Sub-structure and mechanical properties of twist channel angular pressed aluminium
The twist channel angular pressing (TCAP) method was developed with the aim to increase the effectiveness of severe plastic deformation (SPD) technologies. This study was focused on investigations of grains sizes, textures and sub-structure within a TCAP-processed commercial aluminium sample. Measur...
Saved in:
Published in | Materials characterization Vol. 119; pp. 75 - 83 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.09.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The twist channel angular pressing (TCAP) method was developed with the aim to increase the effectiveness of severe plastic deformation (SPD) technologies. This study was focused on investigations of grains sizes, textures and sub-structure within a TCAP-processed commercial aluminium sample. Measurements of microhardness and tensile strengths were performed to evaluate mechanical properties of the processed material. To point out the effectiveness of TCAP, the results were compared to Al samples processed by equal channel angular pressing (ECAP) via A and Bc routes. Almost 70% of the grains within the sample processed by a single TCAP pass were smaller than 5μm comparing to approximately 40% and 50% within samples processed by two ECAP passes via A and Bc routes, respectively. The texture of the TCAP sample exhibited a combination of A ideal and B fibre preferential texture components and its sub-structure exhibited a higher degree of development than the sub-structures in all the ECAP-processed samples. The TCAP sample also exhibited the highest increases in the mechanical properties. The microhardness was more than twice as high as for the original state, while the yield strength achieved almost 230MPa.
[Display omitted]
•Structure development after twist channel angular pressing (TCAP) was investigated.•Efficiency of TCAP was higher than two passes equal channel angular pressing (ECAP).•Mechanical properties increased more after one TCAP pass than after two ECAP passes.•Grain size refined down to 6μm after one TCAP pass. |
---|---|
AbstractList | The twist channel angular pressing (TCAP) method was developed with the aim to increase the effectiveness of severe plastic deformation (SPD) technologies. This study was focused on investigations of grains sizes, textures and sub-structure within a TCAP-processed commercial aluminium sample. Measurements of microhardness and tensile strengths were performed to evaluate mechanical properties of the processed material. To point out the effectiveness of TCAP, the results were compared to Al samples processed by equal channel angular pressing (ECAP) via A and Bc routes. Almost 70% of the grains within the sample processed by a single TCAP pass were smaller than 5 mu m comparing to approximately 40% and 50% within samples processed by two ECAP passes via A and Bc routes, respectively. The texture of the TCAP sample exhibited a combination of A ideal and B fibre preferential texture components and its sub-structure exhibited a higher degree of development than the sub-structures in all the ECAP-processed samples. The TCAP sample also exhibited the highest increases in the mechanical properties. The microhardness was more than twice as high as for the original state, while the yield strength achieved almost 230MPa. The twist channel angular pressing (TCAP) method was developed with the aim to increase the effectiveness of severe plastic deformation (SPD) technologies. This study was focused on investigations of grains sizes, textures and sub-structure within a TCAP-processed commercial aluminium sample. Measurements of microhardness and tensile strengths were performed to evaluate mechanical properties of the processed material. To point out the effectiveness of TCAP, the results were compared to Al samples processed by equal channel angular pressing (ECAP) via A and Bc routes. Almost 70% of the grains within the sample processed by a single TCAP pass were smaller than 5μm comparing to approximately 40% and 50% within samples processed by two ECAP passes via A and Bc routes, respectively. The texture of the TCAP sample exhibited a combination of A ideal and B fibre preferential texture components and its sub-structure exhibited a higher degree of development than the sub-structures in all the ECAP-processed samples. The TCAP sample also exhibited the highest increases in the mechanical properties. The microhardness was more than twice as high as for the original state, while the yield strength achieved almost 230MPa. [Display omitted] •Structure development after twist channel angular pressing (TCAP) was investigated.•Efficiency of TCAP was higher than two passes equal channel angular pressing (ECAP).•Mechanical properties increased more after one TCAP pass than after two ECAP passes.•Grain size refined down to 6μm after one TCAP pass. |
