Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire

Ryan Emerson and colleagues report immunosequencing of the variable region of the TCRβ chain in 666 individuals with known cytomegalovirus (CMV) status. They show that CMV status and HLA genotype shape the T cell repertoire and demonstrate proof of principle that TCRβ sequencing can be used as a spe...

Full description

Saved in:
Bibliographic Details
Published inNature genetics Vol. 49; no. 5; pp. 659 - 665
Main Authors Emerson, Ryan O, DeWitt, William S, Vignali, Marissa, Gravley, Jenna, Hu, Joyce K, Osborne, Edward J, Desmarais, Cindy, Klinger, Mark, Carlson, Christopher S, Hansen, John A, Rieder, Mark, Robins, Harlan S
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.05.2017
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ryan Emerson and colleagues report immunosequencing of the variable region of the TCRβ chain in 666 individuals with known cytomegalovirus (CMV) status. They show that CMV status and HLA genotype shape the T cell repertoire and demonstrate proof of principle that TCRβ sequencing can be used as a specific diagnostic of pathogen exposure. An individual's T cell repertoire dynamically encodes their pathogen exposure history. To determine whether pathogen exposure signatures can be identified by documenting public T cell receptors (TCRs), we profiled the T cell repertoire of 666 subjects with known cytomegalovirus (CMV) serostatus by immunosequencing. We developed a statistical classification framework that could diagnose CMV status from the resulting catalog of TCRβ sequences with high specificity and sensitivity in both the original cohort and a validation cohort of 120 different subjects. We also confirmed that three of the identified CMV-associated TCRβ molecules bind CMV in vitro , and, moreover, we used this approach to accurately predict the HLA-A and HLA-B alleles of most subjects in the first cohort. As all memory T cell responses are encoded in the common format of somatic TCR recombination, our approach could potentially be generalized to a wide variety of disease states, as well as other immunological phenotypes, as a highly parallelizable diagnostic strategy.
AbstractList An individual's T cell repertoire dynamically encodes their pathogen exposure history. To determine whether pathogen exposure signatures can be identified by documenting public T cell receptors (TCRs), we profiled the T cell repertoire of 666 subjects with known cytomegalovirus (CMV) serostatus by immunosequencing. We developed a statistical classification framework that could diagnose CMV status from the resulting catalog of TCRβ sequences with high specificity and sensitivity in both the original cohort and a validation cohort of 120 different subjects. We also confirmed that three of the identified CMV-associated TCRβ molecules bind CMV in vitro, and, moreover, we used this approach to accurately predict the HLA-A and HLA-B alleles of most subjects in the first cohort. As all memory T cell responses are encoded in the common format of somatic TCR recombination, our approach could potentially be generalized to a wide variety of disease states, as well as other immunological phenotypes, as a highly parallelizable diagnostic strategy.An individual's T cell repertoire dynamically encodes their pathogen exposure history. To determine whether pathogen exposure signatures can be identified by documenting public T cell receptors (TCRs), we profiled the T cell repertoire of 666 subjects with known cytomegalovirus (CMV) serostatus by immunosequencing. We developed a statistical classification framework that could diagnose CMV status from the resulting catalog of TCRβ sequences with high specificity and sensitivity in both the original cohort and a validation cohort of 120 different subjects. We also confirmed that three of the identified CMV-associated TCRβ molecules bind CMV in vitro, and, moreover, we used this approach to accurately predict the HLA-A and HLA-B alleles of most subjects in the first cohort. As all memory T cell responses are encoded in the common format of somatic TCR recombination, our approach could potentially be generalized to a wide variety of disease states, as well as other immunological phenotypes, as a highly parallelizable diagnostic strategy.
An individual's T cell repertoire dynamically encodes their pathogen exposure history. To determine whether pathogen exposure signatures can be identified by documenting public T cell receptors (TCRs), we profiled the T cell repertoire of 666 subjects with known cytomegalovirus (CMV) serostatus by immunosequencing. We developed a statistical classification framework that could diagnose CMV status from the resulting catalog of TCRβ sequences with high specificity and sensitivity in both the original cohort and a validation cohort of 120 different subjects. We also confirmed that three of the identified CMV-associated TCRβ molecules bind CMV in vitro, and, moreover, we used this approach to accurately predict the HLA-A and HLA-B alleles of most subjects in the first cohort. As all memory T cell responses are encoded in the common format of somatic TCR recombination, our approach could potentially be generalized to a wide variety of disease states, as well as other immunological phenotypes, as a highly parallelizable diagnostic strategy.
Ryan Emerson and colleagues report immunosequencing of the variable region of the TCRβ chain in 666 individuals with known cytomegalovirus (CMV) status. They show that CMV status and HLA genotype shape the T cell repertoire and demonstrate proof of principle that TCRβ sequencing can be used as a specific diagnostic of pathogen exposure. An individual's T cell repertoire dynamically encodes their pathogen exposure history. To determine whether pathogen exposure signatures can be identified by documenting public T cell receptors (TCRs), we profiled the T cell repertoire of 666 subjects with known cytomegalovirus (CMV) serostatus by immunosequencing. We developed a statistical classification framework that could diagnose CMV status from the resulting catalog of TCRβ sequences with high specificity and sensitivity in both the original cohort and a validation cohort of 120 different subjects. We also confirmed that three of the identified CMV-associated TCRβ molecules bind CMV in vitro , and, moreover, we used this approach to accurately predict the HLA-A and HLA-B alleles of most subjects in the first cohort. As all memory T cell responses are encoded in the common format of somatic TCR recombination, our approach could potentially be generalized to a wide variety of disease states, as well as other immunological phenotypes, as a highly parallelizable diagnostic strategy.
An individual's T cell repertoire dynamically encodes their pathogen exposure history. To determine whether pathogen exposure signatures can be identified by documenting public T cell receptors (TCRs), we profiled the T cell repertoire of 666 subjects with known cytomegalovirus (CMV) serostatus by immunosequencing. We developed a statistical classification framework that could diagnose CMV status from the resulting catalog of TCRb sequences with high specificity and sensitivity in both the original cohort and a validation cohort of 120 different subjects. We also confirmed that three of the identified CMV-associated TCRb molecules bind CMV in vitro, and, moreover, we used this approach to accurately predict the HLA-A and HLA-B alleles of most subjects in the first cohort. As all memory T cell responses are encoded in the common format of somatic TCR recombination, our approach could potentially be generalized to a wide variety of disease states, as well as other immunological phenotypes, as a highly parallelizable diagnostic strategy.
Author Hansen, John A
DeWitt, William S
Vignali, Marissa
Desmarais, Cindy
Rieder, Mark
Robins, Harlan S
Hu, Joyce K
Gravley, Jenna
Klinger, Mark
Carlson, Christopher S
Emerson, Ryan O
Osborne, Edward J
Author_xml – sequence: 1
  givenname: Ryan O
  surname: Emerson
  fullname: Emerson, Ryan O
  email: remerson@adaptivebiotech.com
  organization: Adaptive Biotechnologies
– sequence: 2
  givenname: William S
  orcidid: 0000-0002-6802-9139
  surname: DeWitt
  fullname: DeWitt, William S
  organization: Adaptive Biotechnologies, Computational Biology Program, Fred Hutchinson Cancer Research Center
– sequence: 3
  givenname: Marissa
  surname: Vignali
  fullname: Vignali, Marissa
  organization: Adaptive Biotechnologies
– sequence: 4
  givenname: Jenna
  surname: Gravley
  fullname: Gravley, Jenna
  organization: Fred Hutchinson Cancer Research Center
– sequence: 5
  givenname: Joyce K
  surname: Hu
  fullname: Hu, Joyce K
  organization: Adaptive Biotechnologies
– sequence: 6
  givenname: Edward J
  surname: Osborne
  fullname: Osborne, Edward J
  organization: Adaptive Biotechnologies
– sequence: 7
  givenname: Cindy
  surname: Desmarais
  fullname: Desmarais, Cindy
  organization: Adaptive Biotechnologies
– sequence: 8
  givenname: Mark
  surname: Klinger
  fullname: Klinger, Mark
  organization: Adaptive Biotechnologies
– sequence: 9
  givenname: Christopher S
  surname: Carlson
  fullname: Carlson, Christopher S
  organization: Fred Hutchinson Cancer Research Center
– sequence: 10
  givenname: John A
  surname: Hansen
  fullname: Hansen, John A
  organization: Fred Hutchinson Cancer Research Center
– sequence: 11
  givenname: Mark
  surname: Rieder
  fullname: Rieder, Mark
  organization: Adaptive Biotechnologies
– sequence: 12
  givenname: Harlan S
  surname: Robins
  fullname: Robins, Harlan S
  organization: Adaptive Biotechnologies, Computational Biology Program, Fred Hutchinson Cancer Research Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28369038$$D View this record in MEDLINE/PubMed
BookMark eNpl0c1KJDEQAOAgLqvOLr6BBDysl55NOulM-iiy_sCAF_ccMulKG-lOxiQtDvjwZnAEGU8pkq-KqtQJOvTBA0KnlMwpYfKv7-dM1vUBOqYNFxVdUHlYYiJoxQkTR-gkpSdCKOdE_kRHtWSiLXnH6O1uHCcfEjxP4I3zPXYd-Oysg4ST673OUyxhsNhschih10N4cXFKGF7XIZVH_OhSDnGDte_w7fKyGqFzOkOHwVowuSR7nB8BP2ADw4AjrCHm4CL8Qj-sHhL83p0z9P_638PVbbW8v7m7ulxWhvE6V5p1klti2gUTpIVGriQQwpqWEg5yUYYUli86QRrOTSfaGqQUUK7katW1FtgMXXzUXcdQ5kxZjS5te9EewpQUlZJTIQipCz3fo09hir50V1TL24ZL3hR1tlPTqkyr1tGNOm7U578WUH0AE0NKEawyLuvsgs9Ru0FRorZ7U75X270V_2fPf5b8LnezpCJ8D_FLg3v0HWqjpZc
CitedBy_id crossref_primary_10_7554_eLife_89999_4
crossref_primary_10_3389_fimmu_2020_588741
crossref_primary_10_1126_sciadv_adk4670
crossref_primary_10_1093_bioinformatics_btae431
crossref_primary_10_1073_pnas_1809642115
crossref_primary_10_1038_s42256_021_00413_z
crossref_primary_10_1093_bib_bbab493
crossref_primary_10_1038_s41598_020_79363_2
crossref_primary_10_1084_jem_20211327
crossref_primary_10_1016_j_immuno_2022_100012
crossref_primary_10_1038_s42003_024_07010_x
crossref_primary_10_1093_bioinformatics_btad468
crossref_primary_10_1016_j_coisb_2018_09_005
crossref_primary_10_1172_jci_insight_170767
crossref_primary_10_1016_j_cell_2024_04_003
crossref_primary_10_3389_fimmu_2022_954078
crossref_primary_10_1172_JCI98819
crossref_primary_10_1080_14760584_2022_2093193
crossref_primary_10_1093_gpbjnl_qzae013
crossref_primary_10_1016_j_humimm_2018_12_007
crossref_primary_10_3389_fimmu_2021_659625
crossref_primary_10_1038_nature23091
crossref_primary_10_1016_j_celrep_2024_113872
crossref_primary_10_1186_s12865_019_0300_5
crossref_primary_10_1103_PhysRevE_101_062414
crossref_primary_10_7554_eLife_73475
crossref_primary_10_1371_journal_pone_0265313
crossref_primary_10_1016_j_cell_2022_01_014
crossref_primary_10_1016_j_bbmt_2020_09_031
crossref_primary_10_7554_eLife_49900
crossref_primary_10_1016_j_celrep_2020_107882
crossref_primary_10_1371_journal_pbio_3000314
crossref_primary_10_1073_pnas_2104367118
crossref_primary_10_1146_annurev_immunol_042718_041757
crossref_primary_10_1172_JCI129466
crossref_primary_10_3389_fimmu_2022_880190
crossref_primary_10_1073_pnas_1716146115
crossref_primary_10_1016_j_immuno_2022_100009
crossref_primary_10_1186_s13073_018_0577_7
crossref_primary_10_1038_s41467_024_52522_z
crossref_primary_10_1371_journal_pone_0229569
crossref_primary_10_1073_pnas_2023141118
crossref_primary_10_3389_fgene_2019_00145
crossref_primary_10_3389_fimmu_2021_627813
crossref_primary_10_1371_journal_ppat_1008122
crossref_primary_10_1038_s41467_022_33720_z
crossref_primary_10_1093_bib_bbae420
crossref_primary_10_3390_ijms23031029
crossref_primary_10_4049_jimmunol_1700594
crossref_primary_10_3389_fimmu_2022_858057
crossref_primary_10_1111_acel_13262
crossref_primary_10_1093_jnci_djae143
crossref_primary_10_1016_j_crmeth_2022_100269
crossref_primary_10_1093_bioinformatics_btz035
crossref_primary_10_1136_jitc_2021_002647
crossref_primary_10_1038_s41587_021_00989_2
crossref_primary_10_3389_fimmu_2019_02159
crossref_primary_10_3389_fimmu_2021_599133
crossref_primary_10_4049_jimmunol_1801401
crossref_primary_10_1016_j_ebiom_2020_102972
crossref_primary_10_3389_fimmu_2020_587756
crossref_primary_10_1093_bib_bbae537
crossref_primary_10_3390_genes14030572
crossref_primary_10_1038_s42256_024_00973_w
crossref_primary_10_3389_fmed_2021_666554
crossref_primary_10_1038_s41467_021_21879_w
crossref_primary_10_1038_s41435_018_0035_y
crossref_primary_10_2139_ssrn_4047386
crossref_primary_10_7554_eLife_63502
crossref_primary_10_3389_fimmu_2019_02820
crossref_primary_10_1016_j_smim_2023_101839
crossref_primary_10_1371_journal_pgen_1009301
crossref_primary_10_1093_intimm_dxae072
crossref_primary_10_1371_journal_pgen_1010652
crossref_primary_10_1038_s41598_023_31013_z
crossref_primary_10_1128_mBio_00760_19
crossref_primary_10_3389_fimmu_2023_1100490
crossref_primary_10_3389_fimmu_2021_750754
crossref_primary_10_1038_s41590_023_01692_x
crossref_primary_10_1371_journal_pcbi_1012724
crossref_primary_10_1016_j_csbj_2020_06_041
crossref_primary_10_1093_bioinformatics_btz614
crossref_primary_10_3389_fimmu_2020_01539
crossref_primary_10_1016_j_molmed_2019_05_009
crossref_primary_10_3389_fimmu_2021_735584
crossref_primary_10_1016_j_ccell_2022_05_013
crossref_primary_10_1016_j_physrep_2020_01_001
crossref_primary_10_1039_C9ME00071B
crossref_primary_10_1111_imr_12666
crossref_primary_10_1126_scitranslmed_aaz3738
crossref_primary_10_1007_s00467_022_05696_x
crossref_primary_10_1016_j_xcrm_2021_100205
crossref_primary_10_1038_s41598_019_53010_x
crossref_primary_10_3389_fimmu_2021_634489
crossref_primary_10_1093_nar_gkac190
crossref_primary_10_1111_imr_12664
crossref_primary_10_1093_bib_bbab566
crossref_primary_10_1111_imr_12665
crossref_primary_10_3389_fimmu_2021_717598
crossref_primary_10_7554_eLife_85126
crossref_primary_10_3389_fimmu_2024_1488860
crossref_primary_10_1016_j_celrep_2024_113797
crossref_primary_10_3389_fragi_2021_665637
crossref_primary_10_3390_biom13050825
crossref_primary_10_1016_j_imlet_2021_10_002
crossref_primary_10_1016_j_celrep_2022_110331
crossref_primary_10_1038_s41467_021_25006_7
crossref_primary_10_1093_bioinformatics_btac505
crossref_primary_10_1111_acel_14460
crossref_primary_10_1158_2767_9764_CRC_22_0050
crossref_primary_10_1016_j_immuni_2021_02_014
crossref_primary_10_1038_s43586_023_00284_1
crossref_primary_10_1038_s41577_023_00835_3
crossref_primary_10_1371_journal_pntd_0010018
crossref_primary_10_3390_cells10123318
crossref_primary_10_1056_NEJMoa2300503
crossref_primary_10_1182_bloodadvances_2024013117
crossref_primary_10_1172_JCI128323
crossref_primary_10_1016_j_immuni_2020_04_022
crossref_primary_10_1111_imr_12654
crossref_primary_10_1093_gigascience_giac046
crossref_primary_10_1111_tri_13475
crossref_primary_10_1111_ajt_16333
crossref_primary_10_1016_j_lungcan_2021_09_017
crossref_primary_10_1038_s41590_023_01633_8
crossref_primary_10_1084_jem_20220650
crossref_primary_10_1126_scitranslmed_abb0192
crossref_primary_10_7554_eLife_68605
crossref_primary_10_1016_j_immuno_2024_100033
crossref_primary_10_1038_s41467_022_29173_z
crossref_primary_10_1136_annrheumdis_2019_215442
crossref_primary_10_1073_pnas_2203505119
crossref_primary_10_1002_adma_202100616
crossref_primary_10_7554_eLife_85145
crossref_primary_10_1016_j_ecoenv_2021_112331
crossref_primary_10_1186_s12865_024_00601_7
crossref_primary_10_1002_eji_202249975
crossref_primary_10_3389_fimmu_2018_00509
crossref_primary_10_1016_j_beha_2024_101558
crossref_primary_10_1136_jitc_2022_006035
crossref_primary_10_4049_jimmunol_2200063
crossref_primary_10_3389_fcimb_2020_00254
crossref_primary_10_3389_fimmu_2023_1031914
crossref_primary_10_1093_bib_bbad086
crossref_primary_10_1158_0008_5472_CAN_18_2292
crossref_primary_10_7554_eLife_46935
crossref_primary_10_1212_NXI_0000000000200134
crossref_primary_10_3389_fimmu_2023_1190844
crossref_primary_10_3389_fimmu_2018_01038
crossref_primary_10_1038_s41591_022_02110_9
crossref_primary_10_7554_eLife_89999
crossref_primary_10_4049_jimmunol_1801171
crossref_primary_10_3389_fimmu_2021_769442
crossref_primary_10_1038_s41467_019_13593_5
crossref_primary_10_1038_s41588_022_01032_z
crossref_primary_10_1016_j_molimm_2023_08_005
crossref_primary_10_1158_0008_5472_CAN_23_0860
crossref_primary_10_7554_eLife_61639
crossref_primary_10_1172_jci_insight_150070
crossref_primary_10_1093_bib_bbad038
crossref_primary_10_1007_s11926_022_01090_6
crossref_primary_10_1051_jbio_2017033
crossref_primary_10_3389_fimmu_2019_00110
crossref_primary_10_1172_jci_insight_149080
crossref_primary_10_1038_s41586_022_04844_5
crossref_primary_10_1093_nargab_lqac049
crossref_primary_10_2196_45872
crossref_primary_10_7554_eLife_68388
crossref_primary_10_1101_gr_275373_121
crossref_primary_10_1172_jci_insight_151849
crossref_primary_10_1038_s41375_023_02074_w
crossref_primary_10_1038_s41409_022_01885_2
crossref_primary_10_1016_j_xcrm_2024_101612
crossref_primary_10_1093_nar_gkaf025
crossref_primary_10_1158_1078_0432_CCR_21_1059
crossref_primary_10_1126_sciimmunol_abf4001
crossref_primary_10_1038_s41577_018_0007_5
crossref_primary_10_1097_PG9_0000000000000053
crossref_primary_10_3389_fimmu_2019_02080
crossref_primary_10_1093_bioinformatics_btac788
crossref_primary_10_3389_fimmu_2021_701085
crossref_primary_10_1136_jcp_2022_208541
crossref_primary_10_1007_s11357_017_9982_x
crossref_primary_10_1126_sciadv_abg4498
crossref_primary_10_1158_0008_5472_CAN_19_0225
crossref_primary_10_3389_fimmu_2018_02547
crossref_primary_10_1016_j_jaut_2024_103337
crossref_primary_10_3389_fimmu_2019_00221
crossref_primary_10_1038_s41467_018_02832_w
crossref_primary_10_3389_fimmu_2021_626793
crossref_primary_10_3389_fimmu_2022_797640
crossref_primary_10_1007_s00262_021_03047_7
crossref_primary_10_1161_CIRCRESAHA_124_323661
crossref_primary_10_7554_eLife_33050
crossref_primary_10_1002_eji_202451374
crossref_primary_10_1038_s41375_019_0654_y
crossref_primary_10_1002_ctm2_853
crossref_primary_10_1016_j_coisb_2019_10_007
crossref_primary_10_1016_j_bbmt_2018_10_020
crossref_primary_10_1038_s44320_024_00070_5
crossref_primary_10_1093_brain_awae244
crossref_primary_10_3390_ijms21228524
crossref_primary_10_3389_fimmu_2020_581807
crossref_primary_10_3389_fimmu_2023_1199064
crossref_primary_10_1146_annurev_immunol_042617_053238
crossref_primary_10_1186_s12859_021_04087_7
crossref_primary_10_3389_fimmu_2024_1302031
crossref_primary_10_4049_jimmunol_1901297
crossref_primary_10_2139_ssrn_3992679
crossref_primary_10_1093_bib_bbad175
crossref_primary_10_1016_j_isci_2023_106937
crossref_primary_10_1093_oxfimm_iqac001
crossref_primary_10_1371_journal_pone_0249484
crossref_primary_10_3389_fimmu_2023_1166059
crossref_primary_10_1103_PhysRevE_109_064411
crossref_primary_10_1038_s42256_023_00781_8
crossref_primary_10_3389_fimmu_2022_1012042
crossref_primary_10_1038_s41375_022_01695_x
crossref_primary_10_3389_fgene_2022_860510
crossref_primary_10_7554_eLife_81952
crossref_primary_10_12688_f1000research_27214_2
crossref_primary_10_1016_j_celrep_2023_112879
crossref_primary_10_12688_f1000research_27214_1
crossref_primary_10_1146_annurev_chembioeng_101420_125021
crossref_primary_10_1126_sciadv_abd8180
crossref_primary_10_1158_2767_9764_CRC_22_0514
crossref_primary_10_1186_s13059_024_03210_0
crossref_primary_10_1016_j_humimm_2024_110795
crossref_primary_10_1016_j_tips_2020_06_001
crossref_primary_10_1002_path_5592
crossref_primary_10_1097_QCO_0000000000000838
crossref_primary_10_1016_j_jaci_2024_04_004
crossref_primary_10_1016_j_jaut_2018_10_018
crossref_primary_10_1093_infdis_jiad430
crossref_primary_10_1186_s13073_021_01008_4
crossref_primary_10_1038_s41408_022_00630_8
crossref_primary_10_1007_s00125_024_06298_y
crossref_primary_10_1007_s10565_018_9426_0
crossref_primary_10_1016_j_envres_2022_113678
crossref_primary_10_1183_13993003_01545_2024
crossref_primary_10_1126_scitranslmed_abq0476
crossref_primary_10_1093_bioinformatics_btad426
crossref_primary_10_1182_bloodadvances_2021005509
crossref_primary_10_1016_j_csbj_2020_07_008
crossref_primary_10_1093_bioinformatics_bty801
crossref_primary_10_1111_all_15494
crossref_primary_10_1128_mBio_00250_20
crossref_primary_10_1002_acn3_51264
crossref_primary_10_1186_s12859_022_04651_9
crossref_primary_10_1016_j_isci_2022_104968
crossref_primary_10_1093_bioinformatics_btaa158
crossref_primary_10_1371_journal_pcbi_1008814
crossref_primary_10_1038_s41598_023_36144_x
crossref_primary_10_3389_fimmu_2020_00170
crossref_primary_10_1371_journal_pcbi_1011664
crossref_primary_10_1371_journal_pcbi_1012511
crossref_primary_10_3389_fimmu_2023_1082727
crossref_primary_10_4049_jimmunol_1800217
crossref_primary_10_1016_j_cels_2024_11_006
crossref_primary_10_1016_j_cels_2024_11_009
crossref_primary_10_1007_s00262_018_2237_6
crossref_primary_10_1126_scitranslmed_adl6758
crossref_primary_10_3389_fimmu_2020_01803
crossref_primary_10_3389_fimmu_2020_565096
crossref_primary_10_7717_peerj_11987
crossref_primary_10_1038_s41592_020_0867_z
crossref_primary_10_1073_pnas_2213264120
crossref_primary_10_3390_v15061334
crossref_primary_10_3389_fimmu_2023_1158295
crossref_primary_10_1016_j_ajt_2023_12_016
crossref_primary_10_3389_fimmu_2021_664514
crossref_primary_10_1016_j_coi_2019_05_012
crossref_primary_10_1007_s11892_017_0946_4
crossref_primary_10_1186_s12979_020_00195_9
crossref_primary_10_3389_fimmu_2019_01516
crossref_primary_10_3389_fimmu_2024_1345586
crossref_primary_10_3389_fimmu_2022_973243
crossref_primary_10_1200_PO_21_00120
crossref_primary_10_3390_v13122359
crossref_primary_10_1126_sciadv_adj6975
crossref_primary_10_1093_bioinformatics_bty821
crossref_primary_10_1093_rheumatology_keaa790
crossref_primary_10_1016_j_isci_2020_101519
crossref_primary_10_1007_s00251_019_01139_4
crossref_primary_10_1038_s41598_024_65305_9
crossref_primary_10_1093_cid_ciac353
crossref_primary_10_3389_fimmu_2018_02539
crossref_primary_10_3389_fimmu_2022_906217
crossref_primary_10_3389_fimmu_2022_971392
crossref_primary_10_1016_j_coisb_2020_10_011
crossref_primary_10_1212_NXI_0000000000200093
crossref_primary_10_3389_fimmu_2020_00387
crossref_primary_10_1016_j_coisb_2020_10_010
crossref_primary_10_3390_cells11010083
crossref_primary_10_1093_nar_gkz874
crossref_primary_10_1186_s12985_024_02511_x
crossref_primary_10_4049_jimmunol_1801448
crossref_primary_10_1016_j_cellimm_2018_12_011
crossref_primary_10_1158_1078_0432_CCR_19_3936
crossref_primary_10_7554_eLife_38358
crossref_primary_10_1073_pnas_1713863114
crossref_primary_10_3389_fmed_2022_1070385
crossref_primary_10_1126_science_adp2407
crossref_primary_10_1136_jitc_2022_006437
crossref_primary_10_1186_s13075_019_2069_6
crossref_primary_10_1016_j_jaut_2022_102907
crossref_primary_10_1158_1078_0432_CCR_19_3249
crossref_primary_10_1016_j_celrep_2018_11_009
crossref_primary_10_4049_jimmunol_1900455
crossref_primary_10_1038_s42256_023_00617_5
crossref_primary_10_3389_fimmu_2019_02985
crossref_primary_10_1186_s12859_019_2853_y
crossref_primary_10_1016_j_immuni_2023_03_020
crossref_primary_10_1093_gigascience_giad074
crossref_primary_10_3389_fimmu_2018_00224
crossref_primary_10_1016_j_clim_2020_108621
crossref_primary_10_1016_j_xcrm_2022_100697
crossref_primary_10_4049_jimmunol_2300201
crossref_primary_10_1371_journal_pcbi_1008394
crossref_primary_10_1111_tan_15158
crossref_primary_10_3389_fimmu_2022_1031011
crossref_primary_10_3389_fimmu_2023_1172913
Cites_doi 10.1111/j.1600-6143.2011.03842.x
10.1126/science.286.5441.958
10.4049/jimmunol.1102610
10.1182/blood-2009-05-222596
10.2307/2340521
10.1073/pnas.1530509100
10.1128/JVI.03474-14
10.1002/bit.22663
10.1002/eji.200323628
10.1038/bmt.2013.122
10.1002/eji.201545951
10.1111/j.1365-2567.2011.03508.x
10.1182/blood.V99.1.213
10.1128/JVI.02180-12
10.4049/jimmunol.0803647
10.1086/339963
10.1016/S0167-5699(98)01299-7
10.1093/bioinformatics/bth945
10.1182/blood-2009-04-217604
10.1182/blood-2007-11-122622
10.1016/j.jim.2014.01.013
10.1111/ajt.12431
10.3390/v6062242
10.4049/jimmunol.0902233
10.1371/journal.pone.0141561
10.1084/jem.194.9.1385
10.1084/jem.20051357
10.1016/0090-1229(91)90063-G
10.1182/blood-2009-07-234906
10.4049/jimmunol.1001807
10.1128/JVI.00356-07
10.4049/jimmunol.1102675
10.1038/ncomms3680
10.1126/scitranslmed.3001442
10.1126/scitranslmed.aaa2546
10.1038/46218
10.4049/jimmunol.173.9.5843
10.1038/nri3667
10.4049/jimmunol.1303147
10.4049/jimmunol.179.5.3203
10.1111/j.1600-065X.2012.01159.x
10.1084/jem.179.4.1155
10.1371/journal.ppat.1002889
10.1038/nri2260
10.4049/jimmunol.169.4.1984
10.1038/cr.2012.1
10.1128/JVI.73.3.2099-2108.1999
10.4049/jimmunol.1000295
10.4049/jimmunol.181.11.7853
10.1371/journal.pone.0074231
10.4049/jimmunol.0902155
10.1111/j.1365-2257.1994.tb00384.x
10.1681/ASN.2007111225
10.1182/blood-2009-04-214684
10.1038/334395a0
10.1016/S1473-3099(04)01202-2
10.1128/JVI.74.9.3948-3952.2000
10.1182/blood-2006-03-013318
10.4049/jimmunol.175.9.6123
10.1074/jbc.M111.289488
10.4049/jimmunol.1003309
ContentType Journal Article
Copyright Springer Nature America, Inc. 2017
Copyright Nature Publishing Group May 2017
Copyright_xml – notice: Springer Nature America, Inc. 2017
– notice: Copyright Nature Publishing Group May 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SS
7T7
7TK
7TM
7U9
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
DOI 10.1038/ng.3822
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database (ProQuest)
Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1546-1718
EndPage 665
ExternalDocumentID 28369038
10_1038_ng_3822
Genre Journal Article
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29M
2FS
36B
39C
3O-
3V.
4.4
53G
5BI
5M7
5RE
5S5
70F
7X7
85S
88A
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAEEF
AAHBH
AARCD
AAYOK
AAYZH
AAZLF
ABAWZ
ABCQX
ABDBF
ABDPE
ABEFU
ABJNI
ABLJU
ABOCM
ABTAH
ABUWG
ACBWK
ACGFO
ACGFS
ACIWK
ACMJI
ACNCT
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AGAYW
AGCDD
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
DWQXO
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IH2
IHR
INH
INR
IOV
ISR
ITC
L7B
LGEZI
LK8
LOTEE
M0L
M1P
M2O
M7P
MVM
N9A
NADUK
NNMJJ
NXXTH
ODYON
P2P
PKN
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNS
RNT
RNTTT
RVV
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TN5
TSG
TUS
UKHRP
VQA
X7M
XJT
XOL
Y6R
YHZ
ZGI
ZXP
ZY4
~8M
~KM
AAYXX
ABFSG
ACMFV
ACSTC
AETEA
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SS
7T7
7TK
7TM
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c342t-a3d84f0c973609e58b8e00359104e870616f47d60544cd692e886ef478bbd9fe3
IEDL.DBID 7X7
ISSN 1061-4036
1546-1718
IngestDate Fri Jul 11 02:47:52 EDT 2025
Wed Aug 13 06:29:38 EDT 2025
Wed Feb 19 02:15:03 EST 2025
Tue Jul 01 01:50:14 EDT 2025
Thu Apr 24 22:53:17 EDT 2025
Fri Feb 21 02:39:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-a3d84f0c973609e58b8e00359104e870616f47d60544cd692e886ef478bbd9fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6802-9139
PMID 28369038
PQID 1894954845
PQPubID 33429
PageCount 7
ParticipantIDs proquest_miscellaneous_1884166002
proquest_journals_1894954845
pubmed_primary_28369038
crossref_citationtrail_10_1038_ng_3822
crossref_primary_10_1038_ng_3822
springer_journals_10_1038_ng_3822
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-01
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature genetics
PublicationTitleAbbrev Nat Genet
PublicationTitleAlternate Nat Genet
PublicationYear 2017
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Legoux (CR51) 2010; 184
Khan, Cobbold, Keenan, Moss (CR26) 2002; 185
Peggs (CR35) 2002; 99
Hesnard (CR52) 2016; 46
Heemskerk (CR23) 2007; 109
Khan (CR27) 2002; 169
Burrows, Khanna, Burrows, Moss (CR57) 1994; 179
Peters, al-Ismail (CR9) 1994; 16
Liang (CR31) 2010; 184
Giest (CR20) 2012; 135
Davis, Bjorkman (CR2) 1988; 334
Klinger (CR29) 2013; 8
Carlson (CR60) 2013; 4
Wang, Dash, McCullers, Doherty, Thomas (CR44) 2012; 4
Klein, Kyewski, Allen, Hogquist (CR50) 2014; 14
Janbazian (CR25) 2012; 188
Brennan (CR17) 2012; 188
Klarenbeek (CR28) 2012; 8
Hamel (CR21) 2003; 33
Schub, Schuster, Hammerschmidt, Moosmann (CR39) 2009; 183
Schwele (CR40) 2012; 12
Venturi, Price, Douek, Davenport (CR7) 2008; 8
Miconnet (CR32) 2011; 186
Robins (CR5) 2009; 114
Babel (CR15) 2009; 20
Cabaniols, Fazilleau, Casrouge, Kourilsky, Kanellopoulos (CR1) 2001; 194
Reichert (CR10) 1991; 60
Nakasone (CR33) 2014; 49
Mason (CR54) 1998; 19
Retière (CR37) 2000; 74
Weekes, Wills, Mynard, Carmichael, Sissons (CR45) 1999; 73
Scheinberg (CR38) 2009; 114
Nguyen (CR34) 2014; 192
Price (CR36) 2005; 202
Trautmann (CR41) 2005; 175
van Bockel (CR42) 2011; 186
Weekes, Wills, Sissons, Carmichael (CR46) 2004; 173
Venturi (CR43) 2008; 181
Gras (CR53) 2012; 250
Neller, Burrows, Rist, Miles, Burrows (CR4) 2013; 87
Arstila (CR3) 1999; 286
Amir (CR56) 2010; 115
Rist, Smith, Bell, Burrows, Khanna (CR58) 2009; 114
Iancu (CR24) 2009; 183
Dziubianau (CR19) 2013; 13
Wooldridge (CR55) 2012; 287
DeWitt (CR62) 2015; 89
Fisher (CR13) 1922; 85
Day (CR18) 2007; 179
Wynn (CR47) 2008; 111
Goldrath, Bevan (CR49) 1999; 402
Brennan (CR16) 2007; 81
Hanley (CR22) 2015; 7
Arakaki (CR14) 2010; 106
Robins (CR6) 2010; 2
Yousfi Monod, Giudicelli, Chaume, Lefranc (CR59) 2004; 20
Li, Ye, Ji, Han (CR8) 2012; 22
Storey, Tibshirani (CR61) 2003; 100
Hanley, Bollard (CR11) 2014; 6
Koning (CR30) 2014; 405
Gandhi, Khanna (CR12) 2004; 4
Klinger (CR48) 2015; 10
V Venturi (BFng3822_CR7) 2008; 8
MA Neller (BFng3822_CR4) 2013; 87
DA Price (BFng3822_CR36) 2005; 202
GC Wang (BFng3822_CR44) 2012; 4
PL Klarenbeek (BFng3822_CR28) 2012; 8
EK Day (BFng3822_CR18) 2007; 179
M Klinger (BFng3822_CR48) 2015; 10
A Schub (BFng3822_CR39) 2009; 183
L Wooldridge (BFng3822_CR55) 2012; 287
TH Nguyen (BFng3822_CR34) 2014; 192
KK Wynn (BFng3822_CR47) 2008; 111
H Li (BFng3822_CR8) 2012; 22
DJ van Bockel (BFng3822_CR42) 2011; 186
N Babel (BFng3822_CR15) 2009; 20
Y Hamel (BFng3822_CR21) 2003; 33
A Arakaki (BFng3822_CR14) 2010; 106
L Trautmann (BFng3822_CR41) 2005; 175
MH Heemskerk (BFng3822_CR23) 2007; 109
MP Weekes (BFng3822_CR45) 1999; 73
D Koning (BFng3822_CR30) 2014; 405
AW Goldrath (BFng3822_CR49) 1999; 402
M Rist (BFng3822_CR58) 2009; 114
L Hesnard (BFng3822_CR52) 2016; 46
RE Peters (BFng3822_CR9) 1994; 16
SR Burrows (BFng3822_CR57) 1994; 179
X Liang (BFng3822_CR31) 2010; 184
S Giest (BFng3822_CR20) 2012; 135
MM Davis (BFng3822_CR2) 1988; 334
R Fisher (BFng3822_CR13) 1922; 85
S Schwele (BFng3822_CR40) 2012; 12
I Miconnet (BFng3822_CR32) 2011; 186
V Venturi (BFng3822_CR43) 2008; 181
MK Gandhi (BFng3822_CR12) 2004; 4
H Nakasone (BFng3822_CR33) 2014; 49
L Janbazian (BFng3822_CR25) 2012; 188
AL Amir (BFng3822_CR56) 2010; 115
N Khan (BFng3822_CR27) 2002; 169
M Dziubianau (BFng3822_CR19) 2013; 13
MP Weekes (BFng3822_CR46) 2004; 173
M Klinger (BFng3822_CR29) 2013; 8
P Scheinberg (BFng3822_CR38) 2009; 114
PJ Hanley (BFng3822_CR22) 2015; 7
D Mason (BFng3822_CR54) 1998; 19
WS DeWitt (BFng3822_CR62) 2015; 89
JD Storey (BFng3822_CR61) 2003; 100
RM Brennan (BFng3822_CR16) 2007; 81
HS Robins (BFng3822_CR6) 2010; 2
L Klein (BFng3822_CR50) 2014; 14
PJ Hanley (BFng3822_CR11) 2014; 6
F Legoux (BFng3822_CR51) 2010; 184
T Reichert (BFng3822_CR10) 1991; 60
JP Cabaniols (BFng3822_CR1) 2001; 194
K Peggs (BFng3822_CR35) 2002; 99
M Yousfi Monod (BFng3822_CR59) 2004; 20
N Khan (BFng3822_CR26) 2002; 185
HS Robins (BFng3822_CR5) 2009; 114
EM Iancu (BFng3822_CR24) 2009; 183
TP Arstila (BFng3822_CR3) 1999; 286
CS Carlson (BFng3822_CR60) 2013; 4
C Retière (BFng3822_CR37) 2000; 74
S Gras (BFng3822_CR53) 2012; 250
RM Brennan (BFng3822_CR17) 2012; 188
22102287 - J Biol Chem. 2012 Jan 6;287(2):1168-77
23933763 - Bone Marrow Transplant. 2014 Jan;49(1):87-94
17709536 - J Immunol. 2007 Sep 1;179(5):3203-13
22210916 - J Immunol. 2012 Feb 1;188(3):1156-67
12165524 - J Immunol. 2002 Aug 15;169(4):1984-92
23028307 - PLoS Pathog. 2012 Sep;8(9):e1002889
24872114 - Viruses. 2014 May 27;6(6):2242-58
22323539 - J Immunol. 2012 Mar 15;188(6):2742-8
22212481 - Cell Res. 2012 Jan;22(1):33-42
16287711 - J Exp Med. 2005 Nov 21;202(10):1349-61
19542443 - J Immunol. 2009 Jul 1;183(1):319-31
12616496 - Eur J Immunol. 2003 Mar;33(3):760-8
16968899 - Blood. 2007 Jan 1;109(1):235-43
24020931 - Am J Transplant. 2013 Nov;13(11):2842-54
11756174 - Blood. 2002 Jan 1;99(1):213-23
20073087 - Biotechnol Bioeng. 2010 Jun 1;106(2):311-8
20483723 - J Immunol. 2010 Jun 15;184(12):6731-8
15494538 - J Immunol. 2004 Nov 1;173(9):5843-51
26509579 - PLoS One. 2015 Oct 28;10(10):e0141561
9745202 - Immunol Today. 1998 Sep;19(9):395-404
20160165 - Blood. 2010 Apr 15;115(15):3146-57
1712687 - Clin Immunol Immunopathol. 1991 Aug;60(2):190-208
8039343 - Clin Lab Haematol. 1994 Mar;16(1):21-32
26635029 - Eur J Immunol. 2016 Mar;46(3):560-9
15567122 - Lancet Infect Dis. 2004 Dec;4(12):725-38
24778446 - J Immunol. 2014 Jun 1;192(11):5039-49
25925682 - Sci Transl Med. 2015 Apr 29;7(285):285ra63
20811043 - Sci Transl Med. 2010 Sep 1;2(47):47ra64
23077319 - J Virol. 2013 Jan;87(1):697-700
17459926 - J Virol. 2007 Jul;81(13):7269-73
9971792 - J Virol. 1999 Mar;73(3):2099-108
24069285 - PLoS One. 2013 Sep 19;8(9):e74231
22081907 - Am J Transplant. 2012 Mar;12(3):669-81
24830344 - Nat Rev Immunol. 2014 Jun;14(6):377-91
11930311 - J Infect Dis. 2002 Apr 15;185(8):1025-34
16237109 - J Immunol. 2005 Nov 1;175(9):6123-32
3043226 - Nature. 1988 Aug 4;334(6181):395-402
23046123 - Immunol Rev. 2012 Nov;250(1):61-81
19017975 - J Immunol. 2008 Dec 1;181(11):7853-62
19706884 - Blood. 2009 Nov 5;114(19):4099-107
7511682 - J Exp Med. 1994 Apr 1;179(4):1155-61
24157944 - Nat Commun. 2013;4:2680
21555537 - J Immunol. 2011 Jun 15;186(12):7039-49
11696602 - J Exp Med. 2001 Nov 5;194(9):1385-90
21135165 - J Immunol. 2011 Jan 1;186(1):359-71
15262823 - Bioinformatics. 2004 Aug 4;20 Suppl 1:i379-85
18270323 - Blood. 2008 Apr 15;111(8):4283-92
24512815 - J Immunol Methods. 2014 Mar;405:199-203
12883005 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5
18799721 - J Am Soc Nephrol. 2009 Feb;20(2):344-52
25653453 - J Virol. 2015 Apr;89(8):4517-26
20042572 - J Immunol. 2010 Feb 1;184(3):1617-29
22044339 - Immunology. 2012 Jan;135(1):27-39
10542151 - Science. 1999 Oct 29;286(5441):958-61
19617574 - Blood. 2009 Sep 10;114(11):2244-53
18301425 - Nat Rev Immunol. 2008 Mar;8(3):231-8
19864595 - J Immunol. 2009 Nov 15;183(10):6819-30
19776383 - Blood. 2009 Dec 3;114(24):5071-80
10756006 - J Virol. 2000 May;74(9):3948-52
22491952 - Sci Transl Med. 2012 Apr 4;4(128):128ra42
10580495 - Nature. 1999 Nov 18;402(6759):255-62
References_xml – volume: 287
  start-page: 1168
  year: 2012
  end-page: 1177
  ident: CR55
  article-title: A single autoimmune T cell receptor recognizes more than a million different peptides
  publication-title: J. Biol. Chem.
– volume: 184
  start-page: 6731
  year: 2010
  end-page: 6738
  ident: CR51
  article-title: Impact of TCR reactivity and HLA phenotype on naive CD8 T cell frequency in humans
  publication-title: J. Immunol.
– volume: 169
  start-page: 1984
  year: 2002
  end-page: 1992
  ident: CR27
  article-title: Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals
  publication-title: J. Immunol.
– volume: 4
  start-page: 128ra42
  year: 2012
  ident: CR44
  article-title: T cell receptor αβ diversity inversely correlates with pathogen-specific antibody levels in human cytomegalovirus infection
  publication-title: Sci. Transl. Med.
– volume: 2
  start-page: 47ra64
  year: 2010
  ident: CR6
  article-title: Overlap and effective size of the human CD8 T cell receptor repertoire
  publication-title: Sci. Transl. Med.
– volume: 192
  start-page: 5039
  year: 2014
  end-page: 5049
  ident: CR34
  article-title: Recognition of distinct cross-reactive virus-specific CD8 T cells reveals a unique TCR signature in a clinical setting
  publication-title: J. Immunol.
– volume: 334
  start-page: 395
  year: 1988
  end-page: 402
  ident: CR2
  article-title: T-cell antigen receptor genes and T-cell recognition
  publication-title: Nature
– volume: 6
  start-page: 2242
  year: 2014
  end-page: 2258
  ident: CR11
  article-title: Controlling cytomegalovirus: helping the immune system take the lead
  publication-title: Viruses
– volume: 405
  start-page: 199
  year: 2014
  end-page: 203
  ident: CR30
  article-title: expansion of antigen-specific CD8 T cells distorts the T-cell repertoire
  publication-title: J. Immunol. Methods
– volume: 7
  start-page: 285ra63
  year: 2015
  ident: CR22
  article-title: CMV-specific T cells generated from naïve T cells recognize atypical epitopes and may be protective
  publication-title: Sci. Transl. Med.
– volume: 22
  start-page: 33
  year: 2012
  end-page: 42
  ident: CR8
  article-title: Determinants of public T cell responses
  publication-title: Cell Res.
– volume: 60
  start-page: 190
  year: 1991
  end-page: 208
  ident: CR10
  article-title: Lymphocyte subset reference ranges in adult Caucasians
  publication-title: Clin. Immunol. Immunopathol.
– volume: 99
  start-page: 213
  year: 2002
  end-page: 223
  ident: CR35
  article-title: Characterization of human cytomegalovirus peptide–specific CD8 T-cell repertoire diversity following restimulation by antigen-pulsed dendritic cells
  publication-title: Blood
– volume: 188
  start-page: 2742
  year: 2012
  end-page: 2748
  ident: CR17
  article-title: The impact of a large and frequent deletion in the human TCR β locus on antiviral immunity
  publication-title: J. Immunol.
– volume: 135
  start-page: 27
  year: 2012
  end-page: 39
  ident: CR20
  article-title: Cytomegalovirus-specific CD8 T cells targeting different peptide/HLA combinations demonstrate varying T-cell receptor diversity
  publication-title: Immunology
– volume: 12
  start-page: 669
  year: 2012
  end-page: 681
  ident: CR40
  article-title: Cytomegalovirus-specific regulatory and effector T cells share TCR clonality—possible relation to repetitive CMV infections
  publication-title: Am. J. Transplant.
– volume: 74
  start-page: 3948
  year: 2000
  end-page: 3952
  ident: CR37
  article-title: Generation of cytomegalovirus-specific human T-lymphocyte clones by using autologous B-lymphoblastoid cells with stable expression of pp65 or IE1 proteins: a tool to study the fine specificity of the antiviral response
  publication-title: J. Virol.
– volume: 179
  start-page: 3203
  year: 2007
  end-page: 3213
  ident: CR18
  article-title: Rapid CD8 T cell repertoire focusing and selection of high-affinity clones into memory following primary infection with a persistent human virus: human cytomegalovirus
  publication-title: J. Immunol.
– volume: 73
  start-page: 2099
  year: 1999
  end-page: 2108
  ident: CR45
  article-title: The memory cytotoxic T-lymphocyte (CTL) response to human cytomegalovirus infection contains individual peptide-specific CTL clones that have undergone extensive expansion
  publication-title: J. Virol.
– volume: 109
  start-page: 235
  year: 2007
  end-page: 243
  ident: CR23
  article-title: Efficiency of T-cell receptor expression in dual-specific T cells is controlled by the intrinsic qualities of the TCR chains within the TCR–CD3 complex
  publication-title: Blood
– volume: 114
  start-page: 2244
  year: 2009
  end-page: 2253
  ident: CR58
  article-title: Cross-recognition of HLA DR4 alloantigen by virus-specific CD8 T cells: a new paradigm for self-/nonself-recognition
  publication-title: Blood
– volume: 188
  start-page: 1156
  year: 2012
  end-page: 1167
  ident: CR25
  article-title: Clonotype and repertoire changes drive the functional improvement of HIV-specific CD8 T cell populations under conditions of limited antigenic stimulation
  publication-title: J. Immunol.
– volume: 179
  start-page: 1155
  year: 1994
  end-page: 1161
  ident: CR57
  article-title: An alloresponse in humans is dominated by cytotoxic T lymphocytes (CTL) cross-reactive with a single Epstein–Barr virus CTL epitope: implications for graft-versus-host disease
  publication-title: J. Exp. Med.
– volume: 20
  start-page: i379
  issue: Suppl. 1
  year: 2004
  end-page: i385
  ident: CR59
  article-title: IMGT/JunctionAnalysis: the first tool for the analysis of the immunoglobulin and T cell receptor complex V–J and V–D–J JUNCTIONs
  publication-title: Bioinformatics
– volume: 100
  start-page: 9440
  year: 2003
  end-page: 9445
  ident: CR61
  article-title: Statistical significance for genomewide studies
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 89
  start-page: 4517
  year: 2015
  end-page: 4526
  ident: CR62
  article-title: Dynamics of the cytotoxic T cell response to a model of acute viral infection
  publication-title: J. Virol.
– volume: 106
  start-page: 311
  year: 2010
  end-page: 318
  ident: CR14
  article-title: TCR-β repertoire analysis of antigen-specific single T cells using a high-density microcavity array
  publication-title: Biotechnol. Bioeng.
– volume: 114
  start-page: 4099
  year: 2009
  end-page: 4107
  ident: CR5
  article-title: Comprehensive assessment of T-cell receptor β-chain diversity in αβ T cells
  publication-title: Blood
– volume: 183
  start-page: 6819
  year: 2009
  end-page: 6830
  ident: CR39
  article-title: CMV-specific TCR–transgenic T cells for immunotherapy
  publication-title: J. Immunol.
– volume: 16
  start-page: 21
  year: 1994
  end-page: 32
  ident: CR9
  article-title: Immunophenotyping of normal lymphocytes
  publication-title: Clin. Lab. Haematol.
– volume: 250
  start-page: 61
  year: 2012
  end-page: 81
  ident: CR53
  article-title: A structural voyage toward an understanding of the MHC-I-restricted immune response: lessons learned and much to be learned
  publication-title: Immunol. Rev.
– volume: 8
  start-page: e1002889
  year: 2012
  ident: CR28
  article-title: Deep sequencing of antiviral T-cell responses to HCMV and EBV in humans reveals a stable repertoire that is maintained for many years
  publication-title: PLoS Pathog.
– volume: 202
  start-page: 1349
  year: 2005
  end-page: 1361
  ident: CR36
  article-title: Avidity for antigen shapes clonal dominance in CD8 T cell populations specific for persistent DNA viruses
  publication-title: J. Exp. Med.
– volume: 81
  start-page: 7269
  year: 2007
  end-page: 7273
  ident: CR16
  article-title: Predictable αβ T-cell receptor selection toward an HLA-B*3501-restricted human cytomegalovirus epitope
  publication-title: J. Virol.
– volume: 115
  start-page: 3146
  year: 2010
  end-page: 3157
  ident: CR56
  article-title: Allo-HLA reactivity of virus-specific memory T cells is common
  publication-title: Blood
– volume: 4
  start-page: 2680
  year: 2013
  ident: CR60
  article-title: Using synthetic templates to design an unbiased multiplex PCR assay
  publication-title: Nat. Commun.
– volume: 184
  start-page: 1617
  year: 2010
  end-page: 1629
  ident: CR31
  article-title: A single TCRα-chain with dominant peptide recognition in the allorestricted HER2/neu-specific T cell repertoire
  publication-title: J. Immunol.
– volume: 186
  start-page: 359
  year: 2011
  end-page: 371
  ident: CR42
  article-title: Persistent survival of prevalent clonotypes within an immunodominant HIV gag-specific CD8 T cell response
  publication-title: J. Immunol.
– volume: 173
  start-page: 5843
  year: 2004
  end-page: 5851
  ident: CR46
  article-title: Long-term stable expanded human CD4 T cell clones specific for human cytomegalovirus are distributed in both CD45RA and CD45RO populations
  publication-title: J. Immunol.
– volume: 46
  start-page: 560
  year: 2016
  end-page: 569
  ident: CR52
  article-title: Role of the MHC restriction during maturation of antigen-specific human T cells in the thymus
  publication-title: Eur. J. Immunol.
– volume: 402
  start-page: 255
  year: 1999
  end-page: 262
  ident: CR49
  article-title: Selecting and maintaining a diverse T-cell repertoire
  publication-title: Nature
– volume: 8
  start-page: e74231
  year: 2013
  ident: CR29
  article-title: Combining next-generation sequencing and immune assays: a novel method for identification of antigen-specific T cells
  publication-title: PLoS One
– volume: 111
  start-page: 4283
  year: 2008
  end-page: 4292
  ident: CR47
  article-title: Impact of clonal competition for peptide–MHC complexes on the CD8 T-cell repertoire selection in a persistent viral infection
  publication-title: Blood
– volume: 49
  start-page: 87
  year: 2014
  end-page: 94
  ident: CR33
  article-title: Single-cell T-cell receptor-β analysis of HLA-A*2402-restricted CMV-pp65-specific cytotoxic T-cells in allogeneic hematopoietic SCT
  publication-title: Bone Marrow Transplant.
– volume: 175
  start-page: 6123
  year: 2005
  end-page: 6132
  ident: CR41
  article-title: Selection of T cell clones expressing high-affinity public TCRs within Human cytomegalovirus–specific CD8 T cell responses
  publication-title: J. Immunol.
– volume: 33
  start-page: 760
  year: 2003
  end-page: 768
  ident: CR21
  article-title: Characterization of antigen-specific repertoire diversity following restimulation by a recombinant adenovirus expressing human cytomegalovirus pp65
  publication-title: Eur. J. Immunol.
– volume: 10
  start-page: e0141561
  year: 2015
  ident: CR48
  article-title: Multiplex identification of antigen-specific T cell receptors using a combination of immune assays and immune receptor sequencing
  publication-title: PLoS One
– volume: 85
  start-page: 87
  year: 1922
  end-page: 94
  ident: CR13
  article-title: On the interpretation of from contingency tables, and the calculation of
  publication-title: J. R. Stat. Soc.
– volume: 286
  start-page: 958
  year: 1999
  end-page: 961
  ident: CR3
  article-title: A direct estimate of the human αβ T cell receptor diversity
  publication-title: Science
– volume: 4
  start-page: 725
  year: 2004
  end-page: 738
  ident: CR12
  article-title: Human cytomegalovirus: clinical aspects, immune regulation, and emerging treatments
  publication-title: Lancet Infect. Dis.
– volume: 8
  start-page: 231
  year: 2008
  end-page: 238
  ident: CR7
  article-title: The molecular basis for public T-cell responses?
  publication-title: Nat. Rev. Immunol.
– volume: 183
  start-page: 319
  year: 2009
  end-page: 331
  ident: CR24
  article-title: Clonotype selection and composition of human CD8 T cells specific for persistent herpes viruses varies with differentiation but is stable over time
  publication-title: J. Immunol.
– volume: 19
  start-page: 395
  year: 1998
  end-page: 404
  ident: CR54
  article-title: A very high level of crossreactivity is an essential feature of the T-cell receptor
  publication-title: Immunol. Today
– volume: 13
  start-page: 2842
  year: 2013
  end-page: 2854
  ident: CR19
  article-title: TCR repertoire analysis by next generation sequencing allows complex differential diagnosis of T cell–related pathology
  publication-title: Am. J. Transplant.
– volume: 186
  start-page: 7039
  year: 2011
  end-page: 7049
  ident: CR32
  article-title: Large TCR diversity of virus-specific CD8 T cells provides the mechanistic basis for massive TCR renewal after antigen exposure
  publication-title: J. Immunol.
– volume: 20
  start-page: 344
  year: 2009
  end-page: 352
  ident: CR15
  article-title: Clonotype analysis of cytomegalovirus-specific cytotoxic T lymphocytes
  publication-title: J. Am. Soc. Nephrol.
– volume: 114
  start-page: 5071
  year: 2009
  end-page: 5080
  ident: CR38
  article-title: The transfer of adaptive immunity to CMV during hematopoietic stem cell transplantation is dependent on the specificity and phenotype of CMV-specific T cells in the donor
  publication-title: Blood
– volume: 185
  start-page: 1025
  year: 2002
  end-page: 1034
  ident: CR26
  article-title: Comparative analysis of CD8 T cell responses against human cytomegalovirus proteins pp65 and immediate early 1 shows similarities in precursor frequency, oligoclonality, and phenotype
  publication-title: J. Infect. Dis.
– volume: 194
  start-page: 1385
  year: 2001
  end-page: 1390
  ident: CR1
  article-title: Most α/β T cell receptor diversity is due to terminal deoxynucleotidyl transferase
  publication-title: J. Exp. Med.
– volume: 181
  start-page: 7853
  year: 2008
  end-page: 7862
  ident: CR43
  article-title: TCR β-chain sharing in human CD8 T cell responses to cytomegalovirus and EBV
  publication-title: J. Immunol.
– volume: 14
  start-page: 377
  year: 2014
  end-page: 391
  ident: CR50
  article-title: Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see)
  publication-title: Nat. Rev. Immunol.
– volume: 87
  start-page: 697
  year: 2013
  end-page: 700
  ident: CR4
  article-title: High frequency of herpesvirus-specific clonotypes in the human T cell repertoire can remain stable over decades with minimal turnover
  publication-title: J. Virol.
– volume: 12
  start-page: 669
  year: 2012
  ident: BFng3822_CR40
  publication-title: Am. J. Transplant.
  doi: 10.1111/j.1600-6143.2011.03842.x
– volume: 286
  start-page: 958
  year: 1999
  ident: BFng3822_CR3
  publication-title: Science
  doi: 10.1126/science.286.5441.958
– volume: 188
  start-page: 1156
  year: 2012
  ident: BFng3822_CR25
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1102610
– volume: 4
  start-page: 128ra42
  year: 2012
  ident: BFng3822_CR44
  publication-title: Sci. Transl. Med.
– volume: 114
  start-page: 2244
  year: 2009
  ident: BFng3822_CR58
  publication-title: Blood
  doi: 10.1182/blood-2009-05-222596
– volume: 85
  start-page: 87
  year: 1922
  ident: BFng3822_CR13
  publication-title: J. R. Stat. Soc.
  doi: 10.2307/2340521
– volume: 100
  start-page: 9440
  year: 2003
  ident: BFng3822_CR61
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1530509100
– volume: 89
  start-page: 4517
  year: 2015
  ident: BFng3822_CR62
  publication-title: J. Virol.
  doi: 10.1128/JVI.03474-14
– volume: 106
  start-page: 311
  year: 2010
  ident: BFng3822_CR14
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.22663
– volume: 33
  start-page: 760
  year: 2003
  ident: BFng3822_CR21
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.200323628
– volume: 49
  start-page: 87
  year: 2014
  ident: BFng3822_CR33
  publication-title: Bone Marrow Transplant.
  doi: 10.1038/bmt.2013.122
– volume: 46
  start-page: 560
  year: 2016
  ident: BFng3822_CR52
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201545951
– volume: 135
  start-page: 27
  year: 2012
  ident: BFng3822_CR20
  publication-title: Immunology
  doi: 10.1111/j.1365-2567.2011.03508.x
– volume: 99
  start-page: 213
  year: 2002
  ident: BFng3822_CR35
  publication-title: Blood
  doi: 10.1182/blood.V99.1.213
– volume: 87
  start-page: 697
  year: 2013
  ident: BFng3822_CR4
  publication-title: J. Virol.
  doi: 10.1128/JVI.02180-12
– volume: 183
  start-page: 319
  year: 2009
  ident: BFng3822_CR24
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0803647
– volume: 185
  start-page: 1025
  year: 2002
  ident: BFng3822_CR26
  publication-title: J. Infect. Dis.
  doi: 10.1086/339963
– volume: 19
  start-page: 395
  year: 1998
  ident: BFng3822_CR54
  publication-title: Immunol. Today
  doi: 10.1016/S0167-5699(98)01299-7
– volume: 20
  start-page: i379
  issue: Suppl. 1
  year: 2004
  ident: BFng3822_CR59
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth945
– volume: 114
  start-page: 4099
  year: 2009
  ident: BFng3822_CR5
  publication-title: Blood
  doi: 10.1182/blood-2009-04-217604
– volume: 111
  start-page: 4283
  year: 2008
  ident: BFng3822_CR47
  publication-title: Blood
  doi: 10.1182/blood-2007-11-122622
– volume: 405
  start-page: 199
  year: 2014
  ident: BFng3822_CR30
  publication-title: J. Immunol. Methods
  doi: 10.1016/j.jim.2014.01.013
– volume: 13
  start-page: 2842
  year: 2013
  ident: BFng3822_CR19
  publication-title: Am. J. Transplant.
  doi: 10.1111/ajt.12431
– volume: 6
  start-page: 2242
  year: 2014
  ident: BFng3822_CR11
  publication-title: Viruses
  doi: 10.3390/v6062242
– volume: 183
  start-page: 6819
  year: 2009
  ident: BFng3822_CR39
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0902233
– volume: 10
  start-page: e0141561
  year: 2015
  ident: BFng3822_CR48
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0141561
– volume: 194
  start-page: 1385
  year: 2001
  ident: BFng3822_CR1
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.194.9.1385
– volume: 202
  start-page: 1349
  year: 2005
  ident: BFng3822_CR36
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20051357
– volume: 60
  start-page: 190
  year: 1991
  ident: BFng3822_CR10
  publication-title: Clin. Immunol. Immunopathol.
  doi: 10.1016/0090-1229(91)90063-G
– volume: 115
  start-page: 3146
  year: 2010
  ident: BFng3822_CR56
  publication-title: Blood
  doi: 10.1182/blood-2009-07-234906
– volume: 186
  start-page: 359
  year: 2011
  ident: BFng3822_CR42
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1001807
– volume: 81
  start-page: 7269
  year: 2007
  ident: BFng3822_CR16
  publication-title: J. Virol.
  doi: 10.1128/JVI.00356-07
– volume: 188
  start-page: 2742
  year: 2012
  ident: BFng3822_CR17
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1102675
– volume: 4
  start-page: 2680
  year: 2013
  ident: BFng3822_CR60
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3680
– volume: 2
  start-page: 47ra64
  year: 2010
  ident: BFng3822_CR6
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3001442
– volume: 7
  start-page: 285ra63
  year: 2015
  ident: BFng3822_CR22
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaa2546
– volume: 402
  start-page: 255
  year: 1999
  ident: BFng3822_CR49
  publication-title: Nature
  doi: 10.1038/46218
– volume: 173
  start-page: 5843
  year: 2004
  ident: BFng3822_CR46
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.173.9.5843
– volume: 14
  start-page: 377
  year: 2014
  ident: BFng3822_CR50
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3667
– volume: 192
  start-page: 5039
  year: 2014
  ident: BFng3822_CR34
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1303147
– volume: 179
  start-page: 3203
  year: 2007
  ident: BFng3822_CR18
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.179.5.3203
– volume: 250
  start-page: 61
  year: 2012
  ident: BFng3822_CR53
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.2012.01159.x
– volume: 179
  start-page: 1155
  year: 1994
  ident: BFng3822_CR57
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.179.4.1155
– volume: 8
  start-page: e1002889
  year: 2012
  ident: BFng3822_CR28
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002889
– volume: 8
  start-page: 231
  year: 2008
  ident: BFng3822_CR7
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2260
– volume: 169
  start-page: 1984
  year: 2002
  ident: BFng3822_CR27
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.169.4.1984
– volume: 22
  start-page: 33
  year: 2012
  ident: BFng3822_CR8
  publication-title: Cell Res.
  doi: 10.1038/cr.2012.1
– volume: 73
  start-page: 2099
  year: 1999
  ident: BFng3822_CR45
  publication-title: J. Virol.
  doi: 10.1128/JVI.73.3.2099-2108.1999
– volume: 184
  start-page: 6731
  year: 2010
  ident: BFng3822_CR51
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1000295
– volume: 181
  start-page: 7853
  year: 2008
  ident: BFng3822_CR43
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.181.11.7853
– volume: 8
  start-page: e74231
  year: 2013
  ident: BFng3822_CR29
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0074231
– volume: 184
  start-page: 1617
  year: 2010
  ident: BFng3822_CR31
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0902155
– volume: 16
  start-page: 21
  year: 1994
  ident: BFng3822_CR9
  publication-title: Clin. Lab. Haematol.
  doi: 10.1111/j.1365-2257.1994.tb00384.x
– volume: 20
  start-page: 344
  year: 2009
  ident: BFng3822_CR15
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2007111225
– volume: 114
  start-page: 5071
  year: 2009
  ident: BFng3822_CR38
  publication-title: Blood
  doi: 10.1182/blood-2009-04-214684
– volume: 334
  start-page: 395
  year: 1988
  ident: BFng3822_CR2
  publication-title: Nature
  doi: 10.1038/334395a0
– volume: 4
  start-page: 725
  year: 2004
  ident: BFng3822_CR12
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(04)01202-2
– volume: 74
  start-page: 3948
  year: 2000
  ident: BFng3822_CR37
  publication-title: J. Virol.
  doi: 10.1128/JVI.74.9.3948-3952.2000
– volume: 109
  start-page: 235
  year: 2007
  ident: BFng3822_CR23
  publication-title: Blood
  doi: 10.1182/blood-2006-03-013318
– volume: 175
  start-page: 6123
  year: 2005
  ident: BFng3822_CR41
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.175.9.6123
– volume: 287
  start-page: 1168
  year: 2012
  ident: BFng3822_CR55
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.289488
– volume: 186
  start-page: 7039
  year: 2011
  ident: BFng3822_CR32
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1003309
– reference: 1712687 - Clin Immunol Immunopathol. 1991 Aug;60(2):190-208
– reference: 12165524 - J Immunol. 2002 Aug 15;169(4):1984-92
– reference: 24157944 - Nat Commun. 2013;4:2680
– reference: 17709536 - J Immunol. 2007 Sep 1;179(5):3203-13
– reference: 8039343 - Clin Lab Haematol. 1994 Mar;16(1):21-32
– reference: 19864595 - J Immunol. 2009 Nov 15;183(10):6819-30
– reference: 21555537 - J Immunol. 2011 Jun 15;186(12):7039-49
– reference: 15567122 - Lancet Infect Dis. 2004 Dec;4(12):725-38
– reference: 3043226 - Nature. 1988 Aug 4;334(6181):395-402
– reference: 23077319 - J Virol. 2013 Jan;87(1):697-700
– reference: 18301425 - Nat Rev Immunol. 2008 Mar;8(3):231-8
– reference: 20811043 - Sci Transl Med. 2010 Sep 1;2(47):47ra64
– reference: 15494538 - J Immunol. 2004 Nov 1;173(9):5843-51
– reference: 11930311 - J Infect Dis. 2002 Apr 15;185(8):1025-34
– reference: 22212481 - Cell Res. 2012 Jan;22(1):33-42
– reference: 12616496 - Eur J Immunol. 2003 Mar;33(3):760-8
– reference: 10580495 - Nature. 1999 Nov 18;402(6759):255-62
– reference: 10756006 - J Virol. 2000 May;74(9):3948-52
– reference: 18799721 - J Am Soc Nephrol. 2009 Feb;20(2):344-52
– reference: 20160165 - Blood. 2010 Apr 15;115(15):3146-57
– reference: 23028307 - PLoS Pathog. 2012 Sep;8(9):e1002889
– reference: 19017975 - J Immunol. 2008 Dec 1;181(11):7853-62
– reference: 16237109 - J Immunol. 2005 Nov 1;175(9):6123-32
– reference: 22044339 - Immunology. 2012 Jan;135(1):27-39
– reference: 16968899 - Blood. 2007 Jan 1;109(1):235-43
– reference: 20073087 - Biotechnol Bioeng. 2010 Jun 1;106(2):311-8
– reference: 22081907 - Am J Transplant. 2012 Mar;12(3):669-81
– reference: 22491952 - Sci Transl Med. 2012 Apr 4;4(128):128ra42
– reference: 26509579 - PLoS One. 2015 Oct 28;10(10):e0141561
– reference: 22323539 - J Immunol. 2012 Mar 15;188(6):2742-8
– reference: 17459926 - J Virol. 2007 Jul;81(13):7269-73
– reference: 18270323 - Blood. 2008 Apr 15;111(8):4283-92
– reference: 7511682 - J Exp Med. 1994 Apr 1;179(4):1155-61
– reference: 23046123 - Immunol Rev. 2012 Nov;250(1):61-81
– reference: 9745202 - Immunol Today. 1998 Sep;19(9):395-404
– reference: 11756174 - Blood. 2002 Jan 1;99(1):213-23
– reference: 24020931 - Am J Transplant. 2013 Nov;13(11):2842-54
– reference: 20483723 - J Immunol. 2010 Jun 15;184(12):6731-8
– reference: 11696602 - J Exp Med. 2001 Nov 5;194(9):1385-90
– reference: 19542443 - J Immunol. 2009 Jul 1;183(1):319-31
– reference: 24778446 - J Immunol. 2014 Jun 1;192(11):5039-49
– reference: 22210916 - J Immunol. 2012 Feb 1;188(3):1156-67
– reference: 24512815 - J Immunol Methods. 2014 Mar;405:199-203
– reference: 19706884 - Blood. 2009 Nov 5;114(19):4099-107
– reference: 25653453 - J Virol. 2015 Apr;89(8):4517-26
– reference: 21135165 - J Immunol. 2011 Jan 1;186(1):359-71
– reference: 22102287 - J Biol Chem. 2012 Jan 6;287(2):1168-77
– reference: 10542151 - Science. 1999 Oct 29;286(5441):958-61
– reference: 12883005 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5
– reference: 9971792 - J Virol. 1999 Mar;73(3):2099-108
– reference: 23933763 - Bone Marrow Transplant. 2014 Jan;49(1):87-94
– reference: 24830344 - Nat Rev Immunol. 2014 Jun;14(6):377-91
– reference: 20042572 - J Immunol. 2010 Feb 1;184(3):1617-29
– reference: 15262823 - Bioinformatics. 2004 Aug 4;20 Suppl 1:i379-85
– reference: 19617574 - Blood. 2009 Sep 10;114(11):2244-53
– reference: 24872114 - Viruses. 2014 May 27;6(6):2242-58
– reference: 24069285 - PLoS One. 2013 Sep 19;8(9):e74231
– reference: 25925682 - Sci Transl Med. 2015 Apr 29;7(285):285ra63
– reference: 16287711 - J Exp Med. 2005 Nov 21;202(10):1349-61
– reference: 19776383 - Blood. 2009 Dec 3;114(24):5071-80
– reference: 26635029 - Eur J Immunol. 2016 Mar;46(3):560-9
SSID ssj0014408
Score 2.6494322
Snippet Ryan Emerson and colleagues report immunosequencing of the variable region of the TCRβ chain in 666 individuals with known cytomegalovirus (CMV) status. They...
An individual's T cell repertoire dynamically encodes their pathogen exposure history. To determine whether pathogen exposure signatures can be identified by...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 659
SubjectTerms 45
45/23
631/114
631/208/248
631/208/514/1948
631/250
Agriculture
Algorithms
Animal Genetics and Genomics
Antigens
Biomedicine
Cancer Research
Coding
Cohort Studies
Cytomegalovirus
Cytomegalovirus - genetics
Cytomegalovirus - immunology
Cytomegalovirus - physiology
Cytotoxicity
Diagnostic systems
Epitopes, T-Lymphocyte - genetics
Epitopes, T-Lymphocyte - immunology
Exposure
Gene Function
High-Throughput Nucleotide Sequencing - methods
Histocompatibility Testing - methods
HLA Antigens - genetics
HLA Antigens - immunology
HLA-A Antigens - genetics
HLA-A Antigens - immunology
HLA-B Antigens - genetics
HLA-B Antigens - immunology
Host-Pathogen Interactions - immunology
Human Genetics
Humans
Immunology
In vitro methods and tests
Infections
Lymphocytes
Lymphocytes T
Medical research
Models, Immunological
Pathogens
Receptors
Receptors, Antigen, T-Cell - genetics
Receptors, Antigen, T-Cell - immunology
Reproducibility of Results
Signatures
T cell receptors
T-Lymphocytes - immunology
T-Lymphocytes - metabolism
T-Lymphocytes - virology
Viral infections
Title Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire
URI https://link.springer.com/article/10.1038/ng.3822
https://www.ncbi.nlm.nih.gov/pubmed/28369038
https://www.proquest.com/docview/1894954845
https://www.proquest.com/docview/1884166002
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS90wFA9OGexFnPvwTidnMPaW2Zsmbfo0nCh34mQMhftW0vRUBG3ubnvFC_7x5rS5V-XCXvrQJmnISXI-fueDsa9SpKZSqeFCFoLLyliuM4OchF8Tp1kUCwpO_n2ejC7l6ViNg8GtCW6Vizuxu6hLZ8lGfjDUmaTkZFL9mPzjVDWK0NVQQuMV26DUZeTSlY6XChfhln0oXEJ6EsGUm32YuT6or77HWoiX3GhFxFyBRzuuc7LFNoO4CIc9fd-yNay32eu-gOT8HXv4ReEdLvhD-xHguuzdf7ABcs3o0nY24Cqw89bdoucH7u56OmsA7yeOrIPQZxyeg6lLGJ0d8i6WxMuhEFw9wNXgpUS4ADLywxQnOG2dvynfs8uT44ujEQ_1FLiNpWi5iUstq8hmaZxEGSpdaOxS-HmVDAnvHCaVTEuv4EhpyyQTqHWC_pUuijKrMP7A1mtX4w6DIkowMlYrWxVSWc_0VVYZxNQYr_IqNWDfFuua25BsnGpe3OQd6B3rvL7KiQADBsuGkz6_xmqTvQVh8nDAmvxpOwzYl-VnfzRoKUyNbkZtCFMl4HHAPvYEXf7DS1WJ34ja915Q-NngLyfw6f8T2GVvBPH6zgtyj6230xl-9pJKW-x329E_9dFwn238PD7_8_cRsTvrqg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgguFW8WChgJuIWmjpM4B4QKtNql2xVCW6m31HEmVSWIl00WWInfxG9kJo-FaiVuvSa2E3nG48_-5gHwQsnYFGFsPKky6anCWE8nBj0GvyaIEz-QHJx8PImGJ-rjaXi6Ab_7WBh2q-xtYmOoc2f5jnx3TyeKk5Op8O3sm8dVo5hd7UtotGpxhMsfdGSr3ow-kHxfSnl4MH0_9LqqAp4NlKw9E-RaFb5N4iDyEwx1prFJZEcHE2TWby8qVJwTzFfK5lEiUesI6ZHOsjwpMKBxr8GWot5kCLbeHUw-fV7xFly_ueFXIz6ZMTG63Qa2693y_HWgpby8_62B2jVCttnnDm_BdgdQxX6rUbdhA8s7cL0tWbm8C79GHFDiOg9sGkFc5K3DEVaCnUGaRKGVcIWwy9p9RdqB3PeL-aIS-HPm-D5StDmOl8KUuRiO970meoWQr-icS4QrBeFSMRVMK4g5znBeO7LN9-DkSub6PmyWrsSHIDI_Qt9YHdoiU6ElmBEmhUGMjaFDdhgO4FU_r6nt0ptzlY0vaUOzBzotz1MWwADEquGszeix3mSnF0zaLekq_auAA3i-ek2LkafClOgW3IZZXKY6B_CgFejqG4TjIlJ9Tb17Cf8z-OUfePT_H3gGN4bT43E6Hk2OHsNNyUij8cHcgc16vsAnhJPq7GmnnALOrno9_AEbHCYf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEaiXimdZKGAk4BY260fiHBCqKKtdWioOrbS34DiTqhKNl00WWIlfxq9jJo-FaiVuvSaOY3k89jf-5sHYSyViW-jYBkJlIlCFdYFJLAQEfq2Mk1AKCk7-dBJNztTHmZ5tsd99LAy5VfZ7YrNR597RHflwZBJFycmUHhadW8Tnw_G7-beAKkgR09qX02iXyBGsfqD5Vr2dHqKsXwkx_nD6fhJ0FQYCJ5WoAytzo4rQJbGMwgS0yQw0Se3QSAFiAEdRoeIcIb9SLo8SAcZEgI9MluVJARL7vcFuxlKPSMfi2drYI860DcOLyEYjinS3DXE3w_L8jTRCXD0JN-DtBjXbnHjjO2y3g6r8oF1bd9kWlPfYrbZ45eo--zWl0BLf-WJjD_wib12PoOLkFtKkDK24L7hb1f4S8Czy3y8Wy4rDz7mnm0neZjtecVvmfHJ8EDRxLIiBeedmwn3JEaHyU04EA1_AHBa1x136ATu7lpl-yLZLX8IjxrMwgtA6o12RKe0QcOiksACxtWhuaz1gr_t5TV2X6JzqbXxNG8JdmrQ8T0kAA8bXDedtbo_NJvu9YNJOuav071IcsBfr16iWNBW2BL-kNsTnEuk5YHutQNf_QEQXoRIY_LqX8D-dXx3A4_8P4Dm7jVqQHk9Pjp6wHUGQo3HG3Gfb9WIJTxEw1dmzZmVy9uW6VeEPkEso7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immunosequencing+identifies+signatures+of+cytomegalovirus+exposure+history+and+HLA-mediated+effects+on+the+T+cell+repertoire&rft.jtitle=Nature+genetics&rft.au=Emerson%2C+Ryan+O&rft.au=DeWitt%2C+William+S&rft.au=Vignali%2C+Marissa&rft.au=Gravley%2C+Jenna&rft.date=2017-05-01&rft.issn=1061-4036&rft.eissn=1546-1718&rft.volume=49&rft.issue=5&rft.spage=659&rft.epage=665&rft_id=info:doi/10.1038%2Fng.3822&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_ng_3822
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-4036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-4036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-4036&client=summon