Synthesis of Metal Nanoparticles by Microorganisms

Metal nanoparticles (NPs), with sizes ranging from 1–100 nm, are of great scientific interest because their functions and features differ greatly from those of bulk metal. Chemical or physical methods are used to synthesize commercial quantities of NPs, and green, energy-efficient approaches generat...

Full description

Saved in:
Bibliographic Details
Published inCrystals (Basel) Vol. 10; no. 7; p. 589
Main Authors Kato, Yugo, Suzuki, Michio
Format Journal Article
LanguageEnglish
Published MDPI AG 01.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal nanoparticles (NPs), with sizes ranging from 1–100 nm, are of great scientific interest because their functions and features differ greatly from those of bulk metal. Chemical or physical methods are used to synthesize commercial quantities of NPs, and green, energy-efficient approaches generating byproducts of low toxicity are desirable to minimize the environmental impact of the industrial methods. Some microorganisms synthesize metal NPs for detoxification and metabolic reasons at room temperature and pressure in aqueous solution. Metal NPs have been prepared via green methods by incubating microorganisms or cell-free extracts of microorganisms with dissolved metal ions for hours or days. Metal NPs are analyzed using various techniques, such as ultraviolet-visible spectroscopy, electron microscopy, X-ray diffraction, electron diffraction, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. Numerous publications have focused on microorganisms that synthesize various metal NPs. For example, Ag, Au, CdS, CdSe, Cu, CuO, Gd2O3, Fe3O4, PbS, Pd, Sb2O3, TiO2, and ZrO2 NPs have been reported. Herein, we review the synthesis of metal NPs by microorganisms. Although the molecular mechanisms of their synthesis have been investigated to some extent, experimental evidence for the mechanisms is limited. Understanding the mechanisms is crucial for industrial-scale development of microorganism-synthesized metal NPs.
AbstractList Metal nanoparticles (NPs), with sizes ranging from 1–100 nm, are of great scientific interest because their functions and features differ greatly from those of bulk metal. Chemical or physical methods are used to synthesize commercial quantities of NPs, and green, energy-efficient approaches generating byproducts of low toxicity are desirable to minimize the environmental impact of the industrial methods. Some microorganisms synthesize metal NPs for detoxification and metabolic reasons at room temperature and pressure in aqueous solution. Metal NPs have been prepared via green methods by incubating microorganisms or cell-free extracts of microorganisms with dissolved metal ions for hours or days. Metal NPs are analyzed using various techniques, such as ultraviolet-visible spectroscopy, electron microscopy, X-ray diffraction, electron diffraction, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. Numerous publications have focused on microorganisms that synthesize various metal NPs. For example, Ag, Au, CdS, CdSe, Cu, CuO, Gd2O3, Fe3O4, PbS, Pd, Sb2O3, TiO2, and ZrO2 NPs have been reported. Herein, we review the synthesis of metal NPs by microorganisms. Although the molecular mechanisms of their synthesis have been investigated to some extent, experimental evidence for the mechanisms is limited. Understanding the mechanisms is crucial for industrial-scale development of microorganism-synthesized metal NPs.
Author Suzuki, Michio
Kato, Yugo
Author_xml – sequence: 1
  givenname: Yugo
  surname: Kato
  fullname: Kato, Yugo
– sequence: 2
  givenname: Michio
  orcidid: 0000-0001-6150-8957
  surname: Suzuki
  fullname: Suzuki, Michio
BookMark eNptkE9PwzAMxSM0JMbYkXu_QCFO2qQ5ook_kzY4AOfIzRLI1DVTkku_PYUNCRC-2LL8nn5-52TSh94Scgn0inNFr00cUgZKJa0bdUKmjEpeVrxmkx_zGZmntKVjSUGlhClhz0Of323yqQiuWNuMXfGIfdhjzN50NhXtUKy9iSHEN-x92qULcuqwS3Z-7DPyenf7sngoV0_3y8XNqjS8YrlUToExrQNsa7DgHHeMb5rGSWEa3sBGSHCyAWoUgquayihZG6aYZbUyLeMzsjz4bgJu9T76HcZBB_T6azHy6COkRiqsg1oIU7WVsAwRac2Us-iktACjFz94jY-kFK3TxmfMPvQ5ou80UP2Zov6V4qgq_6i-Kf6__wB1nHbQ
CitedBy_id crossref_primary_10_1002_slct_202404566
crossref_primary_10_3390_ijms23052483
crossref_primary_10_1186_s12951_021_00834_3
crossref_primary_10_1016_j_jiph_2024_102536
crossref_primary_10_1016_j_onano_2024_100224
crossref_primary_10_1039_D4CE01253D
crossref_primary_10_3390_applnano2030020
crossref_primary_10_46481_jnsps_2021_237
crossref_primary_10_1016_j_heliyon_2025_e42933
crossref_primary_10_32604_biocell_2023_027154
crossref_primary_10_3390_biomimetics6020034
crossref_primary_10_1016_j_cclet_2023_109461
crossref_primary_10_1142_S1793984424300012
crossref_primary_10_1016_j_biotechadv_2022_107905
crossref_primary_10_1155_2024_3328223
crossref_primary_10_1016_j_microb_2024_100065
crossref_primary_10_33245_2310_9289_2024_186_1_97_105
crossref_primary_10_3390_cryst11030299
crossref_primary_10_47612_2226_3136_2021_13_118_130
crossref_primary_10_1016_j_preme_2025_100019
crossref_primary_10_37882_2223_2966_2021_11_07
crossref_primary_10_3390_agrochemicals2010009
crossref_primary_10_3390_cleantechnol4020030
crossref_primary_10_3390_jfb13040260
crossref_primary_10_1080_10826068_2022_2122065
crossref_primary_10_1002_cbic_202300554
crossref_primary_10_3390_molecules25214981
crossref_primary_10_1111_1541_4337_70156
Cites_doi 10.1006/eesa.1999.1860
10.1002/biot.200900144
10.1016/j.enzmictec.2016.08.018
10.1016/j.jcis.2009.10.003
10.1016/j.electacta.2014.06.020
10.1289/ehp.119-a120
10.1021/la900585p
10.1016/j.hydromet.2005.09.006
10.1126/science.170679
10.1021/bp0703174
10.1016/j.arabjc.2016.09.020
10.1021/es403796x
10.15171/ijb.1259
10.1007/s12649-016-9734-7
10.1016/j.saa.2014.04.021
10.1002/jctb.3702
10.1186/1475-2859-8-39
10.1007/s13404-014-0147-8
10.1007/s002530100660
10.1073/pnas.0904583106
10.1088/0957-4484/14/7/323
10.1016/j.jelechem.2008.11.008
10.1038/srep34626
10.1039/C8NR06691D
10.1007/s11837-010-0168-6
10.1016/j.elecom.2007.01.007
10.1016/j.apcatb.2013.09.045
10.1039/C7RA07438G
10.1002/cssc.201300483
10.1021/ac201086a
10.1021/ja102617r
10.1021/la704046f
10.3390/ma9100855
10.1016/j.talanta.2018.11.092
10.1002/ceat.200800647
10.1016/j.colsurfb.2009.07.048
10.1134/S002626171401007X
10.1186/1475-2859-11-86
10.1080/02678292.2011.584637
10.1021/es901629c
10.1016/j.biortech.2009.05.051
10.15171/bi.2016.29
10.1039/b407904c
10.4314/bajopas.v10i1.92S
10.1016/j.chembiol.2004.08.022
10.1021/ja993825l
10.1016/j.colsurfb.2009.02.007
10.1002/(SICI)1521-4095(200003)12:6<407::AID-ADMA407>3.0.CO;2-O
10.1016/S0927-7765(02)00174-1
10.1016/j.jinorgbio.2019.110795
10.1016/j.cej.2017.07.124
10.1002/cctc.201200193
10.1021/nn301718v
10.1007/s11051-015-3309-6
10.1016/j.watres.2016.10.071
10.1186/s12934-016-0422-x
10.1166/jnn.2008.095
10.1016/j.ibiod.2016.10.009
10.1016/j.matlet.2008.06.053
10.1016/j.jcis.2018.09.035
10.1007/s11671-007-9060-x
10.1063/1.2742789
10.1039/C5RA13011E
10.1002/slct.201901046
10.1021/ja00072a025
10.1080/19430876.2010.532411
10.1016/j.jhazmat.2010.09.082
10.1002/smll.201703145
10.1021/ja307589n
10.1038/nchembio.1179
10.1021/jacs.5b10277
10.1039/b901933b
10.1038/physci241020a0
10.1016/j.colsurfb.2008.12.025
10.1016/j.matlet.2007.01.018
10.1016/j.jbiosc.2014.09.021
10.1016/j.electacta.2007.02.073
10.1016/j.jbiotec.2006.11.014
10.1021/cm000843p
10.1002/adfm.200801492
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3390/cryst10070589
DatabaseName CrossRef
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2073-4352
ExternalDocumentID oai_doaj_org_article_a06ef1566c4b46e2aaa0529feaf77e11
10_3390_cryst10070589
GroupedDBID .4S
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
D1I
EDO
GROUPED_DOAJ
HCIFZ
IAO
IGS
KB.
