Synthesis of Metal Nanoparticles by Microorganisms
Metal nanoparticles (NPs), with sizes ranging from 1–100 nm, are of great scientific interest because their functions and features differ greatly from those of bulk metal. Chemical or physical methods are used to synthesize commercial quantities of NPs, and green, energy-efficient approaches generat...
Saved in:
Published in | Crystals (Basel) Vol. 10; no. 7; p. 589 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
01.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal nanoparticles (NPs), with sizes ranging from 1–100 nm, are of great scientific interest because their functions and features differ greatly from those of bulk metal. Chemical or physical methods are used to synthesize commercial quantities of NPs, and green, energy-efficient approaches generating byproducts of low toxicity are desirable to minimize the environmental impact of the industrial methods. Some microorganisms synthesize metal NPs for detoxification and metabolic reasons at room temperature and pressure in aqueous solution. Metal NPs have been prepared via green methods by incubating microorganisms or cell-free extracts of microorganisms with dissolved metal ions for hours or days. Metal NPs are analyzed using various techniques, such as ultraviolet-visible spectroscopy, electron microscopy, X-ray diffraction, electron diffraction, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. Numerous publications have focused on microorganisms that synthesize various metal NPs. For example, Ag, Au, CdS, CdSe, Cu, CuO, Gd2O3, Fe3O4, PbS, Pd, Sb2O3, TiO2, and ZrO2 NPs have been reported. Herein, we review the synthesis of metal NPs by microorganisms. Although the molecular mechanisms of their synthesis have been investigated to some extent, experimental evidence for the mechanisms is limited. Understanding the mechanisms is crucial for industrial-scale development of microorganism-synthesized metal NPs. |
---|---|
AbstractList | Metal nanoparticles (NPs), with sizes ranging from 1–100 nm, are of great scientific interest because their functions and features differ greatly from those of bulk metal. Chemical or physical methods are used to synthesize commercial quantities of NPs, and green, energy-efficient approaches generating byproducts of low toxicity are desirable to minimize the environmental impact of the industrial methods. Some microorganisms synthesize metal NPs for detoxification and metabolic reasons at room temperature and pressure in aqueous solution. Metal NPs have been prepared via green methods by incubating microorganisms or cell-free extracts of microorganisms with dissolved metal ions for hours or days. Metal NPs are analyzed using various techniques, such as ultraviolet-visible spectroscopy, electron microscopy, X-ray diffraction, electron diffraction, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. Numerous publications have focused on microorganisms that synthesize various metal NPs. For example, Ag, Au, CdS, CdSe, Cu, CuO, Gd2O3, Fe3O4, PbS, Pd, Sb2O3, TiO2, and ZrO2 NPs have been reported. Herein, we review the synthesis of metal NPs by microorganisms. Although the molecular mechanisms of their synthesis have been investigated to some extent, experimental evidence for the mechanisms is limited. Understanding the mechanisms is crucial for industrial-scale development of microorganism-synthesized metal NPs. |
Author | Suzuki, Michio Kato, Yugo |
Author_xml | – sequence: 1 givenname: Yugo surname: Kato fullname: Kato, Yugo – sequence: 2 givenname: Michio orcidid: 0000-0001-6150-8957 surname: Suzuki fullname: Suzuki, Michio |
BookMark | eNptkE9PwzAMxSM0JMbYkXu_QCFO2qQ5ook_kzY4AOfIzRLI1DVTkku_PYUNCRC-2LL8nn5-52TSh94Scgn0inNFr00cUgZKJa0bdUKmjEpeVrxmkx_zGZmntKVjSUGlhClhz0Of323yqQiuWNuMXfGIfdhjzN50NhXtUKy9iSHEN-x92qULcuqwS3Z-7DPyenf7sngoV0_3y8XNqjS8YrlUToExrQNsa7DgHHeMb5rGSWEa3sBGSHCyAWoUgquayihZG6aYZbUyLeMzsjz4bgJu9T76HcZBB_T6azHy6COkRiqsg1oIU7WVsAwRac2Us-iktACjFz94jY-kFK3TxmfMPvQ5ou80UP2Zov6V4qgq_6i-Kf6__wB1nHbQ |
CitedBy_id | crossref_primary_10_1002_slct_202404566 crossref_primary_10_3390_ijms23052483 crossref_primary_10_1186_s12951_021_00834_3 crossref_primary_10_1016_j_jiph_2024_102536 crossref_primary_10_1016_j_onano_2024_100224 crossref_primary_10_1039_D4CE01253D crossref_primary_10_3390_applnano2030020 crossref_primary_10_46481_jnsps_2021_237 crossref_primary_10_1016_j_heliyon_2025_e42933 crossref_primary_10_32604_biocell_2023_027154 crossref_primary_10_3390_biomimetics6020034 crossref_primary_10_1016_j_cclet_2023_109461 crossref_primary_10_1142_S1793984424300012 crossref_primary_10_1016_j_biotechadv_2022_107905 crossref_primary_10_1155_2024_3328223 crossref_primary_10_1016_j_microb_2024_100065 crossref_primary_10_33245_2310_9289_2024_186_1_97_105 crossref_primary_10_3390_cryst11030299 crossref_primary_10_47612_2226_3136_2021_13_118_130 crossref_primary_10_1016_j_preme_2025_100019 crossref_primary_10_37882_2223_2966_2021_11_07 crossref_primary_10_3390_agrochemicals2010009 crossref_primary_10_3390_cleantechnol4020030 crossref_primary_10_3390_jfb13040260 crossref_primary_10_1080_10826068_2022_2122065 crossref_primary_10_1002_cbic_202300554 crossref_primary_10_3390_molecules25214981 crossref_primary_10_1111_1541_4337_70156 |
Cites_doi | 10.1006/eesa.1999.1860 10.1002/biot.200900144 10.1016/j.enzmictec.2016.08.018 10.1016/j.jcis.2009.10.003 10.1016/j.electacta.2014.06.020 10.1289/ehp.119-a120 10.1021/la900585p 10.1016/j.hydromet.2005.09.006 10.1126/science.170679 10.1021/bp0703174 10.1016/j.arabjc.2016.09.020 10.1021/es403796x 10.15171/ijb.1259 10.1007/s12649-016-9734-7 10.1016/j.saa.2014.04.021 10.1002/jctb.3702 10.1186/1475-2859-8-39 10.1007/s13404-014-0147-8 10.1007/s002530100660 10.1073/pnas.0904583106 10.1088/0957-4484/14/7/323 10.1016/j.jelechem.2008.11.008 10.1038/srep34626 10.1039/C8NR06691D 10.1007/s11837-010-0168-6 10.1016/j.elecom.2007.01.007 10.1016/j.apcatb.2013.09.045 10.1039/C7RA07438G 10.1002/cssc.201300483 10.1021/ac201086a 10.1021/ja102617r 10.1021/la704046f 10.3390/ma9100855 10.1016/j.talanta.2018.11.092 10.1002/ceat.200800647 10.1016/j.colsurfb.2009.07.048 10.1134/S002626171401007X 10.1186/1475-2859-11-86 10.1080/02678292.2011.584637 10.1021/es901629c 10.1016/j.biortech.2009.05.051 10.15171/bi.2016.29 10.1039/b407904c 10.4314/bajopas.v10i1.92S 10.1016/j.chembiol.2004.08.022 10.1021/ja993825l 10.1016/j.colsurfb.2009.02.007 10.1002/(SICI)1521-4095(200003)12:6<407::AID-ADMA407>3.0.CO;2-O 10.1016/S0927-7765(02)00174-1 10.1016/j.jinorgbio.2019.110795 10.1016/j.cej.2017.07.124 10.1002/cctc.201200193 10.1021/nn301718v 10.1007/s11051-015-3309-6 10.1016/j.watres.2016.10.071 10.1186/s12934-016-0422-x 10.1166/jnn.2008.095 10.1016/j.ibiod.2016.10.009 10.1016/j.matlet.2008.06.053 10.1016/j.jcis.2018.09.035 10.1007/s11671-007-9060-x 10.1063/1.2742789 10.1039/C5RA13011E 10.1002/slct.201901046 10.1021/ja00072a025 10.1080/19430876.2010.532411 10.1016/j.jhazmat.2010.09.082 10.1002/smll.201703145 10.1021/ja307589n 10.1038/nchembio.1179 10.1021/jacs.5b10277 10.1039/b901933b 10.1038/physci241020a0 10.1016/j.colsurfb.2008.12.025 10.1016/j.matlet.2007.01.018 10.1016/j.jbiosc.2014.09.021 10.1016/j.electacta.2007.02.073 10.1016/j.jbiotec.2006.11.014 10.1021/cm000843p 10.1002/adfm.200801492 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3390/cryst10070589 |
DatabaseName | CrossRef DOAJ: Directory of Open Access Journal (DOAJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2073-4352 |
ExternalDocumentID | oai_doaj_org_article_a06ef1566c4b46e2aaa0529feaf77e11 10_3390_cryst10070589 |
GroupedDBID | .4S 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION D1I EDO GROUPED_DOAJ HCIFZ IAO IGS KB. KQ8 MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PROAC TUS PQGLB PUEGO |
ID | FETCH-LOGICAL-c342t-9f91ccbf1ab51e1ff3f23d88f76c8381d671f7810c9a1f484c975c292e259cb23 |
IEDL.DBID | DOA |
ISSN | 2073-4352 |
IngestDate | Wed Aug 27 01:24:56 EDT 2025 Tue Jul 01 03:49:42 EDT 2025 Thu Apr 24 23:02:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-9f91ccbf1ab51e1ff3f23d88f76c8381d671f7810c9a1f484c975c292e259cb23 |
ORCID | 0000-0001-6150-8957 |
OpenAccessLink | https://doaj.org/article/a06ef1566c4b46e2aaa0529feaf77e11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a06ef1566c4b46e2aaa0529feaf77e11 crossref_citationtrail_10_3390_cryst10070589 crossref_primary_10_3390_cryst10070589 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Crystals (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Jin (ref_15) 2012; 4 Bruins (ref_31) 2000; 45 Jha (ref_78) 2009; 71 Chao (ref_5) 2011; 83 Zhang (ref_82) 2019; 195 Nevado (ref_10) 2016; 138 Wu (ref_65) 2015; 5 Faraon (ref_22) 2007; 90 Safavi (ref_9) 2009; 626 Frens (ref_25) 1973; 241 Zhang (ref_73) 2017; 7 Lohse (ref_4) 2012; 134 Muthalif (ref_23) 2019; 534 He (ref_44) 2008; 24 Sweeney (ref_61) 2004; 11 Deljou (ref_84) 2016; 14 Liu (ref_71) 2016; 18 Trindade (ref_21) 2001; 13 Hamasaki (ref_14) 2008; 24 Bhambure (ref_46) 2009; 32 ref_66 Jukk (ref_8) 2014; 137 Bansal (ref_79) 2004; 14 Deplanche (ref_7) 2014; 147 Sharma (ref_52) 2012; 11 Obayemi (ref_58) 2017; 8 Jha (ref_77) 2009; 4 Korbekandi (ref_28) 2012; 87 Murray (ref_26) 1993; 115 Xu (ref_11) 2010; 132 Jha (ref_68) 2010; 2 Cui (ref_74) 2017; 328 Kato (ref_59) 2019; 4 Bai (ref_62) 2009; 70 Gurunathan (ref_83) 2009; 74 Kim (ref_20) 2011; 38 Johnston (ref_54) 2013; 9 Cui (ref_63) 2009; 19 Ahmad (ref_35) 2003; 14 He (ref_43) 2007; 61 Martins (ref_75) 2017; 108 Konishi (ref_33) 2006; 81 Konishi (ref_45) 2007; 53 Kaur (ref_2) 2009; 19 Li (ref_3) 2011; 2011 Wang (ref_24) 2018; 10 Kalishwaralal (ref_49) 2009; 100 Erasmus (ref_56) 2014; 47 Priyanka (ref_72) 2017; 119 Nadaf (ref_60) 2019; 12 Prakash (ref_55) 2013; 51 Wang (ref_81) 2001; 56 Joerger (ref_34) 2000; 12 Reith (ref_47) 2009; 106 Ruiz (ref_19) 2008; 62 Das (ref_48) 2009; 25 Mishra (ref_51) 2010; 62 Smeaton (ref_70) 2009; 43 Nangia (ref_50) 2009; 8 Sani (ref_41) 2018; 10 Konishi (ref_76) 2007; 128 Li (ref_57) 2016; 2016 Suresh (ref_64) 2014; 130 Cheong (ref_12) 2013; 6 Du (ref_42) 2007; 9 Prasad (ref_17) 2007; 2 Kikuchi (ref_29) 2016; 6 Park (ref_32) 2011; 185 Ayano (ref_30) 2015; 119 Gahlawat (ref_1) 2016; 15 Storhoff (ref_6) 2000; 122 Yeary (ref_69) 2005; 41 Hasan (ref_38) 2008; 8 Zhang (ref_80) 2019; 199 Garmasheva (ref_40) 2016; 6 Markus (ref_53) 2016; 95 Prasad (ref_18) 2010; 342 Blakemore (ref_27) 1975; 190 Kang (ref_36) 2014; 48 Ahmad (ref_39) 2003; 28 Su (ref_13) 2012; 6 Kimber (ref_67) 2018; 14 Kessler (ref_16) 2011; 119 Kupryashina (ref_37) 2013; 82 |
References_xml | – volume: 45 start-page: 198 year: 2000 ident: ref_31 article-title: Microbial resistance to metals in the environment publication-title: Ecotoxicol. Environ. Saf. doi: 10.1006/eesa.1999.1860 – volume: 4 start-page: 1582 year: 2009 ident: ref_77 article-title: Biosynthesis of Sb2O3 nanoparticles: A low-cost green approach publication-title: Biotechnol. J. doi: 10.1002/biot.200900144 – volume: 95 start-page: 85 year: 2016 ident: ref_53 article-title: Intracellular synthesis of gold nanoparticles with antioxidant activity by probiotic Lactobacillus kimchicus DCY51T isolated from Korean kimchi publication-title: Enzym. Microb. Technol. doi: 10.1016/j.enzmictec.2016.08.018 – volume: 342 start-page: 68 year: 2010 ident: ref_18 article-title: Biosynthesis of CdS nanoparticles: An improved green and rapid procedure publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2009.10.003 – volume: 137 start-page: 206 year: 2014 ident: ref_8 article-title: Electroreduction of oxygen on palladium nanoparticles supported on nitrogen-doped graphene nanosheets publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.06.020 – volume: 51 start-page: 969 year: 2013 ident: ref_55 article-title: Biosynthesis of colloidal gold nanoparticles by Streptomyces sp. NK52 and its anti-lipid peroxidation activity publication-title: Indian J. Exp. Biol. – volume: 119 start-page: A120 year: 2011 ident: ref_16 article-title: Engineered Nanoparticles in Consumer Products: Understanding a New Ingredient publication-title: Environ. Health Perspect. doi: 10.1289/ehp.119-a120 – volume: 25 start-page: 8192 year: 2009 ident: ref_48 article-title: Gold Nanoparticles: Microbial Synthesis and Application in Water Hygiene Management publication-title: Langmuir doi: 10.1021/la900585p – volume: 41 start-page: 4384 year: 2005 ident: ref_69 article-title: Magnetic properties of biosynthesized magnetite nanoparticles publication-title: TMAG – volume: 81 start-page: 24 year: 2006 ident: ref_33 article-title: Intracellular recovery of gold by microbial reduction of AuCl4− ions using the anaerobic bacterium Shewanella algae publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2005.09.006 – volume: 190 start-page: 377 year: 1975 ident: ref_27 article-title: Magnetotactic bacteria publication-title: Science doi: 10.1126/science.170679 – volume: 24 start-page: 476 year: 2008 ident: ref_44 article-title: Biological Synthesis of Gold Nanowires Using Extract of Rhodopseudomonas capsulata publication-title: Biotechnol. Prog. doi: 10.1021/bp0703174 – volume: 12 start-page: 4806 year: 2019 ident: ref_60 article-title: Biosynthesis of gold nanoparticles by Bacillus marisflavi and its potential in catalytic dye degradation publication-title: Arab. J. Chem. doi: 10.1016/j.arabjc.2016.09.020 – volume: 48 start-page: 316 year: 2014 ident: ref_36 article-title: Microbial Extracellular Polymeric Substances Reduce Ag+ to Silver Nanoparticles and Antagonize Bactericidal Activity publication-title: Environ. Sci. Technol. doi: 10.1021/es403796x – volume: 14 start-page: 25 year: 2016 ident: ref_84 article-title: Green Extracellular Synthesis of the Silver Nanoparticles Using Thermophilic Bacillus Sp. AZ1 and its Antimicrobial Activity against Several Human Pathogenetic Bacteria publication-title: Iran. J. Biotechnol. doi: 10.15171/ijb.1259 – volume: 8 start-page: 2045 year: 2017 ident: ref_58 article-title: Biosynthesis of Gold Nanoparticles and Gold/Prodigiosin Nanoparticles with Serratia marcescens Bacteria publication-title: Waste Biomass Valor doi: 10.1007/s12649-016-9734-7 – volume: 130 start-page: 344 year: 2014 ident: ref_64 article-title: Extracellular bio-production and characterization of small monodispersed CdSe quantum dot nanocrystallites publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2014.04.021 – volume: 87 start-page: 932 year: 2012 ident: ref_28 article-title: Optimization of biological synthesis of silver nanoparticles using Lactobacillus casei subsp. casei publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.3702 – volume: 8 start-page: 39 year: 2009 ident: ref_50 article-title: A novel bacterial isolate Stenotrophomonas maltophilia as living factory for synthesis of gold nanoparticles publication-title: Microb. Cell Factories doi: 10.1186/1475-2859-8-39 – volume: 47 start-page: 245 year: 2014 ident: ref_56 article-title: Gold nanoparticle synthesis using the thermophilic bacterium Thermus scotoductus SA-01 and the purification and characterization of its unusual gold reducing protein publication-title: Gold Bull. doi: 10.1007/s13404-014-0147-8 – volume: 56 start-page: 425 year: 2001 ident: ref_81 article-title: Aerobic sulfide production and cadmium precipitation by Escherichia coli expressing the Treponema denticola cysteine desulfhydrase gene publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s002530100660 – volume: 106 start-page: 17757 year: 2009 ident: ref_47 article-title: Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0904583106 – volume: 14 start-page: 824 year: 2003 ident: ref_35 article-title: Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species publication-title: Nanotechnology doi: 10.1088/0957-4484/14/7/323 – volume: 626 start-page: 75 year: 2009 ident: ref_9 article-title: Electrocatalytic oxidation of formaldehyde on palladium nanoparticles electrodeposited on carbon ionic liquid composite electrode publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2008.11.008 – volume: 6 start-page: 34626 year: 2016 ident: ref_29 article-title: Formation of gold nanoparticles by glycolipids of Lactobacillus casei publication-title: Sci. Rep. doi: 10.1038/srep34626 – volume: 10 start-page: 19509 year: 2018 ident: ref_24 article-title: Size-controlled synthesis of CdS nanoparticles confined on covalent triazine-based frameworks for durable photocatalytic hydrogen evolution under visible light publication-title: Nanoscale doi: 10.1039/C8NR06691D – volume: 62 start-page: 45 year: 2010 ident: ref_51 article-title: Extracellular microbial synthesis of gold nanoparticles using fungus Hormoconis resinae publication-title: JOM doi: 10.1007/s11837-010-0168-6 – volume: 2011 start-page: 1 year: 2011 ident: ref_3 article-title: Biosynthesis of Nanoparticles by Microorganisms and Their Applications publication-title: J. Nanomater. – volume: 9 start-page: 1165 year: 2007 ident: ref_42 article-title: Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2007.01.007 – volume: 147 start-page: 651 year: 2014 ident: ref_7 article-title: Catalytic activity of biomass-supported Pd nanoparticles: Influence of the biological component in catalytic efficacy and potential application in ‘green’ synthesis of fine chemicals and pharmaceuticals publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2013.09.045 – volume: 7 start-page: 41182 year: 2017 ident: ref_73 article-title: Rapid production of Pd nanoparticle by a marine electrochemically active bacterium Shewanella sp. CNZ-1 and its catalytic performance on 4-nitrophenol reduction publication-title: RSC Adv. doi: 10.1039/C7RA07438G – volume: 6 start-page: 1858 year: 2013 ident: ref_12 article-title: Au–Pd core–Shell nanoparticles as alcohol oxidation catalysts: Effect of shape and composition publication-title: ChemSusChem doi: 10.1002/cssc.201300483 – volume: 83 start-page: 6875 year: 2011 ident: ref_5 article-title: Speciation Analysis of Silver Nanoparticles and Silver Ions in Antibacterial Products and Environmental Waters via Cloud Point Extraction-Based Separation publication-title: Anal. Chem. doi: 10.1021/ac201086a – volume: 132 start-page: 10398 year: 2010 ident: ref_11 article-title: Biphasic Pd−Au alloy catalyst for low-temperature CO oxidation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja102617r – volume: 24 start-page: 7354 year: 2008 ident: ref_14 article-title: Kinetic Analysis of Superoxide Anion Radical-Scavenging and Hydroxyl Radical-Scavenging Activities of Platinum Nanoparticles publication-title: Langmuir doi: 10.1021/la704046f – ident: ref_66 doi: 10.3390/ma9100855 – volume: 195 start-page: 447 year: 2019 ident: ref_82 article-title: Enhanced biosynthesis of CdS nanoparticles through Arabidopsis thaliana phytochelatin synthase-modified Escherichia coli with fluorescence effect in detection of pyrogallol and gallic acid publication-title: Talanta doi: 10.1016/j.talanta.2018.11.092 – volume: 32 start-page: 1036 year: 2009 ident: ref_46 article-title: Extracellular Biosynthesis of Gold Nanoparticles using Aspergillus niger—Its Characterization and Stability publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.200800647 – volume: 74 start-page: 328 year: 2009 ident: ref_83 article-title: Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2009.07.048 – volume: 82 start-page: 833 year: 2013 ident: ref_37 article-title: Biosynthesis of gold nanoparticles by Azospirillum brasilense publication-title: Microbiology doi: 10.1134/S002626171401007X – volume: 11 start-page: 86 year: 2012 ident: ref_52 article-title: Exploitation of marine bacteria for production of gold nanoparticles publication-title: Microb. Cell Factories doi: 10.1186/1475-2859-11-86 – volume: 38 start-page: 871 year: 2011 ident: ref_20 article-title: Effects of the dispersion of zirconium dioxide nanoparticles on high performance electro-optic properties in liquid crystal devices publication-title: Liquid Cryst. doi: 10.1080/02678292.2011.584637 – volume: 43 start-page: 8086 year: 2009 ident: ref_70 article-title: Intracellular Precipitation of Pb by Shewanella putrefaciens CN32 during the Reductive Dissolution of Pb-Jarosite publication-title: Environ. Sci. Technol. doi: 10.1021/es901629c – volume: 100 start-page: 5356 year: 2009 ident: ref_49 article-title: Biological synthesis of gold nanocubes from Bacillus licheniformis publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.05.051 – volume: 6 start-page: 219 year: 2016 ident: ref_40 article-title: Lactobacillus species mediated synthesis of silver nanoparticles and their antibacterial activity against opportunistic pathogens in vitro publication-title: BioImpacts BI doi: 10.15171/bi.2016.29 – volume: 14 start-page: 333 year: 2004 ident: ref_79 article-title: Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum publication-title: J. Mater. Chem. doi: 10.1039/b407904c – volume: 10 start-page: 481 year: 2018 ident: ref_41 article-title: Eco-friendly synthesis of silver nanoparticles using Lactobacillus delbrueckii subsp. bulgaricus isolated from kindrimo (locally fermented milk) in Kano State, Nigeria publication-title: Bayero J. Pure Appl. Sci. doi: 10.4314/bajopas.v10i1.92S – volume: 11 start-page: 1553 year: 2004 ident: ref_61 article-title: Bacterial Biosynthesis of Cadmium Sulfide Nanocrystals publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2004.08.022 – volume: 122 start-page: 4640 year: 2000 ident: ref_6 article-title: What Controls the Optical Properties of DNA-Linked Gold Nanoparticle Assemblies? publication-title: J. Am. Chem. Soc. doi: 10.1021/ja993825l – volume: 71 start-page: 226 year: 2009 ident: ref_78 article-title: Synthesis of TiO2 nanoparticles using microorganisms publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2009.02.007 – volume: 12 start-page: 407 year: 2000 ident: ref_34 article-title: Biologically Produced Silver–Carbon Composite Materials for Optically Functional Thin-Film Coatings publication-title: Adv. Mater. doi: 10.1002/(SICI)1521-4095(200003)12:6<407::AID-ADMA407>3.0.CO;2-O – volume: 28 start-page: 313 year: 2003 ident: ref_39 article-title: Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/S0927-7765(02)00174-1 – volume: 199 start-page: 110795 year: 2019 ident: ref_80 article-title: Improving biosynthesis of AuPd core-shell nanoparticles through Escherichia coli with the assistance of phytochelatin for catalytic enhanced chemiluminescence and benzyl alcohol oxidation publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2019.110795 – volume: 328 start-page: 1051 year: 2017 ident: ref_74 article-title: Biorecovery mechanism of palladium as nanoparticles by Enterococcus faecalis: From biosorption to bioreduction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.07.124 – volume: 4 start-page: 1217 year: 2012 ident: ref_15 article-title: Click Chemistry of Alkyne–Azide Cycloaddition using Nanostructured Copper Catalysts publication-title: ChemCatChem doi: 10.1002/cctc.201200193 – volume: 6 start-page: 6284 year: 2012 ident: ref_13 article-title: Promotion of phenol photodecomposition over TiO2 using Au, Pd, and Au–Pd nanoparticles publication-title: ACS Nano doi: 10.1021/nn301718v – volume: 18 start-page: 1 year: 2016 ident: ref_71 article-title: Characterization of lead nanoparticles formed by Shewanella sp. KR-12 publication-title: J. Nanopart. Res. doi: 10.1007/s11051-015-3309-6 – volume: 108 start-page: 160 year: 2017 ident: ref_75 article-title: Biogenic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds publication-title: Water Res. doi: 10.1016/j.watres.2016.10.071 – volume: 15 start-page: 25 year: 2016 ident: ref_1 article-title: Microbial glycolipoprotein-capped silver nanoparticles as emerging antibacterial agents against cholera publication-title: Microb. Cell Factories doi: 10.1186/s12934-016-0422-x – volume: 8 start-page: 3191 year: 2008 ident: ref_38 article-title: Bacterial Synthesis of Copper/Copper Oxide Nanoparticles publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2008.095 – volume: 2016 start-page: 1 year: 2016 ident: ref_57 article-title: Rapid Biosynthesis of Gold Nanoparticles by the Extracellular Secretion of Bacillus niabensis 45: Characterization and Antibiofilm Activity publication-title: J. Chem. – volume: 119 start-page: 78 year: 2017 ident: ref_72 article-title: Biologically synthesized PbS nanoparticles for the detection of arsenic in water publication-title: Int. Biodeterior. Biodegrad. doi: 10.1016/j.ibiod.2016.10.009 – volume: 62 start-page: 4248 year: 2008 ident: ref_19 article-title: Magnetic properties of magnetite nanoparticles synthesized by forced hydrolysis publication-title: Mater. Lett. doi: 10.1016/j.matlet.2008.06.053 – volume: 534 start-page: 291 year: 2019 ident: ref_23 article-title: Enhanced light absorption and charge recombination control in quantum dot sensitized solar cells using tin doped cadmium sulfide quantum dots publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.09.035 – volume: 2 start-page: 248 year: 2007 ident: ref_17 article-title: Lactobacillus assisted synthesis of titanium nanoparticles publication-title: Nanoscale Res. Lett. doi: 10.1007/s11671-007-9060-x – volume: 90 start-page: 213110 year: 2007 ident: ref_22 article-title: Local quantum dot tuning on photonic crystal chips publication-title: Appl. Phys. Lett. doi: 10.1063/1.2742789 – volume: 5 start-page: 79184 year: 2015 ident: ref_65 article-title: Crucial factors in biosynthesis of fluorescent CdSe quantum dots in Saccharomyces cerevisiae publication-title: RSC Adv. doi: 10.1039/C5RA13011E – volume: 4 start-page: 7331 year: 2019 ident: ref_59 article-title: Synthesis of Gold Nanoparticles by Extracellular Components of Lactobacillus casei publication-title: ChemistrySelect doi: 10.1002/slct.201901046 – volume: 115 start-page: 8706 year: 1993 ident: ref_26 article-title: Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00072a025 – volume: 2 start-page: 31 year: 2010 ident: ref_68 article-title: Synthesis of Gd2O3 nanoparticles using Lactobacillus sp.: A novel green approach publication-title: Int. J. Green Nanotechnol. Phys. Chem. doi: 10.1080/19430876.2010.532411 – volume: 185 start-page: 549 year: 2011 ident: ref_32 article-title: Role of organic amendments on enhanced bioremediation of heavy metal (loid) contaminated soils publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.09.082 – volume: 14 start-page: 1703145 year: 2018 ident: ref_67 article-title: Biosynthesis and Characterization of Copper Nanoparticles Using Shewanella oneidensis: Application for Click Chemistry publication-title: Small doi: 10.1002/smll.201703145 – volume: 134 start-page: 15607 year: 2012 ident: ref_4 article-title: Applications of colloidal inorganic nanoparticles: From medicine to energy publication-title: J. Am. Chem. Soc. doi: 10.1021/ja307589n – volume: 9 start-page: 241 year: 2013 ident: ref_54 article-title: Gold biomineralization by a metallophore from a gold-associated microbe publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1179 – volume: 138 start-page: 3266 year: 2016 ident: ref_10 article-title: Au–Pd bimetallic catalysis: The importance of anionic ligands in catalyst speciation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10277 – volume: 19 start-page: 8279 year: 2009 ident: ref_2 article-title: A review on applications of nanoparticles for the preconcentration of environmental pollutants publication-title: J. Mater. Chem. doi: 10.1039/b901933b – volume: 241 start-page: 20 year: 1973 ident: ref_25 article-title: Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions publication-title: Nat. Phys. Sci. doi: 10.1038/physci241020a0 – volume: 70 start-page: 142 year: 2009 ident: ref_62 article-title: Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2008.12.025 – volume: 61 start-page: 3984 year: 2007 ident: ref_43 article-title: Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata publication-title: Mater. Lett. doi: 10.1016/j.matlet.2007.01.018 – volume: 119 start-page: 440 year: 2015 ident: ref_30 article-title: Effects of culture conditions of Pseudomonas aeruginosa strain RB on the synthesis of CdSe nanoparticles publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2014.09.021 – volume: 53 start-page: 186 year: 2007 ident: ref_45 article-title: Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2007.02.073 – volume: 128 start-page: 648 year: 2007 ident: ref_76 article-title: Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2006.11.014 – volume: 13 start-page: 3843 year: 2001 ident: ref_21 article-title: Nanocrystalline Semiconductors: Synthesis, Properties, and Perspectives publication-title: Chem. Mater. doi: 10.1021/cm000843p – volume: 19 start-page: 2359 year: 2009 ident: ref_63 article-title: Living Yeast Cells as a Controllable Biosynthesizer for Fluorescent Quantum Dots publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200801492 |
SSID | ssj0000760771 |
Score | 2.3786783 |
Snippet | Metal nanoparticles (NPs), with sizes ranging from 1–100 nm, are of great scientific interest because their functions and features differ greatly from those of... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 589 |
SubjectTerms | biosynthesis metal adsorption metal nanoparticles microorganisms |
Title | Synthesis of Metal Nanoparticles by Microorganisms |
URI | https://doaj.org/article/a06ef1566c4b46e2aaa0529feaf77e11 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kXvQgPrE-Sg7iydDuI7vJsT5KEeulFnoLs5NdEDQtTTz037ubxJIexIvXMITdSZj5vs2Xbwi5AU0hQ8BQCS390U0UxqBU6MogVUZ51WLl9vkqxzPxPI_mrVFfXhNW2wPXievDQBrrSQYKLaRhAOA_TlkDVilT_9Xrel6LTFU1WMmBUrQ21eSO1_dxtS5KLwnwc_S2mlDLq79qKqNDctCgwWBYr-KI7Jj8mOy3PAJPCJuucwfSivciWNhgYhxYDlxJdFy3kbQFeh1MvKyuHtBUfBanZDZ6ensYh82ggxC5YGWY2IQiaktBR9RQa7llPItjqyTGrqVmUlGrYjrABKgVscBERcgSZhx5Qc34Genki9yck8CLxxAS5Ba1yDiAtixDnqEjSuCgU5fc_ew8xcYF3A-j-EgdG_CJSrcS1SW3m_BlbX_xW-C9T-MmyLtWVxfc3tMmIelfz_LiP25ySfaY58SVpPaKdMrVl7l2wKHUPbI7fJy8THvVu_IN9G_EvQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+Metal+Nanoparticles+by+Microorganisms&rft.jtitle=Crystals+%28Basel%29&rft.au=Yugo+Kato&rft.au=Michio+Suzuki&rft.date=2020-07-01&rft.pub=MDPI+AG&rft.eissn=2073-4352&rft.volume=10&rft.issue=7&rft.spage=589&rft_id=info:doi/10.3390%2Fcryst10070589&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a06ef1566c4b46e2aaa0529feaf77e11 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4352&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4352&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4352&client=summon |