Dynamic Simulation of Space Debris Cloud Capture Using the Tethered Net

Space debris, especially the space debris cloud, has threatened severely the safety of future space missions. In the framework of multibody system dynamics, a computational approach is proposed in this study to investigate the dynamics of net deployment and capture of space debris cloud using this n...

Full description

Saved in:
Bibliographic Details
Published inSpace: science & technology Vol. 2021
Main Authors Wang, Qingtao, Jin, Dongping, Rui, Xiaoting
Format Journal Article
LanguageEnglish
Published American Association for the Advancement of Science (AAAS) 01.01.2021
Online AccessGet full text
ISSN2692-7659
2692-7659
DOI10.34133/2021/9810375

Cover

Loading…
Abstract Space debris, especially the space debris cloud, has threatened severely the safety of future space missions. In the framework of multibody system dynamics, a computational approach is proposed in this study to investigate the dynamics of net deployment and capture of space debris cloud using this net subject to large overall motions and large deformations. To obtain high simulation fidelity of capturing space debris cloud, the gradient deficient beam element of the absolute nodal coordinate formulation (ANCF) is employed to discretize threads which are woven into the net. The normal contact force between the net and the debris cloud and among debris particles is computed by using the penalty method. Some deployment examples are presented to investigate the influences of shooting velocity of bullets and microgravity as well as the angle between the traveling direction of the net and the microgravity direction on the deployment characteristics of the tethered net. Other capturing examples are given to clarify the effect of the deployment area of the net at the moment it starts to contact with the debris cloud on the capture rate and to demonstrate the effectiveness of the proposed approach for capturing space debris cloud using the net in microgravity conditions.
AbstractList Space debris, especially the space debris cloud, has threatened severely the safety of future space missions. In the framework of multibody system dynamics, a computational approach is proposed in this study to investigate the dynamics of net deployment and capture of space debris cloud using this net subject to large overall motions and large deformations. To obtain high simulation fidelity of capturing space debris cloud, the gradient deficient beam element of the absolute nodal coordinate formulation (ANCF) is employed to discretize threads which are woven into the net. The normal contact force between the net and the debris cloud and among debris particles is computed by using the penalty method. Some deployment examples are presented to investigate the influences of shooting velocity of bullets and microgravity as well as the angle between the traveling direction of the net and the microgravity direction on the deployment characteristics of the tethered net. Other capturing examples are given to clarify the effect of the deployment area of the net at the moment it starts to contact with the debris cloud on the capture rate and to demonstrate the effectiveness of the proposed approach for capturing space debris cloud using the net in microgravity conditions.
Author Rui, Xiaoting
Jin, Dongping
Wang, Qingtao
Author_xml – sequence: 1
  givenname: Qingtao
  surname: Wang
  fullname: Wang, Qingtao
  organization: School of Science, Nanjing University of Science and Technology, Nanjing 210094, China, Institute of Launch Dynamics, Nanjing University of Science and Technology, Nanjing 210094, China
– sequence: 2
  givenname: Dongping
  surname: Jin
  fullname: Jin, Dongping
  organization: State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
– sequence: 3
  givenname: Xiaoting
  surname: Rui
  fullname: Rui, Xiaoting
  organization: Institute of Launch Dynamics, Nanjing University of Science and Technology, Nanjing 210094, China
BookMark eNp1kE1PAjEQhhuDiYgcvfcPrPR7u0cDiiRED8C5mW27WLJsSXc58O9dgRhj4mVmMnnnyeS5R4MmNh6hR0qeuKCcTxhhdFJoSngub9CQqYJluZLF4Nd8h8ZtuyOEMF1QSckQzWenBvbB4lXYH2voQmxwrPDqANbjmS9TaPG0jkeHp3DojsnjTRuaLe4-PV77vibv8LvvHtBtBXXrx9c-QpvXl_X0LVt-zBfT52VmuWBdBiVRANpBCf2fQjvnnWZ5lUsNzFldCU5zIpSq8pI7pp3kXDELznpZVgT4CC0uXBdhZw4p7CGdTIRgzouYtgZSF2ztjWXWVUpQAVQKkFbnRClRKKGV1dwXPSu7sGyKbZt89cOjxJylmm-p5iq1z_M_eRu6s7IuQaj_ufoCuFZ6Jg
CitedBy_id crossref_primary_10_1016_j_asr_2023_08_020
crossref_primary_10_1016_j_cja_2024_02_018
crossref_primary_10_3390_sym15010172
crossref_primary_10_1109_TAES_2023_3349365
crossref_primary_10_1002_msd2_12044
crossref_primary_10_1007_s11044_023_09929_1
crossref_primary_10_3390_app131810377
crossref_primary_10_1007_s10409_023_23222_x
crossref_primary_10_3390_s23218822
crossref_primary_10_3390_s23239615
Cites_doi 10.1016/j.asr.2019.08.006
10.1016/j.actaastro.2009.08.005
10.1016/j.actaastro.2016.06.018
10.1109/MRA.2009.934818
10.2514/6.2009-1870
10.1016/j.actaastro.2018.07.046
10.1007/s11071-018-4389-5
10.1016/j.asr.2016.04.015
10.1007/s11071-015-2456-8
10.1016/j.actaastro.2013.06.014
10.1007/s00707-019-02607-4
10.1016/j.actaastro.2018.08.017
10.1016/j.paerosci.2015.11.001
10.1007/s11044-015-9478-3
10.1007/978-3-642-34387-2_17
10.1109/TMECH.2016.2628052
10.1016/j.actaastro.2019.09.001
10.1016/j.actaastro.2012.11.009
10.2514/1.G000677
10.1007/978-1-4614-6714-4
10.1016/j.actaastro.2017.01.001
10.1016/j.actaastro.2020.05.056
10.1007/s11071-014-1387-0
10.1016/j.actaastro.2019.09.002
10.1063/1.5144752
10.2514/1.G002761
10.1007/s00158-016-1558-3
10.1016/j.actaastro.2011.11.014
10.1051/matecconf/201822007003
10.1016/j.spacepol.2018.12.005
10.2514/1.G002656
10.1016/j.actaastro.2017.07.026
10.1061/(ASCE)AS.1943-5525.0000367
10.1016/j.actaastro.2017.12.009
10.1016/j.actaastro.2015.11.011
10.1016/j.mechmachtheory.2020.103961
10.1007/978-3-319-15982-9_4
10.1115/1.1891811
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.34133/2021/9810375
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 2692-7659
ExternalDocumentID oai_doaj_org_article_c2cdf6414a154a5c87066496486c83e9
10_34133_2021_9810375
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
OK1
ID FETCH-LOGICAL-c342t-ab06aa8daba03748dded827f758a2dc8f43170466f7b3d28d53362cadce5bf0a3
IEDL.DBID DOA
ISSN 2692-7659
IngestDate Wed Aug 27 01:05:22 EDT 2025
Tue Jul 01 02:46:14 EDT 2025
Thu Apr 24 23:03:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-ab06aa8daba03748dded827f758a2dc8f43170466f7b3d28d53362cadce5bf0a3
OpenAccessLink https://doaj.org/article/c2cdf6414a154a5c87066496486c83e9
ParticipantIDs doaj_primary_oai_doaj_org_article_c2cdf6414a154a5c87066496486c83e9
crossref_primary_10_34133_2021_9810375
crossref_citationtrail_10_34133_2021_9810375
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Space: science & technology
PublicationYear 2021
Publisher American Association for the Advancement of Science (AAAS)
Publisher_xml – name: American Association for the Advancement of Science (AAAS)
References Sun J. (e_1_3_3_27_2) 2017; 55
Botta E. M. (e_1_3_3_18_2) 2017; 40
Huang P. (e_1_3_3_13_2) 2014; 27
Shan M. (e_1_3_3_29_2) 2017; 40
Liou J. C. (e_1_3_3_2_2) 2010; 66
Si J. (e_1_3_3_35_2) 2019; 64
Gao S. (e_1_3_3_17_2) 2012; 325
Mark C. P. (e_1_3_3_9_2) 2019; 47
Mankala K. K. (e_1_3_3_16_2) 2005; 127
Qing-quan C. (e_1_3_3_31_2) 2018; 220
e_1_3_3_12_2
Przemysław L. (e_1_3_3_42_2) 2010; 53
Htun T. Z. (e_1_3_3_25_2) 2020; 153
e_1_3_3_14_2
Wang Q. (e_1_3_3_19_2) 2016; 83
Shan M. (e_1_3_3_32_2) 2019; 158
Huang P. (e_1_3_3_21_2) 2016; 36
e_1_3_3_11_2
e_1_3_3_10_2
Sharf I. (e_1_3_3_33_2) 2017; 139
Forshaw J. L. (e_1_3_3_39_2) 2019; 168
Zhang X. T. (e_1_3_3_41_2) 2014; 93
Zhang F. (e_1_3_3_22_2) 2017; 40
Liu F. (e_1_3_3_26_2) 2020; 32
He Q. (e_1_3_3_7_2) 2020; 175
Forshaw J. L. (e_1_3_3_38_2) 2016; 127
Aglietti G. S. (e_1_3_3_40_2) 2019; 168
Wang Q. (e_1_3_3_23_2) 2014; 77
Bonnal C. (e_1_3_3_3_2) 2013; 85
Levin E. (e_1_3_3_5_2) 2012; 73
Shan M. (e_1_3_3_8_2) 2016; 80
Zhang F. (e_1_3_3_37_2) 2016; 22
e_1_3_3_6_2
e_1_3_3_28_2
Obrezkov L. P. (e_1_3_3_24_2) 2020; 231
Huang P. (e_1_3_3_15_2) 2018; 94
Si J. (e_1_3_3_36_2) 2021; 2021
Shan M. (e_1_3_3_30_2) 2017; 132
Botta E. M. (e_1_3_3_34_2) 2019; 155
e_1_3_3_1_2
Benvenuto R. (e_1_3_3_20_2) 2016; 58
Wen H. (e_1_3_3_4_2) 2016; 119
References_xml – volume: 64
  start-page: 1675
  issue: 9
  year: 2019
  ident: e_1_3_3_35_2
  article-title: Dynamics modeling and simulation of self-collision of tether-net for space debris removal
  publication-title: Advances in Space Research
  doi: 10.1016/j.asr.2019.08.006
– volume: 66
  start-page: 648
  issue: 5
  year: 2010
  ident: e_1_3_3_2_2
  article-title: Controlling the growth of future LEO debris populations with active debris removal
  publication-title: Acta Astronautica
  doi: 10.1016/j.actaastro.2009.08.005
– volume: 127
  start-page: 448
  year: 2016
  ident: e_1_3_3_38_2
  article-title: RemoveDEBRIS: an in-orbit active debris removal demonstration mission
  publication-title: Acta Astronautica
  doi: 10.1016/j.actaastro.2016.06.018
– ident: e_1_3_3_12_2
  doi: 10.1109/MRA.2009.934818
– ident: e_1_3_3_11_2
  doi: 10.2514/6.2009-1870
– volume: 155
  start-page: 448
  year: 2019
  ident: e_1_3_3_34_2
  article-title: Simulation of tether-nets for capture of space debris and small asteroids
  publication-title: Acta Astronautica
  doi: 10.1016/j.actaastro.2018.07.046
– volume: 94
  start-page: 1
  issue: 1
  year: 2018
  ident: e_1_3_3_15_2
  article-title: A review of space tether in new applications
  publication-title: Nonlinear Dynamics
  doi: 10.1007/s11071-018-4389-5
– volume: 58
  start-page: 45
  issue: 1
  year: 2016
  ident: e_1_3_3_20_2
  article-title: Multibody dynamics driving GNC and system design in tethered nets for active debris removal
  publication-title: Advances in Space Research
  doi: 10.1016/j.asr.2016.04.015
– volume: 83
  start-page: 1919
  issue: 4
  year: 2016
  ident: e_1_3_3_19_2
  article-title: Dynamic simulation of frictional multi-zone contacts of thin beams
  publication-title: Nonlinear Dynamics
  doi: 10.1007/s11071-015-2456-8
– volume: 93
  start-page: 112
  year: 2014
  ident: e_1_3_3_41_2
  article-title: A fast numerical approach for Whipple shield ballistic limit analysis
  publication-title: Acta Astronautica
  doi: 10.1016/j.actaastro.2013.06.014
– volume: 231
  start-page: 1519
  issue: 4
  year: 2020
  ident: e_1_3_3_24_2
  article-title: A finite element for soft tissue deformation based on the absolute nodal coordinate formulation
  publication-title: Acta Mechanica
  doi: 10.1007/s00707-019-02607-4
– ident: e_1_3_3_1_2
  doi: 10.1016/j.actaastro.2018.08.017
– volume: 80
  start-page: 18
  year: 2016
  ident: e_1_3_3_8_2
  article-title: Review and comparison of active space debris capturing and removal methods
  publication-title: Progress in Aerospace Sciences
  doi: 10.1016/j.paerosci.2015.11.001
– volume: 36
  start-page: 115
  issue: 2
  year: 2016
  ident: e_1_3_3_21_2
  article-title: Dynamic modelling and coordinated controller designing for the manoeuvrable tether-net space robot system
  publication-title: Multibody System Dynamics
  doi: 10.1007/s11044-015-9478-3
– ident: e_1_3_3_14_2
– volume: 325
  start-page: 141
  year: 2012
  ident: e_1_3_3_17_2
  article-title: Dynamic simulation of fishing net based on cubic B-spline surface
  publication-title: Communications in Computer and Information Science
  doi: 10.1007/978-3-642-34387-2_17
– volume: 22
  start-page: 983
  issue: 2
  year: 2016
  ident: e_1_3_3_37_2
  article-title: Releasing dynamics and stability control of maneuverable tethered space net
  publication-title: IEEE/ASME Transactions on Mechatronics
  doi: 10.1109/TMECH.2016.2628052
– volume: 168
  start-page: 310
  year: 2019
  ident: e_1_3_3_40_2
  article-title: The active space debris removal mission RemoveDEBRIS. Part 2: in orbit operations
  publication-title: Acta Astronautica
  doi: 10.1016/j.actaastro.2019.09.001
– volume: 85
  start-page: 51
  year: 2013
  ident: e_1_3_3_3_2
  article-title: Active debris removal: recent progress and current trends
  publication-title: Acta Astronautica
  doi: 10.1016/j.actaastro.2012.11.009
– volume: 40
  start-page: 110
  issue: 1
  year: 2017
  ident: e_1_3_3_18_2
  article-title: Contact dynamics modeling and simulation of tether nets for space-debris capture
  publication-title: Journal of Guidance, Control, and Dynamics
  doi: 10.2514/1.G000677
– ident: e_1_3_3_6_2
  doi: 10.1007/978-1-4614-6714-4
– volume: 132
  start-page: 293
  year: 2017
  ident: e_1_3_3_30_2
  article-title: Deployment dynamics of tethered-net for space debris removal
  publication-title: Acta Astronautica
  doi: 10.1016/j.actaastro.2017.01.001
– volume: 175
  start-page: 99
  year: 2020
  ident: e_1_3_3_7_2
  article-title: Finite element-smoothed particle hydrodynamics adaptive method in simulating debris cloud
  publication-title: Acta Astronautica
  doi: 10.1016/j.actaastro.2020.05.056
– volume: 2021
  year: 2021
  ident: e_1_3_3_36_2
  article-title: Dynamics modeling and simulation of a net closing mechanism for tether-net capture
  publication-title: International Journal of Aerospace Engineering
– volume: 77
  start-page: 1411
  issue: 4
  year: 2014
  ident: e_1_3_3_23_2
  article-title: Dynamic simulation of frictional contacts of thin beams during large overall motions via absolute nodal coordinate formulation
  publication-title: Nonlinear Dynamics
  doi: 10.1007/s11071-014-1387-0
– volume: 168
  start-page: 293
  year: 2019
  ident: e_1_3_3_39_2
  article-title: The active space debris removal mission RemoveDEBRIS. Part 1: from concept to launch
  publication-title: Acta Astronautica
  doi: 10.1016/j.actaastro.2019.09.002
– ident: e_1_3_3_28_2
– volume: 32
  start-page: 047109
  issue: 4
  year: 2020
  ident: e_1_3_3_26_2
  article-title: Fluid–structure interaction simulation based on immersed boundary-lattice Boltzmann flux solver and absolute nodal coordinate formula
  publication-title: Physics of Fluids
  doi: 10.1063/1.5144752
– volume: 40
  start-page: 3319
  issue: 12
  year: 2017
  ident: e_1_3_3_29_2
  article-title: Validation of space net deployment modeling methods using parabolic flight experiment
  publication-title: Journal of Guidance, Control, and Dynamics
  doi: 10.2514/1.G002761
– volume: 55
  start-page: 1159
  issue: 4
  year: 2017
  ident: e_1_3_3_27_2
  article-title: Topology optimization based on level set for a flexible multibody system modeled via ANCF
  publication-title: Structural and Multidisciplinary Optimization
  doi: 10.1007/s00158-016-1558-3
– volume: 73
  start-page: 100
  year: 2012
  ident: e_1_3_3_5_2
  article-title: Wholesale debris removal from LEO
  publication-title: Acta Astronautica
  doi: 10.1016/j.actaastro.2011.11.014
– volume: 220
  start-page: 07003
  issue: 4
  year: 2018
  ident: e_1_3_3_31_2
  article-title: Dynamic modeling and ground test of tethered-net
  publication-title: MATEC Web of Conferences
  doi: 10.1051/matecconf/201822007003
– volume: 47
  start-page: 194
  year: 2019
  ident: e_1_3_3_9_2
  article-title: Review of active space debris removal methods
  publication-title: Space Policy
  doi: 10.1016/j.spacepol.2018.12.005
– volume: 40
  start-page: 2828
  issue: 11
  year: 2017
  ident: e_1_3_3_22_2
  article-title: Dynamics analysis and controller design for maneuverable tethered space net robot
  publication-title: Journal of Guidance, Control, and Dynamics
  doi: 10.2514/1.G002656
– volume: 139
  start-page: 332
  year: 2017
  ident: e_1_3_3_33_2
  article-title: Experiments and simulation of a net closing mechanism for tether-net capture of space debris
  publication-title: Acta Astronautica
  doi: 10.1016/j.actaastro.2017.07.026
– volume: 27
  start-page: 04014039
  issue: 6
  year: 2014
  ident: e_1_3_3_13_2
  article-title: Novel method of monocular real-time feature point tracking for tethered space robots
  publication-title: Journal of Aerospace Engineering
  doi: 10.1061/(ASCE)AS.1943-5525.0000367
– volume: 53
  start-page: 1
  year: 2010
  ident: e_1_3_3_42_2
  article-title: Finite element analysis of beam-to-beam contact
  publication-title: Lecture Notes in Applied & Computational Mechanics
– volume: 158
  start-page: 198
  year: 2019
  ident: e_1_3_3_32_2
  article-title: Contact dynamic models of space debris capturing using a net
  publication-title: Acta Astronautica
  doi: 10.1016/j.actaastro.2017.12.009
– volume: 119
  start-page: 110
  year: 2016
  ident: e_1_3_3_4_2
  article-title: Constrained tension control of a tethered space-tug system with only length measurement
  publication-title: Acta Astronautica
  doi: 10.1016/j.actaastro.2015.11.011
– volume: 153
  start-page: 103961
  year: 2020
  ident: e_1_3_3_25_2
  article-title: Dynamic modeling of a radially multilayered tether cable for a remotely-operated underwater vehicle (ROV) based on the absolute nodal coordinate formulation (ANCF)
  publication-title: Mechanism & Machine Theory
  doi: 10.1016/j.mechmachtheory.2020.103961
– ident: e_1_3_3_10_2
  doi: 10.1007/978-3-319-15982-9_4
– volume: 127
  start-page: 144
  issue: 2
  year: 2005
  ident: e_1_3_3_16_2
  article-title: Dynamic modeling and simulation of satellite tethered systems
  publication-title: Journal of Vibration and Acoustics
  doi: 10.1115/1.1891811
SSID ssj0002891510
Score 2.2502916
Snippet Space debris, especially the space debris cloud, has threatened severely the safety of future space missions. In the framework of multibody system dynamics, a...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
Title Dynamic Simulation of Space Debris Cloud Capture Using the Tethered Net
URI https://doaj.org/article/c2cdf6414a154a5c87066496486c83e9
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwviqZaXPKBORHVtx3HGUigVQ5e2UrfIr0igtqloOvDvOduhKgNiYYsiy7Lu7Hvfdwjdw5V1vcyKhAqZJtxlNtHM2ITYHJR9XvqRSL7aYixGM_46T-d7o758TViEB46E6xpqbCl4jytQ9io1Pi8neC64FEYyF1r3SE72nKn3mD4DVUYiqKYX1Mx7-b1uLn1fXPpDCe1h9QelMjxBx401iPvxFKfowK3OUKu_8fHpavmJOzh8x_DD5hy9PMUB8njytmzmbuGqxBNwfB0G0QEvFg8W1dbigVr73AAOJQEYrDw8Da29zuKxqy_QbPg8HYySZhRCYhindaI0EUpJq7QKgDEglKykWQnWvqLWyNLbAeDqijLTzFJpwYoT1ChrXKpLotglOlxVK9dCWGTUcqOdzhTnwBfNiFMENlGMKJGpNnr4pk1hGpxwP65iUYC_EEhZeFIWDSnbqLNbvo4AGb8tfPSE3i3yuNbhB3C7aLhd_MXtq__Y5Bod-YPFQMoNOqw_tu4WTIta34Vb9AVOSsjD
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Simulation+of+Space+Debris+Cloud+Capture+Using+the+Tethered+Net&rft.jtitle=Space%3A+science+%26+technology&rft.au=Wang%2C+Qingtao&rft.au=Jin%2C+Dongping&rft.au=Rui%2C+Xiaoting&rft.date=2021-01-01&rft.issn=2692-7659&rft.eissn=2692-7659&rft.volume=2021&rft_id=info:doi/10.34133%2F2021%2F9810375&rft.externalDBID=n%2Fa&rft.externalDocID=10_34133_2021_9810375
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-7659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-7659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-7659&client=summon