Sub-structure and mechanical properties of twist channel angular pressed aluminium

The twist channel angular pressing (TCAP) method was developed with the aim to increase the effectiveness of severe plastic deformation (SPD) technologies. This study was focused on investigations of grains sizes, textures and sub-structure within a TCAP-processed commercial aluminium sample. Measur...

Full description

Saved in:
Bibliographic Details
Published inMaterials characterization Vol. 119; pp. 75 - 83
Main Authors Kocich, Radim, Kunčická, Lenka, Král, Petr, Macháčková, Adéla
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The twist channel angular pressing (TCAP) method was developed with the aim to increase the effectiveness of severe plastic deformation (SPD) technologies. This study was focused on investigations of grains sizes, textures and sub-structure within a TCAP-processed commercial aluminium sample. Measurements of microhardness and tensile strengths were performed to evaluate mechanical properties of the processed material. To point out the effectiveness of TCAP, the results were compared to Al samples processed by equal channel angular pressing (ECAP) via A and Bc routes. Almost 70% of the grains within the sample processed by a single TCAP pass were smaller than 5μm comparing to approximately 40% and 50% within samples processed by two ECAP passes via A and Bc routes, respectively. The texture of the TCAP sample exhibited a combination of A ideal and B fibre preferential texture components and its sub-structure exhibited a higher degree of development than the sub-structures in all the ECAP-processed samples. The TCAP sample also exhibited the highest increases in the mechanical properties. The microhardness was more than twice as high as for the original state, while the yield strength achieved almost 230MPa. [Display omitted] •Structure development after twist channel angular pressing (TCAP) was investigated.•Efficiency of TCAP was higher than two passes equal channel angular pressing (ECAP).•Mechanical properties increased more after one TCAP pass than after two ECAP passes.•Grain size refined down to 6μm after one TCAP pass.
AbstractList The twist channel angular pressing (TCAP) method was developed with the aim to increase the effectiveness of severe plastic deformation (SPD) technologies. This study was focused on investigations of grains sizes, textures and sub-structure within a TCAP-processed commercial aluminium sample. Measurements of microhardness and tensile strengths were performed to evaluate mechanical properties of the processed material. To point out the effectiveness of TCAP, the results were compared to Al samples processed by equal channel angular pressing (ECAP) via A and Bc routes. Almost 70% of the grains within the sample processed by a single TCAP pass were smaller than 5 mu m comparing to approximately 40% and 50% within samples processed by two ECAP passes via A and Bc routes, respectively. The texture of the TCAP sample exhibited a combination of A ideal and B fibre preferential texture components and its sub-structure exhibited a higher degree of development than the sub-structures in all the ECAP-processed samples. The TCAP sample also exhibited the highest increases in the mechanical properties. The microhardness was more than twice as high as for the original state, while the yield strength achieved almost 230MPa.
The twist channel angular pressing (TCAP) method was developed with the aim to increase the effectiveness of severe plastic deformation (SPD) technologies. This study was focused on investigations of grains sizes, textures and sub-structure within a TCAP-processed commercial aluminium sample. Measurements of microhardness and tensile strengths were performed to evaluate mechanical properties of the processed material. To point out the effectiveness of TCAP, the results were compared to Al samples processed by equal channel angular pressing (ECAP) via A and Bc routes. Almost 70% of the grains within the sample processed by a single TCAP pass were smaller than 5μm comparing to approximately 40% and 50% within samples processed by two ECAP passes via A and Bc routes, respectively. The texture of the TCAP sample exhibited a combination of A ideal and B fibre preferential texture components and its sub-structure exhibited a higher degree of development than the sub-structures in all the ECAP-processed samples. The TCAP sample also exhibited the highest increases in the mechanical properties. The microhardness was more than twice as high as for the original state, while the yield strength achieved almost 230MPa. [Display omitted] •Structure development after twist channel angular pressing (TCAP) was investigated.•Efficiency of TCAP was higher than two passes equal channel angular pressing (ECAP).•Mechanical properties increased more after one TCAP pass than after two ECAP passes.•Grain size refined down to 6μm after one TCAP pass.
Author Kunčická, Lenka
Macháčková, Adéla
Král, Petr
Kocich, Radim
Author_xml – sequence: 1
  givenname: Radim
  surname: Kocich
  fullname: Kocich, Radim
  email: radim.kocich@vsb.cz
  organization: Regional Materials Science and Technology Centre, VŠB-TUO, 17. listopadu 15, 70833 Ostrava 8, Czech Republic
– sequence: 2
  givenname: Lenka
  surname: Kunčická
  fullname: Kunčická, Lenka
  organization: Regional Materials Science and Technology Centre, VŠB-TUO, 17. listopadu 15, 70833 Ostrava 8, Czech Republic
– sequence: 3
  givenname: Petr
  surname: Král
  fullname: Král, Petr
  organization: Institute of Physics of Materials, ASCR, Žižkova 22, 61662 Brno, Czech Republic
– sequence: 4
  givenname: Adéla
  surname: Macháčková
  fullname: Macháčková, Adéla
  organization: Regional Materials Science and Technology Centre, VŠB-TUO, 17. listopadu 15, 70833 Ostrava 8, Czech Republic
BookMark eNqFkEtLxDAUhYMo6Iz-BKFLN615tEkGFyKDLxgQfKxDmt5qhjYd81D892aYWblxde_lnnM4fDN06CYHCJ0TXBFM-OW6GnU0H9pXNJ8VFhWm-ACdEClYWRO5OMw7ruuykZgdo1kIa4wxl0ScoOeX1JYh-mRi8lBo1xUj5CxnjR6KjZ824KOFUEx9Eb9tiMX26WDI0vc0aJ81EAJ0hR7SaJ1N4yk66vUQ4Gw_5-jt7vZ1-VCunu4flzer0rCaxlJyjiVpa74QpiaLtqec5oI1cNAN031HGgxCtJQLrTWhuAXcM2oobRhnlLI5utjl5pafCUJUow0GhkE7mFJQRLKGMyGpyNKrndT4KQQPvTI26mgnF722gyJYbUmqtdqTVFuSCguVSWZ388e98XbU_udf3_XOB5nClwWvgrHgDHTWg4mqm-w_Cb_81pM8
CitedBy_id crossref_primary_10_1016_j_matdes_2020_109255
crossref_primary_10_1016_j_rinp_2019_102236
crossref_primary_10_1016_j_msea_2019_04_091
crossref_primary_10_3390_ma14123255
crossref_primary_10_2320_matertrans_MF201924
crossref_primary_10_1016_j_matdes_2017_03_048
crossref_primary_10_1007_s12666_020_01877_0
crossref_primary_10_4028_www_scientific_net_KEM_865_7
crossref_primary_10_1016_j_matchar_2019_03_045
crossref_primary_10_1007_s40430_023_04641_9
crossref_primary_10_3390_ma13010208
crossref_primary_10_1016_j_pmatsci_2017_04_002
crossref_primary_10_1002_adem_202402218
crossref_primary_10_3390_met12111800
crossref_primary_10_1016_j_matdes_2018_10_027
crossref_primary_10_1007_s12540_022_01221_9
crossref_primary_10_3390_pr10112181
crossref_primary_10_3390_ma12213605
crossref_primary_10_32604_cmes_2025_059889
crossref_primary_10_3390_ma12213462
crossref_primary_10_3390_ma13071725
crossref_primary_10_1088_1757_899X_1190_1_012032
crossref_primary_10_3390_ma16196555
crossref_primary_10_3390_ma12244200
crossref_primary_10_3390_ma13184047
crossref_primary_10_3390_ma14051136
crossref_primary_10_1088_2053_1591_ab25b2
crossref_primary_10_1016_j_jallcom_2024_174667
crossref_primary_10_1016_j_acme_2018_11_003
crossref_primary_10_3390_ma13122869
crossref_primary_10_3390_ma13184161
crossref_primary_10_1007_s11665_019_04454_9
crossref_primary_10_3390_met13111902
crossref_primary_10_1016_j_msea_2018_03_059
crossref_primary_10_1080_2374068X_2023_2204021
crossref_primary_10_1007_s11661_024_07476_8
crossref_primary_10_3390_ma17020466
crossref_primary_10_1088_1757_899X_369_1_012029
Cites_doi 10.1016/j.matlet.2011.08.104
10.1007/s10853-015-9143-5
10.1016/j.matdes.2015.11.062
10.1016/j.matlet.2008.01.091
10.1016/j.pmatsci.2009.01.001
10.1016/S1003-6326(15)63735-9
10.1016/j.msea.2015.08.050
10.1016/j.msea.2006.04.156
10.1016/S0921-5093(00)01884-0
10.1016/j.matdes.2015.01.008
10.1016/j.actamat.2010.01.038
10.1016/j.msea.2014.06.079
10.1016/j.msea.2012.09.020
10.1016/j.msea.2008.03.008
10.1179/pom.1998.41.1.11
10.1016/j.pmatsci.2006.02.003
10.1016/j.micron.2005.03.004
10.1016/j.commatsci.2010.11.012
10.1007/s12540-015-4387-9
10.1016/j.ultramic.2015.11.011
10.12693/APhysPolA.122.581
10.1016/j.msea.2006.08.029
10.1007/s10853-011-5768-1
10.1016/j.matchar.2015.12.018
10.1016/j.actamat.2009.11.020
10.1016/j.msea.2006.05.009
10.1016/j.matdes.2008.06.057
10.1016/j.msea.2010.06.057
10.1016/j.commatsci.2008.07.024
10.1016/j.msea.2012.11.047
10.1016/j.jallcom.2015.06.029
10.1007/s11837-006-0212-8
10.1016/j.msea.2007.12.055
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright_xml – notice: 2016 Elsevier Inc.
DBID AAYXX
CITATION
7QF
7SR
8BQ
8FD
JG9
DOI 10.1016/j.matchar.2016.07.020
DatabaseName CrossRef
Aluminium Industry Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Aluminium Industry Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-4189
EndPage 83
ExternalDocumentID 10_1016_j_matchar_2016_07_020
S1044580316302212
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HX~
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
WH7
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7QF
7SR
8BQ
8FD
AFXIZ
EFKBS
JG9
ID FETCH-LOGICAL-c342t-866081b4697c419bf2625804e6ea53afd150e77b267aaa120be0f32c225363223
IEDL.DBID .~1
ISSN 1044-5803
IngestDate Wed Jul 30 11:14:56 EDT 2025
Thu Apr 24 23:05:54 EDT 2025
Tue Jul 01 01:35:52 EDT 2025
Fri Feb 23 02:28:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Twist channel angular pressing (TCAP)
Aluminium
Equal channel angular pressing (ECAP)
Electron microscopy
Mechanical characterization
Dislocations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-866081b4697c419bf2625804e6ea53afd150e77b267aaa120be0f32c225363223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1835637827
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1835637827
crossref_citationtrail_10_1016_j_matchar_2016_07_020
crossref_primary_10_1016_j_matchar_2016_07_020
elsevier_sciencedirect_doi_10_1016_j_matchar_2016_07_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2016
2016-09-00
20160901
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: September 2016
PublicationDecade 2010
PublicationTitle Materials characterization
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Alexandrov, Zhu, Lowe, Valiev (bb0005) 1998; 41
Latypov, Lee, Beygelzimer, Kulagin, Kim (bb0045) 2015; 21
Roy (bb0185) 2014
Beygelzimer, Varyukhin, Synkov, Orlov (bb0050) 2009; 503
Xu, Furukawa, Horita, Langdon (bb0125) 2005; 398
Kocich, Greger, Kursa, Szurman, Macháčková (bb0060) 2010; 527
Lowe (bb0010) 2006; 58
Kocich, Kursa, Macháčková (bb0040) 2012; 122
Mckenzie, Lapovok (bb0150) 2010; 58
Tóth, Estrin, Lapovok, Gu (bb0130) 2010; 58
Kocich, Kunčická, Král, Lowe (bb0170) 2016; 90
Sitdikov, Avtokratova, Sakai (bb0205) 2015; 648
El-Danaf (bb0145) 2008; 492
Kocich, Greger, Macháčková (bb0025) 2010
Dobatkin, Szpunar, Zhilyaev, Cho, Kuznetsov (bb0115) 2007; 462
Chen, Li, He, Lu, Ding, Li (bb0195) 2008; 62
Hosseini, Kazeminezhad (bb0110) 2011; 50
Zhao, Park, Shibata, Tsuji (bb0175) 2014
Hosseini, Kazeminezhad (bb0105) 2009; 44
Kumar, Kawasaki, Langdon (bb0215) 2016; 51
Beyerlein, Tóth (bb0135) 2009; 54
Nejadseyfi, Shokuhfar, Sadeghi (bb0200) 2016; 651
Latypov, Lee, Beygelzimer, Prilepo, Gusar, Kim (bb0155) 2015
Humphreys, Hetherly (bb0190) 2004
Kocich, Fiala, Szurman, Macháčková, Mihola (bb0065) 2011; 46
Kocich, Kunčická, Mihola, Skotnicová (bb0080) 2013; 563
(bb0090) 2009
Guyon, Gey, Goran, Chalal, Pérez-Willard (bb0120) 2015; 161
Zhilyaev, Oh-ishi, Raab, McNelley (bb0160) 2006; 441
Stolyarov, Zhu, Lowe, Valiev (bb0030) 2001; 303
Shadabroo, Eivani, Jafarian, Razavi, Zhou (bb0210) 2016; 112
Ramesh (bb0100) 2009
Kocich, Macháčková, Kunčická (bb0070) 2014; 612
Engler, Randle (bb0085) 2010
Cabibbo, Evangelista, Scalabroni (bb0095) 2005; 36
Valiev, Langdon (bb0035) 2006; 51
Sabirov, Murashkin, Valiev (bb0220) 2013; 560
Nikulin, Malopheyev, Kipelova, Kaibyshev (bb0015) 2012; 66
Valiev, Semenova, Jakushina, Latysh, Rack, Lowe (bb0020) 2008; 584-586
Pippan, Scheriau, Taylor, Hafok, Hohenwarter, Bachmaier (bb0055) 2010
Russell, Lee (bb0180) 2005
Kocich, Macháčková, Kunčická, Fojtík (bb0225) 2015; 71
Zhilyaev, Swisher, Oh-ishi, Langdon, McNelley (bb0140) 2006; 429
Shaeri, Shaeri, Salehi, Seyyedein, Djavanrodi (bb0165) 2015; 25
Balasundar, Sudhakara Rao, Raghu (bb0075) 2009; 30
Chen (10.1016/j.matchar.2016.07.020_bb0195) 2008; 62
Shaeri (10.1016/j.matchar.2016.07.020_bb0165) 2015; 25
Valiev (10.1016/j.matchar.2016.07.020_bb0035) 2006; 51
Kocich (10.1016/j.matchar.2016.07.020_bb0080) 2013; 563
Valiev (10.1016/j.matchar.2016.07.020_bb0020) 2008; 584-586
Xu (10.1016/j.matchar.2016.07.020_bb0125) 2005; 398
Latypov (10.1016/j.matchar.2016.07.020_bb0045) 2015; 21
Beyerlein (10.1016/j.matchar.2016.07.020_bb0135) 2009; 54
Kocich (10.1016/j.matchar.2016.07.020_bb0060) 2010; 527
Hosseini (10.1016/j.matchar.2016.07.020_bb0110) 2011; 50
Kocich (10.1016/j.matchar.2016.07.020_bb0225) 2015; 71
Stolyarov (10.1016/j.matchar.2016.07.020_bb0030) 2001; 303
Kocich (10.1016/j.matchar.2016.07.020_bb0170) 2016; 90
Russell (10.1016/j.matchar.2016.07.020_bb0180) 2005
Humphreys (10.1016/j.matchar.2016.07.020_bb0190) 2004
Ramesh (10.1016/j.matchar.2016.07.020_bb0100) 2009
Zhilyaev (10.1016/j.matchar.2016.07.020_bb0160) 2006; 441
Sabirov (10.1016/j.matchar.2016.07.020_bb0220) 2013; 560
Kocich (10.1016/j.matchar.2016.07.020_bb0040) 2012; 122
Kumar (10.1016/j.matchar.2016.07.020_bb0215) 2016; 51
Balasundar (10.1016/j.matchar.2016.07.020_bb0075) 2009; 30
Alexandrov (10.1016/j.matchar.2016.07.020_bb0005) 1998; 41
Cabibbo (10.1016/j.matchar.2016.07.020_bb0095) 2005; 36
Guyon (10.1016/j.matchar.2016.07.020_bb0120) 2015; 161
Nejadseyfi (10.1016/j.matchar.2016.07.020_bb0200) 2016; 651
Shadabroo (10.1016/j.matchar.2016.07.020_bb0210) 2016; 112
Tóth (10.1016/j.matchar.2016.07.020_bb0130) 2010; 58
Zhilyaev (10.1016/j.matchar.2016.07.020_bb0140) 2006; 429
Latypov (10.1016/j.matchar.2016.07.020_bb0155) 2015
Kocich (10.1016/j.matchar.2016.07.020_bb0065) 2011; 46
Dobatkin (10.1016/j.matchar.2016.07.020_bb0115) 2007; 462
Zhao (10.1016/j.matchar.2016.07.020_bb0175) 2014
Engler (10.1016/j.matchar.2016.07.020_bb0085) 2010
El-Danaf (10.1016/j.matchar.2016.07.020_bb0145) 2008; 492
Lowe (10.1016/j.matchar.2016.07.020_bb0010) 2006; 58
Kocich (10.1016/j.matchar.2016.07.020_bb0025) 2010
Mckenzie (10.1016/j.matchar.2016.07.020_bb0150) 2010; 58
Hosseini (10.1016/j.matchar.2016.07.020_bb0105) 2009; 44
Pippan (10.1016/j.matchar.2016.07.020_bb0055) 2010
Beygelzimer (10.1016/j.matchar.2016.07.020_bb0050) 2009; 503
Nikulin (10.1016/j.matchar.2016.07.020_bb0015) 2012; 66
(10.1016/j.matchar.2016.07.020_bb0090) 2009
Kocich (10.1016/j.matchar.2016.07.020_bb0070) 2014; 612
Roy (10.1016/j.matchar.2016.07.020_bb0185) 2014
Sitdikov (10.1016/j.matchar.2016.07.020_bb0205) 2015; 648
References_xml – year: 2004
  ident: bb0190
  article-title: Recrystallization and Related Annealing Phenomena
– volume: 50
  start-page: 1123
  year: 2011
  end-page: 1135
  ident: bb0110
  article-title: A new microstructural model based on dislocation generation and consumption mechanisms through severe plastic deformation
  publication-title: Comput Mater Sci
– volume: 563
  start-page: 86
  year: 2013
  end-page: 94
  ident: bb0080
  article-title: Numerical and experimental analysis of twist channel angular pressing (TCAP) as a SPD process
  publication-title: Mater Sci Eng A
– start-page: 166
  year: 2010
  end-page: 171
  ident: bb0025
  article-title: Finite Element Investigation of Influence of Selected Factors on ECAP Process
  publication-title: Met. 2010 19th Int. Metall. Mater. Conf
– volume: 612
  start-page: 445
  year: 2014
  end-page: 455
  ident: bb0070
  article-title: Twist channel multi-angular pressing (TCMAP) as a new SPD process: numerical and experimental study
  publication-title: Mater Sci Eng A
– volume: 30
  start-page: 1050
  year: 2009
  end-page: 1059
  ident: bb0075
  article-title: Equal channel angular pressing die to extrude a variety of materials
  publication-title: Mater. Des
– volume: 648
  start-page: 195
  year: 2015
  end-page: 204
  ident: bb0205
  article-title: Microstructural and texture changes during equal channel angular pressing of an Al–Mg–Sc alloy
  publication-title: J Alloys Compd
– year: 2010
  ident: bb0055
  article-title: Saturation of Fragmentation During Severe Plastic Deformation, Annual Reviews, Palo Alto, CA
– start-page: 79
  year: 2014
  end-page: 98
  ident: bb0185
  article-title: Recrystallization Behavior of Commercial Puritx Aluminum Alloys
  publication-title: Light Met. Alloy. Appl., InTech
– volume: 303
  start-page: 82
  year: 2001
  end-page: 89
  ident: bb0030
  article-title: Microstructure and properties of pure Ti processed by ECAP and cold extrusion
  publication-title: Mater Sci Eng A
– volume: 492
  start-page: 141
  year: 2008
  end-page: 152
  ident: bb0145
  article-title: Texture evolution and fraction of favorably oriented fibers in commercially pure aluminum processed to 16 ECAP passes
  publication-title: Mater Sci Eng A
– volume: 71
  start-page: 36
  year: 2015
  end-page: 47
  ident: bb0225
  article-title: Fabrication and characterization of cold-swaged multilayered Al–Cu clad composites
  publication-title: Mater Des
– year: 2009
  ident: bb0090
  article-title: Three –Dimensional Orientation Microscopy by Serial Sectioning and EBSD-Based Orientation Mapping in a FIB-SEM (Electron Backscatter Diffraction in Material Science)
– volume: 503
  start-page: 14
  year: 2009
  end-page: 17
  ident: bb0050
  article-title: Useful properties of twist extrusion
  publication-title: Mater Sci Eng A
– volume: 161
  start-page: 161
  year: 2015
  end-page: 167
  ident: bb0120
  article-title: Advancing FIB assisted 3D EBSD using a static sample setup
  publication-title: Ultramicroscopy
– volume: 429
  start-page: 137
  year: 2006
  end-page: 148
  ident: bb0140
  article-title: Microtexture and microstructure evolution during processing of pure aluminum by repetitive ECAP
  publication-title: Mater Sci Eng A
– year: 2015
  ident: bb0155
  article-title: Modeling and characterization of texture evolution in twist extrusion
  publication-title: Metall Mater Trans A
– volume: 36
  start-page: 401
  year: 2005
  end-page: 414
  ident: bb0095
  article-title: EBSD FEG-SEM, TEM and XRD techniques applied to grain study of a commercially pure 1200 aluminum subjected to equal-channel angular-pressing
  publication-title: Micron
– volume: 527
  start-page: 6386
  year: 2010
  end-page: 6392
  ident: bb0060
  article-title: Twist channel angular pressing (TCAP) as a method for increasing the efficiency of SPD
  publication-title: Mater Sci Eng A
– volume: 44
  start-page: 1107
  year: 2009
  end-page: 1115
  ident: bb0105
  article-title: A hybrid model on severe plastic deformation of copper
  publication-title: Comput. Mater. Sci
– volume: 58
  start-page: 28
  year: 2006
  end-page: 32
  ident: bb0010
  article-title: Metals and alloys nanostructured by severe plastic deformation: commercialization pathways
  publication-title: JOM
– volume: 122
  start-page: 581
  year: 2012
  end-page: 587
  ident: bb0040
  article-title: FEA of plastic flow in AZ63 alloy during ECAP process
  publication-title: Acta Phys Pol A
– start-page: 1191
  year: 2014
  ident: bb0175
  article-title: Microstructural Evolution of Ferrite Grains during Dynamic Transformation in 10Ni-0.1C Steel
  publication-title: TMS2014 Annu. Meet. Suppl. Proc.
– volume: 41
  start-page: 11
  year: 1998
  end-page: 13
  ident: bb0005
  article-title: Severe plastic deformation: new technique for powder consolidation and grain size refinement
  publication-title: Powder Metall
– volume: 441
  start-page: 245
  year: 2006
  end-page: 252
  ident: bb0160
  article-title: Influence of ECAP processing parameters on texture and microstructure of commercially pure aluminum
  publication-title: Mater Sci Eng A
– volume: 46
  start-page: 7865
  year: 2011
  end-page: 7876
  ident: bb0065
  article-title: Twist-channel angular pressing: effect of the strain path on grain refinement and mechanical properties of copper
  publication-title: J Mater Sci
– volume: 462
  start-page: 132
  year: 2007
  end-page: 138
  ident: bb0115
  article-title: Effect of the route and strain of equal-channel angular pressing on structure and properties of oxygen-free copper
  publication-title: Mater Sci Eng A
– volume: 58
  start-page: 1782
  year: 2010
  end-page: 1794
  ident: bb0130
  article-title: A model of grain fragmentation based on lattice curvature
  publication-title: Acta Mater
– volume: 90
  start-page: 1092
  year: 2016
  end-page: 1099
  ident: bb0170
  article-title: Texture, deformation twinning and hardening in a newly developed Mg–Dy–Al–Zn–Zr alloy processed with high pressure torsion
  publication-title: Mater. Des
– volume: 25
  start-page: 1367
  year: 2015
  end-page: 1375
  ident: bb0165
  article-title: Microstructure and texture evolution of Al-7075 alloy processed by equal channel angular pressing
  publication-title: Trans Nonferrous Metals Soc China
– volume: 112
  start-page: 160
  year: 2016
  end-page: 168
  ident: bb0210
  article-title: Optimization of interpass annealing for a minimum recrystallized grain size and further grain refinement towards nanostructured AA6063 during equal channel angular pressing
  publication-title: Mater Charact
– volume: 62
  start-page: 2821
  year: 2008
  end-page: 2824
  ident: bb0195
  article-title: The influence of cryoECAP on microstructure and property of commercial pure aluminum
  publication-title: Mater Lett
– volume: 51
  start-page: 881
  year: 2006
  end-page: 981
  ident: bb0035
  article-title: Principles of equal-channel angular pressing as a processing tool for grain refinement
  publication-title: Prog. Mater. Sci
– volume: 21
  start-page: 569
  year: 2015
  end-page: 579
  ident: bb0045
  article-title: On the simple shear model of twist extrusion and its deviations
  publication-title: Met Mater Int
– volume: 58
  start-page: 3198
  year: 2010
  end-page: 3211
  ident: bb0150
  article-title: ECAP with back pressure for optimum strength and ductility in aluminium alloy 6016. Part 1: microstructure
  publication-title: Acta Mater
– volume: 54
  start-page: 427
  year: 2009
  end-page: 510
  ident: bb0135
  article-title: Texture evolution in equal-channel angular extrusion
  publication-title: Prog Mater Sci
– volume: 66
  start-page: 311
  year: 2012
  end-page: 313
  ident: bb0015
  article-title: Effect of SPD and friction stir welding on microstructure and mechanical properties of Al-Cu-Mg-Ag sheets
  publication-title: Mater Lett
– volume: 651
  start-page: 461
  year: 2016
  end-page: 466
  ident: bb0200
  article-title: Feasibility of attaining uniform grain structure and enhanced ductility in aluminum alloy by employing a beveled punch in equal-channel angular pressing
  publication-title: Mater Sci Eng A
– start-page: 121
  year: 2009
  end-page: 178
  ident: bb0100
  article-title: Plastic Deformation of Nanomaterials
  publication-title: Nanomaterials
– year: 2010
  ident: bb0085
  article-title: Introduction to Texture Analysis, Macrotexture, Microtexture, and Orientation Mapping
– volume: 560
  start-page: 1
  year: 2013
  end-page: 24
  ident: bb0220
  article-title: Nanostructured aluminium alloys produced by severe plastic deformation: new horizons in development
  publication-title: Mater Sci Eng A
– volume: 398
  start-page: 66
  year: 2005
  end-page: 76
  ident: bb0125
  article-title: The evolution of homogeneity and grain refinement during equal-channel angular pressing
– year: 2005
  ident: bb0180
  article-title: Structure-Property Relations in Nonferrous Metals
– volume: 51
  start-page: 7
  year: 2016
  end-page: 18
  ident: bb0215
  article-title: Review: overcoming the paradox of strength and ductility in ultrafine-grained materials at low temperatures
  publication-title: J Mater Sci
– volume: 584-586
  start-page: 49
  year: 2008
  end-page: 54
  ident: bb0020
  article-title: Nanostructured SPD processed titanium for medical implants
  publication-title: Nanomater Sev Plast Deform IV
– volume: 66
  start-page: 311
  year: 2012
  ident: 10.1016/j.matchar.2016.07.020_bb0015
  article-title: Effect of SPD and friction stir welding on microstructure and mechanical properties of Al-Cu-Mg-Ag sheets
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2011.08.104
– volume: 51
  start-page: 7
  year: 2016
  ident: 10.1016/j.matchar.2016.07.020_bb0215
  article-title: Review: overcoming the paradox of strength and ductility in ultrafine-grained materials at low temperatures
  publication-title: J Mater Sci
  doi: 10.1007/s10853-015-9143-5
– start-page: 79
  year: 2014
  ident: 10.1016/j.matchar.2016.07.020_bb0185
  article-title: Recrystallization Behavior of Commercial Puritx Aluminum Alloys
– volume: 90
  start-page: 1092
  year: 2016
  ident: 10.1016/j.matchar.2016.07.020_bb0170
  article-title: Texture, deformation twinning and hardening in a newly developed Mg–Dy–Al–Zn–Zr alloy processed with high pressure torsion
  publication-title: Mater. Des
  doi: 10.1016/j.matdes.2015.11.062
– year: 2005
  ident: 10.1016/j.matchar.2016.07.020_bb0180
– volume: 62
  start-page: 2821
  year: 2008
  ident: 10.1016/j.matchar.2016.07.020_bb0195
  article-title: The influence of cryoECAP on microstructure and property of commercial pure aluminum
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2008.01.091
– volume: 54
  start-page: 427
  year: 2009
  ident: 10.1016/j.matchar.2016.07.020_bb0135
  article-title: Texture evolution in equal-channel angular extrusion
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2009.01.001
– volume: 398
  start-page: 66
  year: 2005
  ident: 10.1016/j.matchar.2016.07.020_bb0125
  article-title: The evolution of homogeneity and grain refinement during equal-channel angular pressing: a model for grain refinement in ECAP
– volume: 584-586
  start-page: 49
  year: 2008
  ident: 10.1016/j.matchar.2016.07.020_bb0020
  article-title: Nanostructured SPD processed titanium for medical implants
  publication-title: Nanomater Sev Plast Deform IV
– volume: 25
  start-page: 1367
  year: 2015
  ident: 10.1016/j.matchar.2016.07.020_bb0165
  article-title: Microstructure and texture evolution of Al-7075 alloy processed by equal channel angular pressing
  publication-title: Trans Nonferrous Metals Soc China
  doi: 10.1016/S1003-6326(15)63735-9
– volume: 651
  start-page: 461
  year: 2016
  ident: 10.1016/j.matchar.2016.07.020_bb0200
  article-title: Feasibility of attaining uniform grain structure and enhanced ductility in aluminum alloy by employing a beveled punch in equal-channel angular pressing
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2015.08.050
– start-page: 166
  year: 2010
  ident: 10.1016/j.matchar.2016.07.020_bb0025
  article-title: Finite Element Investigation of Influence of Selected Factors on ECAP Process
– volume: 462
  start-page: 132
  year: 2007
  ident: 10.1016/j.matchar.2016.07.020_bb0115
  article-title: Effect of the route and strain of equal-channel angular pressing on structure and properties of oxygen-free copper
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2006.04.156
– volume: 303
  start-page: 82
  year: 2001
  ident: 10.1016/j.matchar.2016.07.020_bb0030
  article-title: Microstructure and properties of pure Ti processed by ECAP and cold extrusion
  publication-title: Mater Sci Eng A
  doi: 10.1016/S0921-5093(00)01884-0
– year: 2010
  ident: 10.1016/j.matchar.2016.07.020_bb0085
– volume: 71
  start-page: 36
  year: 2015
  ident: 10.1016/j.matchar.2016.07.020_bb0225
  article-title: Fabrication and characterization of cold-swaged multilayered Al–Cu clad composites
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2015.01.008
– year: 2015
  ident: 10.1016/j.matchar.2016.07.020_bb0155
  article-title: Modeling and characterization of texture evolution in twist extrusion
  publication-title: Metall Mater Trans A
– volume: 58
  start-page: 3198
  year: 2010
  ident: 10.1016/j.matchar.2016.07.020_bb0150
  article-title: ECAP with back pressure for optimum strength and ductility in aluminium alloy 6016. Part 1: microstructure
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2010.01.038
– volume: 612
  start-page: 445
  year: 2014
  ident: 10.1016/j.matchar.2016.07.020_bb0070
  article-title: Twist channel multi-angular pressing (TCMAP) as a new SPD process: numerical and experimental study
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2014.06.079
– volume: 560
  start-page: 1
  year: 2013
  ident: 10.1016/j.matchar.2016.07.020_bb0220
  article-title: Nanostructured aluminium alloys produced by severe plastic deformation: new horizons in development
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2012.09.020
– year: 2004
  ident: 10.1016/j.matchar.2016.07.020_bb0190
– volume: 492
  start-page: 141
  year: 2008
  ident: 10.1016/j.matchar.2016.07.020_bb0145
  article-title: Texture evolution and fraction of favorably oriented fibers in commercially pure aluminum processed to 16 ECAP passes
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2008.03.008
– volume: 41
  start-page: 11
  year: 1998
  ident: 10.1016/j.matchar.2016.07.020_bb0005
  article-title: Severe plastic deformation: new technique for powder consolidation and grain size refinement
  publication-title: Powder Metall
  doi: 10.1179/pom.1998.41.1.11
– volume: 51
  start-page: 881
  year: 2006
  ident: 10.1016/j.matchar.2016.07.020_bb0035
  article-title: Principles of equal-channel angular pressing as a processing tool for grain refinement
  publication-title: Prog. Mater. Sci
  doi: 10.1016/j.pmatsci.2006.02.003
– volume: 36
  start-page: 401
  year: 2005
  ident: 10.1016/j.matchar.2016.07.020_bb0095
  article-title: EBSD FEG-SEM, TEM and XRD techniques applied to grain study of a commercially pure 1200 aluminum subjected to equal-channel angular-pressing
  publication-title: Micron
  doi: 10.1016/j.micron.2005.03.004
– volume: 50
  start-page: 1123
  year: 2011
  ident: 10.1016/j.matchar.2016.07.020_bb0110
  article-title: A new microstructural model based on dislocation generation and consumption mechanisms through severe plastic deformation
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2010.11.012
– volume: 21
  start-page: 569
  year: 2015
  ident: 10.1016/j.matchar.2016.07.020_bb0045
  article-title: On the simple shear model of twist extrusion and its deviations
  publication-title: Met Mater Int
  doi: 10.1007/s12540-015-4387-9
– volume: 161
  start-page: 161
  year: 2015
  ident: 10.1016/j.matchar.2016.07.020_bb0120
  article-title: Advancing FIB assisted 3D EBSD using a static sample setup
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2015.11.011
– volume: 122
  start-page: 581
  year: 2012
  ident: 10.1016/j.matchar.2016.07.020_bb0040
  article-title: FEA of plastic flow in AZ63 alloy during ECAP process
  publication-title: Acta Phys Pol A
  doi: 10.12693/APhysPolA.122.581
– volume: 441
  start-page: 245
  year: 2006
  ident: 10.1016/j.matchar.2016.07.020_bb0160
  article-title: Influence of ECAP processing parameters on texture and microstructure of commercially pure aluminum
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2006.08.029
– volume: 46
  start-page: 7865
  year: 2011
  ident: 10.1016/j.matchar.2016.07.020_bb0065
  article-title: Twist-channel angular pressing: effect of the strain path on grain refinement and mechanical properties of copper
  publication-title: J Mater Sci
  doi: 10.1007/s10853-011-5768-1
– volume: 112
  start-page: 160
  year: 2016
  ident: 10.1016/j.matchar.2016.07.020_bb0210
  article-title: Optimization of interpass annealing for a minimum recrystallized grain size and further grain refinement towards nanostructured AA6063 during equal channel angular pressing
  publication-title: Mater Charact
  doi: 10.1016/j.matchar.2015.12.018
– start-page: 1191
  year: 2014
  ident: 10.1016/j.matchar.2016.07.020_bb0175
  article-title: Microstructural Evolution of Ferrite Grains during Dynamic Transformation in 10Ni-0.1C Steel
– year: 2010
  ident: 10.1016/j.matchar.2016.07.020_bb0055
– volume: 58
  start-page: 1782
  year: 2010
  ident: 10.1016/j.matchar.2016.07.020_bb0130
  article-title: A model of grain fragmentation based on lattice curvature
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2009.11.020
– volume: 429
  start-page: 137
  year: 2006
  ident: 10.1016/j.matchar.2016.07.020_bb0140
  article-title: Microtexture and microstructure evolution during processing of pure aluminum by repetitive ECAP
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2006.05.009
– volume: 30
  start-page: 1050
  year: 2009
  ident: 10.1016/j.matchar.2016.07.020_bb0075
  article-title: Equal channel angular pressing die to extrude a variety of materials
  publication-title: Mater. Des
  doi: 10.1016/j.matdes.2008.06.057
– volume: 527
  start-page: 6386
  year: 2010
  ident: 10.1016/j.matchar.2016.07.020_bb0060
  article-title: Twist channel angular pressing (TCAP) as a method for increasing the efficiency of SPD
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2010.06.057
– year: 2009
  ident: 10.1016/j.matchar.2016.07.020_bb0090
– volume: 44
  start-page: 1107
  year: 2009
  ident: 10.1016/j.matchar.2016.07.020_bb0105
  article-title: A hybrid model on severe plastic deformation of copper
  publication-title: Comput. Mater. Sci
  doi: 10.1016/j.commatsci.2008.07.024
– volume: 563
  start-page: 86
  year: 2013
  ident: 10.1016/j.matchar.2016.07.020_bb0080
  article-title: Numerical and experimental analysis of twist channel angular pressing (TCAP) as a SPD process
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2012.11.047
– start-page: 121
  year: 2009
  ident: 10.1016/j.matchar.2016.07.020_bb0100
  article-title: Plastic Deformation of Nanomaterials
– volume: 648
  start-page: 195
  year: 2015
  ident: 10.1016/j.matchar.2016.07.020_bb0205
  article-title: Microstructural and texture changes during equal channel angular pressing of an Al–Mg–Sc alloy
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2015.06.029
– volume: 58
  start-page: 28
  year: 2006
  ident: 10.1016/j.matchar.2016.07.020_bb0010
  article-title: Metals and alloys nanostructured by severe plastic deformation: commercialization pathways
  publication-title: JOM
  doi: 10.1007/s11837-006-0212-8
– volume: 503
  start-page: 14
  year: 2009
  ident: 10.1016/j.matchar.2016.07.020_bb0050
  article-title: Useful properties of twist extrusion
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2007.12.055
SSID ssj0006817
Score 2.3183403
Snippet The twist channel angular pressing (TCAP) method was developed with the aim to increase the effectiveness of severe plastic deformation (SPD) technologies....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 75
SubjectTerms Aluminium
Aluminum
Channels
Dislocations
Electron microscopy
Equal channel angular pressing
Equal channel angular pressing (ECAP)
Grain size
Mechanical characterization
Mechanical properties
Microhardness
Surface layer
Texture
Twist channel angular pressing (TCAP)
Title Sub-structure and mechanical properties of twist channel angular pressed aluminium
URI https://dx.doi.org/10.1016/j.matchar.2016.07.020
https://www.proquest.com/docview/1835637827
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IHtSDUdSIr9TE68Ky7bbLkRAJauSgknBrut02gcBCEOLN3-7MPkSNCYnH3W2bzcx05pt2HoTcxgBCfB0azwlnPB4kzGtj4JqLnIkAgYDHgQnOTwPRH_KHUTiqkG6ZC4NhlYXuz3V6pq2LN82Cms3FeNx8AUeChxEIpWBgiLJOw5xLlPLGxybMQ0RZ110c7OHoTRZPc9IAUIjJTRjhldfwxLbff9unX5o6Mz-9Q3JQ4EbayX_tiFRsWiO73bJdW43sf6sseEyeQSF4eW3Y9dJSnSZ0ZjHJF3lCF3gCv8RSqnTu6OodlqD4MbVTiueX4O3SLEDWJlSD9hqn4_XshAx7d6_dvle0T_AM48HKi4QAex-D_ysNb7VjF4CvE_ncCqtDpl0CWNBKGQdCaq1bgR9b37HAwA5nAvY5OyXVdJ7aM0KtL4w0OgGs4zh3IYz0Q82CtrBcMhPUCS-JpkxRWxxbXExVGUQ2UQWtFdJa-VIBreuk8TVtkRfX2DYhKjmifkiJAgOwbepNyUEFnMFrEZ3a-fpNgVILBQOkJM__v_wF2cOnPPrsklSBwfYK4Moqvs7k8ZrsdO4f-4NPr9rp-A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4YPKAHo6gRn2vitVC62205GiJBBQ4KCbfNdrubQKAQhHjztzvTh6gxIfHafaSZ2Z35pp2Zj5C7CECIq3ztWGG1w72YOU1MXLOh1SEgEIg4sMC51xedIX8a-aMd0ipqYTCtMrf9mU1PrXX-pJ5Ls74Yj-uvEEhwP4RDKRg4ImQa3uVwfZHGoPaxyfMQYUq7i7MdnL4p46lPaoAKsboJU7yyJp7I-_23g_plqlP_0z4kBzlwpPfZux2RHZNUSLlV8LVVyP631oLH5AUsgpM1h10vDVVJTGcGq3xRKXSBn-CX2EuVzi1dvcMWFAcTM6X4ARPCXZpmyJqYKjBf42S8np2QYfth0Oo4OX-Coxn3Vk4oBDj8CALgQPNGM7IeBDuhy40wymfKxgAGTRBEngiUUg3PjYxrmafhijMBF52dklIyT8wZocYVOtAqBrBjObc-zHR9xbymMDxg2qsSXghN6ry5OHJcTGWRRTaRuawlylq6gQRZV0nta9ki666xbUFYaET-OCYSPMC2pbeFBiVoBv-LqMTM128SrJovGECl4Pz_29-QcmfQ68ruY__5guzhSJaKdklKoGxzBdhlFV2nZ_MTFMbrhg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sub-structure+and+mechanical+properties+of+twist+channel+angular+pressed+aluminium&rft.jtitle=Materials+characterization&rft.au=Kocich%2C+Radim&rft.au=Kun%C4%8Dick%C3%A1%2C+Lenka&rft.au=Kr%C3%A1l%2C+Petr&rft.au=Mach%C3%A1%C4%8Dkov%C3%A1%2C+Ad%C3%A9la&rft.date=2016-09-01&rft.issn=1044-5803&rft.volume=119&rft.spage=75&rft.epage=83&rft_id=info:doi/10.1016%2Fj.matchar.2016.07.020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matchar_2016_07_020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1044-5803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1044-5803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1044-5803&client=summon