Advancing flood warning procedures in ungauged basins with machine learning
•Regional, machine learning models solely for flood peak prediction.•LSTM based storm classifier for flood warning.•Importance of flood predictors depends on flood severity.•Flood warning framework for early detection and prediction in ungauged basins. Flood prediction across scales and more specifi...
Saved in:
Published in | Journal of hydrology (Amsterdam) Vol. 609; p. 127736 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Regional, machine learning models solely for flood peak prediction.•LSTM based storm classifier for flood warning.•Importance of flood predictors depends on flood severity.•Flood warning framework for early detection and prediction in ungauged basins.
Flood prediction across scales and more specifically in ungauged areas remains a great challenge that limits the efficiency of flood risk mitigation strategies and disaster preparedness. Building upon the recent success of Machine Learning (ML) models on streamflow prediction, this work presents a prototype ML-based framework for flood warning and flood peak prediction. The fundamental elements of the proposed system consist of a) a Long-Short Term Memory (LSTM) model for classifying storm events to Flood/no-Flood given a threshold based on the 90th flow percentile and b) the flood peak prediction models. The selected ML-models for flood peak prediction are the Histogram based Gradient Boosting Regressor and the Random Forest. One of the strengths, and reason for selection, of these decision-tree models is their degree of interpretability. This is exploited in the study to help us spatially disentangle the role of both the static and dynamic drivers of flood peak response. Our analysis is presented for 18 distinct hydroclimatic regions across the contiguous US. Results reveal a significant regional dependence on both predictive performance and dominant flood predictors, which emphasize the variability in the complexity of a catchment’s hydrologic behavior as well as its impact on forecasting flood response. Evaluation of the drivers of flood peaks noted distinct dependencies among the dynamic and static predictors considered in our models for flood peaks of different severity. Specifically, low-moderate flood events showed a clear preponderance for the static catchment attributes over dynamic predictors like precipitation whereas precipitation was the dominant driver for the highest flood peaks. The proposed flood peak prediction models were compared against a state-of-the-art LSTM model and were shown to outperform in ungauged basins for the majority of basins. Overall, the proposed system classified storms correctly for >80% in all cases and exhibited a percent relative difference in flood peak estimates of <30% in most cases. |
---|---|
AbstractList | •Regional, machine learning models solely for flood peak prediction.•LSTM based storm classifier for flood warning.•Importance of flood predictors depends on flood severity.•Flood warning framework for early detection and prediction in ungauged basins.
Flood prediction across scales and more specifically in ungauged areas remains a great challenge that limits the efficiency of flood risk mitigation strategies and disaster preparedness. Building upon the recent success of Machine Learning (ML) models on streamflow prediction, this work presents a prototype ML-based framework for flood warning and flood peak prediction. The fundamental elements of the proposed system consist of a) a Long-Short Term Memory (LSTM) model for classifying storm events to Flood/no-Flood given a threshold based on the 90th flow percentile and b) the flood peak prediction models. The selected ML-models for flood peak prediction are the Histogram based Gradient Boosting Regressor and the Random Forest. One of the strengths, and reason for selection, of these decision-tree models is their degree of interpretability. This is exploited in the study to help us spatially disentangle the role of both the static and dynamic drivers of flood peak response. Our analysis is presented for 18 distinct hydroclimatic regions across the contiguous US. Results reveal a significant regional dependence on both predictive performance and dominant flood predictors, which emphasize the variability in the complexity of a catchment’s hydrologic behavior as well as its impact on forecasting flood response. Evaluation of the drivers of flood peaks noted distinct dependencies among the dynamic and static predictors considered in our models for flood peaks of different severity. Specifically, low-moderate flood events showed a clear preponderance for the static catchment attributes over dynamic predictors like precipitation whereas precipitation was the dominant driver for the highest flood peaks. The proposed flood peak prediction models were compared against a state-of-the-art LSTM model and were shown to outperform in ungauged basins for the majority of basins. Overall, the proposed system classified storms correctly for >80% in all cases and exhibited a percent relative difference in flood peak estimates of <30% in most cases. Flood prediction across scales and more specifically in ungauged areas remains a great challenge that limits the efficiency of flood risk mitigation strategies and disaster preparedness. Building upon the recent success of Machine Learning (ML) models on streamflow prediction, this work presents a prototype ML-based framework for flood warning and flood peak prediction. The fundamental elements of the proposed system consist of a) a Long-Short Term Memory (LSTM) model for classifying storm events to Flood/no-Flood given a threshold based on the 90th flow percentile and b) the flood peak prediction models. The selected ML-models for flood peak prediction are the Histogram based Gradient Boosting Regressor and the Random Forest. One of the strengths, and reason for selection, of these decision-tree models is their degree of interpretability. This is exploited in the study to help us spatially disentangle the role of both the static and dynamic drivers of flood peak response. Our analysis is presented for 18 distinct hydroclimatic regions across the contiguous US. Results reveal a significant regional dependence on both predictive performance and dominant flood predictors, which emphasize the variability in the complexity of a catchment’s hydrologic behavior as well as its impact on forecasting flood response. Evaluation of the drivers of flood peaks noted distinct dependencies among the dynamic and static predictors considered in our models for flood peaks of different severity. Specifically, low-moderate flood events showed a clear preponderance for the static catchment attributes over dynamic predictors like precipitation whereas precipitation was the dominant driver for the highest flood peaks. The proposed flood peak prediction models were compared against a state-of-the-art LSTM model and were shown to outperform in ungauged basins for the majority of basins. Overall, the proposed system classified storms correctly for >80% in all cases and exhibited a percent relative difference in flood peak estimates of <30% in most cases. |
ArticleNumber | 127736 |
Author | Nikolopoulos, Efthymios I. Rasheed, Zimeena Aravamudan, Akshay Gorji Sefidmazgi, Ali Anagnostopoulos, Georgios C. |
Author_xml | – sequence: 1 givenname: Zimeena surname: Rasheed fullname: Rasheed, Zimeena organization: Mechanical and Civil Engineering Department, Florida Institute of Technology, Melbourne, FL, USA – sequence: 2 givenname: Akshay surname: Aravamudan fullname: Aravamudan, Akshay organization: Computer Engineering and Sciences Department, Florida Institute of Technology, Melbourne, FL, USA – sequence: 3 givenname: Ali surname: Gorji Sefidmazgi fullname: Gorji Sefidmazgi, Ali organization: Computer Engineering Department, University of Guilan, Rasht, Guilan, Iran – sequence: 4 givenname: Georgios C. surname: Anagnostopoulos fullname: Anagnostopoulos, Georgios C. organization: Computer Engineering and Sciences Department, Florida Institute of Technology, Melbourne, FL, USA – sequence: 5 givenname: Efthymios I. surname: Nikolopoulos fullname: Nikolopoulos, Efthymios I. email: enikolopoulos@fit.edu organization: Mechanical and Civil Engineering Department, Florida Institute of Technology, Melbourne, FL, USA |
BookMark | eNqFkD1rwzAQhkVJoUnan1Dw2MWuJNuyTIcSQr9ooEs7C1k6JzKOlEp2Qv59HZypS245jnuf43hmaGKdBYTuCU4IJuyxSZrNUXvXJhRTmhBaFCm7QlPCizKmBS4maIqHTUxYmd2gWQgNHipNsyn6XOi9tMrYdVS3zunoIL09TTvvFOjeQ4iMjXq7lv0adFTJYGyIDqbbRFupNsZC1MLI3KLrWrYB7s59jn5eX76X7_Hq6-1juVjFKs1oF_OasYrmwLSkVZnjTCuqecFKCiSnKVaaEiqrLMsVoUqD0qTkqaaAQdeyqtI5ehjvDj_-9hA6sTVBQdtKC64PgrKMc45LwodoPkaVdyF4qMXOm630R0GwOMkTjTjLEyd5YpQ3cE__OGU62RlnOy9Ne5F-HmkYLOwNeBGUATv4NB5UJ7QzFy78AXDxkes |
CitedBy_id | crossref_primary_10_1016_j_jhydrol_2024_131638 crossref_primary_10_1016_j_scs_2024_105508 crossref_primary_10_1017_eds_2024_14 crossref_primary_10_1111_ejss_70009 crossref_primary_10_1016_j_envsoft_2024_106130 crossref_primary_10_3390_su15043804 crossref_primary_10_2166_hydro_2024_024 crossref_primary_10_1016_j_advwatres_2024_104694 crossref_primary_10_2208_jscejj_24_16077 crossref_primary_10_1371_journal_pone_0313535 crossref_primary_10_2166_nh_2024_004 crossref_primary_10_3390_hydrology12030059 crossref_primary_10_1016_j_ijdrr_2025_105290 crossref_primary_10_1016_j_jhydrol_2023_130279 crossref_primary_10_1016_j_watres_2023_120791 crossref_primary_10_1016_j_jhydrol_2023_129684 crossref_primary_10_1016_j_jhydrol_2024_130817 crossref_primary_10_1016_j_jhydrol_2023_130012 crossref_primary_10_1007_s12665_024_11435_2 crossref_primary_10_1016_j_pce_2024_103840 crossref_primary_10_3390_w16131904 crossref_primary_10_3390_f14061131 crossref_primary_10_1016_j_compeleceng_2024_109644 crossref_primary_10_1111_jfr3_12891 crossref_primary_10_3390_w15142581 crossref_primary_10_1016_j_advwatres_2024_104781 crossref_primary_10_1016_j_compchemeng_2024_108747 |
Cites_doi | 10.5194/essd-12-2459-2020 10.1007/s11069-016-2644-y 10.5194/hess-14-1931-2010 10.1007/s00382-011-1054-9 10.1023/A:1010933404324 10.1016/j.jhydrol.2016.02.044 10.3390/w9090695 10.1111/jfr3.12580 10.5194/hess-16-1379-2012 10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2 10.1029/2020WR028060 10.1016/j.landurbplan.2003.07.004 10.1061/(ASCE)1084-0699(2001)6:5(377) 10.1016/j.jhydrol.2017.03.010 10.5194/hess-23-5089-2019 10.1016/j.jhydrol.2020.124901 10.5194/hess-18-2735-2014 10.3390/w10111536 10.1002/hyp.7122 10.1016/j.jhydrol.2010.12.020 10.1038/nclimate3168 10.1016/j.envsoft.2015.01.009 10.1175/MWR-D-19-0020.1 10.1016/j.gloplacha.2016.06.003 10.1007/s12205-020-0951-z 10.1061/(ASCE)HE.1943-5584.0000690 10.1016/j.jhydrol.2020.125531 10.1016/j.scitotenv.2017.10.037 10.1214/aos/1013203451 10.1029/2019WR025326 10.1038/s41598-017-08481-1 10.3390/w12051426 10.5194/hess-11-468-2007 10.1002/hyp.13278 10.1175/JCLI-D-12-00502.1 10.1080/02626660903546175 10.5194/hess-22-6005-2018 10.5194/hess-22-5817-2018 10.2737/PNW-GTR-587 10.1029/2007GL030156 10.1029/2004WR003218 10.1080/02626667.2013.803183 10.1002/2016GL068070 10.5194/hess-19-209-2015 10.3390/w6123841 10.1029/2012WR011869 10.1029/2004GL020528 10.1016/j.geomorph.2014.06.015 10.2747/0272-3646.26.6.489 10.1038/415514a 10.1016/j.jhydrol.2017.06.020 10.1029/2011WR010997 10.5194/hess-15-989-2011 10.5194/hess-16-4375-2012 10.5194/hess-18-839-2014 10.1088/1748-9326/aaac65 10.1038/nclimate2516 10.1016/j.jhydrol.2020.125197 10.1016/j.jhydrol.2009.07.029 10.5194/hess-21-5293-2017 10.1016/j.advwatres.2014.08.004 10.1007/s11069-013-0925-2 10.1162/neco.1997.9.8.1735 10.1175/JHM-D-12-021.1 10.1175/2008JHM986.1 10.5772/intechopen.68648 10.5194/hess-23-3631-2019 10.1007/s12145-020-00530-0 10.1016/j.envsoft.2018.05.018 10.1029/2008WR007327 10.1029/2011JD016048 10.1007/s10584-015-1476-1 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jhydrol.2022.127736 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1879-2707 |
ExternalDocumentID | 10_1016_j_jhydrol_2022_127736 S0022169422003110 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c342t-8f66b25e6da2b9504dc2d87692e15230cd212ab445c12cdecd1983d2e0edfabb3 |
IEDL.DBID | .~1 |
ISSN | 0022-1694 |
IngestDate | Fri Jul 11 01:34:31 EDT 2025 Tue Jul 01 01:53:37 EDT 2025 Thu Apr 24 22:52:52 EDT 2025 Fri Feb 23 02:38:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ungauged basins Flood peak Prediction Machine learning Flood warning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-8f66b25e6da2b9504dc2d87692e15230cd212ab445c12cdecd1983d2e0edfabb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2648880918 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2648880918 crossref_primary_10_1016_j_jhydrol_2022_127736 crossref_citationtrail_10_1016_j_jhydrol_2022_127736 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2022_127736 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2022 2022-06-00 20220601 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of hydrology (Amsterdam) |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Costabile, Macchione (b0060) 2015; 67 National Academies Press. Kratzert, Klotz, Brenner, Schulz, Herrnegger (b0220) 2018; 22 Perry (b0355) 2000 Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., Lettenmaier, D., Koren, V., Duan, Q., Mo, K., Fan, Y., & Mocko, D. (2012). Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. Todini (b0455) 2007; 11 Lins, Slack (b0245) 2005; 26 Yamazaki, Lee, Alsdorf, Dutra, Kim, Kanae, Oki (b0510) 2012; 48 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b0430) 2014; 15 Alvarez-Garreton, Mendoza, Boisier, Addor, Galleguillos, Zambrano-Bigiarini, Lara, Puelma, Cortes, Garreaud, McPhee, Ayala (b0030) 2018; 22 Breiman (b0045) 2001; 45 Kim, Kim (b0200) 2020; 24 Jarosińska, E., & Pierzga, K. (2017). Estimating Flood Quantiles on the Basis of Multi-Event Rainfall Simulation. In T. Hromadka & P. Rao (Eds.) (22), 3237. Crow, Huffman, Bindlish, Jackson (b0070) 2009; 10 Tomer, Schilling (b0460) 2009; 376 , Remesan, Mathew (b0375) 2014 . Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Others. (b0350) 2011; 12 U.S. Fish and Wildlife Service. Saharia, Kirstetter, Vergara, Gourley, Hong (b0395) 2017; 548 Verry, E.S., & Kolka, R.K. (2003). Importance of wetlands to streamflow generation. https://doi.org/10.3334/ORNLDAAC/1219. Mosavi, Ozturk, Chau (b0285) 2018; 10 Friedman (b0110) 2001; 29 Cormen, Leiserson, Rivest, Stein (b0055) 2001 Lin, Yang, Gochis, Yu, Maidment, Somos-Valenzuela, David (b0240) 2018; 107 Tara, Paulin (b0370) 2013; 18 Wilson, Bates, Alsdorf, Forsberg, Horritt, Melack, Frappart, Famiglietti (b0495) 2007; 34 Coxon, Addor, Bloomfield, Freer, Fry, Hannaford, Howden, Lane, Lewis, Robinson, Wagener, Woods (b0065) 2020; 12 Westra, Alexander, Zwiers (b0490) 2013; 26 Ho (b0150) 1995 Snoek, J., Larochelle, H., Adams, R.P. (2012). Practical Bayesian Optimization of Machine Learning Algorithms. Proceedings of the 25th International Conference on Neural Information Processing Systems, Vol. 2, 2951–2959. Cui, Chen, He, Chen (b0075) 2015 Thornton, P.E., Thornton, M.M., Mayer, B.W., Wilhelmi, N., Wei, Y., Devarakonda, R., & Cook, R. (2012). Dahl, T.E. (2014). Wasko, Sharma (b0485) 2017; 7 Newman, Clark, Sampson, Wood, Hay, Bock, Viger, Blodgett, Brekke, Arnold, Hopson, Duan (b0310) 2015; 19 Kratzert, Klotz, Shalev, Klambauer, Hochreiter, Nearing (b0225) 2019; 23 Nikolopoulos, Crema, Marchi, Marra, Guzzetti, Borga (b0325) 2014; 221 Ivanov, Vivoni, Bras, Entekhabi (b0180) 2004; 40 Hu, Nikolopoulos, Marra, Anagnostou (b0170) 2020; 13 Zhao, Pang, Xu, Yue, Tu (b0520) 2018; 615 Heggen (b0135) 2001; 6 Hirschboeck (b0145) 1991; 2375 Saadi, Oudin, Ribstein (b0380) 2020; 56 Knight, S.K. (2010). From Flood Loss to FloodSmart: How FEMA’s Mitigation Tools Work to Reduce the Impact of Flood Disasters. Naz, Kao, Ashfaq, Rastogi, Mei, Bowling (b0300) 2016; 143 Loh (b0250) 2002; 12 Vadeboncoeur, Green, Asbjornsen, Campbell, Adams, Boyer, Burns, Fernandez, Mitchell, Shanley (b0470) 2018; 32 https://doi.org/10.2737/pnw-gtr-587. Pathiraja, Westra, Sharma (b0340) 2012; 48 Saghafian, Golian, Ghasemi (b0385) 2014; 71 Seneviratne, Nicholls, Easterling, Goodess, Kanae, Kossin, Luo, Marengo, McInnes, Rahimi, Reichstein, Sorteberg, Vera, Zhang, Alexander, Allen, Benito, Cavazos, Clague, Zwiers (b0410) 2012 Addor, Newman, Mizukami, Clark (b0005) 2017; 21 Ni, Wang, Wu, Wang, Tao, Zhang, Liu (b0315) 2020; 586 U.S. Department of Commerce, Weather Getirana, Boone, Yamazaki, Decharme, Papa, Mognard (b0115) 2012; 13 Ncei, N. (2020). Ali, Ghosh, Singh (b0015) 2010; 55 Singh, V.P. (1988). Mallakpour, Villarini (b0255) 2015; 5 Prein, Rasmussen, Ikeda, Liu, Clark, Holland (b0360) 2017; 7 Patil, Stieglitz (b0345) 2011; 15 Naghibi, Hashemi, Berndtsson, Lee (b0290) 2020; 589 Alig, R.J., Plantinga, A.J., Ahn, S., & Kline, J.D. (2003). Samaniego, Kumar, Attinger (b0400) 2010; 46 Tramblay, Bouaicha, Brocca, Dorigo, Bouvier, Camici, Servat (b0465) 2012; 16 Mirzaei, Vafakhah, Pradhan, Alavi (b0280) 2021; 14 Decharme, Alkama, Papa, Faroux, Douville, Prigent (b0090) 2012; 38 Alig, Kline, Lichtenstein (b0020) 2004; 69 Dobur (bib525) Milly, Wetherald, Dunne, Delworth (b0275) 2002; 415 Massari, Brocca, Moramarco, Tramblay, Didon Lescot (b0265) 2014; 74 Ke, Meng, Finley, Wang, Chen, Ma, Ye, Liu (b0195) 2017; 30 Nikolopoulos, Anagnostou, Borga, Vivoni, Papadopoulos (b0320) 2011; 402 Ahn, Cho, Kim, Shin, Heo (b0010) 2014; 6 Indiana University Press. Yu, Yang, Chen, Kuo, Tseng (b0515) 2017; 552 Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, C.J. (1984). Classification and regressiontrees, wadsworth statistics. Dunkerley (bib523) 2008; 22 (D3). Hrachowitz, Savenije, Blöschl, McDonnell, Sivapalan, Pomeroy, Arheimer, Blume, Clark, Ehret, Fenicia, Freer, Gelfan, Gupta, Hughes, Hut, Montanari, Pande, Tetzlaff, Troch, Uhlenbrook, Wagener, Winsemius, Woods, Zehe, Cudennec (b0165) 2013; 58 Prentice Hall. Sucik, M.T., Marks, E. (2015). The status and recent trends of wetlands in the United States. Wing, Bates, Smith, Sampson, Johnson, Fargione, Morefield (b0500) 2018; 13 Hochreiter, Schmidhuber (b0155) 1997; 9 Pan, Arritt, Takle, Gutowski, Anderson, Segal (b0335) 2004; 31 Elshorbagy, Corzo, Srinivasulu, Solomatine (b0105) 2010; 14 Viessman, W., & Lewis, G.L. (1996). HarperCollins. Berghuijs, Woods, Hutton, Sivapalan (b0040) 2016; 43 Dougherty, Rasmussen (b0100) 2019; 147 Kunkel, K.E., Stevens, L.E., Stevens, S.E., Sun, L., Janssen, E., Wuebbles, D., Kruk, M.C., Thomas, D., Shulski, M., Umphlett, N.A., Hubbard, K.G., Robbins, K., Romolo, L., Akyuz, A., Pathak, T.B., Bergantino, T.R., & Greg Dobson, J. (2013). Ivancic, Shaw (b0175) 2015; 133 Pryor, S.C. (2013). Holm (b0160) 1979; 6 Kasiviswanathan, He, Sudheer, Tay (b0190) 2016; 536 Teuling, de Badts, Jansen, Fuchs, Buitink, Hoek van Dijke, Sterling (b0445) 2019; 23 IntechOpen. https://doi.org/10.5772/intechopen.68648. Merz, Vorogushyn, Uhlemann, Delgado, Hundecha (b0260) 2012; 16 Taksande, Mohod (b0440) 2015; 4 Gulakhmadov, Chen, Gulahmadov, Liu, Anjum, Rizwan (b0125) 2020; 12 National Research Council, Division on Earth and Life Studies, Water Science and Technology Board, & Committee on the Scientific Bases of Colorado River Basin Water Management. (2007). Slater, Villarini (b0420) 2017; 9 Assessment, C. (2018). Hall, Arheimer, Borga, Brázdil, Claps, Kiss, Kjeldsen, Kriaučiūnienė, Kundzewicz, Lang, Llasat, Macdonald, McIntyre, Mediero, Merz, Merz, Molnar, Montanari, Neuhold, Parajka, Perdigão, Plavcová, Rogger, Salinas, Sauquet, Schär, Szolgay, Viglione, Blöschl (b0130) 2014; 18 Massari, Brocca, Barbetta, Papathanasiou, Mimikou, Moramarco (b0270) 2014; 18 10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2. Lara, Garcia, Bucci, Ribas (b0235) 2017; 85 Schoppa, Disse, Bachmair (b0405) 2020; 590 Xiang, Yan, Demir (b0505) 2020; 56 Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P., & Nijssen, B. (2002). A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States. Kohler, M.A., & Linsley, R.K. (1951). 10.1016/j.jhydrol.2022.127736_b0365 Teuling (10.1016/j.jhydrol.2022.127736_b0445) 2019; 23 Ke (10.1016/j.jhydrol.2022.127736_b0195) 2017; 30 Mosavi (10.1016/j.jhydrol.2022.127736_b0285) 2018; 10 10.1016/j.jhydrol.2022.127736_b0080 Getirana (10.1016/j.jhydrol.2022.127736_b0115) 2012; 13 Slater (10.1016/j.jhydrol.2022.127736_b0420) 2017; 9 Wilson (10.1016/j.jhydrol.2022.127736_b0495) 2007; 34 10.1016/j.jhydrol.2022.127736_b0480 Westra (10.1016/j.jhydrol.2022.127736_b0490) 2013; 26 Cui (10.1016/j.jhydrol.2022.127736_b0075) 2015 10.1016/j.jhydrol.2022.127736_b0415 Mallakpour (10.1016/j.jhydrol.2022.127736_b0255) 2015; 5 Lin (10.1016/j.jhydrol.2022.127736_b0240) 2018; 107 Hirschboeck (10.1016/j.jhydrol.2022.127736_b0145) 1991; 2375 Kratzert (10.1016/j.jhydrol.2022.127736_b0225) 2019; 23 Remesan (10.1016/j.jhydrol.2022.127736_b0375) 2014 Nikolopoulos (10.1016/j.jhydrol.2022.127736_b0325) 2014; 221 Patil (10.1016/j.jhydrol.2022.127736_b0345) 2011; 15 Tomer (10.1016/j.jhydrol.2022.127736_b0460) 2009; 376 Naz (10.1016/j.jhydrol.2022.127736_b0300) 2016; 143 Wasko (10.1016/j.jhydrol.2022.127736_b0485) 2017; 7 10.1016/j.jhydrol.2022.127736_b0305 Saharia (10.1016/j.jhydrol.2022.127736_b0395) 2017; 548 10.1016/j.jhydrol.2022.127736_b0425 Todini (10.1016/j.jhydrol.2022.127736_b0455) 2007; 11 Lins (10.1016/j.jhydrol.2022.127736_b0245) 2005; 26 Schoppa (10.1016/j.jhydrol.2022.127736_b0405) 2020; 590 10.1016/j.jhydrol.2022.127736_b0025 10.1016/j.jhydrol.2022.127736_bib521 Dobur (10.1016/j.jhydrol.2022.127736_bib525) Nikolopoulos (10.1016/j.jhydrol.2022.127736_b0320) 2011; 402 Pan (10.1016/j.jhydrol.2022.127736_b0335) 2004; 31 10.1016/j.jhydrol.2022.127736_bib522 Ho (10.1016/j.jhydrol.2022.127736_b0150) 1995 Holm (10.1016/j.jhydrol.2022.127736_b0160) 1979; 6 Ali (10.1016/j.jhydrol.2022.127736_b0015) 2010; 55 Mirzaei (10.1016/j.jhydrol.2022.127736_b0280) 2021; 14 Taksande (10.1016/j.jhydrol.2022.127736_b0440) 2015; 4 Friedman (10.1016/j.jhydrol.2022.127736_b0110) 2001; 29 Pedregosa (10.1016/j.jhydrol.2022.127736_b0350) 2011; 12 Seneviratne (10.1016/j.jhydrol.2022.127736_b0410) 2012 Hall (10.1016/j.jhydrol.2022.127736_b0130) 2014; 18 10.1016/j.jhydrol.2022.127736_b0435 10.1016/j.jhydrol.2022.127736_b0035 Lara (10.1016/j.jhydrol.2022.127736_b0235) 2017; 85 Costabile (10.1016/j.jhydrol.2022.127736_b0060) 2015; 67 Kratzert (10.1016/j.jhydrol.2022.127736_b0220) 2018; 22 Ni (10.1016/j.jhydrol.2022.127736_b0315) 2020; 586 Massari (10.1016/j.jhydrol.2022.127736_b0270) 2014; 18 Ivancic (10.1016/j.jhydrol.2022.127736_b0175) 2015; 133 Milly (10.1016/j.jhydrol.2022.127736_b0275) 2002; 415 Tramblay (10.1016/j.jhydrol.2022.127736_b0465) 2012; 16 Yamazaki (10.1016/j.jhydrol.2022.127736_b0510) 2012; 48 Decharme (10.1016/j.jhydrol.2022.127736_b0090) 2012; 38 Hrachowitz (10.1016/j.jhydrol.2022.127736_b0165) 2013; 58 Newman (10.1016/j.jhydrol.2022.127736_b0310) 2015; 19 Saadi (10.1016/j.jhydrol.2022.127736_b0380) 2020; 56 Coxon (10.1016/j.jhydrol.2022.127736_b0065) 2020; 12 Samaniego (10.1016/j.jhydrol.2022.127736_b0400) 2010; 46 Alvarez-Garreton (10.1016/j.jhydrol.2022.127736_b0030) 2018; 22 Yu (10.1016/j.jhydrol.2022.127736_b0515) 2017; 552 10.1016/j.jhydrol.2022.127736_b0215 Berghuijs (10.1016/j.jhydrol.2022.127736_b0040) 2016; 43 Perry (10.1016/j.jhydrol.2022.127736_b0355) 2000 10.1016/j.jhydrol.2022.127736_b0210 Vadeboncoeur (10.1016/j.jhydrol.2022.127736_b0470) 2018; 32 Breiman (10.1016/j.jhydrol.2022.127736_b0045) 2001; 45 Gulakhmadov (10.1016/j.jhydrol.2022.127736_b0125) 2020; 12 Addor (10.1016/j.jhydrol.2022.127736_b0005) 2017; 21 Heggen (10.1016/j.jhydrol.2022.127736_b0135) 2001; 6 Alig (10.1016/j.jhydrol.2022.127736_b0020) 2004; 69 Pathiraja (10.1016/j.jhydrol.2022.127736_b0340) 2012; 48 Tara (10.1016/j.jhydrol.2022.127736_b0370) 2013; 18 Loh (10.1016/j.jhydrol.2022.127736_b0250) 2002; 12 Merz (10.1016/j.jhydrol.2022.127736_b0260) 2012; 16 10.1016/j.jhydrol.2022.127736_b0450 10.1016/j.jhydrol.2022.127736_b0295 10.1016/j.jhydrol.2022.127736_b0050 Kim (10.1016/j.jhydrol.2022.127736_b0200) 2020; 24 Prein (10.1016/j.jhydrol.2022.127736_b0360) 2017; 7 Saghafian (10.1016/j.jhydrol.2022.127736_b0385) 2014; 71 Dunkerley (10.1016/j.jhydrol.2022.127736_bib523) 2008; 22 Zhao (10.1016/j.jhydrol.2022.127736_b0520) 2018; 615 Massari (10.1016/j.jhydrol.2022.127736_b0265) 2014; 74 Wing (10.1016/j.jhydrol.2022.127736_b0500) 2018; 13 Ahn (10.1016/j.jhydrol.2022.127736_b0010) 2014; 6 Dougherty (10.1016/j.jhydrol.2022.127736_b0100) 2019; 147 10.1016/j.jhydrol.2022.127736_b0185 Hu (10.1016/j.jhydrol.2022.127736_b0170) 2020; 13 Ivanov (10.1016/j.jhydrol.2022.127736_b0180) 2004; 40 Srivastava (10.1016/j.jhydrol.2022.127736_b0430) 2014; 15 Xiang (10.1016/j.jhydrol.2022.127736_b0505) 2020; 56 Kasiviswanathan (10.1016/j.jhydrol.2022.127736_b0190) 2016; 536 10.1016/j.jhydrol.2022.127736_b0475 Cormen (10.1016/j.jhydrol.2022.127736_b0055) 2001 Elshorbagy (10.1016/j.jhydrol.2022.127736_b0105) 2010; 14 Hochreiter (10.1016/j.jhydrol.2022.127736_b0155) 1997; 9 Crow (10.1016/j.jhydrol.2022.127736_b0070) 2009; 10 10.1016/j.jhydrol.2022.127736_b0230 Naghibi (10.1016/j.jhydrol.2022.127736_b0290) 2020; 589 |
References_xml | – reference: . National Academies Press. – reference: Singh, V.P. (1988). – volume: 7 year: 2017 ident: b0485 article-title: Global assessment of flood and storm extremes with increased temperatures – ident: bib525 article-title: An Analysis of the Geographic Distribution of Flash Flood Events across the Southeastern United States, NOAA/National Weather Service, Southeast River Forecast Center, Peachtree City, Georgia – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0045 article-title: Random forests publication-title: Machine Learning – volume: 12 start-page: 2459 year: 2020 end-page: 2483 ident: b0065 article-title: CAMELS-GB: hydrometeorological time series and landscape attributes for 671 catchments in Great Britain publication-title: Earth Syst. Sci. Data – volume: 29 start-page: 1189 year: 2001 end-page: 1232 ident: b0110 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Stat. – volume: 40 year: 2004 ident: b0180 article-title: Catchment hydrologic response with a fully distributed triangulated irregular network model publication-title: Water Resour. Res. – volume: 22 start-page: 6005 year: 2018 end-page: 6022 ident: b0220 article-title: Rainfall–runoff modelling using Long Short-Term Memory (LSTM) networks publication-title: Hydrol. Earth Syst. Sci. – volume: 14 start-page: 51 year: 2021 end-page: 67 ident: b0280 article-title: Flood susceptibility assessment using extreme gradient boosting (EGB), Iran – volume: 615 start-page: 1133 year: 2018 end-page: 1142 ident: b0520 article-title: Mapping flood susceptibility in mountainous areas on a national scale in China publication-title: Sci. Total Environ. – volume: 55 start-page: 266 year: 2010 end-page: 274 ident: b0015 article-title: Rainfall–runoff simulation using a normalized antecedent precipitation index publication-title: Hydrol. Sci. J. – reference: . U.S. Fish and Wildlife Service. – reference: 10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2. – volume: 402 start-page: 165 year: 2011 end-page: 178 ident: b0320 article-title: Sensitivity of a mountain basin flash flood to initial wetness condition and rainfall variability publication-title: J. Hydrol. – volume: 18 start-page: 958 year: 2013 end-page: 975 ident: b0370 article-title: Streamflow prediction in ungauged basins: review of regionalization methods publication-title: J. Hydrol. Eng. – reference: Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P., & Nijssen, B. (2002). A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States. – volume: 10 start-page: 1536 year: 2018 ident: b0285 article-title: Flood prediction using machine learning models: literature review publication-title: WATER – volume: 56 year: 2020 ident: b0505 article-title: A rainfall-runoff model with LSTM-based sequence-to-sequence learning publication-title: Water Resour. Res. – volume: 19 start-page: 209 year: 2015 end-page: 223 ident: b0310 article-title: Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: data set characteristics and assessment of regional variability in hydrologic model performance publication-title: Hydrol. Earth Syst. Sci. – volume: 71 start-page: 403 year: 2014 end-page: 417 ident: b0385 article-title: Flood frequency analysis based on simulated peak discharges publication-title: Nat. Hazards – volume: 85 start-page: 1557 year: 2017 end-page: 1575 ident: b0235 article-title: What do people think about the flood risk? An experience with the residents of Talcahuano city, Chile – volume: 26 start-page: 489 year: 2005 end-page: 501 ident: b0245 article-title: Seasonal and regional characteristics of U.S. Streamflow trends in the United States from 1940 to 1999 publication-title: Phys. Geogr. – reference: . Indiana University Press. – volume: 12 start-page: 1426 year: 2020 ident: b0125 article-title: Simulation of the potential impacts of projected climate change on streamflow in the Vakhsh River basin in Central Asia under CMIP5 RCP scenarios publication-title: WATER – reference: Assessment, C. (2018). – volume: 16 start-page: 4375 year: 2012 end-page: 4386 ident: b0465 article-title: Estimation of antecedent wetness conditions for flood modelling in northern Morocco publication-title: Hydrol. Earth Syst. Sci. – volume: 48 start-page: W09508 year: 2012 ident: b0510 article-title: Analysis of the water level dynamics simulated by a global river model: a case study in the Amazon River publication-title: Water Resour. Res. – reference: Pryor, S.C. (2013). – volume: 6 start-page: 65 year: 1979 end-page: 70 ident: b0160 article-title: A simple sequentially rejective multiple test procedure publication-title: Scand. J. Stat. Theory Appl. – volume: 26 start-page: 3904 year: 2013 end-page: 3918 ident: b0490 article-title: Global increasing trends in annual maximum daily precipitation publication-title: J. Clim. – reference: Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., Lettenmaier, D., Koren, V., Duan, Q., Mo, K., Fan, Y., & Mocko, D. (2012). Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. – volume: 4 start-page: 3048 year: 2015 end-page: 3051 ident: b0440 article-title: Applications of data mining in weather forecasting using frequent pattern growth algorithm publication-title: Int. J. Sci. Res. – year: 2014 ident: b0375 article-title: Hydrological Data Driven Modelling: A Case Study Approach – volume: 415 start-page: 514 year: 2002 end-page: 517 ident: b0275 article-title: Increasing risk of great floods in a changing climate publication-title: Nature – volume: 30 start-page: 3146 year: 2017 end-page: 3154 ident: b0195 article-title: Lightgbm: a highly efficient gradient boosting decision tree publication-title: Adv. Neural Inf. Process. Syst. – volume: 143 start-page: 100 year: 2016 end-page: 117 ident: b0300 article-title: Regional hydrologic response to climate change in the conterminous United States using high-resolution hydroclimate simulations publication-title: Glob. Planet. Change – volume: 31 year: 2004 ident: b0335 article-title: Altered hydrologic feedback in a warming climate introduces a “warming hole” publication-title: Geophys. Res. Lett. – volume: 133 start-page: 681 year: 2015 end-page: 693 ident: b0175 article-title: Examining why trends in very heavy precipitation should not be mistaken for trends in very high river discharge publication-title: Climat. Change – reference: , – reference: . https://doi.org/10.3334/ORNLDAAC/1219. – reference: . https://doi.org/10.2737/pnw-gtr-587. – volume: 586 year: 2020 ident: b0315 article-title: Streamflow forecasting using extreme gradient boosting model coupled with Gaussian mixture model publication-title: J. Hydrol. – volume: 10 start-page: 199 year: 2009 end-page: 212 ident: b0070 article-title: Improving satellite-based rainfall accumulation estimates using spaceborne surface soil moisture retrievals publication-title: J. Hydrometeorol. – volume: 9 start-page: 695 year: 2017 ident: b0420 article-title: Evaluating the drivers of seasonal streamflow in the U.S. Midwest – reference: Jarosińska, E., & Pierzga, K. (2017). Estimating Flood Quantiles on the Basis of Multi-Event Rainfall Simulation. In T. Hromadka & P. Rao (Eds.), – reference: . IntechOpen. https://doi.org/10.5772/intechopen.68648. – year: 1995 ident: b0150 article-title: Random decision forests publication-title: Proceedings of 3rd International Conference on Document Analysis and Recognition – volume: 12 start-page: 361 year: 2002 end-page: 386 ident: b0250 article-title: REGRESSION TRESS WITH UNBIASED VARIABLE SELECTION AND INTERACTION DETECTION publication-title: Statistica Sinica – reference: Viessman, W., & Lewis, G.L. (1996). – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b0155 article-title: Long short-term memory publication-title: Neural Comput. – start-page: 179 year: 2015 end-page: 188 ident: b0075 article-title: Optimal Action Extraction for Random Forests and Boosted Trees publication-title: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 536 start-page: 161 year: 2016 end-page: 173 ident: b0190 article-title: Potential application of wavelet neural network ensemble to forecast streamflow for flood management publication-title: J. Hydrol. – reference: (22), 3237. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b0350 article-title: Scikit-learn: machine learning in Python publication-title: J. Machine Learn. Res. – volume: 376 start-page: 24 year: 2009 end-page: 33 ident: b0460 article-title: A simple approach to distinguish land-use and climate-change effects on watershed hydrology publication-title: J. Hydrol. – reference: Verry, E.S., & Kolka, R.K. (2003). Importance of wetlands to streamflow generation. – volume: 74 start-page: 44 year: 2014 ident: b0265 article-title: Potential of soil moisture observations in flood modelling: Estimating initial conditions and correcting rainfall publication-title: Adv. Water Resour. – volume: 34 start-page: L15404 year: 2007 ident: b0495 article-title: Modeling large-scale inundation of Amazonian seasonally flooded wetlands publication-title: Geophys. Res. Lett. – volume: 32 start-page: 3547 year: 2018 end-page: 3560 ident: b0470 article-title: Systematic variation in evapotranspiration trends and drivers across the Northeastern United States publication-title: Hydrol. Processes – volume: 18 start-page: 2735 year: 2014 end-page: 2772 ident: b0130 article-title: Understanding flood regime changes in Europe: a state-of-the-art assessment publication-title: . – volume: 589 year: 2020 ident: b0290 article-title: Application of extreme gradient boosting and parallel random forest algorithms for assessing groundwater spring potential using DEM-derived factors publication-title: J. Hydrol. – volume: 46 year: 2010 ident: b0400 article-title: Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale – volume: 13 start-page: 1641 year: 2012 end-page: 1665 ident: b0115 article-title: The hydrological modeling and analysis platform (HyMAP): evaluation in the amazon basin publication-title: J. Hydrometeorol. – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: b0430 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Machine Learn. Res.: JMLR – volume: 6 start-page: 377 year: 2001 end-page: 381 ident: b0135 article-title: Normalized antecedent precipitation index publication-title: J. Hydrol. Eng. – volume: 13 year: 2020 ident: b0170 article-title: Sensitivity of flood frequency analysis to data record, statistical model, and parameter estimation methods: an evaluation over the contiguous United States publication-title: J. Flood Risk Manag. – year: 2000 ident: b0355 article-title: Significant floods in the United States during the 20th century - USGS measures a century of floods publication-title: US Geological Survey – volume: 43 start-page: 4382 year: 2016 end-page: 4390 ident: b0040 article-title: Dominant flood generating mechanisms across the United States publication-title: Geophys. Res. Lett. – volume: 147 start-page: 3861 year: 2019 end-page: 3877 ident: b0100 article-title: Climatology of flood-producing storms and their associated rainfall characteristics in the United States publication-title: Monthly Weather Rev. – volume: 23 start-page: 5089 year: 2019 end-page: 5110 ident: b0225 article-title: Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets publication-title: Hydrol. Earth Syst. Sci. – volume: 107 start-page: 1 year: 2018 end-page: 11 ident: b0240 article-title: Implementation of a vector-based river network routing scheme in the community WRF-Hydro modeling framework for flood discharge simulation publication-title: Environ. Model. Softw. – year: 2001 ident: b0055 article-title: Introduction to Algorithms – volume: 552 start-page: 92 year: 2017 end-page: 104 ident: b0515 article-title: Comparison of random forests and support vector machine for real-time radar-derived rainfall forecasting publication-title: J. Hydrol. – volume: 21 start-page: 5293 year: 2017 end-page: 5313 ident: b0005 article-title: The CAMELS data set: catchment attributes and meteorology for large-sample studies publication-title: Hydrol. Earth Syst. Sci. – volume: 11 start-page: 468 year: 2007 end-page: 482 ident: b0455 article-title: Hydrological catchment modelling: past, present and future publication-title: Hydrol. Earth Syst. Sci. – reference: Thornton, P.E., Thornton, M.M., Mayer, B.W., Wilhelmi, N., Wei, Y., Devarakonda, R., & Cook, R. (2012). – reference: Alig, R.J., Plantinga, A.J., Ahn, S., & Kline, J.D. (2003). – year: 2012 ident: b0410 article-title: Changes in climate extremes and their impacts on the natural physical environment publication-title: Columbia University – reference: . U.S. Department of Commerce, Weather – volume: 69 start-page: 219 year: 2004 end-page: 234 ident: b0020 article-title: Urbanization on the US landscape: looking ahead in the 21st century publication-title: Landsc. Urban Plan. – volume: 67 start-page: 89 year: 2015 end-page: 107 ident: b0060 article-title: Enhancing river model set-up for 2-D dynamic flood modelling publication-title: Environ. Model. Softw. – reference: Kohler, M.A., & Linsley, R.K. (1951). – volume: 38 start-page: 1389 year: 2012 end-page: 1412 ident: b0090 article-title: Global off-line evaluation of the ISBA-TRIP flood model publication-title: Clim. Dyn. – volume: 2375 start-page: 67 year: 1991 end-page: 88 ident: b0145 article-title: Hydrology of floods and droughts, climate and floods publication-title: Water-Supply Paper-Geological Survey (US) – volume: 548 start-page: 524 year: 2017 end-page: 535 ident: b0395 article-title: Characterization of floods in the United States publication-title: J. Hydrol. – reference: . – volume: 6 start-page: 3841 year: 2014 end-page: 3863 ident: b0010 article-title: Flood frequency analysis for the annual peak flows simulated by an event-based rainfall-runoff model in an urban drainage basin publication-title: WATER – reference: Snoek, J., Larochelle, H., Adams, R.P. (2012). Practical Bayesian Optimization of Machine Learning Algorithms. Proceedings of the 25th International Conference on Neural Information Processing Systems, Vol. 2, 2951–2959. – reference: Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, C.J. (1984). Classification and regressiontrees, wadsworth statistics. – volume: 56 year: 2020 ident: b0380 article-title: Beyond imperviousness: the role of antecedent wetness in runoff generation in urbanized catchments publication-title: Water Resour. Res. – volume: 22 start-page: 5024 year: 2008 end-page: 5036 ident: bib523 article-title: Identifying individual rain events from pluviograph records: A review with analysis of data from an Australian dryland site publication-title: Hydrolo. Proc. – reference: Knight, S.K. (2010). From Flood Loss to FloodSmart: How FEMA’s Mitigation Tools Work to Reduce the Impact of Flood Disasters. – reference: Kunkel, K.E., Stevens, L.E., Stevens, S.E., Sun, L., Janssen, E., Wuebbles, D., Kruk, M.C., Thomas, D., Shulski, M., Umphlett, N.A., Hubbard, K.G., Robbins, K., Romolo, L., Akyuz, A., Pathak, T.B., Bergantino, T.R., & Greg Dobson, J. (2013). – volume: 5 start-page: 250 year: 2015 end-page: 254 ident: b0255 article-title: The changing nature of flooding across the central United States publication-title: Nat. Clim. Change – volume: 48 year: 2012 ident: b0340 article-title: Why continuous simulation? The role of antecedent moisture in design flood estimation: THE ROLE OF ANTECEDENT MOISTURE IN DESIGN FLOOD ESTIMATION publication-title: Water Resour. Res. – volume: 590 year: 2020 ident: b0405 article-title: Evaluating the performance of random forest for large-scale flood discharge simulation publication-title: J. Hydrol. – volume: 23 start-page: 3631 year: 2019 end-page: 3652 ident: b0445 article-title: Climate change, reforestation/afforestation, and urbanization impacts on evapotranspiration and streamflow in Europe publication-title: Hydrol. Earth Syst. Sci. – reference: Dahl, T.E. (2014). – volume: 24 start-page: 3884 year: 2020 end-page: 3896 ident: b0200 article-title: Flood hazard rating prediction for urban areas using random forest and LSTM publication-title: KSCE J. Civ. Eng. – volume: 13 year: 2018 ident: b0500 article-title: Estimates of present and future flood risk in the conterminous United States publication-title: Environ. Res. Lett.: ERL [Web Site] – volume: 16 start-page: 1379 year: 2012 end-page: 1387 ident: b0260 article-title: HESS Opinions “More efforts and scientific rigour are needed to attribute trends in flood time series” publication-title: Hydrol. Earth Syst. Sci. – volume: 15 start-page: 989 year: 2011 end-page: 997 ident: b0345 article-title: Hydrologic similarity among catchments under variable flow conditions publication-title: Hydrol. Earth Syst. Sci. – reference: Ncei, N. (2020). – volume: 7 start-page: 48 year: 2017 end-page: 52 ident: b0360 article-title: The future intensification of hourly precipitation extremes publication-title: Nat. Clim. Change – reference: . HarperCollins. – reference: National Research Council, Division on Earth and Life Studies, Water Science and Technology Board, & Committee on the Scientific Bases of Colorado River Basin Water Management. (2007). – reference: . – volume: 18 start-page: 839 year: 2014 end-page: 853 ident: b0270 article-title: Using globally available soil moisture indicators for flood modelling in Mediterranean catchments publication-title: Hydrol. Earth Syst. Sci. – reference: . Prentice Hall. – volume: 14 start-page: 1931 year: 2010 end-page: 1941 ident: b0105 article-title: Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 1: concepts and methodology publication-title: Hydrol. Earth Syst. Sci. – volume: 58 start-page: 1198 year: 2013 end-page: 1255 ident: b0165 article-title: A decade of predictions in Ungauged Basins (PUB)—a review publication-title: Hydrol. Sci. J. – volume: 22 start-page: 5817 year: 2018 end-page: 5846 ident: b0030 article-title: The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset publication-title: Hydrol. Earth Syst. Sci. – reference: Sucik, M.T., Marks, E. (2015). The status and recent trends of wetlands in the United States. – volume: 221 start-page: 286 year: 2014 end-page: 297 ident: b0325 article-title: Impact of uncertainty in rainfall estimation on the identification of rainfall thresholds for debris flow occurrence publication-title: Geomorphology – reference: (D3). – ident: 10.1016/j.jhydrol.2022.127736_b0295 – volume: 12 start-page: 2459 issue: 4 year: 2020 ident: 10.1016/j.jhydrol.2022.127736_b0065 article-title: CAMELS-GB: hydrometeorological time series and landscape attributes for 671 catchments in Great Britain publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-12-2459-2020 – volume: 85 start-page: 1557 issue: 3 year: 2017 ident: 10.1016/j.jhydrol.2022.127736_b0235 article-title: What do people think about the flood risk? An experience with the residents of Talcahuano city, Chile publication-title: Nat. Hazards doi: 10.1007/s11069-016-2644-y – year: 2014 ident: 10.1016/j.jhydrol.2022.127736_b0375 – volume: 14 start-page: 1931 issue: 10 year: 2010 ident: 10.1016/j.jhydrol.2022.127736_b0105 article-title: Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 1: concepts and methodology publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-14-1931-2010 – volume: 38 start-page: 1389 issue: 7-8 year: 2012 ident: 10.1016/j.jhydrol.2022.127736_b0090 article-title: Global off-line evaluation of the ISBA-TRIP flood model publication-title: Clim. Dyn. doi: 10.1007/s00382-011-1054-9 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.jhydrol.2022.127736_b0045 article-title: Random forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 536 start-page: 161 year: 2016 ident: 10.1016/j.jhydrol.2022.127736_b0190 article-title: Potential application of wavelet neural network ensemble to forecast streamflow for flood management publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.02.044 – volume: 9 start-page: 695 issue: 9 year: 2017 ident: 10.1016/j.jhydrol.2022.127736_b0420 article-title: Evaluating the drivers of seasonal streamflow in the U.S. Midwest publication-title: WATER doi: 10.3390/w9090695 – ident: 10.1016/j.jhydrol.2022.127736_b0475 – ident: 10.1016/j.jhydrol.2022.127736_b0080 – volume: 13 issue: 1 year: 2020 ident: 10.1016/j.jhydrol.2022.127736_b0170 article-title: Sensitivity of flood frequency analysis to data record, statistical model, and parameter estimation methods: an evaluation over the contiguous United States publication-title: J. Flood Risk Manag. doi: 10.1111/jfr3.12580 – volume: 16 start-page: 1379 issue: 5 year: 2012 ident: 10.1016/j.jhydrol.2022.127736_b0260 article-title: HESS Opinions “More efforts and scientific rigour are needed to attribute trends in flood time series” publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-16-1379-2012 – ident: 10.1016/j.jhydrol.2022.127736_bib522 doi: 10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2 – volume: 56 issue: 11 year: 2020 ident: 10.1016/j.jhydrol.2022.127736_b0380 article-title: Beyond imperviousness: the role of antecedent wetness in runoff generation in urbanized catchments publication-title: Water Resour. Res. doi: 10.1029/2020WR028060 – volume: 69 start-page: 219 issue: 2 year: 2004 ident: 10.1016/j.jhydrol.2022.127736_b0020 article-title: Urbanization on the US landscape: looking ahead in the 21st century publication-title: Landsc. Urban Plan. doi: 10.1016/j.landurbplan.2003.07.004 – volume: 6 start-page: 377 issue: 5 year: 2001 ident: 10.1016/j.jhydrol.2022.127736_b0135 article-title: Normalized antecedent precipitation index publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)1084-0699(2001)6:5(377) – start-page: 179 year: 2015 ident: 10.1016/j.jhydrol.2022.127736_b0075 article-title: Optimal Action Extraction for Random Forests and Boosted Trees – volume: 548 start-page: 524 year: 2017 ident: 10.1016/j.jhydrol.2022.127736_b0395 article-title: Characterization of floods in the United States publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.03.010 – volume: 23 start-page: 5089 issue: 12 year: 2019 ident: 10.1016/j.jhydrol.2022.127736_b0225 article-title: Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-23-5089-2019 – volume: 586 year: 2020 ident: 10.1016/j.jhydrol.2022.127736_b0315 article-title: Streamflow forecasting using extreme gradient boosting model coupled with Gaussian mixture model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124901 – volume: 18 start-page: 2735 issue: 7 year: 2014 ident: 10.1016/j.jhydrol.2022.127736_b0130 article-title: Understanding flood regime changes in Europe: a state-of-the-art assessment publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-18-2735-2014 – volume: 10 start-page: 1536 issue: 11 year: 2018 ident: 10.1016/j.jhydrol.2022.127736_b0285 article-title: Flood prediction using machine learning models: literature review publication-title: WATER doi: 10.3390/w10111536 – volume: 22 start-page: 5024 issue: 26 year: 2008 ident: 10.1016/j.jhydrol.2022.127736_bib523 article-title: Identifying individual rain events from pluviograph records: A review with analysis of data from an Australian dryland site publication-title: Hydrolo. Proc. doi: 10.1002/hyp.7122 – year: 2001 ident: 10.1016/j.jhydrol.2022.127736_b0055 – volume: 402 start-page: 165 issue: 3 year: 2011 ident: 10.1016/j.jhydrol.2022.127736_b0320 article-title: Sensitivity of a mountain basin flash flood to initial wetness condition and rainfall variability publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.12.020 – volume: 7 start-page: 48 issue: 1 year: 2017 ident: 10.1016/j.jhydrol.2022.127736_b0360 article-title: The future intensification of hourly precipitation extremes publication-title: Nat. Clim. Change doi: 10.1038/nclimate3168 – volume: 67 start-page: 89 year: 2015 ident: 10.1016/j.jhydrol.2022.127736_b0060 article-title: Enhancing river model set-up for 2-D dynamic flood modelling publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2015.01.009 – volume: 147 start-page: 3861 issue: 11 year: 2019 ident: 10.1016/j.jhydrol.2022.127736_b0100 article-title: Climatology of flood-producing storms and their associated rainfall characteristics in the United States publication-title: Monthly Weather Rev. doi: 10.1175/MWR-D-19-0020.1 – volume: 143 start-page: 100 year: 2016 ident: 10.1016/j.jhydrol.2022.127736_b0300 article-title: Regional hydrologic response to climate change in the conterminous United States using high-resolution hydroclimate simulations publication-title: Glob. Planet. Change doi: 10.1016/j.gloplacha.2016.06.003 – volume: 24 start-page: 3884 issue: 12 year: 2020 ident: 10.1016/j.jhydrol.2022.127736_b0200 article-title: Flood hazard rating prediction for urban areas using random forest and LSTM publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-020-0951-z – volume: 18 start-page: 958 issue: 8 year: 2013 ident: 10.1016/j.jhydrol.2022.127736_b0370 article-title: Streamflow prediction in ungauged basins: review of regionalization methods publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0000690 – ident: 10.1016/j.jhydrol.2022.127736_b0435 – ident: 10.1016/j.jhydrol.2022.127736_b0305 – volume: 590 year: 2020 ident: 10.1016/j.jhydrol.2022.127736_b0405 article-title: Evaluating the performance of random forest for large-scale flood discharge simulation publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125531 – volume: 615 start-page: 1133 year: 2018 ident: 10.1016/j.jhydrol.2022.127736_b0520 article-title: Mapping flood susceptibility in mountainous areas on a national scale in China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.10.037 – volume: 29 start-page: 1189 issue: 5 year: 2001 ident: 10.1016/j.jhydrol.2022.127736_b0110 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Stat. doi: 10.1214/aos/1013203451 – volume: 56 issue: 1 year: 2020 ident: 10.1016/j.jhydrol.2022.127736_b0505 article-title: A rainfall-runoff model with LSTM-based sequence-to-sequence learning publication-title: Water Resour. Res. doi: 10.1029/2019WR025326 – volume: 7 issue: 1 year: 2017 ident: 10.1016/j.jhydrol.2022.127736_b0485 article-title: Global assessment of flood and storm extremes with increased temperatures publication-title: Sci. Rep. doi: 10.1038/s41598-017-08481-1 – volume: 12 start-page: 1426 issue: 5 year: 2020 ident: 10.1016/j.jhydrol.2022.127736_b0125 article-title: Simulation of the potential impacts of projected climate change on streamflow in the Vakhsh River basin in Central Asia under CMIP5 RCP scenarios publication-title: WATER doi: 10.3390/w12051426 – volume: 11 start-page: 468 issue: 1 year: 2007 ident: 10.1016/j.jhydrol.2022.127736_b0455 article-title: Hydrological catchment modelling: past, present and future publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-11-468-2007 – volume: 32 start-page: 3547 issue: 23 year: 2018 ident: 10.1016/j.jhydrol.2022.127736_b0470 article-title: Systematic variation in evapotranspiration trends and drivers across the Northeastern United States publication-title: Hydrol. Processes doi: 10.1002/hyp.13278 – volume: 26 start-page: 3904 issue: 11 year: 2013 ident: 10.1016/j.jhydrol.2022.127736_b0490 article-title: Global increasing trends in annual maximum daily precipitation publication-title: J. Clim. doi: 10.1175/JCLI-D-12-00502.1 – volume: 55 start-page: 266 issue: 2 year: 2010 ident: 10.1016/j.jhydrol.2022.127736_b0015 article-title: Rainfall–runoff simulation using a normalized antecedent precipitation index publication-title: Hydrol. Sci. J. doi: 10.1080/02626660903546175 – ident: 10.1016/j.jhydrol.2022.127736_b0415 – volume: 22 start-page: 6005 issue: 11 year: 2018 ident: 10.1016/j.jhydrol.2022.127736_b0220 article-title: Rainfall–runoff modelling using Long Short-Term Memory (LSTM) networks publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-6005-2018 – volume: 22 start-page: 5817 issue: 11 year: 2018 ident: 10.1016/j.jhydrol.2022.127736_b0030 article-title: The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-5817-2018 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 10.1016/j.jhydrol.2022.127736_b0430 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Machine Learn. Res.: JMLR – ident: 10.1016/j.jhydrol.2022.127736_b0480 – ident: 10.1016/j.jhydrol.2022.127736_b0025 doi: 10.2737/PNW-GTR-587 – volume: 34 start-page: L15404 year: 2007 ident: 10.1016/j.jhydrol.2022.127736_b0495 article-title: Modeling large-scale inundation of Amazonian seasonally flooded wetlands publication-title: Geophys. Res. Lett. doi: 10.1029/2007GL030156 – volume: 40 issue: 11 year: 2004 ident: 10.1016/j.jhydrol.2022.127736_b0180 article-title: Catchment hydrologic response with a fully distributed triangulated irregular network model publication-title: Water Resour. Res. doi: 10.1029/2004WR003218 – ident: 10.1016/j.jhydrol.2022.127736_b0050 – ident: 10.1016/j.jhydrol.2022.127736_b0035 – volume: 58 start-page: 1198 issue: 6 year: 2013 ident: 10.1016/j.jhydrol.2022.127736_b0165 article-title: A decade of predictions in Ungauged Basins (PUB)—a review publication-title: Hydrol. Sci. J. doi: 10.1080/02626667.2013.803183 – volume: 43 start-page: 4382 issue: 9 year: 2016 ident: 10.1016/j.jhydrol.2022.127736_b0040 article-title: Dominant flood generating mechanisms across the United States publication-title: Geophys. Res. Lett. doi: 10.1002/2016GL068070 – ident: 10.1016/j.jhydrol.2022.127736_b0230 – volume: 19 start-page: 209 issue: 1 year: 2015 ident: 10.1016/j.jhydrol.2022.127736_b0310 article-title: Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: data set characteristics and assessment of regional variability in hydrologic model performance publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-19-209-2015 – volume: 30 start-page: 3146 year: 2017 ident: 10.1016/j.jhydrol.2022.127736_b0195 article-title: Lightgbm: a highly efficient gradient boosting decision tree publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.jhydrol.2022.127736_b0215 – volume: 6 start-page: 3841 issue: 12 year: 2014 ident: 10.1016/j.jhydrol.2022.127736_b0010 article-title: Flood frequency analysis for the annual peak flows simulated by an event-based rainfall-runoff model in an urban drainage basin publication-title: WATER doi: 10.3390/w6123841 – volume: 48 start-page: W09508 year: 2012 ident: 10.1016/j.jhydrol.2022.127736_b0510 article-title: Analysis of the water level dynamics simulated by a global river model: a case study in the Amazon River publication-title: Water Resour. Res. doi: 10.1029/2012WR011869 – volume: 31 issue: 17 year: 2004 ident: 10.1016/j.jhydrol.2022.127736_b0335 article-title: Altered hydrologic feedback in a warming climate introduces a “warming hole” publication-title: Geophys. Res. Lett. doi: 10.1029/2004GL020528 – volume: 221 start-page: 286 year: 2014 ident: 10.1016/j.jhydrol.2022.127736_b0325 article-title: Impact of uncertainty in rainfall estimation on the identification of rainfall thresholds for debris flow occurrence publication-title: Geomorphology doi: 10.1016/j.geomorph.2014.06.015 – volume: 26 start-page: 489 issue: 6 year: 2005 ident: 10.1016/j.jhydrol.2022.127736_b0245 article-title: Seasonal and regional characteristics of U.S. Streamflow trends in the United States from 1940 to 1999 publication-title: Phys. Geogr. doi: 10.2747/0272-3646.26.6.489 – volume: 415 start-page: 514 issue: 6871 year: 2002 ident: 10.1016/j.jhydrol.2022.127736_b0275 article-title: Increasing risk of great floods in a changing climate publication-title: Nature doi: 10.1038/415514a – volume: 552 start-page: 92 year: 2017 ident: 10.1016/j.jhydrol.2022.127736_b0515 article-title: Comparison of random forests and support vector machine for real-time radar-derived rainfall forecasting publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.06.020 – year: 2000 ident: 10.1016/j.jhydrol.2022.127736_b0355 article-title: Significant floods in the United States during the 20th century - USGS measures a century of floods publication-title: US Geological Survey – volume: 48 issue: 6 year: 2012 ident: 10.1016/j.jhydrol.2022.127736_b0340 article-title: Why continuous simulation? The role of antecedent moisture in design flood estimation: THE ROLE OF ANTECEDENT MOISTURE IN DESIGN FLOOD ESTIMATION publication-title: Water Resour. Res. doi: 10.1029/2011WR010997 – volume: 15 start-page: 989 issue: 3 year: 2011 ident: 10.1016/j.jhydrol.2022.127736_b0345 article-title: Hydrologic similarity among catchments under variable flow conditions publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-15-989-2011 – volume: 16 start-page: 4375 issue: 11 year: 2012 ident: 10.1016/j.jhydrol.2022.127736_b0465 article-title: Estimation of antecedent wetness conditions for flood modelling in northern Morocco publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-16-4375-2012 – volume: 18 start-page: 839 issue: 2 year: 2014 ident: 10.1016/j.jhydrol.2022.127736_b0270 article-title: Using globally available soil moisture indicators for flood modelling in Mediterranean catchments publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-18-839-2014 – volume: 13 issue: 3 year: 2018 ident: 10.1016/j.jhydrol.2022.127736_b0500 article-title: Estimates of present and future flood risk in the conterminous United States publication-title: Environ. Res. Lett.: ERL [Web Site] doi: 10.1088/1748-9326/aaac65 – volume: 5 start-page: 250 issue: 3 year: 2015 ident: 10.1016/j.jhydrol.2022.127736_b0255 article-title: The changing nature of flooding across the central United States publication-title: Nat. Clim. Change doi: 10.1038/nclimate2516 – year: 2012 ident: 10.1016/j.jhydrol.2022.127736_b0410 article-title: Changes in climate extremes and their impacts on the natural physical environment publication-title: Columbia University – volume: 589 year: 2020 ident: 10.1016/j.jhydrol.2022.127736_b0290 article-title: Application of extreme gradient boosting and parallel random forest algorithms for assessing groundwater spring potential using DEM-derived factors publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125197 – volume: 4 start-page: 3048 issue: 6 year: 2015 ident: 10.1016/j.jhydrol.2022.127736_b0440 article-title: Applications of data mining in weather forecasting using frequent pattern growth algorithm publication-title: Int. J. Sci. Res. – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.jhydrol.2022.127736_b0350 article-title: Scikit-learn: machine learning in Python publication-title: J. Machine Learn. Res. – volume: 376 start-page: 24 issue: 1 year: 2009 ident: 10.1016/j.jhydrol.2022.127736_b0460 article-title: A simple approach to distinguish land-use and climate-change effects on watershed hydrology publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.07.029 – volume: 12 start-page: 361 issue: 2 year: 2002 ident: 10.1016/j.jhydrol.2022.127736_b0250 article-title: REGRESSION TRESS WITH UNBIASED VARIABLE SELECTION AND INTERACTION DETECTION publication-title: Statistica Sinica – volume: 21 start-page: 5293 issue: 10 year: 2017 ident: 10.1016/j.jhydrol.2022.127736_b0005 article-title: The CAMELS data set: catchment attributes and meteorology for large-sample studies publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-21-5293-2017 – volume: 74 start-page: 44 year: 2014 ident: 10.1016/j.jhydrol.2022.127736_b0265 article-title: Potential of soil moisture observations in flood modelling: Estimating initial conditions and correcting rainfall publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2014.08.004 – volume: 71 start-page: 403 issue: 1 year: 2014 ident: 10.1016/j.jhydrol.2022.127736_b0385 article-title: Flood frequency analysis based on simulated peak discharges publication-title: Nat. Hazards doi: 10.1007/s11069-013-0925-2 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.jhydrol.2022.127736_b0155 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 13 start-page: 1641 issue: 6 year: 2012 ident: 10.1016/j.jhydrol.2022.127736_b0115 article-title: The hydrological modeling and analysis platform (HyMAP): evaluation in the amazon basin publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-12-021.1 – volume: 10 start-page: 199 issue: 1 year: 2009 ident: 10.1016/j.jhydrol.2022.127736_b0070 article-title: Improving satellite-based rainfall accumulation estimates using spaceborne surface soil moisture retrievals publication-title: J. Hydrometeorol. doi: 10.1175/2008JHM986.1 – year: 1995 ident: 10.1016/j.jhydrol.2022.127736_b0150 article-title: Random decision forests – volume: 6 start-page: 65 issue: 2 year: 1979 ident: 10.1016/j.jhydrol.2022.127736_b0160 article-title: A simple sequentially rejective multiple test procedure publication-title: Scand. J. Stat. Theory Appl. – ident: 10.1016/j.jhydrol.2022.127736_b0185 doi: 10.5772/intechopen.68648 – volume: 23 start-page: 3631 issue: 9 year: 2019 ident: 10.1016/j.jhydrol.2022.127736_b0445 article-title: Climate change, reforestation/afforestation, and urbanization impacts on evapotranspiration and streamflow in Europe publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-23-3631-2019 – ident: 10.1016/j.jhydrol.2022.127736_b0450 – volume: 14 start-page: 51 issue: 1 year: 2021 ident: 10.1016/j.jhydrol.2022.127736_b0280 article-title: Flood susceptibility assessment using extreme gradient boosting (EGB), Iran publication-title: Earth Sci. Inf. doi: 10.1007/s12145-020-00530-0 – ident: 10.1016/j.jhydrol.2022.127736_bib525 – volume: 107 start-page: 1 year: 2018 ident: 10.1016/j.jhydrol.2022.127736_b0240 article-title: Implementation of a vector-based river network routing scheme in the community WRF-Hydro modeling framework for flood discharge simulation publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2018.05.018 – ident: 10.1016/j.jhydrol.2022.127736_b0425 – ident: 10.1016/j.jhydrol.2022.127736_b0365 – ident: 10.1016/j.jhydrol.2022.127736_b0210 – volume: 2375 start-page: 67 year: 1991 ident: 10.1016/j.jhydrol.2022.127736_b0145 article-title: Hydrology of floods and droughts, climate and floods publication-title: Water-Supply Paper-Geological Survey (US) – volume: 46 issue: 5 year: 2010 ident: 10.1016/j.jhydrol.2022.127736_b0400 article-title: Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale publication-title: Water Resour. Res. doi: 10.1029/2008WR007327 – ident: 10.1016/j.jhydrol.2022.127736_bib521 doi: 10.1029/2011JD016048 – volume: 133 start-page: 681 issue: 4 year: 2015 ident: 10.1016/j.jhydrol.2022.127736_b0175 article-title: Examining why trends in very heavy precipitation should not be mistaken for trends in very high river discharge publication-title: Climat. Change doi: 10.1007/s10584-015-1476-1 |
SSID | ssj0000334 |
Score | 2.5257518 |
Snippet | •Regional, machine learning models solely for flood peak prediction.•LSTM based storm classifier for flood warning.•Importance of flood predictors depends on... Flood prediction across scales and more specifically in ungauged areas remains a great challenge that limits the efficiency of flood risk mitigation strategies... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 127736 |
SubjectTerms | decision support systems disaster preparedness Flood peak Flood warning Machine learning neural networks Prediction prototypes risk reduction storms stream flow Ungauged basins watersheds |
Title | Advancing flood warning procedures in ungauged basins with machine learning |
URI | https://dx.doi.org/10.1016/j.jhydrol.2022.127736 https://www.proquest.com/docview/2648880918 |
Volume | 609 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jHvQi_sT5iwhetzVp1jZHGY6puJOD3UKbl2qHdkM3xIt_u3lp6lCEgceWvlK-Jt9LXr73HiGXmuciCEG3tUwEhm4CO-csGaZgEm1yk2uXC3M_ioZjcTvpTRqkX-fCoKzSc3_F6Y6t_Z2uR7M7LwrM8eWcRVJw1Fcxl2YlRIyjvPO5knkEYSjqiuH49CqLpzvtTJ8-4HWGJxCcdxiPY1ep-U__9IupnfsZ7JBtv26kV9Wn7ZKGKffIpm9h_vSxT-5cf2RtPRHNUYxO36uYB3UuCpZ2W02Lki6xA_ajAWrdV1G-UYzD0henqDTUt5B4PCDjwfVDf9j2nRLaOhR80U7yKMp4z0SQ8kz2AgGag-U5yQ3DsK8G66HSTIieZlyD0cBkEgI3gYE8zbLwkDTLWWmOCOUQZ3bVHUkGuWASMst_oHGnoy1I0rSIqPFR2pcRx24Wz6rWi02Vh1UhrKqCtUU632bzqo7GOoOkBl_9GBDKcv0604v6Zyk7WfAEJC3NbPmmUM5nCUuy5Pj_rz8hW3hV6cVOSXPxujRndmWyyM7d0DsnG1c3d8PRF0z-5OI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEBUhOaSX0pWmqwq9ZpEsO9axhJakWU4p9CZsjZyF1glZKP37amy5paUQ6NVmhHmW3kijNzOE3GmeiJYHuq5lKDB007JrzpJhBCbUJjGJznJhhqOg-yyeXvyXEukUuTAoq3Tcn3N6xtbuSdOh2VzOZpjjyzkLpOCor2KYZlXB6lR-mVTue_3u6JuQPU8URcPR4DuRpzlvzKcfsFrgJQTnDcbb7axY858u6hdZZx7o8YDsu60jvc-_7pCUTHpEqq6L-fTjmPSzFsnaOiOaoB6dvudhD5p5KdjakzWdpXSLTbAnBqj1YLN0TTEUS98yUaWhrovE5IQ8Pz6MO926a5ZQ157gm3qYBEHMfRNAxGPptwRoDpbqJDcMI78arJOKYiF8zbgGo4HJ0ANuWgaSKI69U1JOF6k5I5RDO7Yb70AySASTEFsKBI2HHW1BkqZGRIGP0q6SODa0eFWFZGyuHKwKYVU5rDXS-DJb5qU0dhmEBfjqx5xQlu53md4WP0vZ9YKXIFFqFtu1QkWf5SzJwvP_D39Dqt3xcKAGvVH_guzhm1w-dknKm9XWXNmNyia-dhPxEyif55M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancing+flood+warning+procedures+in+ungauged+basins+with+machine+learning&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Rasheed%2C+Zimeena&rft.au=Aravamudan%2C+Akshay&rft.au=Gorji+Sefidmazgi%2C+Ali&rft.au=Anagnostopoulos%2C+Georgios+C&rft.date=2022-06-01&rft.issn=0022-1694&rft.volume=609+p.127736-&rft_id=info:doi/10.1016%2Fj.jhydrol.2022.127736&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |