A quaternion Sylvester equation solver through noise-resilient zeroing neural networks with application to control the SFM chaotic system
Dynamic Sylvester equation (DSE) problems have drawn a lot of interest from academics due to its importance in science and engineering. Due to this, the quest for the quaternion DSE (QDSE) solution is the subject of this work. This is accomplished using the zeroing neural network (ZNN) technique, wh...
Saved in:
Published in | AIMS mathematics Vol. 8; no. 11; pp. 27376 - 27395 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dynamic Sylvester equation (DSE) problems have drawn a lot of interest from academics due to its importance in science and engineering. Due to this, the quest for the quaternion DSE (QDSE) solution is the subject of this work. This is accomplished using the zeroing neural network (ZNN) technique, which has achieved considerable success in tackling time-varying issues. Keeping in mind that the original ZNN can handle QDSE successfully in a noise-free environment, but it might not work in a noisy one, and the noise-resilient ZNN (NZNN) technique is also utilized. In light of that, one new ZNN model is introduced to solve the QDSE problem and one new NZNN model is introduced to solve the QDSE problem under different types of noises. Two simulation experiments and one application to control of the sine function memristor (SFM) chaotic system show that the models function superbly. |
---|---|
AbstractList | Dynamic Sylvester equation (DSE) problems have drawn a lot of interest from academics due to its importance in science and engineering. Due to this, the quest for the quaternion DSE (QDSE) solution is the subject of this work. This is accomplished using the zeroing neural network (ZNN) technique, which has achieved considerable success in tackling time-varying issues. Keeping in mind that the original ZNN can handle QDSE successfully in a noise-free environment, but it might not work in a noisy one, and the noise-resilient ZNN (NZNN) technique is also utilized. In light of that, one new ZNN model is introduced to solve the QDSE problem and one new NZNN model is introduced to solve the QDSE problem under different types of noises. Two simulation experiments and one application to control of the sine function memristor (SFM) chaotic system show that the models function superbly. |
Author | Aoun, Sondess B. Mourtas, Spyridon D. Derbel, Nabil Jerbi, Houssem Katsikis, Vasilios N. Simos, Theodore E. |
Author_xml | – sequence: 1 givenname: Sondess B. surname: Aoun fullname: Aoun, Sondess B. organization: Department of Computer Engineering, College of Computer Science and Engineering, Univ. of Ha'il, Ha'il City 81451, Saudi Arabia – sequence: 2 givenname: Nabil surname: Derbel fullname: Derbel, Nabil organization: Control & Energy Management Laboratory, National Engineering School of Sfax, Univ. of Sfax, Sfax, Tunisia – sequence: 3 givenname: Houssem surname: Jerbi fullname: Jerbi, Houssem organization: Department of Industrial Engineering, College of Engineering, Univ. of Ha'il, Ha'il City 81451, Saudi Arabia – sequence: 4 givenname: Theodore E. surname: Simos fullname: Simos, Theodore E. organization: Laboratory of Interdisciplinary Problems in Energy Production, Ulyanovsk State Technical Univ., 32 Severny Venetz Street, 432027 Ulyanovsk, Russia, Department of Medical Research, China Medical Univ. Hospital, China Medical Univ., Taichung City 40402, Taiwan, Center for Applied Math. and Bioinformatics, Gulf Univ. for Science and Technology, West Mishref, 32093 Kuwait, Data Recovery Key Laboratory of Sichun Province, Neijing Normal Univ., Neijiang 641100, China, Section of Mathematics, Dept. of Civil Engineering, Democritus Univ. of Thrace, Xanthi 67100, Greece – sequence: 5 givenname: Spyridon D. surname: Mourtas fullname: Mourtas, Spyridon D. organization: Department of Economics, Division of Mathematics-Informatics and Statistics-Econometrics, National and Kapodistrian Univ.of Athens, Sofokleous 1 Street, 10559 Athens, Greece, Laboratory "Hybrid Methods of Modelling and Optimization in Complex Systems", Siberian Federal Univ., Prosp. Svobodny 79, 660041 Krasnoyarsk, Russia – sequence: 6 givenname: Vasilios N. surname: Katsikis fullname: Katsikis, Vasilios N. organization: Department of Economics, Division of Mathematics-Informatics and Statistics-Econometrics, National and Kapodistrian Univ.of Athens, Sofokleous 1 Street, 10559 Athens, Greece |
BookMark | eNptkd9OHCEUxkmjSa162XteYCx_h5lLY2o1sfFCvSYsHHaws7AFtmZ9A9-6rKtJY3p14Avnd77D9wUdxBQBoa-UnPGRi28rU6czRhingtBP6IgJxbt-HIaDf86f0Wkpj4QQRplgShyhl3P8e2Mq5BhSxHfb-Q-UdsOwU3dSSU3KuE45bZYTjikU6DKUMAeIFT9DTiEucYRNNnMr9SnlXwU_hTphs17Pwe45NWGbYs1pbizAd5c_sZ1MqsHism0jVyfo0Ju5wOlbPUYPl9_vL666m9sf1xfnN53lgtXOEJDACbN2lKOChfCOOhittAtvRtP3cgBmlDNOWO6kp84rJ0dmKRkUo4Qfo-s91yXzqNc5rEze6mSCfhVSXmqTm60ZtJdW9d4RsmCjkBLaD1KlwPfELTgZfGPxPcvmVEoGr22or_vWbMKsKdG7cPQuHP0eTuvqPnS9u_j_-7_e8ZgW |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3382189 crossref_primary_10_3390_math12010015 crossref_primary_10_1051_itmconf_20245901005 crossref_primary_10_3934_math_2024281 crossref_primary_10_3934_math_2024974 |
Cites_doi | 10.1007/s00521-021-06465-x 10.1142/S0219887819501056 10.1016/0024-3795(95)00543-9 10.3934/math.20231164 10.3390/math11030600 10.3390/math10111950 10.1007/s40590-021-00386-4 10.1016/j.neucom.2022.05.036 10.1103/PhysRevLett.66.1123 10.4108/airo.v1i.17 10.3390/math10183335 10.1109/TNNLS.2022.3163293 10.1109/TFUZZ.2021.3115969 10.1007/978-1-4842-0154-1 10.1109/TNNLS.2015.2497715 10.1016/j.robot.2015.12.005 10.1109/TNNLS.2022.3225309 10.3390/math10234490 10.1109/TAP.1981.1142695 10.1016/j.neucom.2020.08.026 10.1016/j.amc.2015.09.042 10.1109/TII.2021.3090063 10.1007/s11071-018-4531-4 10.1007/s11263-019-01207-y 10.1016/j.neucom.2017.09.034 10.1007/s12555-020-0782-1 10.1016/j.infrared.2016.05.002 10.1016/j.geomphys.2020.103956 10.1007/s12190-014-0753-x 10.1080/01630563.2020.1740887 10.1016/j.knosys.2022.108405 10.1109/LSP.2016.2608858 10.1109/ARITH48897.2020.00016 10.1016/j.laa.2015.02.033 10.1109/TNN.2005.857946 10.1109/TIM.2022.3161713 10.1109/TII.2019.2899428 10.2991/ijcis.d.200527.001 10.1109/TNNLS.2019.2943548 10.1109/TNNLS.2023.3242313 10.1002/nla.2033 10.3934/math.2023733 10.3390/math10173079 10.3390/axioms11110579 10.1109/TII.2021.3111816 10.3390/math11122756 10.1109/TPDS.2007.70813 10.1109/TSMC.2018.2870523 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.20231401 |
DatabaseName | CrossRef DOAJ Open Access Full Text |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 27395 |
ExternalDocumentID | oai_doaj_org_article_f5c76fd00b29455e988177ef60db308f 10_3934_math_20231401 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c342t-a0e5e302cc9597eb4fd1de9c5cbfa9a6658e2a7dad4c3d5f1df7d592c10872103 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:23:48 EDT 2025 Tue Jul 01 03:57:06 EDT 2025 Thu Apr 24 22:51:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-a0e5e302cc9597eb4fd1de9c5cbfa9a6658e2a7dad4c3d5f1df7d592c10872103 |
OpenAccessLink | https://doaj.org/article/f5c76fd00b29455e988177ef60db308f |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f5c76fd00b29455e988177ef60db308f crossref_citationtrail_10_3934_math_20231401 crossref_primary_10_3934_math_20231401 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2023 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.20231401-33 key-10.3934/math.20231401-32 key-10.3934/math.20231401-31 key-10.3934/math.20231401-30 key-10.3934/math.20231401-37 key-10.3934/math.20231401-36 key-10.3934/math.20231401-35 key-10.3934/math.20231401-34 key-10.3934/math.20231401-39 key-10.3934/math.20231401-38 key-10.3934/math.20231401-44 key-10.3934/math.20231401-43 key-10.3934/math.20231401-42 key-10.3934/math.20231401-41 key-10.3934/math.20231401-48 key-10.3934/math.20231401-47 key-10.3934/math.20231401-46 key-10.3934/math.20231401-45 key-10.3934/math.20231401-40 key-10.3934/math.20231401-49 key-10.3934/math.20231401-11 key-10.3934/math.20231401-10 key-10.3934/math.20231401-52 key-10.3934/math.20231401-15 key-10.3934/math.20231401-14 key-10.3934/math.20231401-13 key-10.3934/math.20231401-12 key-10.3934/math.20231401-51 key-10.3934/math.20231401-50 key-10.3934/math.20231401-7 key-10.3934/math.20231401-8 key-10.3934/math.20231401-9 key-10.3934/math.20231401-3 key-10.3934/math.20231401-4 key-10.3934/math.20231401-5 key-10.3934/math.20231401-6 key-10.3934/math.20231401-19 key-10.3934/math.20231401-18 key-10.3934/math.20231401-1 key-10.3934/math.20231401-17 key-10.3934/math.20231401-2 key-10.3934/math.20231401-16 key-10.3934/math.20231401-22 key-10.3934/math.20231401-21 key-10.3934/math.20231401-20 key-10.3934/math.20231401-26 key-10.3934/math.20231401-25 key-10.3934/math.20231401-24 key-10.3934/math.20231401-23 key-10.3934/math.20231401-29 key-10.3934/math.20231401-28 key-10.3934/math.20231401-27 |
References_xml | – ident: key-10.3934/math.20231401-4 doi: 10.1007/s00521-021-06465-x – ident: key-10.3934/math.20231401-20 doi: 10.1142/S0219887819501056 – ident: key-10.3934/math.20231401-44 doi: 10.1016/0024-3795(95)00543-9 – ident: key-10.3934/math.20231401-24 doi: 10.3934/math.20231164 – ident: key-10.3934/math.20231401-41 doi: 10.3390/math11030600 – ident: key-10.3934/math.20231401-38 doi: 10.3390/math10111950 – ident: key-10.3934/math.20231401-22 doi: 10.1007/s40590-021-00386-4 – ident: key-10.3934/math.20231401-35 doi: 10.1016/j.neucom.2022.05.036 – ident: key-10.3934/math.20231401-50 doi: 10.1103/PhysRevLett.66.1123 – ident: key-10.3934/math.20231401-5 doi: 10.4108/airo.v1i.17 – ident: key-10.3934/math.20231401-36 doi: 10.3390/math10183335 – ident: key-10.3934/math.20231401-45 doi: 10.1109/TNNLS.2022.3163293 – ident: key-10.3934/math.20231401-1 doi: 10.1007/s00521-021-06465-x – ident: key-10.3934/math.20231401-40 doi: 10.1109/TFUZZ.2021.3115969 – ident: key-10.3934/math.20231401-47 doi: 10.1007/978-1-4842-0154-1 – ident: key-10.3934/math.20231401-43 doi: 10.1109/TNNLS.2015.2497715 – ident: key-10.3934/math.20231401-17 doi: 10.1016/j.robot.2015.12.005 – ident: key-10.3934/math.20231401-26 doi: 10.1109/TNNLS.2022.3225309 – ident: key-10.3934/math.20231401-39 doi: 10.3390/math10234490 – ident: key-10.3934/math.20231401-11 doi: 10.1109/TAP.1981.1142695 – ident: key-10.3934/math.20231401-32 doi: 10.1016/j.neucom.2020.08.026 – ident: key-10.3934/math.20231401-8 doi: 10.1016/j.amc.2015.09.042 – ident: key-10.3934/math.20231401-23 doi: 10.1109/TII.2021.3090063 – ident: key-10.3934/math.20231401-52 doi: 10.1007/s11071-018-4531-4 – ident: key-10.3934/math.20231401-18 doi: 10.1007/s11263-019-01207-y – ident: key-10.3934/math.20231401-34 doi: 10.1016/j.neucom.2017.09.034 – ident: key-10.3934/math.20231401-6 – ident: key-10.3934/math.20231401-49 doi: 10.1007/s12555-020-0782-1 – ident: key-10.3934/math.20231401-9 doi: 10.1016/j.infrared.2016.05.002 – ident: key-10.3934/math.20231401-21 doi: 10.1016/j.geomphys.2020.103956 – ident: key-10.3934/math.20231401-13 doi: 10.1007/s12190-014-0753-x – ident: key-10.3934/math.20231401-33 doi: 10.1080/01630563.2020.1740887 – ident: key-10.3934/math.20231401-42 doi: 10.1016/j.knosys.2022.108405 – ident: key-10.3934/math.20231401-7 doi: 10.1109/LSP.2016.2608858 – ident: key-10.3934/math.20231401-16 doi: 10.1109/ARITH48897.2020.00016 – ident: key-10.3934/math.20231401-46 doi: 10.1016/j.laa.2015.02.033 – ident: key-10.3934/math.20231401-30 doi: 10.1109/TNN.2005.857946 – ident: key-10.3934/math.20231401-28 doi: 10.1109/TIM.2022.3161713 – ident: key-10.3934/math.20231401-10 doi: 10.1109/TII.2019.2899428 – ident: key-10.3934/math.20231401-31 doi: 10.2991/ijcis.d.200527.001 – ident: key-10.3934/math.20231401-51 doi: 10.1109/TNNLS.2019.2943548 – ident: key-10.3934/math.20231401-25 doi: 10.1109/TNNLS.2023.3242313 – ident: key-10.3934/math.20231401-12 doi: 10.1002/nla.2033 – ident: key-10.3934/math.20231401-29 doi: 10.3934/math.2023733 – ident: key-10.3934/math.20231401-37 doi: 10.3390/math10173079 – ident: key-10.3934/math.20231401-48 doi: 10.3390/axioms11110579 – ident: key-10.3934/math.20231401-14 doi: 10.1109/TII.2021.3111816 – ident: key-10.3934/math.20231401-27 doi: 10.3390/math11122756 – ident: key-10.3934/math.20231401-3 doi: 10.1109/TPDS.2007.70813 – ident: key-10.3934/math.20231401-2 doi: 10.1109/TSMC.2018.2870523 – ident: key-10.3934/math.20231401-15 – ident: key-10.3934/math.20231401-19 |
SSID | ssj0002124274 |
Score | 2.254022 |
Snippet | Dynamic Sylvester equation (DSE) problems have drawn a lot of interest from academics due to its importance in science and engineering. Due to this, the quest... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 27376 |
SubjectTerms | chaos control dynamic sylvester equation quaternion zeroing neural network |
Title | A quaternion Sylvester equation solver through noise-resilient zeroing neural networks with application to control the SFM chaotic system |
URI | https://doaj.org/article/f5c76fd00b29455e988177ef60db308f |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_iE-uLOYgnl2Y3ye7mqGIpQr3UQm9Lnlgou2qroP_Af-2k2ZZexIvXZciGb4bMI5NvCLkUOre5FTKx3vCEK8oS7Z1MlNbcMOldHhtkH_P-iD-MxXht1FfoCYv0wBG4rhemyL2lVGeSC-FkWaZF4XxOrWa09OH0RZ-3lkyFMxgPZI75ViTVZJLxLsZ_4e4BwxneDoBZOqE1rv6FU-ntkp02GoSbuIs9suHqfbI9WFGpzg7I9w28vqtQtkMEYfg5_VhwG4B7jSTdgMaD5gjtwB2om8nMJZhET6bhqSN8ubcG3RME4kr8VR3bvmcQCrCwdn0N8wbavnVcy8GwNwDzrBrcBUS650My6t0_3fWTdn5CYhjP5omiTjhGM2Mkpg1Oc29T66QRRnslVY7Bh8tUYZVFtVjhU-sLVFtmUlpiYkjZEdmsm9odE7AiMHNJoYyQXKdlqXKhmMVgK0WYleiQ6yWglWnJxcOMi2mFSUbAvwr4V0v8O-RqJf4SWTV-E7wN2lkJBTLsxQc0kao1keovEzn5j0VOyVbYVKy-nJHN-du7O8d4ZK4vFqb3A7If4oQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+quaternion+Sylvester+equation+solver+through+noise-resilient+zeroing+neural+networks+with+application+to+control+the+SFM+chaotic+system&rft.jtitle=AIMS+mathematics&rft.au=Aoun%2C+Sondess+B.&rft.au=Derbel%2C+Nabil&rft.au=Jerbi%2C+Houssem&rft.au=Simos%2C+Theodore+E.&rft.date=2023-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=11&rft.spage=27376&rft.epage=27395&rft_id=info:doi/10.3934%2Fmath.20231401&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_20231401 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |