2022 ident: bb0090 article-title: Numerical investigation of hybrid nanofluid with gyrotactic microorganism and multiple slip conditions through a porous rotating disk publication-title: Waves Random Complex Media – volume: 132 start-page: 473 year: 2019 end-page: 483 ident: bb0015 article-title: CVFEM analysis for Fe₃O₄–H₂O nanofluid in an annulus subject to thermal radiation publication-title: Int. J. Heat Mass Transf. – volume: 9 start-page: 2493 year: 2021 end-page: 2513 ident: bb0160 article-title: Thermohydraulic performance improvement and entropy generation characteristics of a microchannel heat sink cooled with new hybrid nanofluids containing ternary/binary hybrid nanocomposites publication-title: Energy Sci. Eng. – volume: 41 start-page: 644 year: 2010 end-page: 650 ident: bb0180 article-title: Unsteady MHD flow and heat transfer on a stretching sheet in a rotating fluid publication-title: J. Taiwan Inst. Chem. Eng. – year: 2021 ident: bb0125 article-title: Transverse magnetic effects of hybrid nanofluid flow over a vertical rotating cone with Newtonian/non-Newtonian base fluids publication-title: Waves Random Complex Media – volume: 111 year: 2020 ident: bb0145 article-title: Development of a new correlation to determine the viscosity of ternary hybrid nanofluid publication-title: Int. Commun. Heat Mass Transf. – volume: 132 year: 2020 ident: bb0030 article-title: Thermal, microrotation, electromagnetic field and nanoparticle shape effects on cu-CuO/blood flow in microvascular vessels publication-title: Microvasc. Res. – year: 2022 ident: bb0165 article-title: Effects of binary chemical reaction and Arrhenius activation energy in Darcy–Forchheimer three-dimensional flow of nanofluid subject to rotating frame publication-title: J. Therm. Anal. Calorim. – volume: 53 start-page: 2477 year: 2010 end-page: 2483 ident: bb0010 article-title: Boundary layer flow of a nanofluid past a stretching sheet publication-title: Int. J. Heat Mass Transf. – volume: 130 year: 2022 ident: bb0120 article-title: Hydromagnetic flow and thermal interpretations of cross hybrid nanofluid influenced by linear, nonlinear and quadratic thermal radiations for any Prandtl number publication-title: Int. Commun. Heat Mass Transf. – volume: 370 start-page: 19 year: 2020 end-page: 28 ident: bb0190 article-title: Thermo-hydraulic characteristics of radiator with various shape nanoparticle-based ternary hybrid nanofluid publication-title: Powder Technol. – volume: 315 start-page: 205 year: 2017 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0075 article-title: 3D free convective MHD flow of nanofluid over permeable linear stretching sheet with thermal radiation publication-title: Powder Technol. doi: 10.1016/j.powtec.2017.04.017 – year: 2020 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0070 article-title: Significance of activation energy, bio-convection and magnetohydrodynamic in flow of third grade fluid (non-Newtonian) towards stretched surface: a Buongiorno model analysis publication-title: Int. Commun. Heat Mass Transf. – volume: 15 start-page: 28 issue: 1 year: 2021 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0150 article-title: Investigation on rheological properties of water-based novel ternary hybrid nanofluids using experimental and Taguchi method publication-title: Materials doi: 10.3390/ma15010028 – volume: 168 start-page: 557 issue: 1 year: 2005 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0185 article-title: A note on magnetohydrodynamic flow of a power-law fluid over a stretching sheet publication-title: Appl. Math. Comput. – volume: 130 year: 2022 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0120 article-title: Hydromagnetic flow and thermal interpretations of cross hybrid nanofluid influenced by linear, nonlinear and quadratic thermal radiations for any Prandtl number publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2021.105816 – year: 2022 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0165 article-title: Effects of binary chemical reaction and Arrhenius activation energy in Darcy–Forchheimer three-dimensional flow of nanofluid subject to rotating frame publication-title: J. Therm. Anal. Calorim. – volume: 74 issue: 1 year: 2022 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0045 article-title: Impact of Joule heating and multiple slips on a Maxwell nanofluid flow past a slendering surface publication-title: Commun. Theor. Phys. doi: 10.1088/1572-9494/ac3bc8 – volume: 28 year: 2022 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0130 article-title: Dynamics of ternary-hybrid nanofluid subject to magnetic flux density and heat source or sink on a convectively heated surface publication-title: Surf. Interf. – volume: 13 issue: 5 year: 2021 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0155 article-title: Heat transfer and second law analysis of ethylene glycol-based ternary hybrid nanofluid under laminar flow publication-title: J. Therm. Sci. Eng. Appl. doi: 10.1115/1.4050228 – volume: 39 start-page: 177 year: 1988 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0175 article-title: Stretching a surface in a rotating fluid publication-title: Z. Angew. Math. Phys. doi: 10.1007/BF00945764 – year: 2022 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0100 article-title: Heat enhancement analysis of the hybridized micropolar nanofluid with Cattaneo-Christov and stratification effects – volume: 79 start-page: 83 issue: 2 year: 2020 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0035 article-title: Heat transfer enhancement in radiative peristaltic propulsion of nanofluid in the presence of induced magnetic field publication-title: Numer. Heat Transf. Part A Appl. doi: 10.1080/10407782.2020.1835089 – volume: 111 year: 2020 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0145 article-title: Development of a new correlation to determine the viscosity of ternary hybrid nanofluid publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2019.104451 – volume: 125 start-page: 185 year: 2017 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0025 article-title: MHD 3D flow and heat transfer analysis of nanofluid by shrinking surface inspired by thermal radiation and viscous dissipation publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2017.03.014 – volume: 370 start-page: 19 year: 2020 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0190 article-title: Thermo-hydraulic characteristics of radiator with various shape nanoparticle-based ternary hybrid nanofluid publication-title: Powder Technol. doi: 10.1016/j.powtec.2020.05.013 – volume: 53 start-page: 2477 year: 2010 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0010 article-title: Boundary layer flow of a nanofluid past a stretching sheet publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2010.01.032 – volume: 132 start-page: 473 year: 2019 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0015 article-title: CVFEM analysis for Fe₃O₄–H₂O nanofluid in an annulus subject to thermal radiation publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.11.124 – volume: 10 start-page: 222 issue: 2 year: 2021 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0105 article-title: Mathematical analysis of thermal energy distribution in a hybridized mixed convective flow publication-title: J. Nanofluids doi: 10.1166/jon.2021.1778 – volume: 120 year: 2021 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0055 article-title: Electromagnetic flow of SWCNT/MWCNT suspensions with optimized entropy generation and cubic auto catalysis chemical reaction publication-title: Int. Comm. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2020.104996 – year: 2020 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0050 article-title: Analysis of thermal behavior of magnetic buoyancy-driven flow in ferrofluid–filled wavy enclosure furnished with two circular cylinders publication-title: Int. Comm. Heat Mass Transf. – year: 2021 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0125 article-title: Transverse magnetic effects of hybrid nanofluid flow over a vertical rotating cone with Newtonian/non-Newtonian base fluids publication-title: Waves Random Complex Media – volume: 493 year: 2020 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0020 article-title: A mathematical and computational framework for heat transfer analysis of ferromagnetic non-Newtonian liquid subjected to heterogeneous and homogeneous reactions publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2019.165646 – volume: 186 year: 2020 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0060 article-title: Entropy optimized MHD 3D nanomaterial of non-Newtonian fluid: a combined approach to good absorber of solar energy and intensification of heat transport publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2019.105131 – volume: 128 start-page: 288 year: 2021 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0065 article-title: Free convection and second law scrutiny of NEPCM suspension inside a wavy-baffle-equipped cylinder under altered Fourier theory publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2021.06.021 – year: 2022 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0110 article-title: Entropy generation optimization of unsteady radiative hybrid nanofluid flow over a slippery spinning disk – start-page: 1 year: 2022 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0115 article-title: Entropy optimized assisting and opposing non-linear radiative flow of hybrid nanofluid publication-title: Waves Random Complex Media doi: 10.1080/17455030.2022.2032474 – volume: 12 start-page: 439 issue: 3 year: 2022 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0095 article-title: Blasius-Rayleigh-stokes flow of hybrid nanomaterial liquid past a stretching surface with generalized Fourier’s and Fick’s law publication-title: Nanomaterials doi: 10.3390/nano12030439 – volume: 52 year: 2022 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0135 article-title: Efficacy of diverse structures of wavy baffles on heat transfer amplification of double-diffusive natural convection inside a C-shaped enclosure filled with hybrid nanofluid publication-title: Sustain. Energ. Technol. Assess. – volume: 53 year: 2022 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0140 article-title: Thermal management and natural convection flow of nano encapsulated phase change material (NEPCM)-water suspension in a reverse T-shaped porous cavity enshrining two hot corrugated baffles: a boost to renewable energy storage publication-title: J. Build. Eng. – volume: 112 start-page: 57 issue: 1 year: 2017 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0170 article-title: Rotating boundary layer flow due to a permeable exponentially shrinking sheet in nanofluid publication-title: Int. J. Pure Appl. Math. doi: 10.12732/ijpam.v112i1.4 – year: 2022 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0090 article-title: Numerical investigation of hybrid nanofluid with gyrotactic microorganism and multiple slip conditions through a porous rotating disk publication-title: Waves Random Complex Media – volume: 132 year: 2020 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0030 article-title: Thermal, microrotation, electromagnetic field and nanoparticle shape effects on cu-CuO/blood flow in microvascular vessels publication-title: Microvasc. Res. doi: 10.1016/j.mvr.2020.104065 – volume: 9 start-page: 2493 issue: 12 year: 2021 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0160 article-title: Thermohydraulic performance improvement and entropy generation characteristics of a microchannel heat sink cooled with new hybrid nanofluids containing ternary/binary hybrid nanocomposites publication-title: Energy Sci. Eng. doi: 10.1002/ese3.982 – volume: 231 start-page: 99 year: 1995 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0005 article-title: Enhancing thermal conductivity of fluids withnanoparticles publication-title: ASME Publ. Fed. – volume: 41 start-page: 644 year: 2010 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0180 article-title: Unsteady MHD flow and heat transfer on a stretching sheet in a rotating fluid publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2010.02.002 – volume: 133 start-page: 1308 year: 2019 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0040 article-title: Peristaltic pumping of magnetic nanofluids with thermal radiation and temperature-dependent viscosity effects: modelling a solar magneto-biomimetic nanopump publication-title: Renew. Energy doi: 10.1016/j.renene.2018.08.096 – volume: 32 year: 2022 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0080 article-title: Heat and mass transfer analysis of nonlinear mixed convective hybrid nanofluid flow with multiple slip boundary conditions publication-title: Case Stud. Therm. Eng. – volume: 12 start-page: 309 year: 2022 ident: 10.1016/j.icheatmasstransfer.2022.106337_bb0085 article-title: Enhanced transport properties and its theoretical analysis in two-phase hybrid nanofluid publication-title: Appl. Nanosci. doi: 10.1007/s13204-020-01634-1 |
SSID | ssj0001818 |
Score | 2.5316932 |
Snippet | In this study, rotational flow and heat transfer characteristics of Al2O3 + SiC + MWCNT + water composite nanofluid towards a stretched surface emplaced in a... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106337 |
SubjectTerms | Darcy Forchheimer effect Low and high Prandtl numbers Non linear thermal radiation Rotational flow Ternary hybrid nanofluid |
Title | Rotational flow and thermal behavior of ternary hybrid nanomaterials at small and high Prandtl numbers |
URI | https://dx.doi.org/10.1016/j.icheatmasstransfer.2022.106337 |
Volume | 138 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8QwFH6IouhBXHHcyMGDlzpjmqTtSYbBYVQUcQFvJc2CI51WnIrMxd_uSxcX9KDgsWkSwsuX976EtwDsdYSlaHgST_l43FjC8Mxxzr1EBr5IfBv4ZemE8wsxuGWnd_xuCnpNLIxzq6x1f6XTS21dt7RrabYfh8P2NYLT0Q9EpOMlkUu7zVjgUH7w-uHmgRas1MbY2XO952D_w8fLeVvKYoQ0tShponEZQinF38J3ldF_MlWfzE9_CRZr3ki61dKWYcpkK7DwKZvgCsyW3pxqvAr2Ki_qRz5i0_yFyEwTx_RG2NAE5pPckvI18GlC7icucItkMsuRwVagJLIgYxyQlqNdWmNyicvXRUqqMiLjNbjtH9_0Bl5dUAF3gtHCkxavL8g4aCQC5SuhFRead2QYamNNh3PfaIOXVs60jqgMjDQhXocol0LJQGh_HaazPDMbQA6p1DREGB5yyUIVoZGzYRBIa7QS1rIWHDWyi1WdbdwVvUjjxq3sIf4u_dhJP66k34LofYbHKvPGH8b2mu2Kv6ApRkPx61k2_2WWLZh3X1X84jZMF0_PZgeJTJHslkjdhZnuydng4g3R7_jU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB5qxddBfOLbHDx4WVqzm-zuSaQo1dYiPsDbks0DlXa3tCvSf-9kH1XRg4LXJDOEyWTmS5gHwFGTG4qOJ3aki9fNiz28c4wxJxa-y2PX-G7eOuG6x9sP3tUje6xBq8qFsWGVpe0vbHpurcuRRinNxvD5uXGHymnhB2qkxSUhn4FZW52K1WH27LLT7k0NMjqx3CDjescSzMPxR5iXDbgU2QCRapYjRW2LhFKK09y1zdF_8lafPNDFCiyX0JGcFbtbhZpO1mDpU0HBNZjLAzrleB3MbZqV_3zE9NM3IhJFLNgb4ECVm09SQ_IPwdGEPE1s7hZJRJIiiC30koiMjJGgn1PbysbkBrevsj4pOomMN-Dh4vy-1XbKngp4GB7NHGHwBYOgg4bcl67kSjKuWFMEgdJGNxlztdL4bmWeUiEVvhY6wBcRZYJL4XPlbkI9SRO9BeSECkUD1MQTJrxAhujnTOD7wmgluTHeNpxWsotkWXDc9r3oR1Vk2Uv0XfqRlX5USH8bwimHYVF84w-0req4oi8KFaGv-DWXnX_hcggL7fvrbtS97HV2YdHOFOmMe1DPRq96H3FNFh-UevsORkb7hQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rotational+flow+and+thermal+behavior+of+ternary+hybrid+nanomaterials+at+small+and+high+Prandtl+numbers&rft.jtitle=International+communications+in+heat+and+mass+transfer&rft.au=Sarangi%2C+M.K.&rft.au=Thatoi%2C+D.N.&rft.au=Nayak%2C+M.K.&rft.au=Prakash%2C+J.&rft.date=2022-11-01&rft.issn=0735-1933&rft.volume=138&rft.spage=106337&rft_id=info:doi/10.1016%2Fj.icheatmasstransfer.2022.106337&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_icheatmasstransfer_2022_106337 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0735-1933&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0735-1933&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0735-1933&client=summon |