KQ8
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PROAC
TUS
PQGLB
PUEGO
ID FETCH-LOGICAL-c342t-9f91ccbf1ab51e1ff3f23d88f76c8381d671f7810c9a1f484c975c292e259cb23
IEDL.DBID DOA
ISSN 2073-4352
IngestDate Wed Aug 27 01:24:56 EDT 2025
Tue Jul 01 03:49:42 EDT 2025
Thu Apr 24 23:02:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-9f91ccbf1ab51e1ff3f23d88f76c8381d671f7810c9a1f484c975c292e259cb23
ORCID 0000-0001-6150-8957
OpenAccessLink https://doaj.org/article/a06ef1566c4b46e2aaa0529feaf77e11
ParticipantIDs doaj_primary_oai_doaj_org_article_a06ef1566c4b46e2aaa0529feaf77e11
crossref_citationtrail_10_3390_cryst10070589
crossref_primary_10_3390_cryst10070589
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Crystals (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Jin (ref_15) 2012; 4
Bruins (ref_31) 2000; 45
Jha (ref_78) 2009; 71
Chao (ref_5) 2011; 83
Zhang (ref_82) 2019; 195
Nevado (ref_10) 2016; 138
Wu (ref_65) 2015; 5
Faraon (ref_22) 2007; 90
Safavi (ref_9) 2009; 626
Frens (ref_25) 1973; 241
Zhang (ref_73) 2017; 7
Lohse (ref_4) 2012; 134
Muthalif (ref_23) 2019; 534
He (ref_44) 2008; 24
Sweeney (ref_61) 2004; 11
Deljou (ref_84) 2016; 14
Liu (ref_71) 2016; 18
Trindade (ref_21) 2001; 13
Hamasaki (ref_14) 2008; 24
Bhambure (ref_46) 2009; 32
ref_66
Jukk (ref_8) 2014; 137
Bansal (ref_79) 2004; 14
Deplanche (ref_7) 2014; 147
Sharma (ref_52) 2012; 11
Obayemi (ref_58) 2017; 8
Jha (ref_77) 2009; 4
Korbekandi (ref_28) 2012; 87
Murray (ref_26) 1993; 115
Xu (ref_11) 2010; 132
Jha (ref_68) 2010; 2
Cui (ref_74) 2017; 328
Kato (ref_59) 2019; 4
Bai (ref_62) 2009; 70
Gurunathan (ref_83) 2009; 74
Kim (ref_20) 2011; 38
Johnston (ref_54) 2013; 9
Cui (ref_63) 2009; 19
Ahmad (ref_35) 2003; 14
He (ref_43) 2007; 61
Martins (ref_75) 2017; 108
Konishi (ref_33) 2006; 81
Konishi (ref_45) 2007; 53
Kaur (ref_2) 2009; 19
Li (ref_3) 2011; 2011
Wang (ref_24) 2018; 10
Kalishwaralal (ref_49) 2009; 100
Erasmus (ref_56) 2014; 47
Priyanka (ref_72) 2017; 119
Nadaf (ref_60) 2019; 12
Prakash (ref_55) 2013; 51
Wang (ref_81) 2001; 56
Joerger (ref_34) 2000; 12
Reith (ref_47) 2009; 106
Ruiz (ref_19) 2008; 62
Das (ref_48) 2009; 25
Mishra (ref_51) 2010; 62
Smeaton (ref_70) 2009; 43
Nangia (ref_50) 2009; 8
Sani (ref_41) 2018; 10
Konishi (ref_76) 2007; 128
Li (ref_57) 2016; 2016
Suresh (ref_64) 2014; 130
Cheong (ref_12) 2013; 6
Du (ref_42) 2007; 9
Prasad (ref_17) 2007; 2
Kikuchi (ref_29) 2016; 6
Park (ref_32) 2011; 185
Ayano (ref_30) 2015; 119
Gahlawat (ref_1) 2016; 15
Storhoff (ref_6) 2000; 122
Yeary (ref_69) 2005; 41
Hasan (ref_38) 2008; 8
Zhang (ref_80) 2019; 199
Garmasheva (ref_40) 2016; 6
Markus (ref_53) 2016; 95
Prasad (ref_18) 2010; 342
Blakemore (ref_27) 1975; 190
Kang (ref_36) 2014; 48
Ahmad (ref_39) 2003; 28
Su (ref_13) 2012; 6
Kimber (ref_67) 2018; 14
Kessler (ref_16) 2011; 119
Kupryashina (ref_37) 2013; 82
References_xml – volume: 45
  start-page: 198
  year: 2000
  ident: ref_31
  article-title: Microbial resistance to metals in the environment
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1006/eesa.1999.1860
– volume: 4
  start-page: 1582
  year: 2009
  ident: ref_77
  article-title: Biosynthesis of Sb2O3 nanoparticles: A low-cost green approach
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.200900144
– volume: 95
  start-page: 85
  year: 2016
  ident: ref_53
  article-title: Intracellular synthesis of gold nanoparticles with antioxidant activity by probiotic Lactobacillus kimchicus DCY51T isolated from Korean kimchi
  publication-title: Enzym. Microb. Technol.
  doi: 10.1016/j.enzmictec.2016.08.018
– volume: 342
  start-page: 68
  year: 2010
  ident: ref_18
  article-title: Biosynthesis of CdS nanoparticles: An improved green and rapid procedure
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2009.10.003
– volume: 137
  start-page: 206
  year: 2014
  ident: ref_8
  article-title: Electroreduction of oxygen on palladium nanoparticles supported on nitrogen-doped graphene nanosheets
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.06.020
– volume: 51
  start-page: 969
  year: 2013
  ident: ref_55
  article-title: Biosynthesis of colloidal gold nanoparticles by Streptomyces sp. NK52 and its anti-lipid peroxidation activity
  publication-title: Indian J. Exp. Biol.
– volume: 119
  start-page: A120
  year: 2011
  ident: ref_16
  article-title: Engineered Nanoparticles in Consumer Products: Understanding a New Ingredient
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.119-a120
– volume: 25
  start-page: 8192
  year: 2009
  ident: ref_48
  article-title: Gold Nanoparticles: Microbial Synthesis and Application in Water Hygiene Management
  publication-title: Langmuir
  doi: 10.1021/la900585p
– volume: 41
  start-page: 4384
  year: 2005
  ident: ref_69
  article-title: Magnetic properties of biosynthesized magnetite nanoparticles
  publication-title: TMAG
– volume: 81
  start-page: 24
  year: 2006
  ident: ref_33
  article-title: Intracellular recovery of gold by microbial reduction of AuCl4− ions using the anaerobic bacterium Shewanella algae
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2005.09.006
– volume: 190
  start-page: 377
  year: 1975
  ident: ref_27
  article-title: Magnetotactic bacteria
  publication-title: Science
  doi: 10.1126/science.170679
– volume: 24
  start-page: 476
  year: 2008
  ident: ref_44
  article-title: Biological Synthesis of Gold Nanowires Using Extract of Rhodopseudomonas capsulata
  publication-title: Biotechnol. Prog.
  doi: 10.1021/bp0703174
– volume: 12
  start-page: 4806
  year: 2019
  ident: ref_60
  article-title: Biosynthesis of gold nanoparticles by Bacillus marisflavi and its potential in catalytic dye degradation
  publication-title: Arab. J. Chem.
  doi: 10.1016/j.arabjc.2016.09.020
– volume: 48
  start-page: 316
  year: 2014
  ident: ref_36
  article-title: Microbial Extracellular Polymeric Substances Reduce Ag+ to Silver Nanoparticles and Antagonize Bactericidal Activity
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es403796x
– volume: 14
  start-page: 25
  year: 2016
  ident: ref_84
  article-title: Green Extracellular Synthesis of the Silver Nanoparticles Using Thermophilic Bacillus Sp. AZ1 and its Antimicrobial Activity against Several Human Pathogenetic Bacteria
  publication-title: Iran. J. Biotechnol.
  doi: 10.15171/ijb.1259
– volume: 8
  start-page: 2045
  year: 2017
  ident: ref_58
  article-title: Biosynthesis of Gold Nanoparticles and Gold/Prodigiosin Nanoparticles with Serratia marcescens Bacteria
  publication-title: Waste Biomass Valor
  doi: 10.1007/s12649-016-9734-7
– volume: 130
  start-page: 344
  year: 2014
  ident: ref_64
  article-title: Extracellular bio-production and characterization of small monodispersed CdSe quantum dot nanocrystallites
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2014.04.021
– volume: 87
  start-page: 932
  year: 2012
  ident: ref_28
  article-title: Optimization of biological synthesis of silver nanoparticles using Lactobacillus casei subsp. casei
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.3702
– volume: 8
  start-page: 39
  year: 2009
  ident: ref_50
  article-title: A novel bacterial isolate Stenotrophomonas maltophilia as living factory for synthesis of gold nanoparticles
  publication-title: Microb. Cell Factories
  doi: 10.1186/1475-2859-8-39
– volume: 47
  start-page: 245
  year: 2014
  ident: ref_56
  article-title: Gold nanoparticle synthesis using the thermophilic bacterium Thermus scotoductus SA-01 and the purification and characterization of its unusual gold reducing protein
  publication-title: Gold Bull.
  doi: 10.1007/s13404-014-0147-8
– volume: 56
  start-page: 425
  year: 2001
  ident: ref_81
  article-title: Aerobic sulfide production and cadmium precipitation by Escherichia coli expressing the Treponema denticola cysteine desulfhydrase gene
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s002530100660
– volume: 106
  start-page: 17757
  year: 2009
  ident: ref_47
  article-title: Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0904583106
– volume: 14
  start-page: 824
  year: 2003
  ident: ref_35
  article-title: Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/14/7/323
– volume: 626
  start-page: 75
  year: 2009
  ident: ref_9
  article-title: Electrocatalytic oxidation of formaldehyde on palladium nanoparticles electrodeposited on carbon ionic liquid composite electrode
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2008.11.008
– volume: 6
  start-page: 34626
  year: 2016
  ident: ref_29
  article-title: Formation of gold nanoparticles by glycolipids of Lactobacillus casei
  publication-title: Sci. Rep.
  doi: 10.1038/srep34626
– volume: 10
  start-page: 19509
  year: 2018
  ident: ref_24
  article-title: Size-controlled synthesis of CdS nanoparticles confined on covalent triazine-based frameworks for durable photocatalytic hydrogen evolution under visible light
  publication-title: Nanoscale
  doi: 10.1039/C8NR06691D
– volume: 62
  start-page: 45
  year: 2010
  ident: ref_51
  article-title: Extracellular microbial synthesis of gold nanoparticles using fungus Hormoconis resinae
  publication-title: JOM
  doi: 10.1007/s11837-010-0168-6
– volume: 2011
  start-page: 1
  year: 2011
  ident: ref_3
  article-title: Biosynthesis of Nanoparticles by Microorganisms and Their Applications
  publication-title: J. Nanomater.
– volume: 9
  start-page: 1165
  year: 2007
  ident: ref_42
  article-title: Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2007.01.007
– volume: 147
  start-page: 651
  year: 2014
  ident: ref_7
  article-title: Catalytic activity of biomass-supported Pd nanoparticles: Influence of the biological component in catalytic efficacy and potential application in ‘green’ synthesis of fine chemicals and pharmaceuticals
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2013.09.045
– volume: 7
  start-page: 41182
  year: 2017
  ident: ref_73
  article-title: Rapid production of Pd nanoparticle by a marine electrochemically active bacterium Shewanella sp. CNZ-1 and its catalytic performance on 4-nitrophenol reduction
  publication-title: RSC Adv.
  doi: 10.1039/C7RA07438G
– volume: 6
  start-page: 1858
  year: 2013
  ident: ref_12
  article-title: Au–Pd core–Shell nanoparticles as alcohol oxidation catalysts: Effect of shape and composition
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201300483
– volume: 83
  start-page: 6875
  year: 2011
  ident: ref_5
  article-title: Speciation Analysis of Silver Nanoparticles and Silver Ions in Antibacterial Products and Environmental Waters via Cloud Point Extraction-Based Separation
  publication-title: Anal. Chem.
  doi: 10.1021/ac201086a
– volume: 132
  start-page: 10398
  year: 2010
  ident: ref_11
  article-title: Biphasic Pd−Au alloy catalyst for low-temperature CO oxidation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja102617r
– volume: 24
  start-page: 7354
  year: 2008
  ident: ref_14
  article-title: Kinetic Analysis of Superoxide Anion Radical-Scavenging and Hydroxyl Radical-Scavenging Activities of Platinum Nanoparticles
  publication-title: Langmuir
  doi: 10.1021/la704046f
– ident: ref_66
  doi: 10.3390/ma9100855
– volume: 195
  start-page: 447
  year: 2019
  ident: ref_82
  article-title: Enhanced biosynthesis of CdS nanoparticles through Arabidopsis thaliana phytochelatin synthase-modified Escherichia coli with fluorescence effect in detection of pyrogallol and gallic acid
  publication-title: Talanta
  doi: 10.1016/j.talanta.2018.11.092
– volume: 32
  start-page: 1036
  year: 2009
  ident: ref_46
  article-title: Extracellular Biosynthesis of Gold Nanoparticles using Aspergillus niger—Its Characterization and Stability
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.200800647
– volume: 74
  start-page: 328
  year: 2009
  ident: ref_83
  article-title: Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2009.07.048
– volume: 82
  start-page: 833
  year: 2013
  ident: ref_37
  article-title: Biosynthesis of gold nanoparticles by Azospirillum brasilense
  publication-title: Microbiology
  doi: 10.1134/S002626171401007X
– volume: 11
  start-page: 86
  year: 2012
  ident: ref_52
  article-title: Exploitation of marine bacteria for production of gold nanoparticles
  publication-title: Microb. Cell Factories
  doi: 10.1186/1475-2859-11-86
– volume: 38
  start-page: 871
  year: 2011
  ident: ref_20
  article-title: Effects of the dispersion of zirconium dioxide nanoparticles on high performance electro-optic properties in liquid crystal devices
  publication-title: Liquid Cryst.
  doi: 10.1080/02678292.2011.584637
– volume: 43
  start-page: 8086
  year: 2009
  ident: ref_70
  article-title: Intracellular Precipitation of Pb by Shewanella putrefaciens CN32 during the Reductive Dissolution of Pb-Jarosite
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es901629c
– volume: 100
  start-page: 5356
  year: 2009
  ident: ref_49
  article-title: Biological synthesis of gold nanocubes from Bacillus licheniformis
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2009.05.051
– volume: 6
  start-page: 219
  year: 2016
  ident: ref_40
  article-title: Lactobacillus species mediated synthesis of silver nanoparticles and their antibacterial activity against opportunistic pathogens in vitro
  publication-title: BioImpacts BI
  doi: 10.15171/bi.2016.29
– volume: 14
  start-page: 333
  year: 2004
  ident: ref_79
  article-title: Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum
  publication-title: J. Mater. Chem.
  doi: 10.1039/b407904c
– volume: 10
  start-page: 481
  year: 2018
  ident: ref_41
  article-title: Eco-friendly synthesis of silver nanoparticles using Lactobacillus delbrueckii subsp. bulgaricus isolated from kindrimo (locally fermented milk) in Kano State, Nigeria
  publication-title: Bayero J. Pure Appl. Sci.
  doi: 10.4314/bajopas.v10i1.92S
– volume: 11
  start-page: 1553
  year: 2004
  ident: ref_61
  article-title: Bacterial Biosynthesis of Cadmium Sulfide Nanocrystals
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2004.08.022
– volume: 122
  start-page: 4640
  year: 2000
  ident: ref_6
  article-title: What Controls the Optical Properties of DNA-Linked Gold Nanoparticle Assemblies?
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja993825l
– volume: 71
  start-page: 226
  year: 2009
  ident: ref_78
  article-title: Synthesis of TiO2 nanoparticles using microorganisms
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2009.02.007
– volume: 12
  start-page: 407
  year: 2000
  ident: ref_34
  article-title: Biologically Produced Silver–Carbon Composite Materials for Optically Functional Thin-Film Coatings
  publication-title: Adv. Mater.
  doi: 10.1002/(SICI)1521-4095(200003)12:6<407::AID-ADMA407>3.0.CO;2-O
– volume: 28
  start-page: 313
  year: 2003
  ident: ref_39
  article-title: Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/S0927-7765(02)00174-1
– volume: 199
  start-page: 110795
  year: 2019
  ident: ref_80
  article-title: Improving biosynthesis of AuPd core-shell nanoparticles through Escherichia coli with the assistance of phytochelatin for catalytic enhanced chemiluminescence and benzyl alcohol oxidation
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2019.110795
– volume: 328
  start-page: 1051
  year: 2017
  ident: ref_74
  article-title: Biorecovery mechanism of palladium as nanoparticles by Enterococcus faecalis: From biosorption to bioreduction
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.07.124
– volume: 4
  start-page: 1217
  year: 2012
  ident: ref_15
  article-title: Click Chemistry of Alkyne–Azide Cycloaddition using Nanostructured Copper Catalysts
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201200193
– volume: 6
  start-page: 6284
  year: 2012
  ident: ref_13
  article-title: Promotion of phenol photodecomposition over TiO2 using Au, Pd, and Au–Pd nanoparticles
  publication-title: ACS Nano
  doi: 10.1021/nn301718v
– volume: 18
  start-page: 1
  year: 2016
  ident: ref_71
  article-title: Characterization of lead nanoparticles formed by Shewanella sp. KR-12
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-015-3309-6
– volume: 108
  start-page: 160
  year: 2017
  ident: ref_75
  article-title: Biogenic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.10.071
– volume: 15
  start-page: 25
  year: 2016
  ident: ref_1
  article-title: Microbial glycolipoprotein-capped silver nanoparticles as emerging antibacterial agents against cholera
  publication-title: Microb. Cell Factories
  doi: 10.1186/s12934-016-0422-x
– volume: 8
  start-page: 3191
  year: 2008
  ident: ref_38
  article-title: Bacterial Synthesis of Copper/Copper Oxide Nanoparticles
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2008.095
– volume: 2016
  start-page: 1
  year: 2016
  ident: ref_57
  article-title: Rapid Biosynthesis of Gold Nanoparticles by the Extracellular Secretion of Bacillus niabensis 45: Characterization and Antibiofilm Activity
  publication-title: J. Chem.
– volume: 119
  start-page: 78
  year: 2017
  ident: ref_72
  article-title: Biologically synthesized PbS nanoparticles for the detection of arsenic in water
  publication-title: Int. Biodeterior. Biodegrad.
  doi: 10.1016/j.ibiod.2016.10.009
– volume: 62
  start-page: 4248
  year: 2008
  ident: ref_19
  article-title: Magnetic properties of magnetite nanoparticles synthesized by forced hydrolysis
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2008.06.053
– volume: 534
  start-page: 291
  year: 2019
  ident: ref_23
  article-title: Enhanced light absorption and charge recombination control in quantum dot sensitized solar cells using tin doped cadmium sulfide quantum dots
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.09.035
– volume: 2
  start-page: 248
  year: 2007
  ident: ref_17
  article-title: Lactobacillus assisted synthesis of titanium nanoparticles
  publication-title: Nanoscale Res. Lett.
  doi: 10.1007/s11671-007-9060-x
– volume: 90
  start-page: 213110
  year: 2007
  ident: ref_22
  article-title: Local quantum dot tuning on photonic crystal chips
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2742789
– volume: 5
  start-page: 79184
  year: 2015
  ident: ref_65
  article-title: Crucial factors in biosynthesis of fluorescent CdSe quantum dots in Saccharomyces cerevisiae
  publication-title: RSC Adv.
  doi: 10.1039/C5RA13011E
– volume: 4
  start-page: 7331
  year: 2019
  ident: ref_59
  article-title: Synthesis of Gold Nanoparticles by Extracellular Components of Lactobacillus casei
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201901046
– volume: 115
  start-page: 8706
  year: 1993
  ident: ref_26
  article-title: Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00072a025
– volume: 2
  start-page: 31
  year: 2010
  ident: ref_68
  article-title: Synthesis of Gd2O3 nanoparticles using Lactobacillus sp.: A novel green approach
  publication-title: Int. J. Green Nanotechnol. Phys. Chem.
  doi: 10.1080/19430876.2010.532411
– volume: 185
  start-page: 549
  year: 2011
  ident: ref_32
  article-title: Role of organic amendments on enhanced bioremediation of heavy metal (loid) contaminated soils
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.09.082
– volume: 14
  start-page: 1703145
  year: 2018
  ident: ref_67
  article-title: Biosynthesis and Characterization of Copper Nanoparticles Using Shewanella oneidensis: Application for Click Chemistry
  publication-title: Small
  doi: 10.1002/smll.201703145
– volume: 134
  start-page: 15607
  year: 2012
  ident: ref_4
  article-title: Applications of colloidal inorganic nanoparticles: From medicine to energy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja307589n
– volume: 9
  start-page: 241
  year: 2013
  ident: ref_54
  article-title: Gold biomineralization by a metallophore from a gold-associated microbe
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1179
– volume: 138
  start-page: 3266
  year: 2016
  ident: ref_10
  article-title: Au–Pd bimetallic catalysis: The importance of anionic ligands in catalyst speciation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b10277
– volume: 19
  start-page: 8279
  year: 2009
  ident: ref_2
  article-title: A review on applications of nanoparticles for the preconcentration of environmental pollutants
  publication-title: J. Mater. Chem.
  doi: 10.1039/b901933b
– volume: 241
  start-page: 20
  year: 1973
  ident: ref_25
  article-title: Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions
  publication-title: Nat. Phys. Sci.
  doi: 10.1038/physci241020a0
– volume: 70
  start-page: 142
  year: 2009
  ident: ref_62
  article-title: Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2008.12.025
– volume: 61
  start-page: 3984
  year: 2007
  ident: ref_43
  article-title: Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2007.01.018
– volume: 119
  start-page: 440
  year: 2015
  ident: ref_30
  article-title: Effects of culture conditions of Pseudomonas aeruginosa strain RB on the synthesis of CdSe nanoparticles
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2014.09.021
– volume: 53
  start-page: 186
  year: 2007
  ident: ref_45
  article-title: Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.02.073
– volume: 128
  start-page: 648
  year: 2007
  ident: ref_76
  article-title: Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2006.11.014
– volume: 13
  start-page: 3843
  year: 2001
  ident: ref_21
  article-title: Nanocrystalline Semiconductors:  Synthesis, Properties, and Perspectives
  publication-title: Chem. Mater.
  doi: 10.1021/cm000843p
– volume: 19
  start-page: 2359
  year: 2009
  ident: ref_63
  article-title: Living Yeast Cells as a Controllable Biosynthesizer for Fluorescent Quantum Dots
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200801492
SSID ssj0000760771
Score 2.3786783
Snippet Metal nanoparticles (NPs), with sizes ranging from 1–100 nm, are of great scientific interest because their functions and features differ greatly from those of...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 589
SubjectTerms biosynthesis
metal adsorption
metal nanoparticles
microorganisms
Title Synthesis of Metal Nanoparticles by Microorganisms
URI https://doaj.org/article/a06ef1566c4b46e2aaa0529feaf77e11
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kXvQgPrE-Sg7iydDuI7vJsT5KEeulFnoLs5NdEDQtTTz037ubxJIexIvXMITdSZj5vs2Xbwi5AU0hQ8BQCS390U0UxqBU6MogVUZ51WLl9vkqxzPxPI_mrVFfXhNW2wPXievDQBrrSQYKLaRhAOA_TlkDVilT_9Xrel6LTFU1WMmBUrQ21eSO1_dxtS5KLwnwc_S2mlDLq79qKqNDctCgwWBYr-KI7Jj8mOy3PAJPCJuucwfSivciWNhgYhxYDlxJdFy3kbQFeh1MvKyuHtBUfBanZDZ6ensYh82ggxC5YGWY2IQiaktBR9RQa7llPItjqyTGrqVmUlGrYjrABKgVscBERcgSZhx5Qc34Genki9yck8CLxxAS5Ba1yDiAtixDnqEjSuCgU5fc_ew8xcYF3A-j-EgdG_CJSrcS1SW3m_BlbX_xW-C9T-MmyLtWVxfc3tMmIelfz_LiP25ySfaY58SVpPaKdMrVl7l2wKHUPbI7fJy8THvVu_IN9G_EvQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+Metal+Nanoparticles+by+Microorganisms&rft.jtitle=Crystals+%28Basel%29&rft.au=Yugo+Kato&rft.au=Michio+Suzuki&rft.date=2020-07-01&rft.pub=MDPI+AG&rft.eissn=2073-4352&rft.volume=10&rft.issue=7&rft.spage=589&rft_id=info:doi/10.3390%2Fcryst10070589&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a06ef1566c4b46e2aaa0529feaf77e11
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4352&client=summon