Author | Kunčická, Lenka Macháčková, Adéla Král, Petr Kocich, Radim |
Author_xml | – sequence: 1 givenname: Radim surname: Kocich fullname: Kocich, Radim email: radim.kocich@vsb.cz organization: Regional Materials Science and Technology Centre, VŠB-TUO, 17. listopadu 15, 70833 Ostrava 8, Czech Republic – sequence: 2 givenname: Lenka surname: Kunčická fullname: Kunčická, Lenka organization: Regional Materials Science and Technology Centre, VŠB-TUO, 17. listopadu 15, 70833 Ostrava 8, Czech Republic – sequence: 3 givenname: Petr surname: Král fullname: Král, Petr organization: Institute of Physics of Materials, ASCR, Žižkova 22, 61662 Brno, Czech Republic – sequence: 4 givenname: Adéla surname: Macháčková fullname: Macháčková, Adéla organization: Regional Materials Science and Technology Centre, VŠB-TUO, 17. listopadu 15, 70833 Ostrava 8, Czech Republic |
BookMark | eNqFkEtLxDAUhYMo6Iz-BKFLN615tEkGFyKDLxgQfKxDmt5qhjYd81D892aYWblxde_lnnM4fDN06CYHCJ0TXBFM-OW6GnU0H9pXNJ8VFhWm-ACdEClYWRO5OMw7ruuykZgdo1kIa4wxl0ScoOeX1JYh-mRi8lBo1xUj5CxnjR6KjZ824KOFUEx9Eb9tiMX26WDI0vc0aJ81EAJ0hR7SaJ1N4yk66vUQ4Gw_5-jt7vZ1-VCunu4flzer0rCaxlJyjiVpa74QpiaLtqec5oI1cNAN031HGgxCtJQLrTWhuAXcM2oobRhnlLI5utjl5pafCUJUow0GhkE7mFJQRLKGMyGpyNKrndT4KQQPvTI26mgnF722gyJYbUmqtdqTVFuSCguVSWZ388e98XbU_udf3_XOB5nClwWvgrHgDHTWg4mqm-w_Cb_81pM8 |
CitedBy_id | crossref_primary_10_1016_j_matdes_2020_109255 crossref_primary_10_1016_j_rinp_2019_102236 crossref_primary_10_1016_j_msea_2019_04_091 crossref_primary_10_3390_ma14123255 crossref_primary_10_2320_matertrans_MF201924 crossref_primary_10_1016_j_matdes_2017_03_048 crossref_primary_10_1007_s12666_020_01877_0 crossref_primary_10_4028_www_scientific_net_KEM_865_7 crossref_primary_10_1016_j_matchar_2019_03_045 crossref_primary_10_1007_s40430_023_04641_9 crossref_primary_10_3390_ma13010208 crossref_primary_10_1016_j_pmatsci_2017_04_002 crossref_primary_10_1002_adem_202402218 crossref_primary_10_3390_met12111800 crossref_primary_10_1016_j_matdes_2018_10_027 crossref_primary_10_1007_s12540_022_01221_9 crossref_primary_10_3390_pr10112181 crossref_primary_10_3390_ma12213605 crossref_primary_10_32604_cmes_2025_059889 crossref_primary_10_3390_ma12213462 crossref_primary_10_3390_ma13071725 crossref_primary_10_1088_1757_899X_1190_1_012032 crossref_primary_10_3390_ma16196555 crossref_primary_10_3390_ma12244200 crossref_primary_10_3390_ma13184047 crossref_primary_10_3390_ma14051136 crossref_primary_10_1088_2053_1591_ab25b2 crossref_primary_10_1016_j_jallcom_2024_174667 crossref_primary_10_1016_j_acme_2018_11_003 crossref_primary_10_3390_ma13122869 crossref_primary_10_3390_ma13184161 crossref_primary_10_1007_s11665_019_04454_9 crossref_primary_10_3390_met13111902 crossref_primary_10_1016_j_msea_2018_03_059 crossref_primary_10_1080_2374068X_2023_2204021 crossref_primary_10_1007_s11661_024_07476_8 crossref_primary_10_3390_ma17020466 crossref_primary_10_1088_1757_899X_369_1_012029 |
Cites_doi | 10.1016/j.matlet.2011.08.104 10.1007/s10853-015-9143-5 10.1016/j.matdes.2015.11.062 10.1016/j.matlet.2008.01.091 10.1016/j.pmatsci.2009.01.001 10.1016/S1003-6326(15)63735-9 10.1016/j.msea.2015.08.050 10.1016/j.msea.2006.04.156 10.1016/S0921-5093(00)01884-0 10.1016/j.matdes.2015.01.008 10.1016/j.actamat.2010.01.038 10.1016/j.msea.2014.06.079 10.1016/j.msea.2012.09.020 10.1016/j.msea.2008.03.008 10.1179/pom.1998.41.1.11 10.1016/j.pmatsci.2006.02.003 10.1016/j.micron.2005.03.004 10.1016/j.commatsci.2010.11.012 10.1007/s12540-015-4387-9 10.1016/j.ultramic.2015.11.011 10.12693/APhysPolA.122.581 10.1016/j.msea.2006.08.029 10.1007/s10853-011-5768-1 10.1016/j.matchar.2015.12.018 10.1016/j.actamat.2009.11.020 10.1016/j.msea.2006.05.009 10.1016/j.matdes.2008.06.057 10.1016/j.msea.2010.06.057 10.1016/j.commatsci.2008.07.024 10.1016/j.msea.2012.11.047 10.1016/j.jallcom.2015.06.029 10.1007/s11837-006-0212-8 10.1016/j.msea.2007.12.055 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Inc. |
Copyright_xml | – notice: 2016 Elsevier Inc. |
DBID | AAYXX CITATION 7QF 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.matchar.2016.07.020 |
DatabaseName | CrossRef Aluminium Industry Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Aluminium Industry Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-4189 |
EndPage | 83 |
ExternalDocumentID | 10_1016_j_matchar_2016_07_020 S1044580316302212 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABTAH ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HX~ HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSM SSQ SSZ T5K WH7 WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7QF 7SR 8BQ 8FD AFXIZ EFKBS JG9 |
ID | FETCH-LOGICAL-c342t-866081b4697c419bf2625804e6ea53afd150e77b267aaa120be0f32c225363223 |
IEDL.DBID | .~1 |
ISSN | 1044-5803 |
IngestDate | Wed Jul 30 11:14:56 EDT 2025 Thu Apr 24 23:05:54 EDT 2025 Tue Jul 01 01:35:52 EDT 2025 Fri Feb 23 02:28:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Twist channel angular pressing (TCAP) Aluminium Equal channel angular pressing (ECAP) Electron microscopy Mechanical characterization Dislocations |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-866081b4697c419bf2625804e6ea53afd150e77b267aaa120be0f32c225363223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1835637827 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1835637827 crossref_citationtrail_10_1016_j_matchar_2016_07_020 crossref_primary_10_1016_j_matchar_2016_07_020 elsevier_sciencedirect_doi_10_1016_j_matchar_2016_07_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2016 2016-09-00 20160901 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: September 2016 |
PublicationDecade | 2010 |
PublicationTitle | Materials characterization |
PublicationYear | 2016 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Alexandrov, Zhu, Lowe, Valiev (bb0005) 1998; 41 Latypov, Lee, Beygelzimer, Kulagin, Kim (bb0045) 2015; 21 Roy (bb0185) 2014 Beygelzimer, Varyukhin, Synkov, Orlov (bb0050) 2009; 503 Xu, Furukawa, Horita, Langdon (bb0125) 2005; 398 Kocich, Greger, Kursa, Szurman, Macháčková (bb0060) 2010; 527 Lowe (bb0010) 2006; 58 Kocich, Kursa, Macháčková (bb0040) 2012; 122 Mckenzie, Lapovok (bb0150) 2010; 58 Tóth, Estrin, Lapovok, Gu (bb0130) 2010; 58 Kocich, Kunčická, Král, Lowe (bb0170) 2016; 90 Sitdikov, Avtokratova, Sakai (bb0205) 2015; 648 El-Danaf (bb0145) 2008; 492 Kocich, Greger, Macháčková (bb0025) 2010 Dobatkin, Szpunar, Zhilyaev, Cho, Kuznetsov (bb0115) 2007; 462 Chen, Li, He, Lu, Ding, Li (bb0195) 2008; 62 Hosseini, Kazeminezhad (bb0110) 2011; 50 Zhao, Park, Shibata, Tsuji (bb0175) 2014 Hosseini, Kazeminezhad (bb0105) 2009; 44 Kumar, Kawasaki, Langdon (bb0215) 2016; 51 Beyerlein, Tóth (bb0135) 2009; 54 Nejadseyfi, Shokuhfar, Sadeghi (bb0200) 2016; 651 Latypov, Lee, Beygelzimer, Prilepo, Gusar, Kim (bb0155) 2015 Humphreys, Hetherly (bb0190) 2004 Kocich, Fiala, Szurman, Macháčková, Mihola (bb0065) 2011; 46 Kocich, Kunčická, Mihola, Skotnicová (bb0080) 2013; 563 (bb0090) 2009 Guyon, Gey, Goran, Chalal, Pérez-Willard (bb0120) 2015; 161 Zhilyaev, Oh-ishi, Raab, McNelley (bb0160) 2006; 441 Stolyarov, Zhu, Lowe, Valiev (bb0030) 2001; 303 Shadabroo, Eivani, Jafarian, Razavi, Zhou (bb0210) 2016; 112 Ramesh (bb0100) 2009 Kocich, Macháčková, Kunčická (bb0070) 2014; 612 Engler, Randle (bb0085) 2010 Cabibbo, Evangelista, Scalabroni (bb0095) 2005; 36 Valiev, Langdon (bb0035) 2006; 51 Sabirov, Murashkin, Valiev (bb0220) 2013; 560 Nikulin, Malopheyev, Kipelova, Kaibyshev (bb0015) 2012; 66 Valiev, Semenova, Jakushina, Latysh, Rack, Lowe (bb0020) 2008; 584-586 Pippan, Scheriau, Taylor, Hafok, Hohenwarter, Bachmaier (bb0055) 2010 Russell, Lee (bb0180) 2005 Kocich, Macháčková, Kunčická, Fojtík (bb0225) 2015; 71 Zhilyaev, Swisher, Oh-ishi, Langdon, McNelley (bb0140) 2006; 429 Shaeri, Shaeri, Salehi, Seyyedein, Djavanrodi (bb0165) 2015; 25 Balasundar, Sudhakara Rao, Raghu (bb0075) 2009; 30 Chen (10.1016/j.matchar.2016.07.020_bb0195) 2008; 62 Shaeri (10.1016/j.matchar.2016.07.020_bb0165) 2015; 25 Valiev (10.1016/j.matchar.2016.07.020_bb0035) 2006; 51 Kocich (10.1016/j.matchar.2016.07.020_bb0080) 2013; 563 Valiev (10.1016/j.matchar.2016.07.020_bb0020) 2008; 584-586 Xu (10.1016/j.matchar.2016.07.020_bb0125) 2005; 398 Latypov (10.1016/j.matchar.2016.07.020_bb0045) 2015; 21 Beyerlein (10.1016/j.matchar.2016.07.020_bb0135) 2009; 54 Kocich (10.1016/j.matchar.2016.07.020_bb0060) 2010; 527 Hosseini (10.1016/j.matchar.2016.07.020_bb0110) 2011; 50 Kocich (10.1016/j.matchar.2016.07.020_bb0225) 2015; 71 Stolyarov (10.1016/j.matchar.2016.07.020_bb0030) 2001; 303 Kocich (10.1016/j.matchar.2016.07.020_bb0170) 2016; 90 Russell (10.1016/j.matchar.2016.07.020_bb0180) 2005 Humphreys (10.1016/j.matchar.2016.07.020_bb0190) 2004 Ramesh (10.1016/j.matchar.2016.07.020_bb0100) 2009 Zhilyaev (10.1016/j.matchar.2016.07.020_bb0160) 2006; 441 Sabirov (10.1016/j.matchar.2016.07.020_bb0220) 2013; 560 Kocich (10.1016/j.matchar.2016.07.020_bb0040) 2012; 122 Kumar (10.1016/j.matchar.2016.07.020_bb0215) 2016; 51 Balasundar (10.1016/j.matchar.2016.07.020_bb0075) 2009; 30 Alexandrov (10.1016/j.matchar.2016.07.020_bb0005) 1998; 41 Cabibbo (10.1016/j.matchar.2016.07.020_bb0095) 2005; 36 Guyon (10.1016/j.matchar.2016.07.020_bb0120) 2015; 161 Nejadseyfi (10.1016/j.matchar.2016.07.020_bb0200) 2016; 651 Shadabroo (10.1016/j.matchar.2016.07.020_bb0210) 2016; 112 Tóth (10.1016/j.matchar.2016.07.020_bb0130) 2010; 58 Zhilyaev (10.1016/j.matchar.2016.07.020_bb0140) 2006; 429 Latypov (10.1016/j.matchar.2016.07.020_bb0155) 2015 Kocich (10.1016/j.matchar.2016.07.020_bb0065) 2011; 46 Dobatkin (10.1016/j.matchar.2016.07.020_bb0115) 2007; 462 Zhao (10.1016/j.matchar.2016.07.020_bb0175) 2014 Engler (10.1016/j.matchar.2016.07.020_bb0085) 2010 El-Danaf (10.1016/j.matchar.2016.07.020_bb0145) 2008; 492 Lowe (10.1016/j.matchar.2016.07.020_bb0010) 2006; 58 Kocich (10.1016/j.matchar.2016.07.020_bb0025) 2010 Mckenzie (10.1016/j.matchar.2016.07.020_bb0150) 2010; 58 Hosseini (10.1016/j.matchar.2016.07.020_bb0105) 2009; 44 Pippan (10.1016/j.matchar.2016.07.020_bb0055) 2010 Beygelzimer (10.1016/j.matchar.2016.07.020_bb0050) 2009; 503 Nikulin (10.1016/j.matchar.2016.07.020_bb0015) 2012; 66 (10.1016/j.matchar.2016.07.020_bb0090) 2009 Kocich (10.1016/j.matchar.2016.07.020_bb0070) 2014; 612 Roy (10.1016/j.matchar.2016.07.020_bb0185) 2014 Sitdikov (10.1016/j.matchar.2016.07.020_bb0205) 2015; 648 |
References_xml | – year: 2004 ident: bb0190 article-title: Recrystallization and Related Annealing Phenomena – volume: 50 start-page: 1123 year: 2011 end-page: 1135 ident: bb0110 article-title: A new microstructural model based on dislocation generation and consumption mechanisms through severe plastic deformation publication-title: Comput Mater Sci – volume: 563 start-page: 86 year: 2013 end-page: 94 ident: bb0080 article-title: Numerical and experimental analysis of twist channel angular pressing (TCAP) as a SPD process publication-title: Mater Sci Eng A – start-page: 166 year: 2010 end-page: 171 ident: bb0025 article-title: Finite Element Investigation of Influence of Selected Factors on ECAP Process publication-title: Met. 2010 19th Int. Metall. Mater. Conf – volume: 612 start-page: 445 year: 2014 end-page: 455 ident: bb0070 article-title: Twist channel multi-angular pressing (TCMAP) as a new SPD process: numerical and experimental study publication-title: Mater Sci Eng A – volume: 30 start-page: 1050 year: 2009 end-page: 1059 ident: bb0075 article-title: Equal channel angular pressing die to extrude a variety of materials publication-title: Mater. Des – volume: 648 start-page: 195 year: 2015 end-page: 204 ident: bb0205 article-title: Microstructural and texture changes during equal channel angular pressing of an Al–Mg–Sc alloy publication-title: J Alloys Compd – year: 2010 ident: bb0055 article-title: Saturation of Fragmentation During Severe Plastic Deformation, Annual Reviews, Palo Alto, CA – start-page: 79 year: 2014 end-page: 98 ident: bb0185 article-title: Recrystallization Behavior of Commercial Puritx Aluminum Alloys publication-title: Light Met. Alloy. Appl., InTech – volume: 303 start-page: 82 year: 2001 end-page: 89 ident: bb0030 article-title: Microstructure and properties of pure Ti processed by ECAP and cold extrusion publication-title: Mater Sci Eng A – volume: 492 start-page: 141 year: 2008 end-page: 152 ident: bb0145 article-title: Texture evolution and fraction of favorably oriented fibers in commercially pure aluminum processed to 16 ECAP passes publication-title: Mater Sci Eng A – volume: 71 start-page: 36 year: 2015 end-page: 47 ident: bb0225 article-title: Fabrication and characterization of cold-swaged multilayered Al–Cu clad composites publication-title: Mater Des – year: 2009 ident: bb0090 article-title: Three –Dimensional Orientation Microscopy by Serial Sectioning and EBSD-Based Orientation Mapping in a FIB-SEM (Electron Backscatter Diffraction in Material Science) – volume: 503 start-page: 14 year: 2009 end-page: 17 ident: bb0050 article-title: Useful properties of twist extrusion publication-title: Mater Sci Eng A – volume: 161 start-page: 161 year: 2015 end-page: 167 ident: bb0120 article-title: Advancing FIB assisted 3D EBSD using a static sample setup publication-title: Ultramicroscopy – volume: 429 start-page: 137 year: 2006 end-page: 148 ident: bb0140 article-title: Microtexture and microstructure evolution during processing of pure aluminum by repetitive ECAP publication-title: Mater Sci Eng A – year: 2015 ident: bb0155 article-title: Modeling and characterization of texture evolution in twist extrusion publication-title: Metall Mater Trans A – volume: 36 start-page: 401 year: 2005 end-page: 414 ident: bb0095 article-title: EBSD FEG-SEM, TEM and XRD techniques applied to grain study of a commercially pure 1200 aluminum subjected to equal-channel angular-pressing publication-title: Micron – volume: 527 start-page: 6386 year: 2010 end-page: 6392 ident: bb0060 article-title: Twist channel angular pressing (TCAP) as a method for increasing the efficiency of SPD publication-title: Mater Sci Eng A – volume: 44 start-page: 1107 year: 2009 end-page: 1115 ident: bb0105 article-title: A hybrid model on severe plastic deformation of copper publication-title: Comput. Mater. Sci – volume: 58 start-page: 28 year: 2006 end-page: 32 ident: bb0010 article-title: Metals and alloys nanostructured by severe plastic deformation: commercialization pathways publication-title: JOM – volume: 122 start-page: 581 year: 2012 end-page: 587 ident: bb0040 article-title: FEA of plastic flow in AZ63 alloy during ECAP process publication-title: Acta Phys Pol A – start-page: 1191 year: 2014 ident: bb0175 article-title: Microstructural Evolution of Ferrite Grains during Dynamic Transformation in 10Ni-0.1C Steel publication-title: TMS2014 Annu. Meet. Suppl. Proc. – volume: 41 start-page: 11 year: 1998 end-page: 13 ident: bb0005 article-title: Severe plastic deformation: new technique for powder consolidation and grain size refinement publication-title: Powder Metall – volume: 441 start-page: 245 year: 2006 end-page: 252 ident: bb0160 article-title: Influence of ECAP processing parameters on texture and microstructure of commercially pure aluminum publication-title: Mater Sci Eng A – volume: 46 start-page: 7865 year: 2011 end-page: 7876 ident: bb0065 article-title: Twist-channel angular pressing: effect of the strain path on grain refinement and mechanical properties of copper publication-title: J Mater Sci – volume: 462 start-page: 132 year: 2007 end-page: 138 ident: bb0115 article-title: Effect of the route and strain of equal-channel angular pressing on structure and properties of oxygen-free copper publication-title: Mater Sci Eng A – volume: 58 start-page: 1782 year: 2010 end-page: 1794 ident: bb0130 article-title: A model of grain fragmentation based on lattice curvature publication-title: Acta Mater – volume: 90 start-page: 1092 year: 2016 end-page: 1099 ident: bb0170 article-title: Texture, deformation twinning and hardening in a newly developed Mg–Dy–Al–Zn–Zr alloy processed with high pressure torsion publication-title: Mater. Des – volume: 25 start-page: 1367 year: 2015 end-page: 1375 ident: bb0165 article-title: Microstructure and texture evolution of Al-7075 alloy processed by equal channel angular pressing publication-title: Trans Nonferrous Metals Soc China – volume: 112 start-page: 160 year: 2016 end-page: 168 ident: bb0210 article-title: Optimization of interpass annealing for a minimum recrystallized grain size and further grain refinement towards nanostructured AA6063 during equal channel angular pressing publication-title: Mater Charact – volume: 62 start-page: 2821 year: 2008 end-page: 2824 ident: bb0195 article-title: The influence of cryoECAP on microstructure and property of commercial pure aluminum publication-title: Mater Lett – volume: 51 start-page: 881 year: 2006 end-page: 981 ident: bb0035 article-title: Principles of equal-channel angular pressing as a processing tool for grain refinement publication-title: Prog. Mater. Sci – volume: 21 start-page: 569 year: 2015 end-page: 579 ident: bb0045 article-title: On the simple shear model of twist extrusion and its deviations publication-title: Met Mater Int – volume: 58 start-page: 3198 year: 2010 end-page: 3211 ident: bb0150 article-title: ECAP with back pressure for optimum strength and ductility in aluminium alloy 6016. Part 1: microstructure publication-title: Acta Mater – volume: 54 start-page: 427 year: 2009 end-page: 510 ident: bb0135 article-title: Texture evolution in equal-channel angular extrusion publication-title: Prog Mater Sci – volume: 66 start-page: 311 year: 2012 end-page: 313 ident: bb0015 article-title: Effect of SPD and friction stir welding on microstructure and mechanical properties of Al-Cu-Mg-Ag sheets publication-title: Mater Lett – volume: 651 start-page: 461 year: 2016 end-page: 466 ident: bb0200 article-title: Feasibility of attaining uniform grain structure and enhanced ductility in aluminum alloy by employing a beveled punch in equal-channel angular pressing publication-title: Mater Sci Eng A – start-page: 121 year: 2009 end-page: 178 ident: bb0100 article-title: Plastic Deformation of Nanomaterials publication-title: Nanomaterials – year: 2010 ident: bb0085 article-title: Introduction to Texture Analysis, Macrotexture, Microtexture, and Orientation Mapping – volume: 560 start-page: 1 year: 2013 end-page: 24 ident: bb0220 article-title: Nanostructured aluminium alloys produced by severe plastic deformation: new horizons in development publication-title: Mater Sci Eng A – volume: 398 start-page: 66 year: 2005 end-page: 76 ident: bb0125 article-title: The evolution of homogeneity and grain refinement during equal-channel angular pressing – year: 2005 ident: bb0180 article-title: Structure-Property Relations in Nonferrous Metals – volume: 51 start-page: 7 year: 2016 end-page: 18 ident: bb0215 article-title: Review: overcoming the paradox of strength and ductility in ultrafine-grained materials at low temperatures publication-title: J Mater Sci – volume: 584-586 start-page: 49 year: 2008 end-page: 54 ident: bb0020 article-title: Nanostructured SPD processed titanium for medical implants publication-title: Nanomater Sev Plast Deform IV – volume: 66 start-page: 311 year: 2012 ident: 10.1016/j.matchar.2016.07.020_bb0015 article-title: Effect of SPD and friction stir welding on microstructure and mechanical properties of Al-Cu-Mg-Ag sheets publication-title: Mater Lett doi: 10.1016/j.matlet.2011.08.104 – volume: 51 start-page: 7 year: 2016 ident: 10.1016/j.matchar.2016.07.020_bb0215 article-title: Review: overcoming the paradox of strength and ductility in ultrafine-grained materials at low temperatures publication-title: J Mater Sci doi: 10.1007/s10853-015-9143-5 – start-page: 79 year: 2014 ident: 10.1016/j.matchar.2016.07.020_bb0185 article-title: Recrystallization Behavior of Commercial Puritx Aluminum Alloys – volume: 90 start-page: 1092 year: 2016 ident: 10.1016/j.matchar.2016.07.020_bb0170 article-title: Texture, deformation twinning and hardening in a newly developed Mg–Dy–Al–Zn–Zr alloy processed with high pressure torsion publication-title: Mater. Des doi: 10.1016/j.matdes.2015.11.062 – year: 2005 ident: 10.1016/j.matchar.2016.07.020_bb0180 – volume: 62 start-page: 2821 year: 2008 ident: 10.1016/j.matchar.2016.07.020_bb0195 article-title: The influence of cryoECAP on microstructure and property of commercial pure aluminum publication-title: Mater Lett doi: 10.1016/j.matlet.2008.01.091 – volume: 54 start-page: 427 year: 2009 ident: 10.1016/j.matchar.2016.07.020_bb0135 article-title: Texture evolution in equal-channel angular extrusion publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2009.01.001 – volume: 398 start-page: 66 year: 2005 ident: 10.1016/j.matchar.2016.07.020_bb0125 article-title: The evolution of homogeneity and grain refinement during equal-channel angular pressing: a model for grain refinement in ECAP – volume: 584-586 start-page: 49 year: 2008 ident: 10.1016/j.matchar.2016.07.020_bb0020 article-title: Nanostructured SPD processed titanium for medical implants publication-title: Nanomater Sev Plast Deform IV – volume: 25 start-page: 1367 year: 2015 ident: 10.1016/j.matchar.2016.07.020_bb0165 article-title: Microstructure and texture evolution of Al-7075 alloy processed by equal channel angular pressing publication-title: Trans Nonferrous Metals Soc China doi: 10.1016/S1003-6326(15)63735-9 – volume: 651 start-page: 461 year: 2016 ident: 10.1016/j.matchar.2016.07.020_bb0200 article-title: Feasibility of attaining uniform grain structure and enhanced ductility in aluminum alloy by employing a beveled punch in equal-channel angular pressing publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2015.08.050 – start-page: 166 year: 2010 ident: 10.1016/j.matchar.2016.07.020_bb0025 article-title: Finite Element Investigation of Influence of Selected Factors on ECAP Process – volume: 462 start-page: 132 year: 2007 ident: 10.1016/j.matchar.2016.07.020_bb0115 article-title: Effect of the route and strain of equal-channel angular pressing on structure and properties of oxygen-free copper publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2006.04.156 – volume: 303 start-page: 82 year: 2001 ident: 10.1016/j.matchar.2016.07.020_bb0030 article-title: Microstructure and properties of pure Ti processed by ECAP and cold extrusion publication-title: Mater Sci Eng A doi: 10.1016/S0921-5093(00)01884-0 – year: 2010 ident: 10.1016/j.matchar.2016.07.020_bb0085 – volume: 71 start-page: 36 year: 2015 ident: 10.1016/j.matchar.2016.07.020_bb0225 article-title: Fabrication and characterization of cold-swaged multilayered Al–Cu clad composites publication-title: Mater Des doi: 10.1016/j.matdes.2015.01.008 – year: 2015 ident: 10.1016/j.matchar.2016.07.020_bb0155 article-title: Modeling and characterization of texture evolution in twist extrusion publication-title: Metall Mater Trans A – volume: 58 start-page: 3198 year: 2010 ident: 10.1016/j.matchar.2016.07.020_bb0150 article-title: ECAP with back pressure for optimum strength and ductility in aluminium alloy 6016. Part 1: microstructure publication-title: Acta Mater doi: 10.1016/j.actamat.2010.01.038 – volume: 612 start-page: 445 year: 2014 ident: 10.1016/j.matchar.2016.07.020_bb0070 article-title: Twist channel multi-angular pressing (TCMAP) as a new SPD process: numerical and experimental study publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2014.06.079 – volume: 560 start-page: 1 year: 2013 ident: 10.1016/j.matchar.2016.07.020_bb0220 article-title: Nanostructured aluminium alloys produced by severe plastic deformation: new horizons in development publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2012.09.020 – year: 2004 ident: 10.1016/j.matchar.2016.07.020_bb0190 – volume: 492 start-page: 141 year: 2008 ident: 10.1016/j.matchar.2016.07.020_bb0145 article-title: Texture evolution and fraction of favorably oriented fibers in commercially pure aluminum processed to 16 ECAP passes publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2008.03.008 – volume: 41 start-page: 11 year: 1998 ident: 10.1016/j.matchar.2016.07.020_bb0005 article-title: Severe plastic deformation: new technique for powder consolidation and grain size refinement publication-title: Powder Metall doi: 10.1179/pom.1998.41.1.11 – volume: 51 start-page: 881 year: 2006 ident: 10.1016/j.matchar.2016.07.020_bb0035 article-title: Principles of equal-channel angular pressing as a processing tool for grain refinement publication-title: Prog. Mater. Sci doi: 10.1016/j.pmatsci.2006.02.003 – volume: 36 start-page: 401 year: 2005 ident: 10.1016/j.matchar.2016.07.020_bb0095 article-title: EBSD FEG-SEM, TEM and XRD techniques applied to grain study of a commercially pure 1200 aluminum subjected to equal-channel angular-pressing publication-title: Micron doi: 10.1016/j.micron.2005.03.004 – volume: 50 start-page: 1123 year: 2011 ident: 10.1016/j.matchar.2016.07.020_bb0110 article-title: A new microstructural model based on dislocation generation and consumption mechanisms through severe plastic deformation publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2010.11.012 – volume: 21 start-page: 569 year: 2015 ident: 10.1016/j.matchar.2016.07.020_bb0045 article-title: On the simple shear model of twist extrusion and its deviations publication-title: Met Mater Int doi: 10.1007/s12540-015-4387-9 – volume: 161 start-page: 161 year: 2015 ident: 10.1016/j.matchar.2016.07.020_bb0120 article-title: Advancing FIB assisted 3D EBSD using a static sample setup publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2015.11.011 – volume: 122 start-page: 581 year: 2012 ident: 10.1016/j.matchar.2016.07.020_bb0040 article-title: FEA of plastic flow in AZ63 alloy during ECAP process publication-title: Acta Phys Pol A doi: 10.12693/APhysPolA.122.581 – volume: 441 start-page: 245 year: 2006 ident: 10.1016/j.matchar.2016.07.020_bb0160 article-title: Influence of ECAP processing parameters on texture and microstructure of commercially pure aluminum publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2006.08.029 – volume: 46 start-page: 7865 year: 2011 ident: 10.1016/j.matchar.2016.07.020_bb0065 article-title: Twist-channel angular pressing: effect of the strain path on grain refinement and mechanical properties of copper publication-title: J Mater Sci doi: 10.1007/s10853-011-5768-1 – volume: 112 start-page: 160 year: 2016 ident: 10.1016/j.matchar.2016.07.020_bb0210 article-title: Optimization of interpass annealing for a minimum recrystallized grain size and further grain refinement towards nanostructured AA6063 during equal channel angular pressing publication-title: Mater Charact doi: 10.1016/j.matchar.2015.12.018 – start-page: 1191 year: 2014 ident: 10.1016/j.matchar.2016.07.020_bb0175 article-title: Microstructural Evolution of Ferrite Grains during Dynamic Transformation in 10Ni-0.1C Steel – year: 2010 ident: 10.1016/j.matchar.2016.07.020_bb0055 – volume: 58 start-page: 1782 year: 2010 ident: 10.1016/j.matchar.2016.07.020_bb0130 article-title: A model of grain fragmentation based on lattice curvature publication-title: Acta Mater doi: 10.1016/j.actamat.2009.11.020 – volume: 429 start-page: 137 year: 2006 ident: 10.1016/j.matchar.2016.07.020_bb0140 article-title: Microtexture and microstructure evolution during processing of pure aluminum by repetitive ECAP publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2006.05.009 – volume: 30 start-page: 1050 year: 2009 ident: 10.1016/j.matchar.2016.07.020_bb0075 article-title: Equal channel angular pressing die to extrude a variety of materials publication-title: Mater. Des doi: 10.1016/j.matdes.2008.06.057 – volume: 527 start-page: 6386 year: 2010 ident: 10.1016/j.matchar.2016.07.020_bb0060 article-title: Twist channel angular pressing (TCAP) as a method for increasing the efficiency of SPD publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2010.06.057 – year: 2009 ident: 10.1016/j.matchar.2016.07.020_bb0090 – volume: 44 start-page: 1107 year: 2009 ident: 10.1016/j.matchar.2016.07.020_bb0105 article-title: A hybrid model on severe plastic deformation of copper publication-title: Comput. Mater. Sci doi: 10.1016/j.commatsci.2008.07.024 – volume: 563 start-page: 86 year: 2013 ident: 10.1016/j.matchar.2016.07.020_bb0080 article-title: Numerical and experimental analysis of twist channel angular pressing (TCAP) as a SPD process publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2012.11.047 – start-page: 121 year: 2009 ident: 10.1016/j.matchar.2016.07.020_bb0100 article-title: Plastic Deformation of Nanomaterials – volume: 648 start-page: 195 year: 2015 ident: 10.1016/j.matchar.2016.07.020_bb0205 article-title: Microstructural and texture changes during equal channel angular pressing of an Al–Mg–Sc alloy publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2015.06.029 – volume: 58 start-page: 28 year: 2006 ident: 10.1016/j.matchar.2016.07.020_bb0010 article-title: Metals and alloys nanostructured by severe plastic deformation: commercialization pathways publication-title: JOM doi: 10.1007/s11837-006-0212-8 – volume: 503 start-page: 14 year: 2009 ident: 10.1016/j.matchar.2016.07.020_bb0050 article-title: Useful properties of twist extrusion publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2007.12.055 |
SSID | ssj0006817 |
Score | 2.3183403 |
Snippet | The twist channel angular pressing (TCAP) method was developed with the aim to increase the effectiveness of severe plastic deformation (SPD) technologies.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 75 |
SubjectTerms | Aluminium Aluminum Channels Dislocations Electron microscopy Equal channel angular pressing Equal channel angular pressing (ECAP) Grain size Mechanical characterization Mechanical properties Microhardness Surface layer Texture Twist channel angular pressing (TCAP) |
Title | Sub-structure and mechanical properties of twist channel angular pressed aluminium |
URI | https://dx.doi.org/10.1016/j.matchar.2016.07.020 https://www.proquest.com/docview/1835637827 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IHtSDUdSIr9TE68Ky7bbLkRAJauSgknBrut02gcBCEOLN3-7MPkSNCYnH3W2bzcx05pt2HoTcxgBCfB0azwlnPB4kzGtj4JqLnIkAgYDHgQnOTwPRH_KHUTiqkG6ZC4NhlYXuz3V6pq2LN82Cms3FeNx8AUeChxEIpWBgiLJOw5xLlPLGxybMQ0RZ110c7OHoTRZPc9IAUIjJTRjhldfwxLbff9unX5o6Mz-9Q3JQ4EbayX_tiFRsWiO73bJdW43sf6sseEyeQSF4eW3Y9dJSnSZ0ZjHJF3lCF3gCv8RSqnTu6OodlqD4MbVTiueX4O3SLEDWJlSD9hqn4_XshAx7d6_dvle0T_AM48HKi4QAex-D_ysNb7VjF4CvE_ncCqtDpl0CWNBKGQdCaq1bgR9b37HAwA5nAvY5OyXVdJ7aM0KtL4w0OgGs4zh3IYz0Q82CtrBcMhPUCS-JpkxRWxxbXExVGUQ2UQWtFdJa-VIBreuk8TVtkRfX2DYhKjmifkiJAgOwbepNyUEFnMFrEZ3a-fpNgVILBQOkJM__v_wF2cOnPPrsklSBwfYK4Moqvs7k8ZrsdO4f-4NPr9rp-A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4YPKAHo6gRn2vitVC62205GiJBBQ4KCbfNdrubQKAQhHjztzvTh6gxIfHafaSZ2Z35pp2Zj5C7CECIq3ztWGG1w72YOU1MXLOh1SEgEIg4sMC51xedIX8a-aMd0ipqYTCtMrf9mU1PrXX-pJ5Ls74Yj-uvEEhwP4RDKRg4ImQa3uVwfZHGoPaxyfMQYUq7i7MdnL4p46lPaoAKsboJU7yyJp7I-_23g_plqlP_0z4kBzlwpPfZux2RHZNUSLlV8LVVyP631oLH5AUsgpM1h10vDVVJTGcGq3xRKXSBn-CX2EuVzi1dvcMWFAcTM6X4ARPCXZpmyJqYKjBf42S8np2QYfth0Oo4OX-Coxn3Vk4oBDj8CALgQPNGM7IeBDuhy40wymfKxgAGTRBEngiUUg3PjYxrmafhijMBF52dklIyT8wZocYVOtAqBrBjObc-zHR9xbymMDxg2qsSXghN6ry5OHJcTGWRRTaRuawlylq6gQRZV0nta9ki666xbUFYaET-OCYSPMC2pbeFBiVoBv-LqMTM128SrJovGECl4Pz_29-QcmfQ68ruY__5guzhSJaKdklKoGxzBdhlFV2nZ_MTFMbrhg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sub-structure+and+mechanical+properties+of+twist+channel+angular+pressed+aluminium&rft.jtitle=Materials+characterization&rft.au=Kocich%2C+Radim&rft.au=Kun%C4%8Dick%C3%A1%2C+Lenka&rft.au=Kr%C3%A1l%2C+Petr&rft.au=Mach%C3%A1%C4%8Dkov%C3%A1%2C+Ad%C3%A9la&rft.date=2016-09-01&rft.issn=1044-5803&rft.volume=119&rft.spage=75&rft.epage=83&rft_id=info:doi/10.1016%2Fj.matchar.2016.07.020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matchar_2016_07_020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1044-5803&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1044-5803&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1044-5803&client=summon |