Synergistic oxidation of levofloxacin in electro-peroxone system with enhanced in-situ N, P self-standing carbon cathode derived from Chlorella: In-situ H2O2 generation, peroxone activation and catalytic ozonation

An intrinsic N, P self-standing carbon block (NP SSCB) cathode prepared with Chlorella as a precursor was used to enhance the electro-peroxone (EP) process under acidic conditions through a temperature modulation strategy. The results exhibited that NP SSCB-800-EP had a synergistic effect on levoflo...

Full description

Saved in:
Bibliographic Details
Published inJournal of cleaner production Vol. 469; p. 143145
Main Authors Wei, Xingyue, Zhang, Hanmin, Cao, MengBo, Guo, Miao, Liu, Mengxuan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An intrinsic N, P self-standing carbon block (NP SSCB) cathode prepared with Chlorella as a precursor was used to enhance the electro-peroxone (EP) process under acidic conditions through a temperature modulation strategy. The results exhibited that NP SSCB-800-EP had a synergistic effect on levofloxacin (LEV) degradation by 42.1% and produced in situ H2O2 up to 70 mg L−1. Quenching and EPR tests confirmed that ·OH, HO2·/O2·- and 1O2 were responsible for degradation of LEV. The quantitative results showed that EP process produced radicals in the order of 1O2> HO2·/O2·->·OH. X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations under acidic conditions confirmed that pyridinic N, pyrrolic N, C-O-P and the defects were active sites for in-situ H2O2 production. Furthermore, pyridinic N, pyrrolic N and C-P-O groups contributed to the reaction of H2O2 with O3 to form HO2/O2·- and O3·- intermediates, free from overcoming the limitations associated with traditional HO2− production. Graphitic N and C3-PO were possible active sites for triggering the 1O2 and *Oad production. This work provides a new strategy for the preparation of self-standing carbon-based cathodes and achieves multiple functions of EP process under acidic conditions, presenting new insights into structure-functional relationships in carbon-based advanced oxidation processes. [Display omitted] •Intrinsic N, P self-standing carbon block was prepared using Chlorella as precursor.•NP SSCB-800 for EP process generated H2O2 and exhibited coupling effect of 42.1%.•·OH, HO2·/O2·- and 1O2 were the main active species for effective LEV degradation.•Pyridinic N, pyrrolic N, C-O-P and defects were active sites for H2O2 production.•Generation of HO2/O2·- and O3·- was attributed to pyridinic N, pyrrolic N and C-P-O.
AbstractList An intrinsic N, P self-standing carbon block (NP SSCB) cathode prepared with Chlorella as a precursor was used to enhance the electro-peroxone (EP) process under acidic conditions through a temperature modulation strategy. The results exhibited that NP SSCB-800-EP had a synergistic effect on levofloxacin (LEV) degradation by 42.1% and produced in situ H₂O₂ up to 70 mg L⁻¹. Quenching and EPR tests confirmed that ·OH, HO₂·/O₂·⁻ and ¹O₂ were responsible for degradation of LEV. The quantitative results showed that EP process produced radicals in the order of ¹O₂> HO₂·/O₂·⁻>·OH. X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations under acidic conditions confirmed that pyridinic N, pyrrolic N, C-O-P and the defects were active sites for in-situ H₂O₂ production. Furthermore, pyridinic N, pyrrolic N and C-P-O groups contributed to the reaction of H₂O₂ with O₃ to form HO₂/O₂·⁻ and O₃·⁻ intermediates, free from overcoming the limitations associated with traditional HO₂⁻ production. Graphitic N and C₃-PO were possible active sites for triggering the ¹O₂ and *Oₐd production. This work provides a new strategy for the preparation of self-standing carbon-based cathodes and achieves multiple functions of EP process under acidic conditions, presenting new insights into structure-functional relationships in carbon-based advanced oxidation processes.
An intrinsic N, P self-standing carbon block (NP SSCB) cathode prepared with Chlorella as a precursor was used to enhance the electro-peroxone (EP) process under acidic conditions through a temperature modulation strategy. The results exhibited that NP SSCB-800-EP had a synergistic effect on levofloxacin (LEV) degradation by 42.1% and produced in situ H2O2 up to 70 mg L−1. Quenching and EPR tests confirmed that ·OH, HO2·/O2·- and 1O2 were responsible for degradation of LEV. The quantitative results showed that EP process produced radicals in the order of 1O2> HO2·/O2·->·OH. X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations under acidic conditions confirmed that pyridinic N, pyrrolic N, C-O-P and the defects were active sites for in-situ H2O2 production. Furthermore, pyridinic N, pyrrolic N and C-P-O groups contributed to the reaction of H2O2 with O3 to form HO2/O2·- and O3·- intermediates, free from overcoming the limitations associated with traditional HO2− production. Graphitic N and C3-PO were possible active sites for triggering the 1O2 and *Oad production. This work provides a new strategy for the preparation of self-standing carbon-based cathodes and achieves multiple functions of EP process under acidic conditions, presenting new insights into structure-functional relationships in carbon-based advanced oxidation processes. [Display omitted] •Intrinsic N, P self-standing carbon block was prepared using Chlorella as precursor.•NP SSCB-800 for EP process generated H2O2 and exhibited coupling effect of 42.1%.•·OH, HO2·/O2·- and 1O2 were the main active species for effective LEV degradation.•Pyridinic N, pyrrolic N, C-O-P and defects were active sites for H2O2 production.•Generation of HO2/O2·- and O3·- was attributed to pyridinic N, pyrrolic N and C-P-O.
ArticleNumber 143145
Author Zhang, Hanmin
Wei, Xingyue
Liu, Mengxuan
Guo, Miao
Cao, MengBo
Author_xml – sequence: 1
  givenname: Xingyue
  surname: Wei
  fullname: Wei, Xingyue
– sequence: 2
  givenname: Hanmin
  surname: Zhang
  fullname: Zhang, Hanmin
  email: zhhanmin@126.com
– sequence: 3
  givenname: MengBo
  surname: Cao
  fullname: Cao, MengBo
– sequence: 4
  givenname: Miao
  surname: Guo
  fullname: Guo, Miao
– sequence: 5
  givenname: Mengxuan
  surname: Liu
  fullname: Liu, Mengxuan
BookMark eNqFkc1qGzEUhWeRQn7aRyho2UXGlTTSaKZdlGLaJhCaQNK10Gju2DKy5Eqya_c98z7ReEwX3QQEAnHOd4_uuSzOnHdQFO8JnhFM6o-r2Upb2AQ_o5iyGWEVYfysuMAtb8ua0_q8uIxxhTERWLCL4vnx4CAsTExGI783vUrGO-QHZGHnB-v3ShuH8gELOgVfbiD4fR6K4iEmWKM_Ji0RuKVyGvosLKNJW_TzGj2gCHYoY1KuN26BtApdRmuVlr4H1EMwu-wYgl-j-dL6ANaqT-j2RLih9xQtIKc7RrpG_wYrncxuypnRI1DZwzH_X--O72-LN4OyEd6d7qvi1_dvT_Ob8u7-x-38612pK0ZTqRgBSgUnqmlaLLiqOddiEA10omdCNWzoOlL1otGa911NgVMMVUeYoi1QUV0VHyZuXvjvLcQk1ybq8R8O_DbKivCqFi1u2iz9PEl18DEGGKQ26Rg2BWWsJFiOBcqVPBUoxwLlVGB28__cm2DWKhxe9X2ZfJC3sDMQZNQGxqZMyHXK3ptXCC-sJsJU
CitedBy_id crossref_primary_10_1007_s10570_025_06456_4
crossref_primary_10_1016_j_cej_2024_158493
Cites_doi 10.1016/j.cej.2015.05.054
10.1016/j.cej.2018.12.036
10.1016/j.jhazmat.2023.131604
10.1016/j.jhazmat.2018.10.073
10.1016/j.cej.2020.124456
10.1016/j.apcatb.2023.122470
10.1021/es402305r
10.1016/j.cej.2022.139597
10.1021/jacs.9b04569
10.1021/acscatal.7b03464
10.1016/j.cej.2014.01.104
10.1016/j.jwpe.2022.103397
10.1016/j.colsurfa.2020.125431
10.1039/D1TA06955A
10.1016/j.jhazmat.2015.10.064
10.1021/acs.est.1c04943
10.1016/j.seppur.2021.118962
10.1016/j.seppur.2022.123027
10.1021/acs.est.8b01817
10.1016/j.apcatb.2019.05.008
10.1002/1097-4628(20000906)77:10<2278::AID-APP21>3.0.CO;2-Z
10.1021/acscatal.1c03236
10.1016/j.watres.2022.118275
10.1016/j.watres.2021.116927
10.1002/aenm.202000789
10.1016/j.chempr.2017.10.013
10.1021/acssuschemeng.1c06692
10.1016/j.cej.2022.140873
10.1016/j.carbon.2019.10.018
10.1016/j.seppur.2019.05.065
10.1016/j.apcatb.2021.120608
10.1016/j.seppur.2021.118691
10.1016/j.cej.2018.08.134
10.1016/j.ijhydene.2017.07.177
10.1039/D3QI00668A
10.1016/j.apcatb.2022.121935
10.1016/j.watres.2022.118302
10.1016/j.checat.2022.04.011
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jclepro.2024.143145
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_jclepro_2024_143145
S0959652624025940
GroupedDBID --K
--M
..I
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
J1W
JARJE
K-O
KCYFY
KOM
LY9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSJ
SSR
SSZ
T5K
~G-
29K
AAQXK
AATTM
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADHUB
ADMUD
ADNMO
AEGFY
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
D-I
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SSH
WUQ
ZY4
7S9
L.6
ID FETCH-LOGICAL-c342t-a41e22751a889075a655c7f78eb7d47a84fbb13d78cc5db62e520e3b14a29e273
IEDL.DBID .~1
ISSN 0959-6526
IngestDate Thu Jul 10 20:26:31 EDT 2025
Tue Jul 01 04:43:06 EDT 2025
Thu Apr 24 23:03:13 EDT 2025
Sat Feb 01 16:08:11 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Electro-peroxone
Levofloxacin
Density functional theory
Reactive oxygen species
Self-standing Chlorella carbon
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-a41e22751a889075a655c7f78eb7d47a84fbb13d78cc5db62e520e3b14a29e273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3153679089
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153679089
crossref_citationtrail_10_1016_j_jclepro_2024_143145
crossref_primary_10_1016_j_jclepro_2024_143145
elsevier_sciencedirect_doi_10_1016_j_jclepro_2024_143145
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of cleaner production
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Chen, Chen, Xi, Cao, Duan, Xie, Song, Wang (bib28) 2019; 254
Cao (bib2) 2021
Pang, Luo, Wei, Qin, Wei, Hu, Wu, Wei (bib22) 2022; 291
Yao, Li, Li, Yang, Yang (bib35) 2023; 458
Liu, Luo, Peng, Yang, Zeng, Li (bib19) 2020; 606
Cao, Quan, Zhao, Zhao, Chen, Yu (bib3) 2021; 11
Ding, Bao, Qian, Shen, Tong (bib5) 2019; 225
Xie, Zheng, Zhang, Li, Gu, Zhou, Wang, Li (bib31) 2023; 320
Farao Zhang, Yamashita, Hirotsu, Kitagawa, Otsuki (bib8) 2000; 77
Lyu, Ge, Hu, Guo (bib20) 2020; 389
Gu, Xie, Li, Song, Zhou (bib12) 2023; 452
Li, Tang, Zheng, Xia, Zhou, Xu, Qiao (bib17) 2020; 10
Sun, Sinev, Ju, Bergmann, Dresp, Kühl, Spöri, Schmies, Wang, Bernsmeier, Paul, Schmack, Kraehnert, Roldan Cuenya, Strasser (bib25) 2018; 8
Yin, Liu, Wu, Lu, Huang, Chen, Lin (bib37) 2022; 10
Tang, Fan, Zhang, Yan, Zheng (bib26) 2023; 309
Xing, Xie, Cao, Minakata, Zhang, Crittenden (bib33) 2014; 245
Liu, Yan, Luo, Li, Zhang, Peng, Wang, Zheng, Guo (bib18) 2023; 10
Fischbacher, von Sonntag, von Sonntag, Schmidt (bib9) 2013; 47
Wang, Cao, Chen, Xie, Sun, Duan, Wang (bib27) 2019; 355
Qu, Lu, Liang, Chen, Xiang, Zhang (bib24) 2019; 364
Zhang, Zhang, Jia, Zhang, Xia, Zhang, Wang, Yu (bib38) 2021; 268
Gong, Li, Zhang, Zhang, Tian, Wang (bib10) 2016; 304
Gu, Li, Xie, Song, Zhou (bib11) 2023; 349
Ma, Zhang, Zhang, Li, Guo, Cheng, Cheng (bib21) 2019; 360
Guo, Xie, Xiao, Zhao, Wang, Xu, Zhang, Yin, Cao, Gong (bib15) 2019; 141
Iglesias, Giuliani, Melchionna, Marchesan, Criado, Nasi, Bevilacqua, Tavagnacco, Vizza, Prato, Fornasiero (bib16) 2018; 4
Cheng, Lyu, Li, Wu, Hu, Han, Wu, Hojamberdiev, Geng (bib4) 2023; 327
Guo, Zhan, Yu, Wang (bib14) 2021; 194
Wei, Zhang, Wang, Tian, Lu (bib29) 2023; 459
Guo, Long, Huang, Yu, Wang (bib13) 2022; 215
Puziy, Poddubnaya, Gawdzik, Tascón (bib23) 2020; 157
Zhao, Quan, Su, Qin, Chen, Yu (bib39) 2021; 55
Xiang, Cheng, Wen, Wu, Sun, Wang (bib30) 2022; 216
Epold, Trapido, Dulova (bib6) 2015; 279
Xu, Cui, Wang, Chai, Guan (bib34) 2022; 2
Xin, Li, Guan, Ma, Zhang, Ma, Liu, Xin, Gao (bib32) 2021; 9
Zhou, Wang, Li, Cao, Liu, Yun (bib40) 2023; 51
Zhu, Huang, Ma, Wang, Duan, Wang (bib41) 2018; 52
Yao, Yu, Li, Yang (bib36) 2021; 298
Fan, Li, Zhou, Fu, Yang, Zhu, Liao (bib7) 2017; 42
Asgari, Seid-mohammadi, Rahmani, Samadi, Alizadeh, Nematollahi, Salari (bib1) 2021; 274
Zhao (10.1016/j.jclepro.2024.143145_bib39) 2021; 55
Yao (10.1016/j.jclepro.2024.143145_bib35) 2023; 458
Fischbacher (10.1016/j.jclepro.2024.143145_bib9) 2013; 47
Asgari (10.1016/j.jclepro.2024.143145_bib1) 2021; 274
Puziy (10.1016/j.jclepro.2024.143145_bib23) 2020; 157
Wang (10.1016/j.jclepro.2024.143145_bib27) 2019; 355
Cheng (10.1016/j.jclepro.2024.143145_bib4) 2023; 327
Gong (10.1016/j.jclepro.2024.143145_bib10) 2016; 304
Xin (10.1016/j.jclepro.2024.143145_bib32) 2021; 9
Zhou (10.1016/j.jclepro.2024.143145_bib40) 2023; 51
Gu (10.1016/j.jclepro.2024.143145_bib11) 2023; 349
Farao Zhang (10.1016/j.jclepro.2024.143145_bib8) 2000; 77
Yin (10.1016/j.jclepro.2024.143145_bib37) 2022; 10
Lyu (10.1016/j.jclepro.2024.143145_bib20) 2020; 389
Zhang (10.1016/j.jclepro.2024.143145_bib38) 2021; 268
Epold (10.1016/j.jclepro.2024.143145_bib6) 2015; 279
Liu (10.1016/j.jclepro.2024.143145_bib18) 2023; 10
Zhu (10.1016/j.jclepro.2024.143145_bib41) 2018; 52
Guo (10.1016/j.jclepro.2024.143145_bib13) 2022; 215
Cao (10.1016/j.jclepro.2024.143145_bib3) 2021; 11
Guo (10.1016/j.jclepro.2024.143145_bib15) 2019; 141
Fan (10.1016/j.jclepro.2024.143145_bib7) 2017; 42
Iglesias (10.1016/j.jclepro.2024.143145_bib16) 2018; 4
Gu (10.1016/j.jclepro.2024.143145_bib12) 2023; 452
Pang (10.1016/j.jclepro.2024.143145_bib22) 2022; 291
Xie (10.1016/j.jclepro.2024.143145_bib31) 2023; 320
Guo (10.1016/j.jclepro.2024.143145_bib14) 2021; 194
Tang (10.1016/j.jclepro.2024.143145_bib26) 2023; 309
Xiang (10.1016/j.jclepro.2024.143145_bib30) 2022; 216
Li (10.1016/j.jclepro.2024.143145_bib17) 2020; 10
Liu (10.1016/j.jclepro.2024.143145_bib19) 2020; 606
Ding (10.1016/j.jclepro.2024.143145_bib5) 2019; 225
Sun (10.1016/j.jclepro.2024.143145_bib25) 2018; 8
Wei (10.1016/j.jclepro.2024.143145_bib29) 2023; 459
Xu (10.1016/j.jclepro.2024.143145_bib34) 2022; 2
Ma (10.1016/j.jclepro.2024.143145_bib21) 2019; 360
Yao (10.1016/j.jclepro.2024.143145_bib36) 2021; 298
Xing (10.1016/j.jclepro.2024.143145_bib33) 2014; 245
Wang (10.1016/j.jclepro.2024.143145_bib28) 2019; 254
Qu (10.1016/j.jclepro.2024.143145_bib24) 2019; 364
Cao (10.1016/j.jclepro.2024.143145_bib2) 2021
References_xml – volume: 458
  year: 2023
  ident: bib35
  article-title: Mechanisms of interfacial catalysis and mass transfer in a flow-through electro-peroxone process
  publication-title: J. Hazard Mater.
– volume: 459
  year: 2023
  ident: bib29
  article-title: Nanocarbon shells with self-inherent N, P derived from chlorella pyrenoidosa for aqueous catalytic ozonation: nonradical-dominated mechanisms
  publication-title: Chem. Eng. J.
– volume: 11
  start-page: 13797
  year: 2021
  end-page: 13808
  ident: bib3
  article-title: Durable and selective electrochemical H
  publication-title: ACS Catal.
– volume: 141
  start-page: 12005
  year: 2019
  end-page: 12010
  ident: bib15
  article-title: Single-atom Mn-N
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 9959
  year: 2013
  end-page: 9964
  ident: bib9
  article-title: The •OH radical yield in the H
  publication-title: Environ. Sci. Technol.
– volume: 77
  start-page: 2278
  year: 2000
  end-page: 2284
  ident: bib8
  article-title: A novel polyethylene–chlorella composite. i. characterization of chlorella biologically fixing CO
  publication-title: J. Appl. Polym. Sci.
– volume: 304
  start-page: 320
  year: 2016
  end-page: 328
  ident: bib10
  article-title: Partial degradation of levofloxacin for biodegradability improvement by electro-Fenton process using an activated carbon fiber felt cathode
  publication-title: J. Hazard Mater.
– volume: 309
  year: 2023
  ident: bib26
  article-title: The improvement of levofloxacin and tetracycline removal from simulated water by thermosensitive flocculant: mechanisms and simulation
  publication-title: Sep.and Purif. Technol.
– volume: 215
  year: 2022
  ident: bib13
  article-title: Can the commonly used quenching method really evaluate the role of reactive oxygen species in pollutant abatement during catalytic ozonation?
  publication-title: Water Res.
– volume: 364
  start-page: 468
  year: 2019
  end-page: 474
  ident: bib24
  article-title: Simultaneous electro-oxidation and in situ electro-peroxone process for the degradation of refractory organics in wastewater
  publication-title: J. Hazard Mater.
– volume: 389
  year: 2020
  ident: bib20
  article-title: One-pot synthesis of magnetic CuO/Fe
  publication-title: Chem. Eng. J.
– volume: 2
  start-page: 1450
  year: 2022
  end-page: 1466
  ident: bib34
  article-title: Pyrimidine-assisted synthesis of S, N-codoped few-layered graphene for highly efficient hydrogen peroxide production in acid
  publication-title: Chem Catal.
– volume: 216
  year: 2022
  ident: bib30
  article-title: Electro-peroxone with solid polymer electrolytes: a novel system for degradation of plasticizers in natural effluents
  publication-title: Water Res.
– volume: 10
  start-page: 3632
  year: 2023
  end-page: 3640
  ident: bib18
  article-title: Phosphorus doped hierarchical porous carbon: an efficient oxygen reduction electrocatalyst for on-site H
  publication-title: Inorg. Chem. Front.
– volume: 4
  start-page: 106
  year: 2018
  end-page: 123
  ident: bib16
  article-title: N-doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O
  publication-title: Chem
– volume: 606
  year: 2020
  ident: bib19
  article-title: Preparation of phosphorus-containing porous carbon by direct carbonization for acetone adsorption
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 10
  start-page: 911
  year: 2022
  end-page: 922
  ident: bib37
  article-title: Fabrication of P-doped porous carbon catalysts, with inherent N functionality, from waste peanut shells and their application in the metal-free aerobic oxidation of alcohols
  publication-title: ACS Sustain. Chem. Eng.
– volume: 52
  start-page: 8649
  year: 2018
  end-page: 8658
  ident: bib41
  article-title: Catalytic removal of aqueous contaminants on n-doped graphitic biochars: inherent roles of adsorption and nonradical mechanisms
  publication-title: Environ. Sci. Technol.
– volume: 320
  start-page: 583
  year: 2023
  end-page: 595
  ident: bib31
  article-title: Constructing a carbon sphere-embedded Fe
  publication-title: Appl. Catal. B Environ.
– volume: 245
  start-page: 71
  year: 2014
  end-page: 79
  ident: bib33
  article-title: Activated carbon-enhanced ozonation of oxalate attributed to HO oxidation in bulk solution and surface oxidation: effects of the type and number of basic sites
  publication-title: Chem. Eng. J.
– volume: 279
  start-page: 452
  year: 2015
  end-page: 462
  ident: bib6
  article-title: Degradation of levofloxacin in aqueous solutions by Fenton, ferrous ion-activated persulfate and combined Fenton/persulfate systems
  publication-title: Chem. Eng. J.
– volume: 349
  year: 2023
  ident: bib11
  article-title: Degradation of atrazine by electro-peroxone enhanced by Fe and N co-doped carbon nanotubes with simultaneous catalysis of H
  publication-title: Chemosphere
– volume: 42
  start-page: 27657
  year: 2017
  end-page: 27665
  ident: bib7
  article-title: A green, cheap, high-performance carbonaceous catalyst derived from Chlorella pyrenoidosa for oxygen reduction reaction in microbial fuel cells
  publication-title: Int. J. Hydrogen Energy
– volume: 55
  start-page: 14194
  year: 2021
  end-page: 14203
  ident: bib39
  article-title: Enhanced chlorinated pollutant degradation by the synergistic effect between dechlorination and hydroxyl radical oxidation on a bimetallic single-atom catalyst
  publication-title: Environ. Sci. Technol.
– volume: 452
  year: 2023
  ident: bib12
  article-title: Highly efficient electro-peroxone enhanced by oxygen-doped carbon nanotubes with triple role of in-situ H
  publication-title: Chem. Eng. J.
– volume: 268
  year: 2021
  ident: bib38
  article-title: In situ fabrication of a novel S-scheme heterojunction photocatalyts Bi
  publication-title: Sep. Purif. Technol.
– year: 2021
  ident: bib2
  article-title: Electrocatalytic Oxygen Reduction for Selective H
– volume: 225
  start-page: 80
  year: 2019
  end-page: 87
  ident: bib5
  article-title: N-Graphene-CeO
  publication-title: Sep. Purif. Technol.
– volume: 10
  year: 2020
  ident: bib17
  article-title: Tailoring selectivity of electrochemical hydrogen peroxide generation by tunable pyrrolic‐nitrogen‐carbon
  publication-title: Adv. Energy Mater.
– volume: 291
  year: 2022
  ident: bib22
  article-title: In-situ growth of Co/Ni bimetallic organic frameworks on carbon spheres with catalytic ozonation performance for removal of bio-treated coking wastewater
  publication-title: Chemosphere
– volume: 194
  year: 2021
  ident: bib14
  article-title: Evaluation of the concentration and contribution of superoxide radical for micropollutant abatement during ozonation
  publication-title: Water Res.
– volume: 254
  start-page: 283
  year: 2019
  end-page: 291
  ident: bib28
  article-title: Occurrence of both hydroxyl radical and surface oxidation pathways in N-doped layered nanocarbons for aqueous catalytic ozonation
  publication-title: Appl. Catal. B Environ.
– volume: 9
  start-page: 25136
  year: 2021
  end-page: 25149
  ident: bib32
  article-title: Electrocatalytic oxygen reduction to hydrogen peroxide through a biomass-derived nitrogen and oxygen self-doped porous carbon metal-free catalyst
  publication-title: J. Mater. Chem. A
– volume: 274
  year: 2021
  ident: bib1
  article-title: Carbon felt modified with N-doped rGO for an efficient electro-peroxone process in diuron degradation and biodegradability improvement of wastewater from a pesticide manufacture: optimization of process parameters, electrical energy consumption and degradation pathway
  publication-title: Sep. Purif. Technol.
– volume: 327
  year: 2023
  ident: bib4
  article-title: Steering the oxygen reduction reaction pathways of N-carbon hollow spheres by heteroatom doping
  publication-title: Appl. Catal. B Environ.
– volume: 360
  start-page: 848
  year: 2019
  end-page: 860
  ident: bib21
  article-title: Synthesis of magnetic CuO/MnFe
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 2844
  year: 2018
  end-page: 2856
  ident: bib25
  article-title: Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts
  publication-title: ACS Catal.
– volume: 51
  year: 2023
  ident: bib40
  article-title: Simultaneously removal of phosphorous and COD for purification of organophosphorus wastewater by catalytic ozonation over CaO
  publication-title: J. Water Process Eng.
– volume: 298
  year: 2021
  ident: bib36
  article-title: Interfacial catalytic and mass transfer mechanisms of an electro-peroxone process for selective removal of multiple fluoroquinolones
  publication-title: Appl. Catal. B Environ.
– volume: 157
  start-page: 796
  year: 2020
  end-page: 846
  ident: bib23
  article-title: Phosphorus-containing carbons: preparation, properties and utilization
  publication-title: Carbon
– volume: 355
  start-page: 118
  year: 2019
  end-page: 129
  ident: bib27
  article-title: Metal-free catalytic ozonation on surface-engineered graphene: microwave reduction and heteroatom doping
  publication-title: Chem. Eng. J.
– volume: 279
  start-page: 452
  year: 2015
  ident: 10.1016/j.jclepro.2024.143145_bib6
  article-title: Degradation of levofloxacin in aqueous solutions by Fenton, ferrous ion-activated persulfate and combined Fenton/persulfate systems
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.05.054
– volume: 360
  start-page: 848
  year: 2019
  ident: 10.1016/j.jclepro.2024.143145_bib21
  article-title: Synthesis of magnetic CuO/MnFe2O4 nanocompisite and its high activity for degradation of levofloxacin by activation of persulfate
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.12.036
– volume: 458
  year: 2023
  ident: 10.1016/j.jclepro.2024.143145_bib35
  article-title: Mechanisms of interfacial catalysis and mass transfer in a flow-through electro-peroxone process
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2023.131604
– volume: 364
  start-page: 468
  year: 2019
  ident: 10.1016/j.jclepro.2024.143145_bib24
  article-title: Simultaneous electro-oxidation and in situ electro-peroxone process for the degradation of refractory organics in wastewater
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2018.10.073
– volume: 389
  year: 2020
  ident: 10.1016/j.jclepro.2024.143145_bib20
  article-title: One-pot synthesis of magnetic CuO/Fe2O3/CuFe2O4 nanocomposite to activate persulfate for levofloxacin removal: investigation of efficiency, mechanism and degradation route
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124456
– volume: 327
  year: 2023
  ident: 10.1016/j.jclepro.2024.143145_bib4
  article-title: Steering the oxygen reduction reaction pathways of N-carbon hollow spheres by heteroatom doping
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2023.122470
– volume: 47
  start-page: 9959
  issue: 17
  year: 2013
  ident: 10.1016/j.jclepro.2024.143145_bib9
  article-title: The •OH radical yield in the H2O2 +O3 (peroxone) reaction
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es402305r
– volume: 452
  year: 2023
  ident: 10.1016/j.jclepro.2024.143145_bib12
  article-title: Highly efficient electro-peroxone enhanced by oxygen-doped carbon nanotubes with triple role of in-situ H2O2 generation, activation and catalytic ozonation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.139597
– volume: 141
  start-page: 12005
  issue: 30
  year: 2019
  ident: 10.1016/j.jclepro.2024.143145_bib15
  article-title: Single-atom Mn-N4 site-catalyzed peroxone reaction for the efficient production of hydroxyl radicals in an acidic solution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b04569
– volume: 8
  start-page: 2844
  issue: 4
  year: 2018
  ident: 10.1016/j.jclepro.2024.143145_bib25
  article-title: Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03464
– volume: 245
  start-page: 71
  year: 2014
  ident: 10.1016/j.jclepro.2024.143145_bib33
  article-title: Activated carbon-enhanced ozonation of oxalate attributed to HO oxidation in bulk solution and surface oxidation: effects of the type and number of basic sites
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.01.104
– volume: 51
  year: 2023
  ident: 10.1016/j.jclepro.2024.143145_bib40
  article-title: Simultaneously removal of phosphorous and COD for purification of organophosphorus wastewater by catalytic ozonation over CaO
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2022.103397
– volume: 606
  year: 2020
  ident: 10.1016/j.jclepro.2024.143145_bib19
  article-title: Preparation of phosphorus-containing porous carbon by direct carbonization for acetone adsorption
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2020.125431
– volume: 9
  start-page: 25136
  issue: 44
  year: 2021
  ident: 10.1016/j.jclepro.2024.143145_bib32
  article-title: Electrocatalytic oxygen reduction to hydrogen peroxide through a biomass-derived nitrogen and oxygen self-doped porous carbon metal-free catalyst
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA06955A
– volume: 304
  start-page: 320
  year: 2016
  ident: 10.1016/j.jclepro.2024.143145_bib10
  article-title: Partial degradation of levofloxacin for biodegradability improvement by electro-Fenton process using an activated carbon fiber felt cathode
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2015.10.064
– volume: 55
  start-page: 14194
  issue: 20
  year: 2021
  ident: 10.1016/j.jclepro.2024.143145_bib39
  article-title: Enhanced chlorinated pollutant degradation by the synergistic effect between dechlorination and hydroxyl radical oxidation on a bimetallic single-atom catalyst
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c04943
– volume: 274
  year: 2021
  ident: 10.1016/j.jclepro.2024.143145_bib1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.118962
– volume: 349
  year: 2023
  ident: 10.1016/j.jclepro.2024.143145_bib11
  article-title: Degradation of atrazine by electro-peroxone enhanced by Fe and N co-doped carbon nanotubes with simultaneous catalysis of H2O2 and O3
  publication-title: Chemosphere
– volume: 309
  year: 2023
  ident: 10.1016/j.jclepro.2024.143145_bib26
  article-title: The improvement of levofloxacin and tetracycline removal from simulated water by thermosensitive flocculant: mechanisms and simulation
  publication-title: Sep.and Purif. Technol.
  doi: 10.1016/j.seppur.2022.123027
– volume: 52
  start-page: 8649
  issue: 15
  year: 2018
  ident: 10.1016/j.jclepro.2024.143145_bib41
  article-title: Catalytic removal of aqueous contaminants on n-doped graphitic biochars: inherent roles of adsorption and nonradical mechanisms
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b01817
– volume: 254
  start-page: 283
  year: 2019
  ident: 10.1016/j.jclepro.2024.143145_bib28
  article-title: Occurrence of both hydroxyl radical and surface oxidation pathways in N-doped layered nanocarbons for aqueous catalytic ozonation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.05.008
– year: 2021
  ident: 10.1016/j.jclepro.2024.143145_bib2
– volume: 77
  start-page: 2278
  year: 2000
  ident: 10.1016/j.jclepro.2024.143145_bib8
  article-title: A novel polyethylene–chlorella composite. i. characterization of chlorella biologically fixing CO2
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/1097-4628(20000906)77:10<2278::AID-APP21>3.0.CO;2-Z
– volume: 11
  start-page: 13797
  issue: 22
  year: 2021
  ident: 10.1016/j.jclepro.2024.143145_bib3
  article-title: Durable and selective electrochemical H2O2 synthesis under a large current enabled by the cathode with highly hydrophobic three-phase architecture
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c03236
– volume: 215
  year: 2022
  ident: 10.1016/j.jclepro.2024.143145_bib13
  article-title: Can the commonly used quenching method really evaluate the role of reactive oxygen species in pollutant abatement during catalytic ozonation?
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.118275
– volume: 194
  year: 2021
  ident: 10.1016/j.jclepro.2024.143145_bib14
  article-title: Evaluation of the concentration and contribution of superoxide radical for micropollutant abatement during ozonation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2021.116927
– volume: 10
  issue: 21
  year: 2020
  ident: 10.1016/j.jclepro.2024.143145_bib17
  article-title: Tailoring selectivity of electrochemical hydrogen peroxide generation by tunable pyrrolic‐nitrogen‐carbon
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000789
– volume: 4
  start-page: 106
  issue: 1
  year: 2018
  ident: 10.1016/j.jclepro.2024.143145_bib16
  article-title: N-doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.10.013
– volume: 10
  start-page: 911
  issue: 2
  year: 2022
  ident: 10.1016/j.jclepro.2024.143145_bib37
  article-title: Fabrication of P-doped porous carbon catalysts, with inherent N functionality, from waste peanut shells and their application in the metal-free aerobic oxidation of alcohols
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.1c06692
– volume: 459
  year: 2023
  ident: 10.1016/j.jclepro.2024.143145_bib29
  article-title: Nanocarbon shells with self-inherent N, P derived from chlorella pyrenoidosa for aqueous catalytic ozonation: nonradical-dominated mechanisms
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.140873
– volume: 157
  start-page: 796
  year: 2020
  ident: 10.1016/j.jclepro.2024.143145_bib23
  article-title: Phosphorus-containing carbons: preparation, properties and utilization
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.10.018
– volume: 225
  start-page: 80
  year: 2019
  ident: 10.1016/j.jclepro.2024.143145_bib5
  article-title: N-Graphene-CeO2 nanocomposite enriched with Ce (III) sites to improve the efficiency of peroxone reaction under acidic conditions
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.05.065
– volume: 298
  year: 2021
  ident: 10.1016/j.jclepro.2024.143145_bib36
  article-title: Interfacial catalytic and mass transfer mechanisms of an electro-peroxone process for selective removal of multiple fluoroquinolones
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2021.120608
– volume: 268
  year: 2021
  ident: 10.1016/j.jclepro.2024.143145_bib38
  article-title: In situ fabrication of a novel S-scheme heterojunction photocatalyts Bi2O3/P-C3N4 to enhance levofloxacin removal from water
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.118691
– volume: 355
  start-page: 118
  year: 2019
  ident: 10.1016/j.jclepro.2024.143145_bib27
  article-title: Metal-free catalytic ozonation on surface-engineered graphene: microwave reduction and heteroatom doping
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.08.134
– volume: 42
  start-page: 27657
  issue: 45
  year: 2017
  ident: 10.1016/j.jclepro.2024.143145_bib7
  article-title: A green, cheap, high-performance carbonaceous catalyst derived from Chlorella pyrenoidosa for oxygen reduction reaction in microbial fuel cells
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.07.177
– volume: 10
  start-page: 3632
  year: 2023
  ident: 10.1016/j.jclepro.2024.143145_bib18
  article-title: Phosphorus doped hierarchical porous carbon: an efficient oxygen reduction electrocatalyst for on-site H2O2 production
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D3QI00668A
– volume: 320
  start-page: 583
  year: 2023
  ident: 10.1016/j.jclepro.2024.143145_bib31
  article-title: Constructing a carbon sphere-embedded Fe0 for accelerating electro-peroxone oxidation effectively: the dual catalytic role with O3 and H2O2
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2022.121935
– volume: 216
  year: 2022
  ident: 10.1016/j.jclepro.2024.143145_bib30
  article-title: Electro-peroxone with solid polymer electrolytes: a novel system for degradation of plasticizers in natural effluents
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.118302
– volume: 291
  issue: Pt 2
  year: 2022
  ident: 10.1016/j.jclepro.2024.143145_bib22
  article-title: In-situ growth of Co/Ni bimetallic organic frameworks on carbon spheres with catalytic ozonation performance for removal of bio-treated coking wastewater
  publication-title: Chemosphere
– volume: 2
  start-page: 1450
  issue: 6
  year: 2022
  ident: 10.1016/j.jclepro.2024.143145_bib34
  article-title: Pyrimidine-assisted synthesis of S, N-codoped few-layered graphene for highly efficient hydrogen peroxide production in acid
  publication-title: Chem Catal.
  doi: 10.1016/j.checat.2022.04.011
SSID ssj0017074
Score 2.466016
Snippet An intrinsic N, P self-standing carbon block (NP SSCB) cathode prepared with Chlorella as a precursor was used to enhance the electro-peroxone (EP) process...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 143145
SubjectTerms carbon
cathodes
Chlorella
Density functional theory
Electro-peroxone
Levofloxacin
oxidation
ozonation
Reactive oxygen species
Self-standing Chlorella carbon
synergism
temperature
X-ray photoelectron spectroscopy
Title Synergistic oxidation of levofloxacin in electro-peroxone system with enhanced in-situ N, P self-standing carbon cathode derived from Chlorella: In-situ H2O2 generation, peroxone activation and catalytic ozonation
URI https://dx.doi.org/10.1016/j.jclepro.2024.143145
https://www.proquest.com/docview/3153679089
Volume 469
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvbSH0idN2oYp9BjtrmXJj97C0rBpYVtIA7kZWZYbL8YO-wibHvov-386I8nbB4VAjS820niwpHlp5hNjbzOyolHv8jqLFEeLOOd5bXM-sWhuoMJGD8Fl-c6T2YX8cKku99h0qIWhtMog-71Md9I6vBmHvzm-bprxOUWwEiUS2h9QuSS_XcqUZvno-y7NI0onHomZwl3U-lcVz3gxWiAxFFToJgqJMiOOqKrp3_rpL0nt1M_pI_Yw2I1w4ll7zPZs94Q9-A1N8Cn7cX5LhXwOeRn6beNPS4K-htbe9HXbb7VpOsA7nH3DCSR823cWPJ4zUFAWbHflsgKwIV816w3Mj-EzrGxb86EIBoxelkiaMF_7ykKFHNxgD6pVgelV2y8pp-odnAUKM_FJwFcHcE0sHcPuw1RW4YPCgKTBBZNuHf_feh-nfMYuTt9_mc54OLWBm1iKNdcyskKkKtJZhp630olSJq3TzJZpJVOdyboso7hKM2NUVSbCKjGxcRlJLXKL1tRztt8hBy8YmEgbpBahJIylLDVetUYHTCaxsZmuDpgcxqowAdKcTtZoiyF3bVGEIS5oiAs_xAdstOt27TE97uqQDROh-GNyFqh37ur6Zpg4BS5c2o3Rne03qyJGXZOktO16-P_kX7L79OST3l6x_fVyY1-jlbQuj9wyOGL3Ts4-zuY_ATtxFpo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZhc2h7KH3S9DmFHqPsWpZsb29hafA26baQBHIzsiwnXowd9hE2_Z_9P52x5O2DQqDGJ9szHix5Xpr5xNiHhLxotLu8TALF0SMe83Fpx3xk0d1Ag40RQlflO4vSc_n5Ql3ssEnfC0NllV73O53eaWt_Zei_5vC6qoanlMGKlIhofUCNJcbtu4ROpQZs93B6nM62iwnxyIExU8aLCH418gznB3Pkh7oKI0UhUW2EATU2_dtE_aWsOwt09Ig99K4jHDrpHrMd2zxhD34DFHzKfpzeUi9fB74M7aZyGyZBW0Jtb9qybjfaVA3g6be_4YQTvmkbCw7SGSgvC7a56goD8EG-rFZrmO3DN1jauuR9HwwYvciRNcG-toWFAiW4QQpqV4HJVd0uqKzqI0w9h1R8FXDZYVyTSPuwfTF1Vri8MCBr6PJJt53831uXqnzGzo8-nU1S7jdu4CaUYsW1DKwQsQp0kmDwrXSklInLOLF5XMhYJ7LM8yAs4sQYVeSRsEqMbJgHUouxRYfqORs0KMELBibQBrkFqAxDKXONR6kxBpNRaGyiiz0m-7HKjEc1p8016qwvX5tnfogzGuLMDfEeO9iSXTtYj7sIkn4iZH_MzwxNz12k7_uJk-G_SwsyurHtepmFaG6imFZeX_4_-3fsXnr25SQ7mc6OX7H7dMfVwL1mg9Vibd-g07TK3_qf4ienzxlL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+oxidation+of+levofloxacin+in+electro-peroxone+system+with+enhanced+in-situ+N%2C+P+self-standing+carbon+cathode+derived+from+Chlorella%3A+In-situ+H2O2+generation%2C+peroxone+activation+and+catalytic+ozonation&rft.jtitle=Journal+of+cleaner+production&rft.au=Wei%2C+Xingyue&rft.au=Zhang%2C+Hanmin&rft.au=Cao%2C+MengBo&rft.au=Guo%2C+Miao&rft.date=2024-09-01&rft.issn=0959-6526&rft.volume=469+p.143145-&rft_id=info:doi/10.1016%2Fj.jclepro.2024.143145&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon