Dynamic Simulation of Space Debris Cloud Capture Using the Tethered Net
Space debris, especially the space debris cloud, has threatened severely the safety of future space missions. In the framework of multibody system dynamics, a computational approach is proposed in this study to investigate the dynamics of net deployment and capture of space debris cloud using this n...
Saved in:
Published in | Space: science & technology Vol. 2021 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
American Association for the Advancement of Science (AAAS)
01.01.2021
|
Online Access | Get full text |
ISSN | 2692-7659 2692-7659 |
DOI | 10.34133/2021/9810375 |
Cover
Loading…
Abstract | Space debris, especially the space debris cloud, has threatened severely the safety of future space missions. In the framework of multibody system dynamics, a computational approach is proposed in this study to investigate the dynamics of net deployment and capture of space debris cloud using this net subject to large overall motions and large deformations. To obtain high simulation fidelity of capturing space debris cloud, the gradient deficient beam element of the absolute nodal coordinate formulation (ANCF) is employed to discretize threads which are woven into the net. The normal contact force between the net and the debris cloud and among debris particles is computed by using the penalty method. Some deployment examples are presented to investigate the influences of shooting velocity of bullets and microgravity as well as the angle between the traveling direction of the net and the microgravity direction on the deployment characteristics of the tethered net. Other capturing examples are given to clarify the effect of the deployment area of the net at the moment it starts to contact with the debris cloud on the capture rate and to demonstrate the effectiveness of the proposed approach for capturing space debris cloud using the net in microgravity conditions. |
---|---|
AbstractList | Space debris, especially the space debris cloud, has threatened severely the safety of future space missions. In the framework of multibody system dynamics, a computational approach is proposed in this study to investigate the dynamics of net deployment and capture of space debris cloud using this net subject to large overall motions and large deformations. To obtain high simulation fidelity of capturing space debris cloud, the gradient deficient beam element of the absolute nodal coordinate formulation (ANCF) is employed to discretize threads which are woven into the net. The normal contact force between the net and the debris cloud and among debris particles is computed by using the penalty method. Some deployment examples are presented to investigate the influences of shooting velocity of bullets and microgravity as well as the angle between the traveling direction of the net and the microgravity direction on the deployment characteristics of the tethered net. Other capturing examples are given to clarify the effect of the deployment area of the net at the moment it starts to contact with the debris cloud on the capture rate and to demonstrate the effectiveness of the proposed approach for capturing space debris cloud using the net in microgravity conditions. |
Author | Rui, Xiaoting Jin, Dongping Wang, Qingtao |
Author_xml | – sequence: 1 givenname: Qingtao surname: Wang fullname: Wang, Qingtao organization: School of Science, Nanjing University of Science and Technology, Nanjing 210094, China, Institute of Launch Dynamics, Nanjing University of Science and Technology, Nanjing 210094, China – sequence: 2 givenname: Dongping surname: Jin fullname: Jin, Dongping organization: State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China – sequence: 3 givenname: Xiaoting surname: Rui fullname: Rui, Xiaoting organization: Institute of Launch Dynamics, Nanjing University of Science and Technology, Nanjing 210094, China |
BookMark | eNp1kE1PAjEQhhuDiYgcvfcPrPR7u0cDiiRED8C5mW27WLJsSXc58O9dgRhj4mVmMnnnyeS5R4MmNh6hR0qeuKCcTxhhdFJoSngub9CQqYJluZLF4Nd8h8ZtuyOEMF1QSckQzWenBvbB4lXYH2voQmxwrPDqANbjmS9TaPG0jkeHp3DojsnjTRuaLe4-PV77vibv8LvvHtBtBXXrx9c-QpvXl_X0LVt-zBfT52VmuWBdBiVRANpBCf2fQjvnnWZ5lUsNzFldCU5zIpSq8pI7pp3kXDELznpZVgT4CC0uXBdhZw4p7CGdTIRgzouYtgZSF2ztjWXWVUpQAVQKkFbnRClRKKGV1dwXPSu7sGyKbZt89cOjxJylmm-p5iq1z_M_eRu6s7IuQaj_ufoCuFZ6Jg |
CitedBy_id | crossref_primary_10_1016_j_asr_2023_08_020 crossref_primary_10_1016_j_cja_2024_02_018 crossref_primary_10_3390_sym15010172 crossref_primary_10_1109_TAES_2023_3349365 crossref_primary_10_1002_msd2_12044 crossref_primary_10_1007_s11044_023_09929_1 crossref_primary_10_3390_app131810377 crossref_primary_10_1007_s10409_023_23222_x crossref_primary_10_3390_s23218822 crossref_primary_10_3390_s23239615 |
Cites_doi | 10.1016/j.asr.2019.08.006 10.1016/j.actaastro.2009.08.005 10.1016/j.actaastro.2016.06.018 10.1109/MRA.2009.934818 10.2514/6.2009-1870 10.1016/j.actaastro.2018.07.046 10.1007/s11071-018-4389-5 10.1016/j.asr.2016.04.015 10.1007/s11071-015-2456-8 10.1016/j.actaastro.2013.06.014 10.1007/s00707-019-02607-4 10.1016/j.actaastro.2018.08.017 10.1016/j.paerosci.2015.11.001 10.1007/s11044-015-9478-3 10.1007/978-3-642-34387-2_17 10.1109/TMECH.2016.2628052 10.1016/j.actaastro.2019.09.001 10.1016/j.actaastro.2012.11.009 10.2514/1.G000677 10.1007/978-1-4614-6714-4 10.1016/j.actaastro.2017.01.001 10.1016/j.actaastro.2020.05.056 10.1007/s11071-014-1387-0 10.1016/j.actaastro.2019.09.002 10.1063/1.5144752 10.2514/1.G002761 10.1007/s00158-016-1558-3 10.1016/j.actaastro.2011.11.014 10.1051/matecconf/201822007003 10.1016/j.spacepol.2018.12.005 10.2514/1.G002656 10.1016/j.actaastro.2017.07.026 10.1061/(ASCE)AS.1943-5525.0000367 10.1016/j.actaastro.2017.12.009 10.1016/j.actaastro.2015.11.011 10.1016/j.mechmachtheory.2020.103961 10.1007/978-3-319-15982-9_4 10.1115/1.1891811 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.34133/2021/9810375 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 2692-7659 |
ExternalDocumentID | oai_doaj_org_article_c2cdf6414a154a5c87066496486c83e9 10_34133_2021_9810375 |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ OK1 |
ID | FETCH-LOGICAL-c342t-ab06aa8daba03748dded827f758a2dc8f43170466f7b3d28d53362cadce5bf0a3 |
IEDL.DBID | DOA |
ISSN | 2692-7659 |
IngestDate | Wed Aug 27 01:05:22 EDT 2025 Tue Jul 01 02:46:14 EDT 2025 Thu Apr 24 23:03:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-ab06aa8daba03748dded827f758a2dc8f43170466f7b3d28d53362cadce5bf0a3 |
OpenAccessLink | https://doaj.org/article/c2cdf6414a154a5c87066496486c83e9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c2cdf6414a154a5c87066496486c83e9 crossref_primary_10_34133_2021_9810375 crossref_citationtrail_10_34133_2021_9810375 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Space: science & technology |
PublicationYear | 2021 |
Publisher | American Association for the Advancement of Science (AAAS) |
Publisher_xml | – name: American Association for the Advancement of Science (AAAS) |
References | Sun J. (e_1_3_3_27_2) 2017; 55 Botta E. M. (e_1_3_3_18_2) 2017; 40 Huang P. (e_1_3_3_13_2) 2014; 27 Shan M. (e_1_3_3_29_2) 2017; 40 Liou J. C. (e_1_3_3_2_2) 2010; 66 Si J. (e_1_3_3_35_2) 2019; 64 Gao S. (e_1_3_3_17_2) 2012; 325 Mark C. P. (e_1_3_3_9_2) 2019; 47 Mankala K. K. (e_1_3_3_16_2) 2005; 127 Qing-quan C. (e_1_3_3_31_2) 2018; 220 e_1_3_3_12_2 Przemysław L. (e_1_3_3_42_2) 2010; 53 Htun T. Z. (e_1_3_3_25_2) 2020; 153 e_1_3_3_14_2 Wang Q. (e_1_3_3_19_2) 2016; 83 Shan M. (e_1_3_3_32_2) 2019; 158 Huang P. (e_1_3_3_21_2) 2016; 36 e_1_3_3_11_2 e_1_3_3_10_2 Sharf I. (e_1_3_3_33_2) 2017; 139 Forshaw J. L. (e_1_3_3_39_2) 2019; 168 Zhang X. T. (e_1_3_3_41_2) 2014; 93 Zhang F. (e_1_3_3_22_2) 2017; 40 Liu F. (e_1_3_3_26_2) 2020; 32 He Q. (e_1_3_3_7_2) 2020; 175 Forshaw J. L. (e_1_3_3_38_2) 2016; 127 Aglietti G. S. (e_1_3_3_40_2) 2019; 168 Wang Q. (e_1_3_3_23_2) 2014; 77 Bonnal C. (e_1_3_3_3_2) 2013; 85 Levin E. (e_1_3_3_5_2) 2012; 73 Shan M. (e_1_3_3_8_2) 2016; 80 Zhang F. (e_1_3_3_37_2) 2016; 22 e_1_3_3_6_2 e_1_3_3_28_2 Obrezkov L. P. (e_1_3_3_24_2) 2020; 231 Huang P. (e_1_3_3_15_2) 2018; 94 Si J. (e_1_3_3_36_2) 2021; 2021 Shan M. (e_1_3_3_30_2) 2017; 132 Botta E. M. (e_1_3_3_34_2) 2019; 155 e_1_3_3_1_2 Benvenuto R. (e_1_3_3_20_2) 2016; 58 Wen H. (e_1_3_3_4_2) 2016; 119 |
References_xml | – volume: 64 start-page: 1675 issue: 9 year: 2019 ident: e_1_3_3_35_2 article-title: Dynamics modeling and simulation of self-collision of tether-net for space debris removal publication-title: Advances in Space Research doi: 10.1016/j.asr.2019.08.006 – volume: 66 start-page: 648 issue: 5 year: 2010 ident: e_1_3_3_2_2 article-title: Controlling the growth of future LEO debris populations with active debris removal publication-title: Acta Astronautica doi: 10.1016/j.actaastro.2009.08.005 – volume: 127 start-page: 448 year: 2016 ident: e_1_3_3_38_2 article-title: RemoveDEBRIS: an in-orbit active debris removal demonstration mission publication-title: Acta Astronautica doi: 10.1016/j.actaastro.2016.06.018 – ident: e_1_3_3_12_2 doi: 10.1109/MRA.2009.934818 – ident: e_1_3_3_11_2 doi: 10.2514/6.2009-1870 – volume: 155 start-page: 448 year: 2019 ident: e_1_3_3_34_2 article-title: Simulation of tether-nets for capture of space debris and small asteroids publication-title: Acta Astronautica doi: 10.1016/j.actaastro.2018.07.046 – volume: 94 start-page: 1 issue: 1 year: 2018 ident: e_1_3_3_15_2 article-title: A review of space tether in new applications publication-title: Nonlinear Dynamics doi: 10.1007/s11071-018-4389-5 – volume: 58 start-page: 45 issue: 1 year: 2016 ident: e_1_3_3_20_2 article-title: Multibody dynamics driving GNC and system design in tethered nets for active debris removal publication-title: Advances in Space Research doi: 10.1016/j.asr.2016.04.015 – volume: 83 start-page: 1919 issue: 4 year: 2016 ident: e_1_3_3_19_2 article-title: Dynamic simulation of frictional multi-zone contacts of thin beams publication-title: Nonlinear Dynamics doi: 10.1007/s11071-015-2456-8 – volume: 93 start-page: 112 year: 2014 ident: e_1_3_3_41_2 article-title: A fast numerical approach for Whipple shield ballistic limit analysis publication-title: Acta Astronautica doi: 10.1016/j.actaastro.2013.06.014 – volume: 231 start-page: 1519 issue: 4 year: 2020 ident: e_1_3_3_24_2 article-title: A finite element for soft tissue deformation based on the absolute nodal coordinate formulation publication-title: Acta Mechanica doi: 10.1007/s00707-019-02607-4 – ident: e_1_3_3_1_2 doi: 10.1016/j.actaastro.2018.08.017 – volume: 80 start-page: 18 year: 2016 ident: e_1_3_3_8_2 article-title: Review and comparison of active space debris capturing and removal methods publication-title: Progress in Aerospace Sciences doi: 10.1016/j.paerosci.2015.11.001 – volume: 36 start-page: 115 issue: 2 year: 2016 ident: e_1_3_3_21_2 article-title: Dynamic modelling and coordinated controller designing for the manoeuvrable tether-net space robot system publication-title: Multibody System Dynamics doi: 10.1007/s11044-015-9478-3 – ident: e_1_3_3_14_2 – volume: 325 start-page: 141 year: 2012 ident: e_1_3_3_17_2 article-title: Dynamic simulation of fishing net based on cubic B-spline surface publication-title: Communications in Computer and Information Science doi: 10.1007/978-3-642-34387-2_17 – volume: 22 start-page: 983 issue: 2 year: 2016 ident: e_1_3_3_37_2 article-title: Releasing dynamics and stability control of maneuverable tethered space net publication-title: IEEE/ASME Transactions on Mechatronics doi: 10.1109/TMECH.2016.2628052 – volume: 168 start-page: 310 year: 2019 ident: e_1_3_3_40_2 article-title: The active space debris removal mission RemoveDEBRIS. Part 2: in orbit operations publication-title: Acta Astronautica doi: 10.1016/j.actaastro.2019.09.001 – volume: 85 start-page: 51 year: 2013 ident: e_1_3_3_3_2 article-title: Active debris removal: recent progress and current trends publication-title: Acta Astronautica doi: 10.1016/j.actaastro.2012.11.009 – volume: 40 start-page: 110 issue: 1 year: 2017 ident: e_1_3_3_18_2 article-title: Contact dynamics modeling and simulation of tether nets for space-debris capture publication-title: Journal of Guidance, Control, and Dynamics doi: 10.2514/1.G000677 – ident: e_1_3_3_6_2 doi: 10.1007/978-1-4614-6714-4 – volume: 132 start-page: 293 year: 2017 ident: e_1_3_3_30_2 article-title: Deployment dynamics of tethered-net for space debris removal publication-title: Acta Astronautica doi: 10.1016/j.actaastro.2017.01.001 – volume: 175 start-page: 99 year: 2020 ident: e_1_3_3_7_2 article-title: Finite element-smoothed particle hydrodynamics adaptive method in simulating debris cloud publication-title: Acta Astronautica doi: 10.1016/j.actaastro.2020.05.056 – volume: 2021 year: 2021 ident: e_1_3_3_36_2 article-title: Dynamics modeling and simulation of a net closing mechanism for tether-net capture publication-title: International Journal of Aerospace Engineering – volume: 77 start-page: 1411 issue: 4 year: 2014 ident: e_1_3_3_23_2 article-title: Dynamic simulation of frictional contacts of thin beams during large overall motions via absolute nodal coordinate formulation publication-title: Nonlinear Dynamics doi: 10.1007/s11071-014-1387-0 – volume: 168 start-page: 293 year: 2019 ident: e_1_3_3_39_2 article-title: The active space debris removal mission RemoveDEBRIS. Part 1: from concept to launch publication-title: Acta Astronautica doi: 10.1016/j.actaastro.2019.09.002 – ident: e_1_3_3_28_2 – volume: 32 start-page: 047109 issue: 4 year: 2020 ident: e_1_3_3_26_2 article-title: Fluid–structure interaction simulation based on immersed boundary-lattice Boltzmann flux solver and absolute nodal coordinate formula publication-title: Physics of Fluids doi: 10.1063/1.5144752 – volume: 40 start-page: 3319 issue: 12 year: 2017 ident: e_1_3_3_29_2 article-title: Validation of space net deployment modeling methods using parabolic flight experiment publication-title: Journal of Guidance, Control, and Dynamics doi: 10.2514/1.G002761 – volume: 55 start-page: 1159 issue: 4 year: 2017 ident: e_1_3_3_27_2 article-title: Topology optimization based on level set for a flexible multibody system modeled via ANCF publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-016-1558-3 – volume: 73 start-page: 100 year: 2012 ident: e_1_3_3_5_2 article-title: Wholesale debris removal from LEO publication-title: Acta Astronautica doi: 10.1016/j.actaastro.2011.11.014 – volume: 220 start-page: 07003 issue: 4 year: 2018 ident: e_1_3_3_31_2 article-title: Dynamic modeling and ground test of tethered-net publication-title: MATEC Web of Conferences doi: 10.1051/matecconf/201822007003 – volume: 47 start-page: 194 year: 2019 ident: e_1_3_3_9_2 article-title: Review of active space debris removal methods publication-title: Space Policy doi: 10.1016/j.spacepol.2018.12.005 – volume: 40 start-page: 2828 issue: 11 year: 2017 ident: e_1_3_3_22_2 article-title: Dynamics analysis and controller design for maneuverable tethered space net robot publication-title: Journal of Guidance, Control, and Dynamics doi: 10.2514/1.G002656 – volume: 139 start-page: 332 year: 2017 ident: e_1_3_3_33_2 article-title: Experiments and simulation of a net closing mechanism for tether-net capture of space debris publication-title: Acta Astronautica doi: 10.1016/j.actaastro.2017.07.026 – volume: 27 start-page: 04014039 issue: 6 year: 2014 ident: e_1_3_3_13_2 article-title: Novel method of monocular real-time feature point tracking for tethered space robots publication-title: Journal of Aerospace Engineering doi: 10.1061/(ASCE)AS.1943-5525.0000367 – volume: 53 start-page: 1 year: 2010 ident: e_1_3_3_42_2 article-title: Finite element analysis of beam-to-beam contact publication-title: Lecture Notes in Applied & Computational Mechanics – volume: 158 start-page: 198 year: 2019 ident: e_1_3_3_32_2 article-title: Contact dynamic models of space debris capturing using a net publication-title: Acta Astronautica doi: 10.1016/j.actaastro.2017.12.009 – volume: 119 start-page: 110 year: 2016 ident: e_1_3_3_4_2 article-title: Constrained tension control of a tethered space-tug system with only length measurement publication-title: Acta Astronautica doi: 10.1016/j.actaastro.2015.11.011 – volume: 153 start-page: 103961 year: 2020 ident: e_1_3_3_25_2 article-title: Dynamic modeling of a radially multilayered tether cable for a remotely-operated underwater vehicle (ROV) based on the absolute nodal coordinate formulation (ANCF) publication-title: Mechanism & Machine Theory doi: 10.1016/j.mechmachtheory.2020.103961 – ident: e_1_3_3_10_2 doi: 10.1007/978-3-319-15982-9_4 – volume: 127 start-page: 144 issue: 2 year: 2005 ident: e_1_3_3_16_2 article-title: Dynamic modeling and simulation of satellite tethered systems publication-title: Journal of Vibration and Acoustics doi: 10.1115/1.1891811 |
SSID | ssj0002891510 |
Score | 2.2502916 |
Snippet | Space debris, especially the space debris cloud, has threatened severely the safety of future space missions. In the framework of multibody system dynamics, a... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
Title | Dynamic Simulation of Space Debris Cloud Capture Using the Tethered Net |
URI | https://doaj.org/article/c2cdf6414a154a5c87066496486c83e9 |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwviqZaXPKBORHVtx3HGUigVQ5e2UrfIr0igtqloOvDvOduhKgNiYYsiy7Lu7Hvfdwjdw5V1vcyKhAqZJtxlNtHM2ITYHJR9XvqRSL7aYixGM_46T-d7o758TViEB46E6xpqbCl4jytQ9io1Pi8neC64FEYyF1r3SE72nKn3mD4DVUYiqKYX1Mx7-b1uLn1fXPpDCe1h9QelMjxBx401iPvxFKfowK3OUKu_8fHpavmJOzh8x_DD5hy9PMUB8njytmzmbuGqxBNwfB0G0QEvFg8W1dbigVr73AAOJQEYrDw8Da29zuKxqy_QbPg8HYySZhRCYhindaI0EUpJq7QKgDEglKykWQnWvqLWyNLbAeDqijLTzFJpwYoT1ChrXKpLotglOlxVK9dCWGTUcqOdzhTnwBfNiFMENlGMKJGpNnr4pk1hGpxwP65iUYC_EEhZeFIWDSnbqLNbvo4AGb8tfPSE3i3yuNbhB3C7aLhd_MXtq__Y5Bod-YPFQMoNOqw_tu4WTIta34Vb9AVOSsjD |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Simulation+of+Space+Debris+Cloud+Capture+Using+the+Tethered+Net&rft.jtitle=Space%3A+science+%26+technology&rft.au=Wang%2C+Qingtao&rft.au=Jin%2C+Dongping&rft.au=Rui%2C+Xiaoting&rft.date=2021-01-01&rft.issn=2692-7659&rft.eissn=2692-7659&rft.volume=2021&rft_id=info:doi/10.34133%2F2021%2F9810375&rft.externalDBID=n%2Fa&rft.externalDocID=10_34133_2021_9810375 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-7659&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-7659&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-7659&client=summon |