Investigation of the single-phase immersion cold plate amid PAO-4 and Noah@3000A – An experimental approach and its numerical verification
This study investigates improving traditional immersion cooling systems by employing cold plates in single-phase immersion cooling with dielectric fluids (Noah@3000 A and PAO-4). Experimental and CFD methods explore various cold plate structures in a 1 U server with a TTV heat source. Flow rates ran...
Saved in:
Published in | International communications in heat and mass transfer Vol. 155; p. 107509 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study investigates improving traditional immersion cooling systems by employing cold plates in single-phase immersion cooling with dielectric fluids (Noah@3000 A and PAO-4). Experimental and CFD methods explore various cold plate structures in a 1 U server with a TTV heat source. Flow rates range from 1 to 3 LPM, and configurations include side-open, fully enclosed, and dual-open designs. Results show that incorporating cold plates reduces fluid bypass, enhancing thermal performance. High-viscosity dielectric oil as a coolant yields substantial improvements (36.1% and 41.6% at low and high flow rates) compared to traditional systems. Thermal resistance decreases with higher flow rates, more notably for Noah@3000A. Immersing the cold plate in liquid enhances convective heat transfer, reducing thermal resistances by 7.2% and 9.4% for Noah@3000A and PAO-4 at low flow rates. Smaller fin pitch consistently lowers resistance by eliminating bypass. Outlet configuration significantly influences thermal resistance, with Enclosed cold plates showing the least performance for PAO-4 and dual-open cold plate yields the worst performance with Noah@3000A. Differences in heat transfer behavior between PAO-4 and Noah@3000A are linked to laminar and turbulent flow characteristics. These findings offer insights into optimizing immersion cooling systems, emphasizing the impact of fluid choice and cold plate design on thermal performance. |
---|---|
AbstractList | This study investigates improving traditional immersion cooling systems by employing cold plates in single-phase immersion cooling with dielectric fluids (Noah@3000 A and PAO-4). Experimental and CFD methods explore various cold plate structures in a 1 U server with a TTV heat source. Flow rates range from 1 to 3 LPM, and configurations include side-open, fully enclosed, and dual-open designs. Results show that incorporating cold plates reduces fluid bypass, enhancing thermal performance. High-viscosity dielectric oil as a coolant yields substantial improvements (36.1% and 41.6% at low and high flow rates) compared to traditional systems. Thermal resistance decreases with higher flow rates, more notably for Noah@3000A. Immersing the cold plate in liquid enhances convective heat transfer, reducing thermal resistances by 7.2% and 9.4% for Noah@3000A and PAO-4 at low flow rates. Smaller fin pitch consistently lowers resistance by eliminating bypass. Outlet configuration significantly influences thermal resistance, with Enclosed cold plates showing the least performance for PAO-4 and dual-open cold plate yields the worst performance with Noah@3000A. Differences in heat transfer behavior between PAO-4 and Noah@3000A are linked to laminar and turbulent flow characteristics. These findings offer insights into optimizing immersion cooling systems, emphasizing the impact of fluid choice and cold plate design on thermal performance. |
ArticleNumber | 107509 |
Author | Lin, Yu-Chi Zhang, Yong-Dong Wang, Chi-Chuan |
Author_xml | – sequence: 1 givenname: Yong-Dong surname: Zhang fullname: Zhang, Yong-Dong – sequence: 2 givenname: Yu-Chi surname: Lin fullname: Lin, Yu-Chi – sequence: 3 givenname: Chi-Chuan surname: Wang fullname: Wang, Chi-Chuan email: ccwang@nycu.edu.tw |
BookMark | eNqVkEtOxDAMhiMEEsPjDlmy6ZA0LUl3jBBPIWAx-8qTuDSjNq2SMIIdB2DHDTkJGYYVbECyZMu_9dn-98i2GxwScsTZlDN-crycWt0ixB5CiB5caNBPc5YXSZYlq7bIhCtZZYxLtU0mTIoy45UQu2QvhCVjjCuuJuTt2q0wRPsI0Q6ODg2NLdJg3WOH2dhCQGr7Hn1Yq3roDB07iEiht4Y-zO6zgoIz9G6A9lQk6ox-vL7TmaP4PKK3PboIHYVx9APo9mvWxkDdU2JanaRVyk2q1usPyE4DXcDD77xP5hfn87Or7Pb-8vpsdptpUeQxk42SeSkVMmwqVZQLkRoLg6WSyMumKhSUFZqiAp5znpcp0ICQOTOVRCH2yekGq_0QgsemHtOl4F9qzuq1ufWy_m1uvTa33pibEBc_ENrGrx_SuO3-A7rZgDD9u7JJDdqi02isRx1rM9i_wz4B48ir9Q |
CitedBy_id | crossref_primary_10_1016_j_csite_2024_105386 crossref_primary_10_1016_j_est_2025_116010 |
Cites_doi | 10.1016/j.icheatmasstransfer.2023.106843 10.32604/EE.2022.017356 10.3390/pr11030896 10.1016/j.gloei.2020.07.008 10.1109/ACCESS.2021.3125092 10.1016/j.rser.2015.12.283 10.1016/j.mattod.2014.04.003 10.1016/j.ijheatmasstransfer.2023.123961 10.1016/j.ijheatmasstransfer.2019.118918 10.1016/j.apenergy.2021.116622 10.1016/j.applthermaleng.2023.120080 10.1016/j.microrel.2017.02.016 10.1109/TCPMT.2021.3106026 10.1016/j.rser.2014.11.056 10.1109/TIA.2020.2975762 10.1016/j.applthermaleng.2016.10.093 10.1016/S0017-9310(03)00044-9 10.1016/j.icheatmasstransfer.2021.105863 10.1016/j.ijmultiphaseflow.2006.03.002 10.1016/j.ijheatmasstransfer.2023.124023 10.1115/1.4045156 10.1016/j.aej.2022.02.059 10.1016/j.energy.2020.119373 10.1115/1.4042979 10.1016/j.apenergy.2017.08.037 10.1016/j.applthermaleng.2017.10.098 10.1016/j.apenergy.2019.02.041 10.1016/j.ijheatmasstransfer.2020.120203 10.1016/j.ifacol.2016.12.002 10.1016/j.applthermaleng.2023.121260 10.1016/j.rser.2013.12.007 10.1016/j.applthermaleng.2016.03.056 |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.icheatmasstransfer.2024.107509 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-0178 |
ExternalDocumentID | 10_1016_j_icheatmasstransfer_2024_107509 S0735193324002719 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABNUV ABXDB ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSG SST SSZ T5K WUQ XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c342t-7f872578e0ef9845b3f87bde587e15f948a59ed49a121125125eda3720d97e33 |
IEDL.DBID | .~1 |
ISSN | 0735-1933 |
IngestDate | Thu Apr 24 23:05:03 EDT 2025 Tue Jul 01 04:24:51 EDT 2025 Tue Jun 18 08:51:36 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cold plate Single-phase liquid immersion cooling PAO-4 Bypass Noah@3000A |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-7f872578e0ef9845b3f87bde587e15f948a59ed49a121125125eda3720d97e33 |
ParticipantIDs | crossref_primary_10_1016_j_icheatmasstransfer_2024_107509 crossref_citationtrail_10_1016_j_icheatmasstransfer_2024_107509 elsevier_sciencedirect_doi_10_1016_j_icheatmasstransfer_2024_107509 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2024 2024-06-00 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
PublicationDecade | 2020 |
PublicationTitle | International communications in heat and mass transfer |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Rong (bb0065) 2016; 58 Liu (bb0015) 2020; 3 Gandhi (bb0170) 2019; 2020 Sarangi, E.D.M, Damm, Gullbrand (bb0150) 2024 Kheirabadi, Groulx (bb0025) 2018; 129 Shah (bb0160) 2019; 141 Eiland (bb0185) 2014 Chu, Wang (bb0045) 2019; 240 Kheirabadi, Groulx (bb0070) 2016; 105 Kuo, Tseng, Sikhondze (bb0210) 2022 Pambudi (bb0090) 2022; 61 Shah (bb0165) 2016 Birbarah (bb0105) 2020; 147 Daraghmeh, Wang (bb0020) 2017; 114 Agung Pambudi, Muhamad Yusuf, Sarifudin (bb0155) 2022; 119 Cheng (bb0080) 2020; 160 Li (bb0180) 2023; 224 Shrigondekar, Lin, Wang (bb0140) 2023; 206 Muneeshwaran, Lin, Wang (bb0200) 2023; 145 Ahmed, Bollen, Alvarez (bb0035) 2021; 9 Kanbur (bb0100) 2021; 217 Taddeo (bb0130) 2023; 234 Qu, Mudawar (bb0110) 2003; 46 Zezulka (bb0005) 2016; 49 Moore, Shi (bb0030) 2014; 17 Chen, Garimella (bb0135) 2006; 32 Kuncoro (bb0190) 2020 Sarangi (bb0125) 2023 Bansode (bb0115) 2020; 142 Fulpagare, Bhargav (bb0050) 2015; 43 Ji (bb0075) 2021; 288 Huang (bb0120) 2023; 207 Nadjahi, Louahlia, Lemasson (bb0040) 2018; 19 Habibi Khalaj, Halgamuge (bb0055) 2017; 205 Ebrahimi, Jones, Fleischer (bb0010) 2014; 31 Coleman, Steele (bb0205) 2018 Pires (bb0145) 2020; 56 Chiriac (bb0215) 2023; 11 Matsuoka, Matsuda, Kubo (bb0195) 2017 Luo (bb0175) 2022; 131 Ramakrishnan (bb0060) 2021; 11 Qiu (bb0095) 2017; 74 Kuncoro (bb0085) 2019; 2019 Rong (10.1016/j.icheatmasstransfer.2024.107509_bb0065) 2016; 58 Coleman (10.1016/j.icheatmasstransfer.2024.107509_bb0205) 2018 Ahmed (10.1016/j.icheatmasstransfer.2024.107509_bb0035) 2021; 9 Kheirabadi (10.1016/j.icheatmasstransfer.2024.107509_bb0070) 2016; 105 Kuncoro (10.1016/j.icheatmasstransfer.2024.107509_bb0085) 2019; 2019 Ebrahimi (10.1016/j.icheatmasstransfer.2024.107509_bb0010) 2014; 31 Bansode (10.1016/j.icheatmasstransfer.2024.107509_bb0115) 2020; 142 Kuo (10.1016/j.icheatmasstransfer.2024.107509_bb0210) 2022 Moore (10.1016/j.icheatmasstransfer.2024.107509_bb0030) 2014; 17 Sarangi (10.1016/j.icheatmasstransfer.2024.107509_bb0125) 2023 Taddeo (10.1016/j.icheatmasstransfer.2024.107509_bb0130) 2023; 234 Kuncoro (10.1016/j.icheatmasstransfer.2024.107509_bb0190) 2020 Chen (10.1016/j.icheatmasstransfer.2024.107509_bb0135) 2006; 32 Zezulka (10.1016/j.icheatmasstransfer.2024.107509_bb0005) 2016; 49 Muneeshwaran (10.1016/j.icheatmasstransfer.2024.107509_bb0200) 2023; 145 Daraghmeh (10.1016/j.icheatmasstransfer.2024.107509_bb0020) 2017; 114 Huang (10.1016/j.icheatmasstransfer.2024.107509_bb0120) 2023; 207 Pambudi (10.1016/j.icheatmasstransfer.2024.107509_bb0090) 2022; 61 Gandhi (10.1016/j.icheatmasstransfer.2024.107509_bb0170) 2019; 2020 Qu (10.1016/j.icheatmasstransfer.2024.107509_bb0110) 2003; 46 Birbarah (10.1016/j.icheatmasstransfer.2024.107509_bb0105) 2020; 147 Agung Pambudi (10.1016/j.icheatmasstransfer.2024.107509_bb0155) 2022; 119 Luo (10.1016/j.icheatmasstransfer.2024.107509_bb0175) 2022; 131 Matsuoka (10.1016/j.icheatmasstransfer.2024.107509_bb0195) 2017 Ramakrishnan (10.1016/j.icheatmasstransfer.2024.107509_bb0060) 2021; 11 Eiland (10.1016/j.icheatmasstransfer.2024.107509_bb0185) 2014 Habibi Khalaj (10.1016/j.icheatmasstransfer.2024.107509_bb0055) 2017; 205 Kanbur (10.1016/j.icheatmasstransfer.2024.107509_bb0100) 2021; 217 Sarangi (10.1016/j.icheatmasstransfer.2024.107509_bb0150) 2024 Li (10.1016/j.icheatmasstransfer.2024.107509_bb0180) 2023; 224 Cheng (10.1016/j.icheatmasstransfer.2024.107509_bb0080) 2020; 160 Pires (10.1016/j.icheatmasstransfer.2024.107509_bb0145) 2020; 56 Shah (10.1016/j.icheatmasstransfer.2024.107509_bb0160) 2019; 141 Shah (10.1016/j.icheatmasstransfer.2024.107509_bb0165) 2016 Chiriac (10.1016/j.icheatmasstransfer.2024.107509_bb0215) 2023; 11 Nadjahi (10.1016/j.icheatmasstransfer.2024.107509_bb0040) 2018; 19 Chu (10.1016/j.icheatmasstransfer.2024.107509_bb0045) 2019; 240 Qiu (10.1016/j.icheatmasstransfer.2024.107509_bb0095) 2017; 74 Ji (10.1016/j.icheatmasstransfer.2024.107509_bb0075) 2021; 288 Kheirabadi (10.1016/j.icheatmasstransfer.2024.107509_bb0025) 2018; 129 Liu (10.1016/j.icheatmasstransfer.2024.107509_bb0015) 2020; 3 Fulpagare (10.1016/j.icheatmasstransfer.2024.107509_bb0050) 2015; 43 Shrigondekar (10.1016/j.icheatmasstransfer.2024.107509_bb0140) 2023; 206 |
References_xml | – start-page: 316 year: 2016 end-page: 325 ident: bb0165 article-title: Effects of mineral oil immersion cooling on it equipment reliability and reliability enhancements to data center operations publication-title: 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Itherm) – volume: 147 year: 2020 ident: bb0105 article-title: Water immersion cooling of high power density electronics publication-title: Int. J. Heat Mass Transf. – start-page: 1 year: 2024 end-page: 5 ident: bb0150 article-title: Single-phase immersion cooling performance in intel servers with immersion influenced heatsink design publication-title: Modeling & Management Symposium (SEMI-THERM), 2022 38th Semiconductor Thermal Measurement – volume: 131 year: 2022 ident: bb0175 article-title: Research and optimization of thermophysical properties of sic oil-based nanofluids for data center immersion cooling publication-title: Int. Commun. Heat Mass Transf. – volume: 206 year: 2023 ident: bb0140 article-title: Investigations on performance of single-phase immersion cooling system publication-title: Int. J. Heat Mass Transf. – volume: 105 start-page: 622 year: 2016 end-page: 638 ident: bb0070 article-title: Cooling of server electronics: a design review of existing technology publication-title: Appl. Therm. Eng. – volume: 17 start-page: 163 year: 2014 end-page: 174 ident: bb0030 article-title: Emerging challenges and materials for thermal management of electronics publication-title: Mater. Today – volume: 142 year: 2020 ident: bb0115 article-title: Measurement of the thermal performance of a custom-build single-phase immersion cooled server at various high and low temperatures for prolonged time publication-title: J. Electron. Packag. – volume: 9 start-page: 152536 year: 2021 end-page: 152563 ident: bb0035 article-title: A review of data centers energy consumption and reliability modeling publication-title: IEEE Access – volume: 114 start-page: 1224 year: 2017 end-page: 1239 ident: bb0020 article-title: A review of current status of free cooling in datacenters publication-title: Appl. Therm. Eng. – volume: 234 year: 2023 ident: bb0130 article-title: Experimental and numerical analysis of the thermal behaviour of a single-phase immersion-cooled data Centre publication-title: Appl. Therm. Eng. – volume: 74 start-page: 34 year: 2017 end-page: 43 ident: bb0095 article-title: Experimental and numerical study of 3D stacked dies under forced air cooling and water immersion cooling publication-title: Microelectron. Reliab. – volume: 145 year: 2023 ident: bb0200 article-title: Performance analysis of single-phase immersion cooling system of data center using FC-40 dielectric fluid publication-title: Int. Commun. Heat Mass Transf. – year: 2018 ident: bb0205 article-title: Experimentation, Validation, and Uncertainty Analysis for Engineers – start-page: 21 year: 2020 ident: bb0190 article-title: Optimization of immersion cooling performance using the Taguchi method publication-title: Case Stud. Therm. Eng. – volume: 119 start-page: 275 year: 2022 end-page: 286 ident: bb0155 article-title: The use of single-phase immersion cooling by using two types of dielectric fluid for data center energy savings publication-title: Energy Eng. – volume: 56 start-page: 3231 year: 2020 end-page: 3237 ident: bb0145 article-title: An assessment of immersion cooling for power electronics: an oil volume case study publication-title: IEEE Trans. Ind. Appl. – volume: 58 start-page: 674 year: 2016 end-page: 691 ident: bb0065 article-title: Optimizing energy consumption for data centers publication-title: Renew. Sust. Energ. Rev. – start-page: 101 year: 2017 end-page: 107 ident: bb0195 article-title: Liquid immersion cooling technology with natural convection in data center publication-title: Proceedings of the 2017 IEEE 6th International Conference on Cloud Networking (Cloudnet) – volume: 3 start-page: 272 year: 2020 end-page: 282 ident: bb0015 article-title: Energy consumption and emission mitigation prediction based on data center traffic and PUE for global data centers publication-title: Glob. Energy Interconnect. – year: 2022 ident: bb0210 article-title: The study of the influence on heat dissipation effectiveness of the pin-fin angle and spacing in a liquid cooling module publication-title: 2022 17th International Microsystems, Packaging, Assembly and Circuits Technology Conference (Impact) – volume: 43 start-page: 981 year: 2015 end-page: 996 ident: bb0050 article-title: Advances in data center thermal management publication-title: Renew. Sust. Energ. Rev. – volume: 32 start-page: 957 year: 2006 end-page: 971 ident: bb0135 article-title: Measurements and high-speed visualizations of flow boiling of a dielectric fluid in a silicon microchannel heat sink publication-title: Int. J. Multiphase Flow – volume: 205 start-page: 1165 year: 2017 end-page: 1188 ident: bb0055 article-title: A review on efficient thermal management of air- and liquid-cooled data centers: from chip to the cooling system publication-title: Appl. Energy – start-page: 706 year: 2014 end-page: 714 ident: bb0185 article-title: Flow rate and inlet temperature considerations for direct immersion of a single server in mineral oil publication-title: 2014 IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Itherm) – volume: 129 start-page: 1010 year: 2018 end-page: 1025 ident: bb0025 article-title: Experimental evaluation of a thermal contact liquid cooling system for server electronics publication-title: Appl. Therm. Eng. – volume: 217 year: 2021 ident: bb0100 article-title: System-level experimental investigations of the direct immersion cooling data center units with thermodynamic and thermoeconomic assessments publication-title: Energy – volume: 49 start-page: 8 year: 2016 end-page: 12 ident: bb0005 article-title: Industry 4.0-an introduction in the phenomenon publication-title: Ifac Papersonline – volume: 224 year: 2023 ident: bb0180 article-title: Server performance optimization for single-phase immersion cooling data center publication-title: Appl. Therm. Eng. – volume: 11 start-page: 1703 year: 2021 end-page: 1715 ident: bb0060 article-title: CPU overclocking: a performance assessment of air, cold plates, and two-phase immersion cooling publication-title: IEEE Trans. Compon. Packag. Manuf. Technol. – volume: 2019 start-page: 1402 year: 2019 ident: bb0085 article-title: Immersion cooling as the next technology for data center cooling: A review publication-title: 4th Annual Applied Science and Engineering Conference – volume: 46 start-page: 2737 year: 2003 end-page: 2753 ident: bb0110 article-title: Measurement and prediction of pressure drop in two-phase micro-channel heat sinks publication-title: Int. J. Heat Mass Transf. – volume: 207 year: 2023 ident: bb0120 article-title: Natural and forced convection heat transfer characteristics of single-phase immersion cooling systems for data centers publication-title: Int. J. Heat Mass Transf. – volume: 19 start-page: 14 year: 2018 end-page: 28 ident: bb0040 article-title: A review of thermal management and innovative cooling strategies for data center publication-title: Sustain. Comp. Inform. Syst. – start-page: 1 year: 2023 end-page: 6 ident: bb0125 article-title: Thermal characterization of single-phase immersion cooling capability publication-title: 2023 22nd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) – volume: 160 year: 2020 ident: bb0080 article-title: Design of a single-phase immersion cooling system through experimental and numerical analysis publication-title: Int. J. Heat Mass Transf. – volume: 61 start-page: 9509 year: 2022 end-page: 9527 ident: bb0090 article-title: The immersion cooling technology: current and future development in energy saving publication-title: Alex. Eng. J. – volume: 288 year: 2021 ident: bb0075 article-title: A transmissive concentrator photovoltaic module with cells directly cooled by silicone oil for solar cogeneration systems publication-title: Appl. Energy – volume: 31 start-page: 622 year: 2014 end-page: 638 ident: bb0010 article-title: A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities publication-title: Renew. Sust. Energ. Rev. – volume: 2020 year: 2019 ident: bb0170 article-title: Computational analysis for thermal optimization of server for single phase immersion cooling publication-title: Proceedings of the Asme International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems – volume: 141 year: 2019 ident: bb0160 article-title: Reliability considerations for oil immersion-cooled data centers publication-title: J. Electron. Packag. – volume: 240 start-page: 84 year: 2019 end-page: 119 ident: bb0045 article-title: A review on airflow management in data centers publication-title: Appl. Energy – volume: 11 year: 2023 ident: bb0215 article-title: Influence of gravity on passively cooled heat sink using experimental data and finite element analysis publication-title: Processes – volume: 145 year: 2023 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0200 article-title: Performance analysis of single-phase immersion cooling system of data center using FC-40 dielectric fluid publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2023.106843 – volume: 119 start-page: 275 issue: 1 year: 2022 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0155 article-title: The use of single-phase immersion cooling by using two types of dielectric fluid for data center energy savings publication-title: Energy Eng. doi: 10.32604/EE.2022.017356 – volume: 11 issue: 3 year: 2023 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0215 article-title: Influence of gravity on passively cooled heat sink using experimental data and finite element analysis publication-title: Processes doi: 10.3390/pr11030896 – volume: 3 start-page: 272 issue: 3 year: 2020 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0015 article-title: Energy consumption and emission mitigation prediction based on data center traffic and PUE for global data centers publication-title: Glob. Energy Interconnect. doi: 10.1016/j.gloei.2020.07.008 – volume: 9 start-page: 152536 year: 2021 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0035 article-title: A review of data centers energy consumption and reliability modeling publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3125092 – start-page: 1 year: 2023 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0125 article-title: Thermal characterization of single-phase immersion cooling capability – volume: 2019 start-page: 1402 year: 2019 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0085 article-title: Immersion cooling as the next technology for data center cooling: A review – volume: 58 start-page: 674 year: 2016 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0065 article-title: Optimizing energy consumption for data centers publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2015.12.283 – volume: 17 start-page: 163 issue: 4 year: 2014 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0030 article-title: Emerging challenges and materials for thermal management of electronics publication-title: Mater. Today doi: 10.1016/j.mattod.2014.04.003 – volume: 206 year: 2023 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0140 article-title: Investigations on performance of single-phase immersion cooling system publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2023.123961 – volume: 147 year: 2020 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0105 article-title: Water immersion cooling of high power density electronics publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.118918 – volume: 2020 year: 2019 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0170 article-title: Computational analysis for thermal optimization of server for single phase immersion cooling – volume: 288 year: 2021 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0075 article-title: A transmissive concentrator photovoltaic module with cells directly cooled by silicone oil for solar cogeneration systems publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.116622 – volume: 224 year: 2023 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0180 article-title: Server performance optimization for single-phase immersion cooling data center publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2023.120080 – volume: 74 start-page: 34 year: 2017 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0095 article-title: Experimental and numerical study of 3D stacked dies under forced air cooling and water immersion cooling publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2017.02.016 – volume: 11 start-page: 1703 issue: 10 year: 2021 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0060 article-title: CPU overclocking: a performance assessment of air, cold plates, and two-phase immersion cooling publication-title: IEEE Trans. Compon. Packag. Manuf. Technol. doi: 10.1109/TCPMT.2021.3106026 – volume: 43 start-page: 981 year: 2015 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0050 article-title: Advances in data center thermal management publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2014.11.056 – volume: 56 start-page: 3231 issue: 3 year: 2020 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0145 article-title: An assessment of immersion cooling for power electronics: an oil volume case study publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2020.2975762 – year: 2018 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0205 – volume: 114 start-page: 1224 year: 2017 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0020 article-title: A review of current status of free cooling in datacenters publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.10.093 – volume: 46 start-page: 2737 issue: 15 year: 2003 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0110 article-title: Measurement and prediction of pressure drop in two-phase micro-channel heat sinks publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(03)00044-9 – start-page: 706 year: 2014 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0185 article-title: Flow rate and inlet temperature considerations for direct immersion of a single server in mineral oil – volume: 19 start-page: 14 year: 2018 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0040 article-title: A review of thermal management and innovative cooling strategies for data center publication-title: Sustain. Comp. Inform. Syst. – volume: 131 year: 2022 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0175 article-title: Research and optimization of thermophysical properties of sic oil-based nanofluids for data center immersion cooling publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2021.105863 – start-page: 316 year: 2016 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0165 article-title: Effects of mineral oil immersion cooling on it equipment reliability and reliability enhancements to data center operations – volume: 32 start-page: 957 issue: 8 year: 2006 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0135 article-title: Measurements and high-speed visualizations of flow boiling of a dielectric fluid in a silicon microchannel heat sink publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2006.03.002 – start-page: 21 year: 2020 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0190 article-title: Optimization of immersion cooling performance using the Taguchi method publication-title: Case Stud. Therm. Eng. – volume: 207 year: 2023 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0120 article-title: Natural and forced convection heat transfer characteristics of single-phase immersion cooling systems for data centers publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2023.124023 – volume: 142 issue: 1 year: 2020 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0115 article-title: Measurement of the thermal performance of a custom-build single-phase immersion cooled server at various high and low temperatures for prolonged time publication-title: J. Electron. Packag. doi: 10.1115/1.4045156 – volume: 61 start-page: 9509 issue: 12 year: 2022 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0090 article-title: The immersion cooling technology: current and future development in energy saving publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2022.02.059 – volume: 217 year: 2021 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0100 article-title: System-level experimental investigations of the direct immersion cooling data center units with thermodynamic and thermoeconomic assessments publication-title: Energy doi: 10.1016/j.energy.2020.119373 – volume: 141 issue: 2 year: 2019 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0160 article-title: Reliability considerations for oil immersion-cooled data centers publication-title: J. Electron. Packag. doi: 10.1115/1.4042979 – start-page: 1 year: 2024 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0150 article-title: Single-phase immersion cooling performance in intel servers with immersion influenced heatsink design – volume: 205 start-page: 1165 year: 2017 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0055 article-title: A review on efficient thermal management of air- and liquid-cooled data centers: from chip to the cooling system publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.08.037 – start-page: 101 year: 2017 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0195 article-title: Liquid immersion cooling technology with natural convection in data center – volume: 129 start-page: 1010 year: 2018 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0025 article-title: Experimental evaluation of a thermal contact liquid cooling system for server electronics publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.10.098 – volume: 240 start-page: 84 year: 2019 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0045 article-title: A review on airflow management in data centers publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.02.041 – volume: 160 year: 2020 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0080 article-title: Design of a single-phase immersion cooling system through experimental and numerical analysis publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2020.120203 – volume: 49 start-page: 8 issue: 25 year: 2016 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0005 article-title: Industry 4.0-an introduction in the phenomenon publication-title: Ifac Papersonline doi: 10.1016/j.ifacol.2016.12.002 – volume: 234 year: 2023 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0130 article-title: Experimental and numerical analysis of the thermal behaviour of a single-phase immersion-cooled data Centre publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2023.121260 – volume: 31 start-page: 622 year: 2014 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0010 article-title: A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2013.12.007 – volume: 105 start-page: 622 year: 2016 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0070 article-title: Cooling of server electronics: a design review of existing technology publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.03.056 – year: 2022 ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0210 article-title: The study of the influence on heat dissipation effectiveness of the pin-fin angle and spacing in a liquid cooling module |
SSID | ssj0001818 |
Score | 2.4198139 |
Snippet | This study investigates improving traditional immersion cooling systems by employing cold plates in single-phase immersion cooling with dielectric fluids... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107509 |
SubjectTerms | Bypass Cold plate Noah@3000A PAO-4 Single-phase liquid immersion cooling |
Title | Investigation of the single-phase immersion cold plate amid PAO-4 and Noah@3000A – An experimental approach and its numerical verification |
URI | https://dx.doi.org/10.1016/j.icheatmasstransfer.2024.107509 |
Volume | 155 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5VRSA4ICggyk81Bw5czG42TuKcIFpRLSAWJIrUW-TEYzXVNrui6RXxANx4Q56EGSehi-AAEsfYjpN4xjOfnfE3AE_SyNSWLR8vcvKp0kRGVcZbNa1TU0U1O0QvZ4ffLtPFR_36ODnegfl4FkbCKgfb39v0YK2HkskwmpNN00w-sHIK_BBGOV5bBepPrTPR8mefL8M82IMFa8yNlbS-Bk8vY7wk2tJ2ZwxTuwATSRhCZ5qrxZH-2VVtuZ_DW3BzwI1Y9K92G3ao3YMbW2yCe3A1RHPW53fg6xZ7xrrFtUeGeSi7AitSmxN2XNiEDWupZU1wuFkx5kR71jh8X7xTGm3rcLm2Jy9i_roCv3_5hkWL2_kAcKQjD22b7hzbi_73zwp5fkgIUnj8XTg6fHk0X6gh7YKqYz3rVOZNJhOZpuRzo5Mq5oLKUWIyihKfa2OTnJzOrdDDCT5KyFnJduPyjOL4Huy265buA85sHVkXOZ2SZ2CoDSXe1NpTlVBWpbN9eD4OcFkPlOSSGWNVjrFnp-XvIipFRGUvon3If_aw6ek5_uHe-SjT8heVK9mb_HUvD_5LLw_hulz1MWiPYLf7dEGPGe101UFQ5wO4Urx6s1j-AMboBYQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB5VRfwdEBQqyq8PIHExu8k6iXOo6KpQbWm7ILFIvVlOPFaDttkVmwpxQTxAb7wJj8STdCY_dBEcQKLXOHESz2Tms_P5G4AncaBzS5GPJjlpXypELTPtreznsc6CnBKi573DB-N49F69PowOV-B7txeGaZVt7G9ieh2t2yO9djR786LovSPnZPjBinI0twrSllm5h58_0bxtsbn7koz8NAx3Xk22R7ItLSDzgQormXidsLNiH32qVZQN6EDmMNIJBpFPlbZRik6lliXQGANE6CxXdHFpgrwISmH_kqJowVUTnn85p5VQxqyjPz2c5Ke7As_OOWXM7rTVMcHiqoalyIqkoaJmTtx_To1L6W7nJtxocaoYNkNxC1awXIPrS-qFa3C5Zo_mi9twuqTWMSvFzAuClYJXIaYo50eUKEVRL5BzK3meE_MpYVxhjwsn3g7fSCVs6cR4Zo-2BvR2Q_Hj6zcxLMVy_QHRyZ_X5xbVQpQnze-mqaDvkSlP9e3vwOQibLEOq-WsxLsgQpsH1gVOxegJiCqNkde58phFmGRxuAEvugE2eSuBzpU4pqbjun0wv5vIsIlMY6INSH_2MG_kQP7h2u3OpuYXFzeUvf66l3v_pZfHcHU0Odg3-7vjvftwjVsa_tsDWK0-nuBDQlpV9qh2bQHmgj-lM6hjP0Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+the+single-phase+immersion+cold+plate+amid+PAO-4+and+Noah%403000A+%E2%80%93+An+experimental+approach+and+its+numerical+verification&rft.jtitle=International+communications+in+heat+and+mass+transfer&rft.au=Zhang%2C+Yong-Dong&rft.au=Lin%2C+Yu-Chi&rft.au=Wang%2C+Chi-Chuan&rft.date=2024-06-01&rft.pub=Elsevier+Ltd&rft.issn=0735-1933&rft.eissn=1879-0178&rft.volume=155&rft_id=info:doi/10.1016%2Fj.icheatmasstransfer.2024.107509&rft.externalDocID=S0735193324002719 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0735-1933&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0735-1933&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0735-1933&client=summon |