A quaternion Sylvester equation solver through noise-resilient zeroing neural networks with application to control the SFM chaotic system

Dynamic Sylvester equation (DSE) problems have drawn a lot of interest from academics due to its importance in science and engineering. Due to this, the quest for the quaternion DSE (QDSE) solution is the subject of this work. This is accomplished using the zeroing neural network (ZNN) technique, wh...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 8; no. 11; pp. 27376 - 27395
Main Authors Aoun, Sondess B., Derbel, Nabil, Jerbi, Houssem, Simos, Theodore E., Mourtas, Spyridon D., Katsikis, Vasilios N.
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dynamic Sylvester equation (DSE) problems have drawn a lot of interest from academics due to its importance in science and engineering. Due to this, the quest for the quaternion DSE (QDSE) solution is the subject of this work. This is accomplished using the zeroing neural network (ZNN) technique, which has achieved considerable success in tackling time-varying issues. Keeping in mind that the original ZNN can handle QDSE successfully in a noise-free environment, but it might not work in a noisy one, and the noise-resilient ZNN (NZNN) technique is also utilized. In light of that, one new ZNN model is introduced to solve the QDSE problem and one new NZNN model is introduced to solve the QDSE problem under different types of noises. Two simulation experiments and one application to control of the sine function memristor (SFM) chaotic system show that the models function superbly.
AbstractList Dynamic Sylvester equation (DSE) problems have drawn a lot of interest from academics due to its importance in science and engineering. Due to this, the quest for the quaternion DSE (QDSE) solution is the subject of this work. This is accomplished using the zeroing neural network (ZNN) technique, which has achieved considerable success in tackling time-varying issues. Keeping in mind that the original ZNN can handle QDSE successfully in a noise-free environment, but it might not work in a noisy one, and the noise-resilient ZNN (NZNN) technique is also utilized. In light of that, one new ZNN model is introduced to solve the QDSE problem and one new NZNN model is introduced to solve the QDSE problem under different types of noises. Two simulation experiments and one application to control of the sine function memristor (SFM) chaotic system show that the models function superbly.
Author Aoun, Sondess B.
Mourtas, Spyridon D.
Derbel, Nabil
Jerbi, Houssem
Katsikis, Vasilios N.
Simos, Theodore E.
Author_xml – sequence: 1
  givenname: Sondess B.
  surname: Aoun
  fullname: Aoun, Sondess B.
  organization: Department of Computer Engineering, College of Computer Science and Engineering, Univ. of Ha'il, Ha'il City 81451, Saudi Arabia
– sequence: 2
  givenname: Nabil
  surname: Derbel
  fullname: Derbel, Nabil
  organization: Control & Energy Management Laboratory, National Engineering School of Sfax, Univ. of Sfax, Sfax, Tunisia
– sequence: 3
  givenname: Houssem
  surname: Jerbi
  fullname: Jerbi, Houssem
  organization: Department of Industrial Engineering, College of Engineering, Univ. of Ha'il, Ha'il City 81451, Saudi Arabia
– sequence: 4
  givenname: Theodore E.
  surname: Simos
  fullname: Simos, Theodore E.
  organization: Laboratory of Interdisciplinary Problems in Energy Production, Ulyanovsk State Technical Univ., 32 Severny Venetz Street, 432027 Ulyanovsk, Russia, Department of Medical Research, China Medical Univ. Hospital, China Medical Univ., Taichung City 40402, Taiwan, Center for Applied Math. and Bioinformatics, Gulf Univ. for Science and Technology, West Mishref, 32093 Kuwait, Data Recovery Key Laboratory of Sichun Province, Neijing Normal Univ., Neijiang 641100, China, Section of Mathematics, Dept. of Civil Engineering, Democritus Univ. of Thrace, Xanthi 67100, Greece
– sequence: 5
  givenname: Spyridon D.
  surname: Mourtas
  fullname: Mourtas, Spyridon D.
  organization: Department of Economics, Division of Mathematics-Informatics and Statistics-Econometrics, National and Kapodistrian Univ.of Athens, Sofokleous 1 Street, 10559 Athens, Greece, Laboratory "Hybrid Methods of Modelling and Optimization in Complex Systems", Siberian Federal Univ., Prosp. Svobodny 79, 660041 Krasnoyarsk, Russia
– sequence: 6
  givenname: Vasilios N.
  surname: Katsikis
  fullname: Katsikis, Vasilios N.
  organization: Department of Economics, Division of Mathematics-Informatics and Statistics-Econometrics, National and Kapodistrian Univ.of Athens, Sofokleous 1 Street, 10559 Athens, Greece
BookMark eNptkd9OHCEUxkmjSa162XteYCx_h5lLY2o1sfFCvSYsHHaws7AFtmZ9A9-6rKtJY3p14Avnd77D9wUdxBQBoa-UnPGRi28rU6czRhingtBP6IgJxbt-HIaDf86f0Wkpj4QQRplgShyhl3P8e2Mq5BhSxHfb-Q-UdsOwU3dSSU3KuE45bZYTjikU6DKUMAeIFT9DTiEucYRNNnMr9SnlXwU_hTphs17Pwe45NWGbYs1pbizAd5c_sZ1MqsHism0jVyfo0Ju5wOlbPUYPl9_vL666m9sf1xfnN53lgtXOEJDACbN2lKOChfCOOhittAtvRtP3cgBmlDNOWO6kp84rJ0dmKRkUo4Qfo-s91yXzqNc5rEze6mSCfhVSXmqTm60ZtJdW9d4RsmCjkBLaD1KlwPfELTgZfGPxPcvmVEoGr22or_vWbMKsKdG7cPQuHP0eTuvqPnS9u_j_-7_e8ZgW
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3382189
crossref_primary_10_3390_math12010015
crossref_primary_10_1051_itmconf_20245901005
crossref_primary_10_3934_math_2024281
crossref_primary_10_3934_math_2024974
Cites_doi 10.1007/s00521-021-06465-x
10.1142/S0219887819501056
10.1016/0024-3795(95)00543-9
10.3934/math.20231164
10.3390/math11030600
10.3390/math10111950
10.1007/s40590-021-00386-4
10.1016/j.neucom.2022.05.036
10.1103/PhysRevLett.66.1123
10.4108/airo.v1i.17
10.3390/math10183335
10.1109/TNNLS.2022.3163293
10.1109/TFUZZ.2021.3115969
10.1007/978-1-4842-0154-1
10.1109/TNNLS.2015.2497715
10.1016/j.robot.2015.12.005
10.1109/TNNLS.2022.3225309
10.3390/math10234490
10.1109/TAP.1981.1142695
10.1016/j.neucom.2020.08.026
10.1016/j.amc.2015.09.042
10.1109/TII.2021.3090063
10.1007/s11071-018-4531-4
10.1007/s11263-019-01207-y
10.1016/j.neucom.2017.09.034
10.1007/s12555-020-0782-1
10.1016/j.infrared.2016.05.002
10.1016/j.geomphys.2020.103956
10.1007/s12190-014-0753-x
10.1080/01630563.2020.1740887
10.1016/j.knosys.2022.108405
10.1109/LSP.2016.2608858
10.1109/ARITH48897.2020.00016
10.1016/j.laa.2015.02.033
10.1109/TNN.2005.857946
10.1109/TIM.2022.3161713
10.1109/TII.2019.2899428
10.2991/ijcis.d.200527.001
10.1109/TNNLS.2019.2943548
10.1109/TNNLS.2023.3242313
10.1002/nla.2033
10.3934/math.2023733
10.3390/math10173079
10.3390/axioms11110579
10.1109/TII.2021.3111816
10.3390/math11122756
10.1109/TPDS.2007.70813
10.1109/TSMC.2018.2870523
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.20231401
DatabaseName CrossRef
DOAJ Open Access Full Text
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 27395
ExternalDocumentID oai_doaj_org_article_f5c76fd00b29455e988177ef60db308f
10_3934_math_20231401
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c342t-a0e5e302cc9597eb4fd1de9c5cbfa9a6658e2a7dad4c3d5f1df7d592c10872103
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:23:48 EDT 2025
Tue Jul 01 03:57:06 EDT 2025
Thu Apr 24 22:51:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-a0e5e302cc9597eb4fd1de9c5cbfa9a6658e2a7dad4c3d5f1df7d592c10872103
OpenAccessLink https://doaj.org/article/f5c76fd00b29455e988177ef60db308f
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_f5c76fd00b29455e988177ef60db308f
crossref_citationtrail_10_3934_math_20231401
crossref_primary_10_3934_math_20231401
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2023
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.20231401-33
key-10.3934/math.20231401-32
key-10.3934/math.20231401-31
key-10.3934/math.20231401-30
key-10.3934/math.20231401-37
key-10.3934/math.20231401-36
key-10.3934/math.20231401-35
key-10.3934/math.20231401-34
key-10.3934/math.20231401-39
key-10.3934/math.20231401-38
key-10.3934/math.20231401-44
key-10.3934/math.20231401-43
key-10.3934/math.20231401-42
key-10.3934/math.20231401-41
key-10.3934/math.20231401-48
key-10.3934/math.20231401-47
key-10.3934/math.20231401-46
key-10.3934/math.20231401-45
key-10.3934/math.20231401-40
key-10.3934/math.20231401-49
key-10.3934/math.20231401-11
key-10.3934/math.20231401-10
key-10.3934/math.20231401-52
key-10.3934/math.20231401-15
key-10.3934/math.20231401-14
key-10.3934/math.20231401-13
key-10.3934/math.20231401-12
key-10.3934/math.20231401-51
key-10.3934/math.20231401-50
key-10.3934/math.20231401-7
key-10.3934/math.20231401-8
key-10.3934/math.20231401-9
key-10.3934/math.20231401-3
key-10.3934/math.20231401-4
key-10.3934/math.20231401-5
key-10.3934/math.20231401-6
key-10.3934/math.20231401-19
key-10.3934/math.20231401-18
key-10.3934/math.20231401-1
key-10.3934/math.20231401-17
key-10.3934/math.20231401-2
key-10.3934/math.20231401-16
key-10.3934/math.20231401-22
key-10.3934/math.20231401-21
key-10.3934/math.20231401-20
key-10.3934/math.20231401-26
key-10.3934/math.20231401-25
key-10.3934/math.20231401-24
key-10.3934/math.20231401-23
key-10.3934/math.20231401-29
key-10.3934/math.20231401-28
key-10.3934/math.20231401-27
References_xml – ident: key-10.3934/math.20231401-4
  doi: 10.1007/s00521-021-06465-x
– ident: key-10.3934/math.20231401-20
  doi: 10.1142/S0219887819501056
– ident: key-10.3934/math.20231401-44
  doi: 10.1016/0024-3795(95)00543-9
– ident: key-10.3934/math.20231401-24
  doi: 10.3934/math.20231164
– ident: key-10.3934/math.20231401-41
  doi: 10.3390/math11030600
– ident: key-10.3934/math.20231401-38
  doi: 10.3390/math10111950
– ident: key-10.3934/math.20231401-22
  doi: 10.1007/s40590-021-00386-4
– ident: key-10.3934/math.20231401-35
  doi: 10.1016/j.neucom.2022.05.036
– ident: key-10.3934/math.20231401-50
  doi: 10.1103/PhysRevLett.66.1123
– ident: key-10.3934/math.20231401-5
  doi: 10.4108/airo.v1i.17
– ident: key-10.3934/math.20231401-36
  doi: 10.3390/math10183335
– ident: key-10.3934/math.20231401-45
  doi: 10.1109/TNNLS.2022.3163293
– ident: key-10.3934/math.20231401-1
  doi: 10.1007/s00521-021-06465-x
– ident: key-10.3934/math.20231401-40
  doi: 10.1109/TFUZZ.2021.3115969
– ident: key-10.3934/math.20231401-47
  doi: 10.1007/978-1-4842-0154-1
– ident: key-10.3934/math.20231401-43
  doi: 10.1109/TNNLS.2015.2497715
– ident: key-10.3934/math.20231401-17
  doi: 10.1016/j.robot.2015.12.005
– ident: key-10.3934/math.20231401-26
  doi: 10.1109/TNNLS.2022.3225309
– ident: key-10.3934/math.20231401-39
  doi: 10.3390/math10234490
– ident: key-10.3934/math.20231401-11
  doi: 10.1109/TAP.1981.1142695
– ident: key-10.3934/math.20231401-32
  doi: 10.1016/j.neucom.2020.08.026
– ident: key-10.3934/math.20231401-8
  doi: 10.1016/j.amc.2015.09.042
– ident: key-10.3934/math.20231401-23
  doi: 10.1109/TII.2021.3090063
– ident: key-10.3934/math.20231401-52
  doi: 10.1007/s11071-018-4531-4
– ident: key-10.3934/math.20231401-18
  doi: 10.1007/s11263-019-01207-y
– ident: key-10.3934/math.20231401-34
  doi: 10.1016/j.neucom.2017.09.034
– ident: key-10.3934/math.20231401-6
– ident: key-10.3934/math.20231401-49
  doi: 10.1007/s12555-020-0782-1
– ident: key-10.3934/math.20231401-9
  doi: 10.1016/j.infrared.2016.05.002
– ident: key-10.3934/math.20231401-21
  doi: 10.1016/j.geomphys.2020.103956
– ident: key-10.3934/math.20231401-13
  doi: 10.1007/s12190-014-0753-x
– ident: key-10.3934/math.20231401-33
  doi: 10.1080/01630563.2020.1740887
– ident: key-10.3934/math.20231401-42
  doi: 10.1016/j.knosys.2022.108405
– ident: key-10.3934/math.20231401-7
  doi: 10.1109/LSP.2016.2608858
– ident: key-10.3934/math.20231401-16
  doi: 10.1109/ARITH48897.2020.00016
– ident: key-10.3934/math.20231401-46
  doi: 10.1016/j.laa.2015.02.033
– ident: key-10.3934/math.20231401-30
  doi: 10.1109/TNN.2005.857946
– ident: key-10.3934/math.20231401-28
  doi: 10.1109/TIM.2022.3161713
– ident: key-10.3934/math.20231401-10
  doi: 10.1109/TII.2019.2899428
– ident: key-10.3934/math.20231401-31
  doi: 10.2991/ijcis.d.200527.001
– ident: key-10.3934/math.20231401-51
  doi: 10.1109/TNNLS.2019.2943548
– ident: key-10.3934/math.20231401-25
  doi: 10.1109/TNNLS.2023.3242313
– ident: key-10.3934/math.20231401-12
  doi: 10.1002/nla.2033
– ident: key-10.3934/math.20231401-29
  doi: 10.3934/math.2023733
– ident: key-10.3934/math.20231401-37
  doi: 10.3390/math10173079
– ident: key-10.3934/math.20231401-48
  doi: 10.3390/axioms11110579
– ident: key-10.3934/math.20231401-14
  doi: 10.1109/TII.2021.3111816
– ident: key-10.3934/math.20231401-27
  doi: 10.3390/math11122756
– ident: key-10.3934/math.20231401-3
  doi: 10.1109/TPDS.2007.70813
– ident: key-10.3934/math.20231401-2
  doi: 10.1109/TSMC.2018.2870523
– ident: key-10.3934/math.20231401-15
– ident: key-10.3934/math.20231401-19
SSID ssj0002124274
Score 2.254022
Snippet Dynamic Sylvester equation (DSE) problems have drawn a lot of interest from academics due to its importance in science and engineering. Due to this, the quest...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 27376
SubjectTerms chaos control
dynamic sylvester equation
quaternion
zeroing neural network
Title A quaternion Sylvester equation solver through noise-resilient zeroing neural networks with application to control the SFM chaotic system
URI https://doaj.org/article/f5c76fd00b29455e988177ef60db308f
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_iE-uLOYgnl2Y3ye7mqGIpQr3UQm9Lnlgou2qroP_Af-2k2ZZexIvXZciGb4bMI5NvCLkUOre5FTKx3vCEK8oS7Z1MlNbcMOldHhtkH_P-iD-MxXht1FfoCYv0wBG4rhemyL2lVGeSC-FkWaZF4XxOrWa09OH0RZ-3lkyFMxgPZI75ViTVZJLxLsZ_4e4BwxneDoBZOqE1rv6FU-ntkp02GoSbuIs9suHqfbI9WFGpzg7I9w28vqtQtkMEYfg5_VhwG4B7jSTdgMaD5gjtwB2om8nMJZhET6bhqSN8ubcG3RME4kr8VR3bvmcQCrCwdn0N8wbavnVcy8GwNwDzrBrcBUS650My6t0_3fWTdn5CYhjP5omiTjhGM2Mkpg1Oc29T66QRRnslVY7Bh8tUYZVFtVjhU-sLVFtmUlpiYkjZEdmsm9odE7AiMHNJoYyQXKdlqXKhmMVgK0WYleiQ6yWglWnJxcOMi2mFSUbAvwr4V0v8O-RqJf4SWTV-E7wN2lkJBTLsxQc0kao1keovEzn5j0VOyVbYVKy-nJHN-du7O8d4ZK4vFqb3A7If4oQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+quaternion+Sylvester+equation+solver+through+noise-resilient+zeroing+neural+networks+with+application+to+control+the+SFM+chaotic+system&rft.jtitle=AIMS+mathematics&rft.au=Aoun%2C+Sondess+B.&rft.au=Derbel%2C+Nabil&rft.au=Jerbi%2C+Houssem&rft.au=Simos%2C+Theodore+E.&rft.date=2023-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=11&rft.spage=27376&rft.epage=27395&rft_id=info:doi/10.3934%2Fmath.20231401&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_20231401
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon