Advancing flood warning procedures in ungauged basins with machine learning

•Regional, machine learning models solely for flood peak prediction.•LSTM based storm classifier for flood warning.•Importance of flood predictors depends on flood severity.•Flood warning framework for early detection and prediction in ungauged basins. Flood prediction across scales and more specifi...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrology (Amsterdam) Vol. 609; p. 127736
Main Authors Rasheed, Zimeena, Aravamudan, Akshay, Gorji Sefidmazgi, Ali, Anagnostopoulos, Georgios C., Nikolopoulos, Efthymios I.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Regional, machine learning models solely for flood peak prediction.•LSTM based storm classifier for flood warning.•Importance of flood predictors depends on flood severity.•Flood warning framework for early detection and prediction in ungauged basins. Flood prediction across scales and more specifically in ungauged areas remains a great challenge that limits the efficiency of flood risk mitigation strategies and disaster preparedness. Building upon the recent success of Machine Learning (ML) models on streamflow prediction, this work presents a prototype ML-based framework for flood warning and flood peak prediction. The fundamental elements of the proposed system consist of a) a Long-Short Term Memory (LSTM) model for classifying storm events to Flood/no-Flood given a threshold based on the 90th flow percentile and b) the flood peak prediction models. The selected ML-models for flood peak prediction are the Histogram based Gradient Boosting Regressor and the Random Forest. One of the strengths, and reason for selection, of these decision-tree models is their degree of interpretability. This is exploited in the study to help us spatially disentangle the role of both the static and dynamic drivers of flood peak response. Our analysis is presented for 18 distinct hydroclimatic regions across the contiguous US. Results reveal a significant regional dependence on both predictive performance and dominant flood predictors, which emphasize the variability in the complexity of a catchment’s hydrologic behavior as well as its impact on forecasting flood response. Evaluation of the drivers of flood peaks noted distinct dependencies among the dynamic and static predictors considered in our models for flood peaks of different severity. Specifically, low-moderate flood events showed a clear preponderance for the static catchment attributes over dynamic predictors like precipitation whereas precipitation was the dominant driver for the highest flood peaks. The proposed flood peak prediction models were compared against a state-of-the-art LSTM model and were shown to outperform in ungauged basins for the majority of basins. Overall, the proposed system classified storms correctly for >80% in all cases and exhibited a percent relative difference in flood peak estimates of <30% in most cases.
AbstractList •Regional, machine learning models solely for flood peak prediction.•LSTM based storm classifier for flood warning.•Importance of flood predictors depends on flood severity.•Flood warning framework for early detection and prediction in ungauged basins. Flood prediction across scales and more specifically in ungauged areas remains a great challenge that limits the efficiency of flood risk mitigation strategies and disaster preparedness. Building upon the recent success of Machine Learning (ML) models on streamflow prediction, this work presents a prototype ML-based framework for flood warning and flood peak prediction. The fundamental elements of the proposed system consist of a) a Long-Short Term Memory (LSTM) model for classifying storm events to Flood/no-Flood given a threshold based on the 90th flow percentile and b) the flood peak prediction models. The selected ML-models for flood peak prediction are the Histogram based Gradient Boosting Regressor and the Random Forest. One of the strengths, and reason for selection, of these decision-tree models is their degree of interpretability. This is exploited in the study to help us spatially disentangle the role of both the static and dynamic drivers of flood peak response. Our analysis is presented for 18 distinct hydroclimatic regions across the contiguous US. Results reveal a significant regional dependence on both predictive performance and dominant flood predictors, which emphasize the variability in the complexity of a catchment’s hydrologic behavior as well as its impact on forecasting flood response. Evaluation of the drivers of flood peaks noted distinct dependencies among the dynamic and static predictors considered in our models for flood peaks of different severity. Specifically, low-moderate flood events showed a clear preponderance for the static catchment attributes over dynamic predictors like precipitation whereas precipitation was the dominant driver for the highest flood peaks. The proposed flood peak prediction models were compared against a state-of-the-art LSTM model and were shown to outperform in ungauged basins for the majority of basins. Overall, the proposed system classified storms correctly for >80% in all cases and exhibited a percent relative difference in flood peak estimates of <30% in most cases.
Flood prediction across scales and more specifically in ungauged areas remains a great challenge that limits the efficiency of flood risk mitigation strategies and disaster preparedness. Building upon the recent success of Machine Learning (ML) models on streamflow prediction, this work presents a prototype ML-based framework for flood warning and flood peak prediction. The fundamental elements of the proposed system consist of a) a Long-Short Term Memory (LSTM) model for classifying storm events to Flood/no-Flood given a threshold based on the 90th flow percentile and b) the flood peak prediction models. The selected ML-models for flood peak prediction are the Histogram based Gradient Boosting Regressor and the Random Forest. One of the strengths, and reason for selection, of these decision-tree models is their degree of interpretability. This is exploited in the study to help us spatially disentangle the role of both the static and dynamic drivers of flood peak response. Our analysis is presented for 18 distinct hydroclimatic regions across the contiguous US. Results reveal a significant regional dependence on both predictive performance and dominant flood predictors, which emphasize the variability in the complexity of a catchment’s hydrologic behavior as well as its impact on forecasting flood response. Evaluation of the drivers of flood peaks noted distinct dependencies among the dynamic and static predictors considered in our models for flood peaks of different severity. Specifically, low-moderate flood events showed a clear preponderance for the static catchment attributes over dynamic predictors like precipitation whereas precipitation was the dominant driver for the highest flood peaks. The proposed flood peak prediction models were compared against a state-of-the-art LSTM model and were shown to outperform in ungauged basins for the majority of basins. Overall, the proposed system classified storms correctly for >80% in all cases and exhibited a percent relative difference in flood peak estimates of <30% in most cases.
ArticleNumber 127736
Author Nikolopoulos, Efthymios I.
Rasheed, Zimeena
Aravamudan, Akshay
Gorji Sefidmazgi, Ali
Anagnostopoulos, Georgios C.
Author_xml – sequence: 1
  givenname: Zimeena
  surname: Rasheed
  fullname: Rasheed, Zimeena
  organization: Mechanical and Civil Engineering Department, Florida Institute of Technology, Melbourne, FL, USA
– sequence: 2
  givenname: Akshay
  surname: Aravamudan
  fullname: Aravamudan, Akshay
  organization: Computer Engineering and Sciences Department, Florida Institute of Technology, Melbourne, FL, USA
– sequence: 3
  givenname: Ali
  surname: Gorji Sefidmazgi
  fullname: Gorji Sefidmazgi, Ali
  organization: Computer Engineering Department, University of Guilan, Rasht, Guilan, Iran
– sequence: 4
  givenname: Georgios C.
  surname: Anagnostopoulos
  fullname: Anagnostopoulos, Georgios C.
  organization: Computer Engineering and Sciences Department, Florida Institute of Technology, Melbourne, FL, USA
– sequence: 5
  givenname: Efthymios I.
  surname: Nikolopoulos
  fullname: Nikolopoulos, Efthymios I.
  email: enikolopoulos@fit.edu
  organization: Mechanical and Civil Engineering Department, Florida Institute of Technology, Melbourne, FL, USA
BookMark eNqFkD1rwzAQhkVJoUnan1Dw2MWuJNuyTIcSQr9ooEs7C1k6JzKOlEp2Qv59HZypS245jnuf43hmaGKdBYTuCU4IJuyxSZrNUXvXJhRTmhBaFCm7QlPCizKmBS4maIqHTUxYmd2gWQgNHipNsyn6XOi9tMrYdVS3zunoIL09TTvvFOjeQ4iMjXq7lv0adFTJYGyIDqbbRFupNsZC1MLI3KLrWrYB7s59jn5eX76X7_Hq6-1juVjFKs1oF_OasYrmwLSkVZnjTCuqecFKCiSnKVaaEiqrLMsVoUqD0qTkqaaAQdeyqtI5ehjvDj_-9hA6sTVBQdtKC64PgrKMc45LwodoPkaVdyF4qMXOm630R0GwOMkTjTjLEyd5YpQ3cE__OGU62RlnOy9Ne5F-HmkYLOwNeBGUATv4NB5UJ7QzFy78AXDxkes
CitedBy_id crossref_primary_10_1016_j_jhydrol_2024_131638
crossref_primary_10_1016_j_scs_2024_105508
crossref_primary_10_1017_eds_2024_14
crossref_primary_10_1111_ejss_70009
crossref_primary_10_1016_j_envsoft_2024_106130
crossref_primary_10_3390_su15043804
crossref_primary_10_2166_hydro_2024_024
crossref_primary_10_1016_j_advwatres_2024_104694
crossref_primary_10_2208_jscejj_24_16077
crossref_primary_10_1371_journal_pone_0313535
crossref_primary_10_2166_nh_2024_004
crossref_primary_10_3390_hydrology12030059
crossref_primary_10_1016_j_ijdrr_2025_105290
crossref_primary_10_1016_j_jhydrol_2023_130279
crossref_primary_10_1016_j_watres_2023_120791
crossref_primary_10_1016_j_jhydrol_2023_129684
crossref_primary_10_1016_j_jhydrol_2024_130817
crossref_primary_10_1016_j_jhydrol_2023_130012
crossref_primary_10_1007_s12665_024_11435_2
crossref_primary_10_1016_j_pce_2024_103840
crossref_primary_10_3390_w16131904
crossref_primary_10_3390_f14061131
crossref_primary_10_1016_j_compeleceng_2024_109644
crossref_primary_10_1111_jfr3_12891
crossref_primary_10_3390_w15142581
crossref_primary_10_1016_j_advwatres_2024_104781
crossref_primary_10_1016_j_compchemeng_2024_108747
Cites_doi 10.5194/essd-12-2459-2020
10.1007/s11069-016-2644-y
10.5194/hess-14-1931-2010
10.1007/s00382-011-1054-9
10.1023/A:1010933404324
10.1016/j.jhydrol.2016.02.044
10.3390/w9090695
10.1111/jfr3.12580
10.5194/hess-16-1379-2012
10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2
10.1029/2020WR028060
10.1016/j.landurbplan.2003.07.004
10.1061/(ASCE)1084-0699(2001)6:5(377)
10.1016/j.jhydrol.2017.03.010
10.5194/hess-23-5089-2019
10.1016/j.jhydrol.2020.124901
10.5194/hess-18-2735-2014
10.3390/w10111536
10.1002/hyp.7122
10.1016/j.jhydrol.2010.12.020
10.1038/nclimate3168
10.1016/j.envsoft.2015.01.009
10.1175/MWR-D-19-0020.1
10.1016/j.gloplacha.2016.06.003
10.1007/s12205-020-0951-z
10.1061/(ASCE)HE.1943-5584.0000690
10.1016/j.jhydrol.2020.125531
10.1016/j.scitotenv.2017.10.037
10.1214/aos/1013203451
10.1029/2019WR025326
10.1038/s41598-017-08481-1
10.3390/w12051426
10.5194/hess-11-468-2007
10.1002/hyp.13278
10.1175/JCLI-D-12-00502.1
10.1080/02626660903546175
10.5194/hess-22-6005-2018
10.5194/hess-22-5817-2018
10.2737/PNW-GTR-587
10.1029/2007GL030156
10.1029/2004WR003218
10.1080/02626667.2013.803183
10.1002/2016GL068070
10.5194/hess-19-209-2015
10.3390/w6123841
10.1029/2012WR011869
10.1029/2004GL020528
10.1016/j.geomorph.2014.06.015
10.2747/0272-3646.26.6.489
10.1038/415514a
10.1016/j.jhydrol.2017.06.020
10.1029/2011WR010997
10.5194/hess-15-989-2011
10.5194/hess-16-4375-2012
10.5194/hess-18-839-2014
10.1088/1748-9326/aaac65
10.1038/nclimate2516
10.1016/j.jhydrol.2020.125197
10.1016/j.jhydrol.2009.07.029
10.5194/hess-21-5293-2017
10.1016/j.advwatres.2014.08.004
10.1007/s11069-013-0925-2
10.1162/neco.1997.9.8.1735
10.1175/JHM-D-12-021.1
10.1175/2008JHM986.1
10.5772/intechopen.68648
10.5194/hess-23-3631-2019
10.1007/s12145-020-00530-0
10.1016/j.envsoft.2018.05.018
10.1029/2008WR007327
10.1029/2011JD016048
10.1007/s10584-015-1476-1
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2022.127736
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
ExternalDocumentID 10_1016_j_jhydrol_2022_127736
S0022169422003110
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c342t-8f66b25e6da2b9504dc2d87692e15230cd212ab445c12cdecd1983d2e0edfabb3
IEDL.DBID .~1
ISSN 0022-1694
IngestDate Fri Jul 11 01:34:31 EDT 2025
Tue Jul 01 01:53:37 EDT 2025
Thu Apr 24 22:52:52 EDT 2025
Fri Feb 23 02:38:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ungauged basins
Flood peak
Prediction
Machine learning
Flood warning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-8f66b25e6da2b9504dc2d87692e15230cd212ab445c12cdecd1983d2e0edfabb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2648880918
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2648880918
crossref_primary_10_1016_j_jhydrol_2022_127736
crossref_citationtrail_10_1016_j_jhydrol_2022_127736
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2022_127736
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Costabile, Macchione (b0060) 2015; 67
National Academies Press.
Kratzert, Klotz, Brenner, Schulz, Herrnegger (b0220) 2018; 22
Perry (b0355) 2000
Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., Lettenmaier, D., Koren, V., Duan, Q., Mo, K., Fan, Y., & Mocko, D. (2012). Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products.
Todini (b0455) 2007; 11
Lins, Slack (b0245) 2005; 26
Yamazaki, Lee, Alsdorf, Dutra, Kim, Kanae, Oki (b0510) 2012; 48
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b0430) 2014; 15
Alvarez-Garreton, Mendoza, Boisier, Addor, Galleguillos, Zambrano-Bigiarini, Lara, Puelma, Cortes, Garreaud, McPhee, Ayala (b0030) 2018; 22
Breiman (b0045) 2001; 45
Kim, Kim (b0200) 2020; 24
Jarosińska, E., & Pierzga, K. (2017). Estimating Flood Quantiles on the Basis of Multi-Event Rainfall Simulation. In T. Hromadka & P. Rao (Eds.)
(22), 3237.
Crow, Huffman, Bindlish, Jackson (b0070) 2009; 10
Tomer, Schilling (b0460) 2009; 376
,
Remesan, Mathew (b0375) 2014
.
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Others. (b0350) 2011; 12
U.S. Fish and Wildlife Service.
Saharia, Kirstetter, Vergara, Gourley, Hong (b0395) 2017; 548
Verry, E.S., & Kolka, R.K. (2003). Importance of wetlands to streamflow generation.
https://doi.org/10.3334/ORNLDAAC/1219.
Mosavi, Ozturk, Chau (b0285) 2018; 10
Friedman (b0110) 2001; 29
Cormen, Leiserson, Rivest, Stein (b0055) 2001
Lin, Yang, Gochis, Yu, Maidment, Somos-Valenzuela, David (b0240) 2018; 107
Tara, Paulin (b0370) 2013; 18
Wilson, Bates, Alsdorf, Forsberg, Horritt, Melack, Frappart, Famiglietti (b0495) 2007; 34
Coxon, Addor, Bloomfield, Freer, Fry, Hannaford, Howden, Lane, Lewis, Robinson, Wagener, Woods (b0065) 2020; 12
Westra, Alexander, Zwiers (b0490) 2013; 26
Ho (b0150) 1995
Snoek, J., Larochelle, H., Adams, R.P. (2012). Practical Bayesian Optimization of Machine Learning Algorithms. Proceedings of the 25th International Conference on Neural Information Processing Systems, Vol. 2, 2951–2959.
Cui, Chen, He, Chen (b0075) 2015
Thornton, P.E., Thornton, M.M., Mayer, B.W., Wilhelmi, N., Wei, Y., Devarakonda, R., & Cook, R. (2012).
Dahl, T.E. (2014).
Wasko, Sharma (b0485) 2017; 7
Newman, Clark, Sampson, Wood, Hay, Bock, Viger, Blodgett, Brekke, Arnold, Hopson, Duan (b0310) 2015; 19
Kratzert, Klotz, Shalev, Klambauer, Hochreiter, Nearing (b0225) 2019; 23
Nikolopoulos, Crema, Marchi, Marra, Guzzetti, Borga (b0325) 2014; 221
Ivanov, Vivoni, Bras, Entekhabi (b0180) 2004; 40
Hu, Nikolopoulos, Marra, Anagnostou (b0170) 2020; 13
Zhao, Pang, Xu, Yue, Tu (b0520) 2018; 615
Heggen (b0135) 2001; 6
Hirschboeck (b0145) 1991; 2375
Saadi, Oudin, Ribstein (b0380) 2020; 56
Knight, S.K. (2010). From Flood Loss to FloodSmart: How FEMA’s Mitigation Tools Work to Reduce the Impact of Flood Disasters.
Naz, Kao, Ashfaq, Rastogi, Mei, Bowling (b0300) 2016; 143
Loh (b0250) 2002; 12
Vadeboncoeur, Green, Asbjornsen, Campbell, Adams, Boyer, Burns, Fernandez, Mitchell, Shanley (b0470) 2018; 32
https://doi.org/10.2737/pnw-gtr-587.
Pathiraja, Westra, Sharma (b0340) 2012; 48
Saghafian, Golian, Ghasemi (b0385) 2014; 71
Seneviratne, Nicholls, Easterling, Goodess, Kanae, Kossin, Luo, Marengo, McInnes, Rahimi, Reichstein, Sorteberg, Vera, Zhang, Alexander, Allen, Benito, Cavazos, Clague, Zwiers (b0410) 2012
Addor, Newman, Mizukami, Clark (b0005) 2017; 21
Ni, Wang, Wu, Wang, Tao, Zhang, Liu (b0315) 2020; 586
U.S. Department of Commerce, Weather
Getirana, Boone, Yamazaki, Decharme, Papa, Mognard (b0115) 2012; 13
Ncei, N. (2020).
Ali, Ghosh, Singh (b0015) 2010; 55
Singh, V.P. (1988).
Mallakpour, Villarini (b0255) 2015; 5
Prein, Rasmussen, Ikeda, Liu, Clark, Holland (b0360) 2017; 7
Patil, Stieglitz (b0345) 2011; 15
Naghibi, Hashemi, Berndtsson, Lee (b0290) 2020; 589
Alig, R.J., Plantinga, A.J., Ahn, S., & Kline, J.D. (2003).
Samaniego, Kumar, Attinger (b0400) 2010; 46
Tramblay, Bouaicha, Brocca, Dorigo, Bouvier, Camici, Servat (b0465) 2012; 16
Mirzaei, Vafakhah, Pradhan, Alavi (b0280) 2021; 14
Decharme, Alkama, Papa, Faroux, Douville, Prigent (b0090) 2012; 38
Alig, Kline, Lichtenstein (b0020) 2004; 69
Dobur (bib525)
Milly, Wetherald, Dunne, Delworth (b0275) 2002; 415
Massari, Brocca, Moramarco, Tramblay, Didon Lescot (b0265) 2014; 74
Ke, Meng, Finley, Wang, Chen, Ma, Ye, Liu (b0195) 2017; 30
Nikolopoulos, Anagnostou, Borga, Vivoni, Papadopoulos (b0320) 2011; 402
Ahn, Cho, Kim, Shin, Heo (b0010) 2014; 6
Indiana University Press.
Yu, Yang, Chen, Kuo, Tseng (b0515) 2017; 552
Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, C.J. (1984). Classification and regressiontrees, wadsworth statistics.
Dunkerley (bib523) 2008; 22
(D3).
Hrachowitz, Savenije, Blöschl, McDonnell, Sivapalan, Pomeroy, Arheimer, Blume, Clark, Ehret, Fenicia, Freer, Gelfan, Gupta, Hughes, Hut, Montanari, Pande, Tetzlaff, Troch, Uhlenbrook, Wagener, Winsemius, Woods, Zehe, Cudennec (b0165) 2013; 58
Prentice Hall.
Sucik, M.T., Marks, E. (2015). The status and recent trends of wetlands in the United States.
Wing, Bates, Smith, Sampson, Johnson, Fargione, Morefield (b0500) 2018; 13
Hochreiter, Schmidhuber (b0155) 1997; 9
Pan, Arritt, Takle, Gutowski, Anderson, Segal (b0335) 2004; 31
Elshorbagy, Corzo, Srinivasulu, Solomatine (b0105) 2010; 14
Viessman, W., & Lewis, G.L. (1996).
HarperCollins.
Berghuijs, Woods, Hutton, Sivapalan (b0040) 2016; 43
Dougherty, Rasmussen (b0100) 2019; 147
Kunkel, K.E., Stevens, L.E., Stevens, S.E., Sun, L., Janssen, E., Wuebbles, D., Kruk, M.C., Thomas, D., Shulski, M., Umphlett, N.A., Hubbard, K.G., Robbins, K., Romolo, L., Akyuz, A., Pathak, T.B., Bergantino, T.R., & Greg Dobson, J. (2013).
Ivancic, Shaw (b0175) 2015; 133
Pryor, S.C. (2013).
Holm (b0160) 1979; 6
Kasiviswanathan, He, Sudheer, Tay (b0190) 2016; 536
Teuling, de Badts, Jansen, Fuchs, Buitink, Hoek van Dijke, Sterling (b0445) 2019; 23
IntechOpen. https://doi.org/10.5772/intechopen.68648.
Merz, Vorogushyn, Uhlemann, Delgado, Hundecha (b0260) 2012; 16
Taksande, Mohod (b0440) 2015; 4
Gulakhmadov, Chen, Gulahmadov, Liu, Anjum, Rizwan (b0125) 2020; 12
National Research Council, Division on Earth and Life Studies, Water Science and Technology Board, & Committee on the Scientific Bases of Colorado River Basin Water Management. (2007).
Slater, Villarini (b0420) 2017; 9
Assessment, C. (2018).
Hall, Arheimer, Borga, Brázdil, Claps, Kiss, Kjeldsen, Kriaučiūnienė, Kundzewicz, Lang, Llasat, Macdonald, McIntyre, Mediero, Merz, Merz, Molnar, Montanari, Neuhold, Parajka, Perdigão, Plavcová, Rogger, Salinas, Sauquet, Schär, Szolgay, Viglione, Blöschl (b0130) 2014; 18
Massari, Brocca, Barbetta, Papathanasiou, Mimikou, Moramarco (b0270) 2014; 18
10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2.
Lara, Garcia, Bucci, Ribas (b0235) 2017; 85
Schoppa, Disse, Bachmair (b0405) 2020; 590
Xiang, Yan, Demir (b0505) 2020; 56
Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P., & Nijssen, B. (2002). A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States.
Kohler, M.A., & Linsley, R.K. (1951).
10.1016/j.jhydrol.2022.127736_b0365
Teuling (10.1016/j.jhydrol.2022.127736_b0445) 2019; 23
Ke (10.1016/j.jhydrol.2022.127736_b0195) 2017; 30
Mosavi (10.1016/j.jhydrol.2022.127736_b0285) 2018; 10
10.1016/j.jhydrol.2022.127736_b0080
Getirana (10.1016/j.jhydrol.2022.127736_b0115) 2012; 13
Slater (10.1016/j.jhydrol.2022.127736_b0420) 2017; 9
Wilson (10.1016/j.jhydrol.2022.127736_b0495) 2007; 34
10.1016/j.jhydrol.2022.127736_b0480
Westra (10.1016/j.jhydrol.2022.127736_b0490) 2013; 26
Cui (10.1016/j.jhydrol.2022.127736_b0075) 2015
10.1016/j.jhydrol.2022.127736_b0415
Mallakpour (10.1016/j.jhydrol.2022.127736_b0255) 2015; 5
Lin (10.1016/j.jhydrol.2022.127736_b0240) 2018; 107
Hirschboeck (10.1016/j.jhydrol.2022.127736_b0145) 1991; 2375
Kratzert (10.1016/j.jhydrol.2022.127736_b0225) 2019; 23
Remesan (10.1016/j.jhydrol.2022.127736_b0375) 2014
Nikolopoulos (10.1016/j.jhydrol.2022.127736_b0325) 2014; 221
Patil (10.1016/j.jhydrol.2022.127736_b0345) 2011; 15
Tomer (10.1016/j.jhydrol.2022.127736_b0460) 2009; 376
Naz (10.1016/j.jhydrol.2022.127736_b0300) 2016; 143
Wasko (10.1016/j.jhydrol.2022.127736_b0485) 2017; 7
10.1016/j.jhydrol.2022.127736_b0305
Saharia (10.1016/j.jhydrol.2022.127736_b0395) 2017; 548
10.1016/j.jhydrol.2022.127736_b0425
Todini (10.1016/j.jhydrol.2022.127736_b0455) 2007; 11
Lins (10.1016/j.jhydrol.2022.127736_b0245) 2005; 26
Schoppa (10.1016/j.jhydrol.2022.127736_b0405) 2020; 590
10.1016/j.jhydrol.2022.127736_b0025
10.1016/j.jhydrol.2022.127736_bib521
Dobur (10.1016/j.jhydrol.2022.127736_bib525)
Nikolopoulos (10.1016/j.jhydrol.2022.127736_b0320) 2011; 402
Pan (10.1016/j.jhydrol.2022.127736_b0335) 2004; 31
10.1016/j.jhydrol.2022.127736_bib522
Ho (10.1016/j.jhydrol.2022.127736_b0150) 1995
Holm (10.1016/j.jhydrol.2022.127736_b0160) 1979; 6
Ali (10.1016/j.jhydrol.2022.127736_b0015) 2010; 55
Mirzaei (10.1016/j.jhydrol.2022.127736_b0280) 2021; 14
Taksande (10.1016/j.jhydrol.2022.127736_b0440) 2015; 4
Friedman (10.1016/j.jhydrol.2022.127736_b0110) 2001; 29
Pedregosa (10.1016/j.jhydrol.2022.127736_b0350) 2011; 12
Seneviratne (10.1016/j.jhydrol.2022.127736_b0410) 2012
Hall (10.1016/j.jhydrol.2022.127736_b0130) 2014; 18
10.1016/j.jhydrol.2022.127736_b0435
10.1016/j.jhydrol.2022.127736_b0035
Lara (10.1016/j.jhydrol.2022.127736_b0235) 2017; 85
Costabile (10.1016/j.jhydrol.2022.127736_b0060) 2015; 67
Kratzert (10.1016/j.jhydrol.2022.127736_b0220) 2018; 22
Ni (10.1016/j.jhydrol.2022.127736_b0315) 2020; 586
Massari (10.1016/j.jhydrol.2022.127736_b0270) 2014; 18
Ivancic (10.1016/j.jhydrol.2022.127736_b0175) 2015; 133
Milly (10.1016/j.jhydrol.2022.127736_b0275) 2002; 415
Tramblay (10.1016/j.jhydrol.2022.127736_b0465) 2012; 16
Yamazaki (10.1016/j.jhydrol.2022.127736_b0510) 2012; 48
Decharme (10.1016/j.jhydrol.2022.127736_b0090) 2012; 38
Hrachowitz (10.1016/j.jhydrol.2022.127736_b0165) 2013; 58
Newman (10.1016/j.jhydrol.2022.127736_b0310) 2015; 19
Saadi (10.1016/j.jhydrol.2022.127736_b0380) 2020; 56
Coxon (10.1016/j.jhydrol.2022.127736_b0065) 2020; 12
Samaniego (10.1016/j.jhydrol.2022.127736_b0400) 2010; 46
Alvarez-Garreton (10.1016/j.jhydrol.2022.127736_b0030) 2018; 22
Yu (10.1016/j.jhydrol.2022.127736_b0515) 2017; 552
10.1016/j.jhydrol.2022.127736_b0215
Berghuijs (10.1016/j.jhydrol.2022.127736_b0040) 2016; 43
Perry (10.1016/j.jhydrol.2022.127736_b0355) 2000
10.1016/j.jhydrol.2022.127736_b0210
Vadeboncoeur (10.1016/j.jhydrol.2022.127736_b0470) 2018; 32
Breiman (10.1016/j.jhydrol.2022.127736_b0045) 2001; 45
Gulakhmadov (10.1016/j.jhydrol.2022.127736_b0125) 2020; 12
Addor (10.1016/j.jhydrol.2022.127736_b0005) 2017; 21
Heggen (10.1016/j.jhydrol.2022.127736_b0135) 2001; 6
Alig (10.1016/j.jhydrol.2022.127736_b0020) 2004; 69
Pathiraja (10.1016/j.jhydrol.2022.127736_b0340) 2012; 48
Tara (10.1016/j.jhydrol.2022.127736_b0370) 2013; 18
Loh (10.1016/j.jhydrol.2022.127736_b0250) 2002; 12
Merz (10.1016/j.jhydrol.2022.127736_b0260) 2012; 16
10.1016/j.jhydrol.2022.127736_b0450
10.1016/j.jhydrol.2022.127736_b0295
10.1016/j.jhydrol.2022.127736_b0050
Kim (10.1016/j.jhydrol.2022.127736_b0200) 2020; 24
Prein (10.1016/j.jhydrol.2022.127736_b0360) 2017; 7
Saghafian (10.1016/j.jhydrol.2022.127736_b0385) 2014; 71
Dunkerley (10.1016/j.jhydrol.2022.127736_bib523) 2008; 22
Zhao (10.1016/j.jhydrol.2022.127736_b0520) 2018; 615
Massari (10.1016/j.jhydrol.2022.127736_b0265) 2014; 74
Wing (10.1016/j.jhydrol.2022.127736_b0500) 2018; 13
Ahn (10.1016/j.jhydrol.2022.127736_b0010) 2014; 6
Dougherty (10.1016/j.jhydrol.2022.127736_b0100) 2019; 147
10.1016/j.jhydrol.2022.127736_b0185
Hu (10.1016/j.jhydrol.2022.127736_b0170) 2020; 13
Ivanov (10.1016/j.jhydrol.2022.127736_b0180) 2004; 40
Srivastava (10.1016/j.jhydrol.2022.127736_b0430) 2014; 15
Xiang (10.1016/j.jhydrol.2022.127736_b0505) 2020; 56
Kasiviswanathan (10.1016/j.jhydrol.2022.127736_b0190) 2016; 536
10.1016/j.jhydrol.2022.127736_b0475
Cormen (10.1016/j.jhydrol.2022.127736_b0055) 2001
Elshorbagy (10.1016/j.jhydrol.2022.127736_b0105) 2010; 14
Hochreiter (10.1016/j.jhydrol.2022.127736_b0155) 1997; 9
Crow (10.1016/j.jhydrol.2022.127736_b0070) 2009; 10
10.1016/j.jhydrol.2022.127736_b0230
Naghibi (10.1016/j.jhydrol.2022.127736_b0290) 2020; 589
References_xml – reference: . National Academies Press.
– reference: Singh, V.P. (1988).
– volume: 7
  year: 2017
  ident: b0485
  article-title: Global assessment of flood and storm extremes with increased temperatures
– ident: bib525
  article-title: An Analysis of the Geographic Distribution of Flash Flood Events across the Southeastern United States, NOAA/National Weather Service, Southeast River Forecast Center, Peachtree City, Georgia
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0045
  article-title: Random forests
  publication-title: Machine Learning
– volume: 12
  start-page: 2459
  year: 2020
  end-page: 2483
  ident: b0065
  article-title: CAMELS-GB: hydrometeorological time series and landscape attributes for 671 catchments in Great Britain
  publication-title: Earth Syst. Sci. Data
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  ident: b0110
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
– volume: 40
  year: 2004
  ident: b0180
  article-title: Catchment hydrologic response with a fully distributed triangulated irregular network model
  publication-title: Water Resour. Res.
– volume: 22
  start-page: 6005
  year: 2018
  end-page: 6022
  ident: b0220
  article-title: Rainfall–runoff modelling using Long Short-Term Memory (LSTM) networks
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 14
  start-page: 51
  year: 2021
  end-page: 67
  ident: b0280
  article-title: Flood susceptibility assessment using extreme gradient boosting (EGB), Iran
– volume: 615
  start-page: 1133
  year: 2018
  end-page: 1142
  ident: b0520
  article-title: Mapping flood susceptibility in mountainous areas on a national scale in China
  publication-title: Sci. Total Environ.
– volume: 55
  start-page: 266
  year: 2010
  end-page: 274
  ident: b0015
  article-title: Rainfall–runoff simulation using a normalized antecedent precipitation index
  publication-title: Hydrol. Sci. J.
– reference: . U.S. Fish and Wildlife Service.
– reference: 10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2.
– volume: 402
  start-page: 165
  year: 2011
  end-page: 178
  ident: b0320
  article-title: Sensitivity of a mountain basin flash flood to initial wetness condition and rainfall variability
  publication-title: J. Hydrol.
– volume: 18
  start-page: 958
  year: 2013
  end-page: 975
  ident: b0370
  article-title: Streamflow prediction in ungauged basins: review of regionalization methods
  publication-title: J. Hydrol. Eng.
– reference: Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P., & Nijssen, B. (2002). A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States.
– volume: 10
  start-page: 1536
  year: 2018
  ident: b0285
  article-title: Flood prediction using machine learning models: literature review
  publication-title: WATER
– volume: 56
  year: 2020
  ident: b0505
  article-title: A rainfall-runoff model with LSTM-based sequence-to-sequence learning
  publication-title: Water Resour. Res.
– volume: 19
  start-page: 209
  year: 2015
  end-page: 223
  ident: b0310
  article-title: Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: data set characteristics and assessment of regional variability in hydrologic model performance
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 71
  start-page: 403
  year: 2014
  end-page: 417
  ident: b0385
  article-title: Flood frequency analysis based on simulated peak discharges
  publication-title: Nat. Hazards
– volume: 85
  start-page: 1557
  year: 2017
  end-page: 1575
  ident: b0235
  article-title: What do people think about the flood risk? An experience with the residents of Talcahuano city, Chile
– volume: 26
  start-page: 489
  year: 2005
  end-page: 501
  ident: b0245
  article-title: Seasonal and regional characteristics of U.S. Streamflow trends in the United States from 1940 to 1999
  publication-title: Phys. Geogr.
– reference: . Indiana University Press.
– volume: 12
  start-page: 1426
  year: 2020
  ident: b0125
  article-title: Simulation of the potential impacts of projected climate change on streamflow in the Vakhsh River basin in Central Asia under CMIP5 RCP scenarios
  publication-title: WATER
– reference: Assessment, C. (2018).
– volume: 16
  start-page: 4375
  year: 2012
  end-page: 4386
  ident: b0465
  article-title: Estimation of antecedent wetness conditions for flood modelling in northern Morocco
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 48
  start-page: W09508
  year: 2012
  ident: b0510
  article-title: Analysis of the water level dynamics simulated by a global river model: a case study in the Amazon River
  publication-title: Water Resour. Res.
– reference: Pryor, S.C. (2013).
– volume: 6
  start-page: 65
  year: 1979
  end-page: 70
  ident: b0160
  article-title: A simple sequentially rejective multiple test procedure
  publication-title: Scand. J. Stat. Theory Appl.
– volume: 26
  start-page: 3904
  year: 2013
  end-page: 3918
  ident: b0490
  article-title: Global increasing trends in annual maximum daily precipitation
  publication-title: J. Clim.
– reference: Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., Lettenmaier, D., Koren, V., Duan, Q., Mo, K., Fan, Y., & Mocko, D. (2012). Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products.
– volume: 4
  start-page: 3048
  year: 2015
  end-page: 3051
  ident: b0440
  article-title: Applications of data mining in weather forecasting using frequent pattern growth algorithm
  publication-title: Int. J. Sci. Res.
– year: 2014
  ident: b0375
  article-title: Hydrological Data Driven Modelling: A Case Study Approach
– volume: 415
  start-page: 514
  year: 2002
  end-page: 517
  ident: b0275
  article-title: Increasing risk of great floods in a changing climate
  publication-title: Nature
– volume: 30
  start-page: 3146
  year: 2017
  end-page: 3154
  ident: b0195
  article-title: Lightgbm: a highly efficient gradient boosting decision tree
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 143
  start-page: 100
  year: 2016
  end-page: 117
  ident: b0300
  article-title: Regional hydrologic response to climate change in the conterminous United States using high-resolution hydroclimate simulations
  publication-title: Glob. Planet. Change
– volume: 31
  year: 2004
  ident: b0335
  article-title: Altered hydrologic feedback in a warming climate introduces a “warming hole”
  publication-title: Geophys. Res. Lett.
– volume: 133
  start-page: 681
  year: 2015
  end-page: 693
  ident: b0175
  article-title: Examining why trends in very heavy precipitation should not be mistaken for trends in very high river discharge
  publication-title: Climat. Change
– reference: ,
– reference: . https://doi.org/10.3334/ORNLDAAC/1219.
– reference: . https://doi.org/10.2737/pnw-gtr-587.
– volume: 586
  year: 2020
  ident: b0315
  article-title: Streamflow forecasting using extreme gradient boosting model coupled with Gaussian mixture model
  publication-title: J. Hydrol.
– volume: 10
  start-page: 199
  year: 2009
  end-page: 212
  ident: b0070
  article-title: Improving satellite-based rainfall accumulation estimates using spaceborne surface soil moisture retrievals
  publication-title: J. Hydrometeorol.
– volume: 9
  start-page: 695
  year: 2017
  ident: b0420
  article-title: Evaluating the drivers of seasonal streamflow in the U.S. Midwest
– reference: Jarosińska, E., & Pierzga, K. (2017). Estimating Flood Quantiles on the Basis of Multi-Event Rainfall Simulation. In T. Hromadka & P. Rao (Eds.),
– reference: . IntechOpen. https://doi.org/10.5772/intechopen.68648.
– year: 1995
  ident: b0150
  article-title: Random decision forests
  publication-title: Proceedings of 3rd International Conference on Document Analysis and Recognition
– volume: 12
  start-page: 361
  year: 2002
  end-page: 386
  ident: b0250
  article-title: REGRESSION TRESS WITH UNBIASED VARIABLE SELECTION AND INTERACTION DETECTION
  publication-title: Statistica Sinica
– reference: Viessman, W., & Lewis, G.L. (1996).
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0155
  article-title: Long short-term memory
  publication-title: Neural Comput.
– start-page: 179
  year: 2015
  end-page: 188
  ident: b0075
  article-title: Optimal Action Extraction for Random Forests and Boosted Trees
  publication-title: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 536
  start-page: 161
  year: 2016
  end-page: 173
  ident: b0190
  article-title: Potential application of wavelet neural network ensemble to forecast streamflow for flood management
  publication-title: J. Hydrol.
– reference: (22), 3237.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b0350
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Machine Learn. Res.
– volume: 376
  start-page: 24
  year: 2009
  end-page: 33
  ident: b0460
  article-title: A simple approach to distinguish land-use and climate-change effects on watershed hydrology
  publication-title: J. Hydrol.
– reference: Verry, E.S., & Kolka, R.K. (2003). Importance of wetlands to streamflow generation.
– volume: 74
  start-page: 44
  year: 2014
  ident: b0265
  article-title: Potential of soil moisture observations in flood modelling: Estimating initial conditions and correcting rainfall
  publication-title: Adv. Water Resour.
– volume: 34
  start-page: L15404
  year: 2007
  ident: b0495
  article-title: Modeling large-scale inundation of Amazonian seasonally flooded wetlands
  publication-title: Geophys. Res. Lett.
– volume: 32
  start-page: 3547
  year: 2018
  end-page: 3560
  ident: b0470
  article-title: Systematic variation in evapotranspiration trends and drivers across the Northeastern United States
  publication-title: Hydrol. Processes
– volume: 18
  start-page: 2735
  year: 2014
  end-page: 2772
  ident: b0130
  article-title: Understanding flood regime changes in Europe: a state-of-the-art assessment
  publication-title: .
– volume: 589
  year: 2020
  ident: b0290
  article-title: Application of extreme gradient boosting and parallel random forest algorithms for assessing groundwater spring potential using DEM-derived factors
  publication-title: J. Hydrol.
– volume: 46
  year: 2010
  ident: b0400
  article-title: Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale
– volume: 13
  start-page: 1641
  year: 2012
  end-page: 1665
  ident: b0115
  article-title: The hydrological modeling and analysis platform (HyMAP): evaluation in the amazon basin
  publication-title: J. Hydrometeorol.
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: b0430
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Machine Learn. Res.: JMLR
– volume: 6
  start-page: 377
  year: 2001
  end-page: 381
  ident: b0135
  article-title: Normalized antecedent precipitation index
  publication-title: J. Hydrol. Eng.
– volume: 13
  year: 2020
  ident: b0170
  article-title: Sensitivity of flood frequency analysis to data record, statistical model, and parameter estimation methods: an evaluation over the contiguous United States
  publication-title: J. Flood Risk Manag.
– year: 2000
  ident: b0355
  article-title: Significant floods in the United States during the 20th century - USGS measures a century of floods
  publication-title: US Geological Survey
– volume: 43
  start-page: 4382
  year: 2016
  end-page: 4390
  ident: b0040
  article-title: Dominant flood generating mechanisms across the United States
  publication-title: Geophys. Res. Lett.
– volume: 147
  start-page: 3861
  year: 2019
  end-page: 3877
  ident: b0100
  article-title: Climatology of flood-producing storms and their associated rainfall characteristics in the United States
  publication-title: Monthly Weather Rev.
– volume: 23
  start-page: 5089
  year: 2019
  end-page: 5110
  ident: b0225
  article-title: Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 107
  start-page: 1
  year: 2018
  end-page: 11
  ident: b0240
  article-title: Implementation of a vector-based river network routing scheme in the community WRF-Hydro modeling framework for flood discharge simulation
  publication-title: Environ. Model. Softw.
– year: 2001
  ident: b0055
  article-title: Introduction to Algorithms
– volume: 552
  start-page: 92
  year: 2017
  end-page: 104
  ident: b0515
  article-title: Comparison of random forests and support vector machine for real-time radar-derived rainfall forecasting
  publication-title: J. Hydrol.
– volume: 21
  start-page: 5293
  year: 2017
  end-page: 5313
  ident: b0005
  article-title: The CAMELS data set: catchment attributes and meteorology for large-sample studies
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 11
  start-page: 468
  year: 2007
  end-page: 482
  ident: b0455
  article-title: Hydrological catchment modelling: past, present and future
  publication-title: Hydrol. Earth Syst. Sci.
– reference: Thornton, P.E., Thornton, M.M., Mayer, B.W., Wilhelmi, N., Wei, Y., Devarakonda, R., & Cook, R. (2012).
– reference: Alig, R.J., Plantinga, A.J., Ahn, S., & Kline, J.D. (2003).
– year: 2012
  ident: b0410
  article-title: Changes in climate extremes and their impacts on the natural physical environment
  publication-title: Columbia University
– reference: . U.S. Department of Commerce, Weather
– volume: 69
  start-page: 219
  year: 2004
  end-page: 234
  ident: b0020
  article-title: Urbanization on the US landscape: looking ahead in the 21st century
  publication-title: Landsc. Urban Plan.
– volume: 67
  start-page: 89
  year: 2015
  end-page: 107
  ident: b0060
  article-title: Enhancing river model set-up for 2-D dynamic flood modelling
  publication-title: Environ. Model. Softw.
– reference: Kohler, M.A., & Linsley, R.K. (1951).
– volume: 38
  start-page: 1389
  year: 2012
  end-page: 1412
  ident: b0090
  article-title: Global off-line evaluation of the ISBA-TRIP flood model
  publication-title: Clim. Dyn.
– volume: 2375
  start-page: 67
  year: 1991
  end-page: 88
  ident: b0145
  article-title: Hydrology of floods and droughts, climate and floods
  publication-title: Water-Supply Paper-Geological Survey (US)
– volume: 548
  start-page: 524
  year: 2017
  end-page: 535
  ident: b0395
  article-title: Characterization of floods in the United States
  publication-title: J. Hydrol.
– reference: .
– volume: 6
  start-page: 3841
  year: 2014
  end-page: 3863
  ident: b0010
  article-title: Flood frequency analysis for the annual peak flows simulated by an event-based rainfall-runoff model in an urban drainage basin
  publication-title: WATER
– reference: Snoek, J., Larochelle, H., Adams, R.P. (2012). Practical Bayesian Optimization of Machine Learning Algorithms. Proceedings of the 25th International Conference on Neural Information Processing Systems, Vol. 2, 2951–2959.
– reference: Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, C.J. (1984). Classification and regressiontrees, wadsworth statistics.
– volume: 56
  year: 2020
  ident: b0380
  article-title: Beyond imperviousness: the role of antecedent wetness in runoff generation in urbanized catchments
  publication-title: Water Resour. Res.
– volume: 22
  start-page: 5024
  year: 2008
  end-page: 5036
  ident: bib523
  article-title: Identifying individual rain events from pluviograph records: A review with analysis of data from an Australian dryland site
  publication-title: Hydrolo. Proc.
– reference: Knight, S.K. (2010). From Flood Loss to FloodSmart: How FEMA’s Mitigation Tools Work to Reduce the Impact of Flood Disasters.
– reference: Kunkel, K.E., Stevens, L.E., Stevens, S.E., Sun, L., Janssen, E., Wuebbles, D., Kruk, M.C., Thomas, D., Shulski, M., Umphlett, N.A., Hubbard, K.G., Robbins, K., Romolo, L., Akyuz, A., Pathak, T.B., Bergantino, T.R., & Greg Dobson, J. (2013).
– volume: 5
  start-page: 250
  year: 2015
  end-page: 254
  ident: b0255
  article-title: The changing nature of flooding across the central United States
  publication-title: Nat. Clim. Change
– volume: 48
  year: 2012
  ident: b0340
  article-title: Why continuous simulation? The role of antecedent moisture in design flood estimation: THE ROLE OF ANTECEDENT MOISTURE IN DESIGN FLOOD ESTIMATION
  publication-title: Water Resour. Res.
– volume: 590
  year: 2020
  ident: b0405
  article-title: Evaluating the performance of random forest for large-scale flood discharge simulation
  publication-title: J. Hydrol.
– volume: 23
  start-page: 3631
  year: 2019
  end-page: 3652
  ident: b0445
  article-title: Climate change, reforestation/afforestation, and urbanization impacts on evapotranspiration and streamflow in Europe
  publication-title: Hydrol. Earth Syst. Sci.
– reference: Dahl, T.E. (2014).
– volume: 24
  start-page: 3884
  year: 2020
  end-page: 3896
  ident: b0200
  article-title: Flood hazard rating prediction for urban areas using random forest and LSTM
  publication-title: KSCE J. Civ. Eng.
– volume: 13
  year: 2018
  ident: b0500
  article-title: Estimates of present and future flood risk in the conterminous United States
  publication-title: Environ. Res. Lett.: ERL [Web Site]
– volume: 16
  start-page: 1379
  year: 2012
  end-page: 1387
  ident: b0260
  article-title: HESS Opinions “More efforts and scientific rigour are needed to attribute trends in flood time series”
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 15
  start-page: 989
  year: 2011
  end-page: 997
  ident: b0345
  article-title: Hydrologic similarity among catchments under variable flow conditions
  publication-title: Hydrol. Earth Syst. Sci.
– reference: Ncei, N. (2020).
– volume: 7
  start-page: 48
  year: 2017
  end-page: 52
  ident: b0360
  article-title: The future intensification of hourly precipitation extremes
  publication-title: Nat. Clim. Change
– reference: . HarperCollins.
– reference: National Research Council, Division on Earth and Life Studies, Water Science and Technology Board, & Committee on the Scientific Bases of Colorado River Basin Water Management. (2007).
– reference: .
– volume: 18
  start-page: 839
  year: 2014
  end-page: 853
  ident: b0270
  article-title: Using globally available soil moisture indicators for flood modelling in Mediterranean catchments
  publication-title: Hydrol. Earth Syst. Sci.
– reference: . Prentice Hall.
– volume: 14
  start-page: 1931
  year: 2010
  end-page: 1941
  ident: b0105
  article-title: Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 1: concepts and methodology
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 58
  start-page: 1198
  year: 2013
  end-page: 1255
  ident: b0165
  article-title: A decade of predictions in Ungauged Basins (PUB)—a review
  publication-title: Hydrol. Sci. J.
– volume: 22
  start-page: 5817
  year: 2018
  end-page: 5846
  ident: b0030
  article-title: The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset
  publication-title: Hydrol. Earth Syst. Sci.
– reference: Sucik, M.T., Marks, E. (2015). The status and recent trends of wetlands in the United States.
– volume: 221
  start-page: 286
  year: 2014
  end-page: 297
  ident: b0325
  article-title: Impact of uncertainty in rainfall estimation on the identification of rainfall thresholds for debris flow occurrence
  publication-title: Geomorphology
– reference: (D3).
– ident: 10.1016/j.jhydrol.2022.127736_b0295
– volume: 12
  start-page: 2459
  issue: 4
  year: 2020
  ident: 10.1016/j.jhydrol.2022.127736_b0065
  article-title: CAMELS-GB: hydrometeorological time series and landscape attributes for 671 catchments in Great Britain
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-12-2459-2020
– volume: 85
  start-page: 1557
  issue: 3
  year: 2017
  ident: 10.1016/j.jhydrol.2022.127736_b0235
  article-title: What do people think about the flood risk? An experience with the residents of Talcahuano city, Chile
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-016-2644-y
– year: 2014
  ident: 10.1016/j.jhydrol.2022.127736_b0375
– volume: 14
  start-page: 1931
  issue: 10
  year: 2010
  ident: 10.1016/j.jhydrol.2022.127736_b0105
  article-title: Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 1: concepts and methodology
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-14-1931-2010
– volume: 38
  start-page: 1389
  issue: 7-8
  year: 2012
  ident: 10.1016/j.jhydrol.2022.127736_b0090
  article-title: Global off-line evaluation of the ISBA-TRIP flood model
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-011-1054-9
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.jhydrol.2022.127736_b0045
  article-title: Random forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 536
  start-page: 161
  year: 2016
  ident: 10.1016/j.jhydrol.2022.127736_b0190
  article-title: Potential application of wavelet neural network ensemble to forecast streamflow for flood management
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.02.044
– volume: 9
  start-page: 695
  issue: 9
  year: 2017
  ident: 10.1016/j.jhydrol.2022.127736_b0420
  article-title: Evaluating the drivers of seasonal streamflow in the U.S. Midwest
  publication-title: WATER
  doi: 10.3390/w9090695
– ident: 10.1016/j.jhydrol.2022.127736_b0475
– ident: 10.1016/j.jhydrol.2022.127736_b0080
– volume: 13
  issue: 1
  year: 2020
  ident: 10.1016/j.jhydrol.2022.127736_b0170
  article-title: Sensitivity of flood frequency analysis to data record, statistical model, and parameter estimation methods: an evaluation over the contiguous United States
  publication-title: J. Flood Risk Manag.
  doi: 10.1111/jfr3.12580
– volume: 16
  start-page: 1379
  issue: 5
  year: 2012
  ident: 10.1016/j.jhydrol.2022.127736_b0260
  article-title: HESS Opinions “More efforts and scientific rigour are needed to attribute trends in flood time series”
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-16-1379-2012
– ident: 10.1016/j.jhydrol.2022.127736_bib522
  doi: 10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2
– volume: 56
  issue: 11
  year: 2020
  ident: 10.1016/j.jhydrol.2022.127736_b0380
  article-title: Beyond imperviousness: the role of antecedent wetness in runoff generation in urbanized catchments
  publication-title: Water Resour. Res.
  doi: 10.1029/2020WR028060
– volume: 69
  start-page: 219
  issue: 2
  year: 2004
  ident: 10.1016/j.jhydrol.2022.127736_b0020
  article-title: Urbanization on the US landscape: looking ahead in the 21st century
  publication-title: Landsc. Urban Plan.
  doi: 10.1016/j.landurbplan.2003.07.004
– volume: 6
  start-page: 377
  issue: 5
  year: 2001
  ident: 10.1016/j.jhydrol.2022.127736_b0135
  article-title: Normalized antecedent precipitation index
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)1084-0699(2001)6:5(377)
– start-page: 179
  year: 2015
  ident: 10.1016/j.jhydrol.2022.127736_b0075
  article-title: Optimal Action Extraction for Random Forests and Boosted Trees
– volume: 548
  start-page: 524
  year: 2017
  ident: 10.1016/j.jhydrol.2022.127736_b0395
  article-title: Characterization of floods in the United States
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.03.010
– volume: 23
  start-page: 5089
  issue: 12
  year: 2019
  ident: 10.1016/j.jhydrol.2022.127736_b0225
  article-title: Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-23-5089-2019
– volume: 586
  year: 2020
  ident: 10.1016/j.jhydrol.2022.127736_b0315
  article-title: Streamflow forecasting using extreme gradient boosting model coupled with Gaussian mixture model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124901
– volume: 18
  start-page: 2735
  issue: 7
  year: 2014
  ident: 10.1016/j.jhydrol.2022.127736_b0130
  article-title: Understanding flood regime changes in Europe: a state-of-the-art assessment
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-18-2735-2014
– volume: 10
  start-page: 1536
  issue: 11
  year: 2018
  ident: 10.1016/j.jhydrol.2022.127736_b0285
  article-title: Flood prediction using machine learning models: literature review
  publication-title: WATER
  doi: 10.3390/w10111536
– volume: 22
  start-page: 5024
  issue: 26
  year: 2008
  ident: 10.1016/j.jhydrol.2022.127736_bib523
  article-title: Identifying individual rain events from pluviograph records: A review with analysis of data from an Australian dryland site
  publication-title: Hydrolo. Proc.
  doi: 10.1002/hyp.7122
– year: 2001
  ident: 10.1016/j.jhydrol.2022.127736_b0055
– volume: 402
  start-page: 165
  issue: 3
  year: 2011
  ident: 10.1016/j.jhydrol.2022.127736_b0320
  article-title: Sensitivity of a mountain basin flash flood to initial wetness condition and rainfall variability
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.12.020
– volume: 7
  start-page: 48
  issue: 1
  year: 2017
  ident: 10.1016/j.jhydrol.2022.127736_b0360
  article-title: The future intensification of hourly precipitation extremes
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate3168
– volume: 67
  start-page: 89
  year: 2015
  ident: 10.1016/j.jhydrol.2022.127736_b0060
  article-title: Enhancing river model set-up for 2-D dynamic flood modelling
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2015.01.009
– volume: 147
  start-page: 3861
  issue: 11
  year: 2019
  ident: 10.1016/j.jhydrol.2022.127736_b0100
  article-title: Climatology of flood-producing storms and their associated rainfall characteristics in the United States
  publication-title: Monthly Weather Rev.
  doi: 10.1175/MWR-D-19-0020.1
– volume: 143
  start-page: 100
  year: 2016
  ident: 10.1016/j.jhydrol.2022.127736_b0300
  article-title: Regional hydrologic response to climate change in the conterminous United States using high-resolution hydroclimate simulations
  publication-title: Glob. Planet. Change
  doi: 10.1016/j.gloplacha.2016.06.003
– volume: 24
  start-page: 3884
  issue: 12
  year: 2020
  ident: 10.1016/j.jhydrol.2022.127736_b0200
  article-title: Flood hazard rating prediction for urban areas using random forest and LSTM
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-020-0951-z
– volume: 18
  start-page: 958
  issue: 8
  year: 2013
  ident: 10.1016/j.jhydrol.2022.127736_b0370
  article-title: Streamflow prediction in ungauged basins: review of regionalization methods
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0000690
– ident: 10.1016/j.jhydrol.2022.127736_b0435
– ident: 10.1016/j.jhydrol.2022.127736_b0305
– volume: 590
  year: 2020
  ident: 10.1016/j.jhydrol.2022.127736_b0405
  article-title: Evaluating the performance of random forest for large-scale flood discharge simulation
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125531
– volume: 615
  start-page: 1133
  year: 2018
  ident: 10.1016/j.jhydrol.2022.127736_b0520
  article-title: Mapping flood susceptibility in mountainous areas on a national scale in China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.10.037
– volume: 29
  start-page: 1189
  issue: 5
  year: 2001
  ident: 10.1016/j.jhydrol.2022.127736_b0110
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– volume: 56
  issue: 1
  year: 2020
  ident: 10.1016/j.jhydrol.2022.127736_b0505
  article-title: A rainfall-runoff model with LSTM-based sequence-to-sequence learning
  publication-title: Water Resour. Res.
  doi: 10.1029/2019WR025326
– volume: 7
  issue: 1
  year: 2017
  ident: 10.1016/j.jhydrol.2022.127736_b0485
  article-title: Global assessment of flood and storm extremes with increased temperatures
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-08481-1
– volume: 12
  start-page: 1426
  issue: 5
  year: 2020
  ident: 10.1016/j.jhydrol.2022.127736_b0125
  article-title: Simulation of the potential impacts of projected climate change on streamflow in the Vakhsh River basin in Central Asia under CMIP5 RCP scenarios
  publication-title: WATER
  doi: 10.3390/w12051426
– volume: 11
  start-page: 468
  issue: 1
  year: 2007
  ident: 10.1016/j.jhydrol.2022.127736_b0455
  article-title: Hydrological catchment modelling: past, present and future
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-11-468-2007
– volume: 32
  start-page: 3547
  issue: 23
  year: 2018
  ident: 10.1016/j.jhydrol.2022.127736_b0470
  article-title: Systematic variation in evapotranspiration trends and drivers across the Northeastern United States
  publication-title: Hydrol. Processes
  doi: 10.1002/hyp.13278
– volume: 26
  start-page: 3904
  issue: 11
  year: 2013
  ident: 10.1016/j.jhydrol.2022.127736_b0490
  article-title: Global increasing trends in annual maximum daily precipitation
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-12-00502.1
– volume: 55
  start-page: 266
  issue: 2
  year: 2010
  ident: 10.1016/j.jhydrol.2022.127736_b0015
  article-title: Rainfall–runoff simulation using a normalized antecedent precipitation index
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626660903546175
– ident: 10.1016/j.jhydrol.2022.127736_b0415
– volume: 22
  start-page: 6005
  issue: 11
  year: 2018
  ident: 10.1016/j.jhydrol.2022.127736_b0220
  article-title: Rainfall–runoff modelling using Long Short-Term Memory (LSTM) networks
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-6005-2018
– volume: 22
  start-page: 5817
  issue: 11
  year: 2018
  ident: 10.1016/j.jhydrol.2022.127736_b0030
  article-title: The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-5817-2018
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 10.1016/j.jhydrol.2022.127736_b0430
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Machine Learn. Res.: JMLR
– ident: 10.1016/j.jhydrol.2022.127736_b0480
– ident: 10.1016/j.jhydrol.2022.127736_b0025
  doi: 10.2737/PNW-GTR-587
– volume: 34
  start-page: L15404
  year: 2007
  ident: 10.1016/j.jhydrol.2022.127736_b0495
  article-title: Modeling large-scale inundation of Amazonian seasonally flooded wetlands
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2007GL030156
– volume: 40
  issue: 11
  year: 2004
  ident: 10.1016/j.jhydrol.2022.127736_b0180
  article-title: Catchment hydrologic response with a fully distributed triangulated irregular network model
  publication-title: Water Resour. Res.
  doi: 10.1029/2004WR003218
– ident: 10.1016/j.jhydrol.2022.127736_b0050
– ident: 10.1016/j.jhydrol.2022.127736_b0035
– volume: 58
  start-page: 1198
  issue: 6
  year: 2013
  ident: 10.1016/j.jhydrol.2022.127736_b0165
  article-title: A decade of predictions in Ungauged Basins (PUB)—a review
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667.2013.803183
– volume: 43
  start-page: 4382
  issue: 9
  year: 2016
  ident: 10.1016/j.jhydrol.2022.127736_b0040
  article-title: Dominant flood generating mechanisms across the United States
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL068070
– ident: 10.1016/j.jhydrol.2022.127736_b0230
– volume: 19
  start-page: 209
  issue: 1
  year: 2015
  ident: 10.1016/j.jhydrol.2022.127736_b0310
  article-title: Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: data set characteristics and assessment of regional variability in hydrologic model performance
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-19-209-2015
– volume: 30
  start-page: 3146
  year: 2017
  ident: 10.1016/j.jhydrol.2022.127736_b0195
  article-title: Lightgbm: a highly efficient gradient boosting decision tree
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.jhydrol.2022.127736_b0215
– volume: 6
  start-page: 3841
  issue: 12
  year: 2014
  ident: 10.1016/j.jhydrol.2022.127736_b0010
  article-title: Flood frequency analysis for the annual peak flows simulated by an event-based rainfall-runoff model in an urban drainage basin
  publication-title: WATER
  doi: 10.3390/w6123841
– volume: 48
  start-page: W09508
  year: 2012
  ident: 10.1016/j.jhydrol.2022.127736_b0510
  article-title: Analysis of the water level dynamics simulated by a global river model: a case study in the Amazon River
  publication-title: Water Resour. Res.
  doi: 10.1029/2012WR011869
– volume: 31
  issue: 17
  year: 2004
  ident: 10.1016/j.jhydrol.2022.127736_b0335
  article-title: Altered hydrologic feedback in a warming climate introduces a “warming hole”
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2004GL020528
– volume: 221
  start-page: 286
  year: 2014
  ident: 10.1016/j.jhydrol.2022.127736_b0325
  article-title: Impact of uncertainty in rainfall estimation on the identification of rainfall thresholds for debris flow occurrence
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2014.06.015
– volume: 26
  start-page: 489
  issue: 6
  year: 2005
  ident: 10.1016/j.jhydrol.2022.127736_b0245
  article-title: Seasonal and regional characteristics of U.S. Streamflow trends in the United States from 1940 to 1999
  publication-title: Phys. Geogr.
  doi: 10.2747/0272-3646.26.6.489
– volume: 415
  start-page: 514
  issue: 6871
  year: 2002
  ident: 10.1016/j.jhydrol.2022.127736_b0275
  article-title: Increasing risk of great floods in a changing climate
  publication-title: Nature
  doi: 10.1038/415514a
– volume: 552
  start-page: 92
  year: 2017
  ident: 10.1016/j.jhydrol.2022.127736_b0515
  article-title: Comparison of random forests and support vector machine for real-time radar-derived rainfall forecasting
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.06.020
– year: 2000
  ident: 10.1016/j.jhydrol.2022.127736_b0355
  article-title: Significant floods in the United States during the 20th century - USGS measures a century of floods
  publication-title: US Geological Survey
– volume: 48
  issue: 6
  year: 2012
  ident: 10.1016/j.jhydrol.2022.127736_b0340
  article-title: Why continuous simulation? The role of antecedent moisture in design flood estimation: THE ROLE OF ANTECEDENT MOISTURE IN DESIGN FLOOD ESTIMATION
  publication-title: Water Resour. Res.
  doi: 10.1029/2011WR010997
– volume: 15
  start-page: 989
  issue: 3
  year: 2011
  ident: 10.1016/j.jhydrol.2022.127736_b0345
  article-title: Hydrologic similarity among catchments under variable flow conditions
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-15-989-2011
– volume: 16
  start-page: 4375
  issue: 11
  year: 2012
  ident: 10.1016/j.jhydrol.2022.127736_b0465
  article-title: Estimation of antecedent wetness conditions for flood modelling in northern Morocco
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-16-4375-2012
– volume: 18
  start-page: 839
  issue: 2
  year: 2014
  ident: 10.1016/j.jhydrol.2022.127736_b0270
  article-title: Using globally available soil moisture indicators for flood modelling in Mediterranean catchments
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-18-839-2014
– volume: 13
  issue: 3
  year: 2018
  ident: 10.1016/j.jhydrol.2022.127736_b0500
  article-title: Estimates of present and future flood risk in the conterminous United States
  publication-title: Environ. Res. Lett.: ERL [Web Site]
  doi: 10.1088/1748-9326/aaac65
– volume: 5
  start-page: 250
  issue: 3
  year: 2015
  ident: 10.1016/j.jhydrol.2022.127736_b0255
  article-title: The changing nature of flooding across the central United States
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2516
– year: 2012
  ident: 10.1016/j.jhydrol.2022.127736_b0410
  article-title: Changes in climate extremes and their impacts on the natural physical environment
  publication-title: Columbia University
– volume: 589
  year: 2020
  ident: 10.1016/j.jhydrol.2022.127736_b0290
  article-title: Application of extreme gradient boosting and parallel random forest algorithms for assessing groundwater spring potential using DEM-derived factors
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125197
– volume: 4
  start-page: 3048
  issue: 6
  year: 2015
  ident: 10.1016/j.jhydrol.2022.127736_b0440
  article-title: Applications of data mining in weather forecasting using frequent pattern growth algorithm
  publication-title: Int. J. Sci. Res.
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.jhydrol.2022.127736_b0350
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Machine Learn. Res.
– volume: 376
  start-page: 24
  issue: 1
  year: 2009
  ident: 10.1016/j.jhydrol.2022.127736_b0460
  article-title: A simple approach to distinguish land-use and climate-change effects on watershed hydrology
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.07.029
– volume: 12
  start-page: 361
  issue: 2
  year: 2002
  ident: 10.1016/j.jhydrol.2022.127736_b0250
  article-title: REGRESSION TRESS WITH UNBIASED VARIABLE SELECTION AND INTERACTION DETECTION
  publication-title: Statistica Sinica
– volume: 21
  start-page: 5293
  issue: 10
  year: 2017
  ident: 10.1016/j.jhydrol.2022.127736_b0005
  article-title: The CAMELS data set: catchment attributes and meteorology for large-sample studies
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-21-5293-2017
– volume: 74
  start-page: 44
  year: 2014
  ident: 10.1016/j.jhydrol.2022.127736_b0265
  article-title: Potential of soil moisture observations in flood modelling: Estimating initial conditions and correcting rainfall
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2014.08.004
– volume: 71
  start-page: 403
  issue: 1
  year: 2014
  ident: 10.1016/j.jhydrol.2022.127736_b0385
  article-title: Flood frequency analysis based on simulated peak discharges
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-013-0925-2
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.jhydrol.2022.127736_b0155
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 13
  start-page: 1641
  issue: 6
  year: 2012
  ident: 10.1016/j.jhydrol.2022.127736_b0115
  article-title: The hydrological modeling and analysis platform (HyMAP): evaluation in the amazon basin
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-12-021.1
– volume: 10
  start-page: 199
  issue: 1
  year: 2009
  ident: 10.1016/j.jhydrol.2022.127736_b0070
  article-title: Improving satellite-based rainfall accumulation estimates using spaceborne surface soil moisture retrievals
  publication-title: J. Hydrometeorol.
  doi: 10.1175/2008JHM986.1
– year: 1995
  ident: 10.1016/j.jhydrol.2022.127736_b0150
  article-title: Random decision forests
– volume: 6
  start-page: 65
  issue: 2
  year: 1979
  ident: 10.1016/j.jhydrol.2022.127736_b0160
  article-title: A simple sequentially rejective multiple test procedure
  publication-title: Scand. J. Stat. Theory Appl.
– ident: 10.1016/j.jhydrol.2022.127736_b0185
  doi: 10.5772/intechopen.68648
– volume: 23
  start-page: 3631
  issue: 9
  year: 2019
  ident: 10.1016/j.jhydrol.2022.127736_b0445
  article-title: Climate change, reforestation/afforestation, and urbanization impacts on evapotranspiration and streamflow in Europe
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-23-3631-2019
– ident: 10.1016/j.jhydrol.2022.127736_b0450
– volume: 14
  start-page: 51
  issue: 1
  year: 2021
  ident: 10.1016/j.jhydrol.2022.127736_b0280
  article-title: Flood susceptibility assessment using extreme gradient boosting (EGB), Iran
  publication-title: Earth Sci. Inf.
  doi: 10.1007/s12145-020-00530-0
– ident: 10.1016/j.jhydrol.2022.127736_bib525
– volume: 107
  start-page: 1
  year: 2018
  ident: 10.1016/j.jhydrol.2022.127736_b0240
  article-title: Implementation of a vector-based river network routing scheme in the community WRF-Hydro modeling framework for flood discharge simulation
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2018.05.018
– ident: 10.1016/j.jhydrol.2022.127736_b0425
– ident: 10.1016/j.jhydrol.2022.127736_b0365
– ident: 10.1016/j.jhydrol.2022.127736_b0210
– volume: 2375
  start-page: 67
  year: 1991
  ident: 10.1016/j.jhydrol.2022.127736_b0145
  article-title: Hydrology of floods and droughts, climate and floods
  publication-title: Water-Supply Paper-Geological Survey (US)
– volume: 46
  issue: 5
  year: 2010
  ident: 10.1016/j.jhydrol.2022.127736_b0400
  article-title: Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale
  publication-title: Water Resour. Res.
  doi: 10.1029/2008WR007327
– ident: 10.1016/j.jhydrol.2022.127736_bib521
  doi: 10.1029/2011JD016048
– volume: 133
  start-page: 681
  issue: 4
  year: 2015
  ident: 10.1016/j.jhydrol.2022.127736_b0175
  article-title: Examining why trends in very heavy precipitation should not be mistaken for trends in very high river discharge
  publication-title: Climat. Change
  doi: 10.1007/s10584-015-1476-1
SSID ssj0000334
Score 2.5257518
Snippet •Regional, machine learning models solely for flood peak prediction.•LSTM based storm classifier for flood warning.•Importance of flood predictors depends on...
Flood prediction across scales and more specifically in ungauged areas remains a great challenge that limits the efficiency of flood risk mitigation strategies...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 127736
SubjectTerms decision support systems
disaster preparedness
Flood peak
Flood warning
Machine learning
neural networks
Prediction
prototypes
risk reduction
storms
stream flow
Ungauged basins
watersheds
Title Advancing flood warning procedures in ungauged basins with machine learning
URI https://dx.doi.org/10.1016/j.jhydrol.2022.127736
https://www.proquest.com/docview/2648880918
Volume 609
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jHvQi_sT5iwhetzVp1jZHGY6puJOD3UKbl2qHdkM3xIt_u3lp6lCEgceWvlK-Jt9LXr73HiGXmuciCEG3tUwEhm4CO-csGaZgEm1yk2uXC3M_ioZjcTvpTRqkX-fCoKzSc3_F6Y6t_Z2uR7M7LwrM8eWcRVJw1Fcxl2YlRIyjvPO5knkEYSjqiuH49CqLpzvtTJ8-4HWGJxCcdxiPY1ep-U__9IupnfsZ7JBtv26kV9Wn7ZKGKffIpm9h_vSxT-5cf2RtPRHNUYxO36uYB3UuCpZ2W02Lki6xA_ajAWrdV1G-UYzD0henqDTUt5B4PCDjwfVDf9j2nRLaOhR80U7yKMp4z0SQ8kz2AgGag-U5yQ3DsK8G66HSTIieZlyD0cBkEgI3gYE8zbLwkDTLWWmOCOUQZ3bVHUkGuWASMst_oHGnoy1I0rSIqPFR2pcRx24Wz6rWi02Vh1UhrKqCtUU632bzqo7GOoOkBl_9GBDKcv0604v6Zyk7WfAEJC3NbPmmUM5nCUuy5Pj_rz8hW3hV6cVOSXPxujRndmWyyM7d0DsnG1c3d8PRF0z-5OI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEBUhOaSX0pWmqwq9ZpEsO9axhJakWU4p9CZsjZyF1glZKP37amy5paUQ6NVmhHmW3kijNzOE3GmeiJYHuq5lKDB007JrzpJhBCbUJjGJznJhhqOg-yyeXvyXEukUuTAoq3Tcn3N6xtbuSdOh2VzOZpjjyzkLpOCor2KYZlXB6lR-mVTue_3u6JuQPU8URcPR4DuRpzlvzKcfsFrgJQTnDcbb7axY858u6hdZZx7o8YDsu60jvc-_7pCUTHpEqq6L-fTjmPSzFsnaOiOaoB6dvudhD5p5KdjakzWdpXSLTbAnBqj1YLN0TTEUS98yUaWhrovE5IQ8Pz6MO926a5ZQ157gm3qYBEHMfRNAxGPptwRoDpbqJDcMI78arJOKYiF8zbgGo4HJ0ANuWgaSKI69U1JOF6k5I5RDO7Yb70AySASTEFsKBI2HHW1BkqZGRIGP0q6SODa0eFWFZGyuHKwKYVU5rDXS-DJb5qU0dhmEBfjqx5xQlu53md4WP0vZ9YKXIFFqFtu1QkWf5SzJwvP_D39Dqt3xcKAGvVH_guzhm1w-dknKm9XWXNmNyia-dhPxEyif55M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancing+flood+warning+procedures+in+ungauged+basins+with+machine+learning&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Rasheed%2C+Zimeena&rft.au=Aravamudan%2C+Akshay&rft.au=Gorji+Sefidmazgi%2C+Ali&rft.au=Anagnostopoulos%2C+Georgios+C&rft.date=2022-06-01&rft.issn=0022-1694&rft.volume=609+p.127736-&rft_id=info:doi/10.1016%2Fj.jhydrol.2022.127736&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon