Investigation of the single-phase immersion cold plate amid PAO-4 and Noah@3000A – An experimental approach and its numerical verification

This study investigates improving traditional immersion cooling systems by employing cold plates in single-phase immersion cooling with dielectric fluids (Noah@3000 A and PAO-4). Experimental and CFD methods explore various cold plate structures in a 1 U server with a TTV heat source. Flow rates ran...

Full description

Saved in:
Bibliographic Details
Published inInternational communications in heat and mass transfer Vol. 155; p. 107509
Main Authors Zhang, Yong-Dong, Lin, Yu-Chi, Wang, Chi-Chuan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study investigates improving traditional immersion cooling systems by employing cold plates in single-phase immersion cooling with dielectric fluids (Noah@3000 A and PAO-4). Experimental and CFD methods explore various cold plate structures in a 1 U server with a TTV heat source. Flow rates range from 1 to 3 LPM, and configurations include side-open, fully enclosed, and dual-open designs. Results show that incorporating cold plates reduces fluid bypass, enhancing thermal performance. High-viscosity dielectric oil as a coolant yields substantial improvements (36.1% and 41.6% at low and high flow rates) compared to traditional systems. Thermal resistance decreases with higher flow rates, more notably for Noah@3000A. Immersing the cold plate in liquid enhances convective heat transfer, reducing thermal resistances by 7.2% and 9.4% for Noah@3000A and PAO-4 at low flow rates. Smaller fin pitch consistently lowers resistance by eliminating bypass. Outlet configuration significantly influences thermal resistance, with Enclosed cold plates showing the least performance for PAO-4 and dual-open cold plate yields the worst performance with Noah@3000A. Differences in heat transfer behavior between PAO-4 and Noah@3000A are linked to laminar and turbulent flow characteristics. These findings offer insights into optimizing immersion cooling systems, emphasizing the impact of fluid choice and cold plate design on thermal performance.
AbstractList This study investigates improving traditional immersion cooling systems by employing cold plates in single-phase immersion cooling with dielectric fluids (Noah@3000 A and PAO-4). Experimental and CFD methods explore various cold plate structures in a 1 U server with a TTV heat source. Flow rates range from 1 to 3 LPM, and configurations include side-open, fully enclosed, and dual-open designs. Results show that incorporating cold plates reduces fluid bypass, enhancing thermal performance. High-viscosity dielectric oil as a coolant yields substantial improvements (36.1% and 41.6% at low and high flow rates) compared to traditional systems. Thermal resistance decreases with higher flow rates, more notably for Noah@3000A. Immersing the cold plate in liquid enhances convective heat transfer, reducing thermal resistances by 7.2% and 9.4% for Noah@3000A and PAO-4 at low flow rates. Smaller fin pitch consistently lowers resistance by eliminating bypass. Outlet configuration significantly influences thermal resistance, with Enclosed cold plates showing the least performance for PAO-4 and dual-open cold plate yields the worst performance with Noah@3000A. Differences in heat transfer behavior between PAO-4 and Noah@3000A are linked to laminar and turbulent flow characteristics. These findings offer insights into optimizing immersion cooling systems, emphasizing the impact of fluid choice and cold plate design on thermal performance.
ArticleNumber 107509
Author Lin, Yu-Chi
Zhang, Yong-Dong
Wang, Chi-Chuan
Author_xml – sequence: 1
  givenname: Yong-Dong
  surname: Zhang
  fullname: Zhang, Yong-Dong
– sequence: 2
  givenname: Yu-Chi
  surname: Lin
  fullname: Lin, Yu-Chi
– sequence: 3
  givenname: Chi-Chuan
  surname: Wang
  fullname: Wang, Chi-Chuan
  email: ccwang@nycu.edu.tw
BookMark eNqVkEtOxDAMhiMEEsPjDlmy6ZA0LUl3jBBPIWAx-8qTuDSjNq2SMIIdB2DHDTkJGYYVbECyZMu_9dn-98i2GxwScsTZlDN-crycWt0ixB5CiB5caNBPc5YXSZYlq7bIhCtZZYxLtU0mTIoy45UQu2QvhCVjjCuuJuTt2q0wRPsI0Q6ODg2NLdJg3WOH2dhCQGr7Hn1Yq3roDB07iEiht4Y-zO6zgoIz9G6A9lQk6ox-vL7TmaP4PKK3PboIHYVx9APo9mvWxkDdU2JanaRVyk2q1usPyE4DXcDD77xP5hfn87Or7Pb-8vpsdptpUeQxk42SeSkVMmwqVZQLkRoLg6WSyMumKhSUFZqiAp5znpcp0ICQOTOVRCH2yekGq_0QgsemHtOl4F9qzuq1ufWy_m1uvTa33pibEBc_ENrGrx_SuO3-A7rZgDD9u7JJDdqi02isRx1rM9i_wz4B48ir9Q
CitedBy_id crossref_primary_10_1016_j_csite_2024_105386
crossref_primary_10_1016_j_est_2025_116010
Cites_doi 10.1016/j.icheatmasstransfer.2023.106843
10.32604/EE.2022.017356
10.3390/pr11030896
10.1016/j.gloei.2020.07.008
10.1109/ACCESS.2021.3125092
10.1016/j.rser.2015.12.283
10.1016/j.mattod.2014.04.003
10.1016/j.ijheatmasstransfer.2023.123961
10.1016/j.ijheatmasstransfer.2019.118918
10.1016/j.apenergy.2021.116622
10.1016/j.applthermaleng.2023.120080
10.1016/j.microrel.2017.02.016
10.1109/TCPMT.2021.3106026
10.1016/j.rser.2014.11.056
10.1109/TIA.2020.2975762
10.1016/j.applthermaleng.2016.10.093
10.1016/S0017-9310(03)00044-9
10.1016/j.icheatmasstransfer.2021.105863
10.1016/j.ijmultiphaseflow.2006.03.002
10.1016/j.ijheatmasstransfer.2023.124023
10.1115/1.4045156
10.1016/j.aej.2022.02.059
10.1016/j.energy.2020.119373
10.1115/1.4042979
10.1016/j.apenergy.2017.08.037
10.1016/j.applthermaleng.2017.10.098
10.1016/j.apenergy.2019.02.041
10.1016/j.ijheatmasstransfer.2020.120203
10.1016/j.ifacol.2016.12.002
10.1016/j.applthermaleng.2023.121260
10.1016/j.rser.2013.12.007
10.1016/j.applthermaleng.2016.03.056
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.icheatmasstransfer.2024.107509
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-0178
ExternalDocumentID 10_1016_j_icheatmasstransfer_2024_107509
S0735193324002719
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
WUQ
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c342t-7f872578e0ef9845b3f87bde587e15f948a59ed49a121125125eda3720d97e33
IEDL.DBID .~1
ISSN 0735-1933
IngestDate Thu Apr 24 23:05:03 EDT 2025
Tue Jul 01 04:24:51 EDT 2025
Tue Jun 18 08:51:36 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Cold plate
Single-phase liquid immersion cooling
PAO-4
Bypass
Noah@3000A
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-7f872578e0ef9845b3f87bde587e15f948a59ed49a121125125eda3720d97e33
ParticipantIDs crossref_primary_10_1016_j_icheatmasstransfer_2024_107509
crossref_citationtrail_10_1016_j_icheatmasstransfer_2024_107509
elsevier_sciencedirect_doi_10_1016_j_icheatmasstransfer_2024_107509
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle International communications in heat and mass transfer
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Rong (bb0065) 2016; 58
Liu (bb0015) 2020; 3
Gandhi (bb0170) 2019; 2020
Sarangi, E.D.M, Damm, Gullbrand (bb0150) 2024
Kheirabadi, Groulx (bb0025) 2018; 129
Shah (bb0160) 2019; 141
Eiland (bb0185) 2014
Chu, Wang (bb0045) 2019; 240
Kheirabadi, Groulx (bb0070) 2016; 105
Kuo, Tseng, Sikhondze (bb0210) 2022
Pambudi (bb0090) 2022; 61
Shah (bb0165) 2016
Birbarah (bb0105) 2020; 147
Daraghmeh, Wang (bb0020) 2017; 114
Agung Pambudi, Muhamad Yusuf, Sarifudin (bb0155) 2022; 119
Cheng (bb0080) 2020; 160
Li (bb0180) 2023; 224
Shrigondekar, Lin, Wang (bb0140) 2023; 206
Muneeshwaran, Lin, Wang (bb0200) 2023; 145
Ahmed, Bollen, Alvarez (bb0035) 2021; 9
Kanbur (bb0100) 2021; 217
Taddeo (bb0130) 2023; 234
Qu, Mudawar (bb0110) 2003; 46
Zezulka (bb0005) 2016; 49
Moore, Shi (bb0030) 2014; 17
Chen, Garimella (bb0135) 2006; 32
Kuncoro (bb0190) 2020
Sarangi (bb0125) 2023
Bansode (bb0115) 2020; 142
Fulpagare, Bhargav (bb0050) 2015; 43
Ji (bb0075) 2021; 288
Huang (bb0120) 2023; 207
Nadjahi, Louahlia, Lemasson (bb0040) 2018; 19
Habibi Khalaj, Halgamuge (bb0055) 2017; 205
Ebrahimi, Jones, Fleischer (bb0010) 2014; 31
Coleman, Steele (bb0205) 2018
Pires (bb0145) 2020; 56
Chiriac (bb0215) 2023; 11
Matsuoka, Matsuda, Kubo (bb0195) 2017
Luo (bb0175) 2022; 131
Ramakrishnan (bb0060) 2021; 11
Qiu (bb0095) 2017; 74
Kuncoro (bb0085) 2019; 2019
Rong (10.1016/j.icheatmasstransfer.2024.107509_bb0065) 2016; 58
Coleman (10.1016/j.icheatmasstransfer.2024.107509_bb0205) 2018
Ahmed (10.1016/j.icheatmasstransfer.2024.107509_bb0035) 2021; 9
Kheirabadi (10.1016/j.icheatmasstransfer.2024.107509_bb0070) 2016; 105
Kuncoro (10.1016/j.icheatmasstransfer.2024.107509_bb0085) 2019; 2019
Ebrahimi (10.1016/j.icheatmasstransfer.2024.107509_bb0010) 2014; 31
Bansode (10.1016/j.icheatmasstransfer.2024.107509_bb0115) 2020; 142
Kuo (10.1016/j.icheatmasstransfer.2024.107509_bb0210) 2022
Moore (10.1016/j.icheatmasstransfer.2024.107509_bb0030) 2014; 17
Sarangi (10.1016/j.icheatmasstransfer.2024.107509_bb0125) 2023
Taddeo (10.1016/j.icheatmasstransfer.2024.107509_bb0130) 2023; 234
Kuncoro (10.1016/j.icheatmasstransfer.2024.107509_bb0190) 2020
Chen (10.1016/j.icheatmasstransfer.2024.107509_bb0135) 2006; 32
Zezulka (10.1016/j.icheatmasstransfer.2024.107509_bb0005) 2016; 49
Muneeshwaran (10.1016/j.icheatmasstransfer.2024.107509_bb0200) 2023; 145
Daraghmeh (10.1016/j.icheatmasstransfer.2024.107509_bb0020) 2017; 114
Huang (10.1016/j.icheatmasstransfer.2024.107509_bb0120) 2023; 207
Pambudi (10.1016/j.icheatmasstransfer.2024.107509_bb0090) 2022; 61
Gandhi (10.1016/j.icheatmasstransfer.2024.107509_bb0170) 2019; 2020
Qu (10.1016/j.icheatmasstransfer.2024.107509_bb0110) 2003; 46
Birbarah (10.1016/j.icheatmasstransfer.2024.107509_bb0105) 2020; 147
Agung Pambudi (10.1016/j.icheatmasstransfer.2024.107509_bb0155) 2022; 119
Luo (10.1016/j.icheatmasstransfer.2024.107509_bb0175) 2022; 131
Matsuoka (10.1016/j.icheatmasstransfer.2024.107509_bb0195) 2017
Ramakrishnan (10.1016/j.icheatmasstransfer.2024.107509_bb0060) 2021; 11
Eiland (10.1016/j.icheatmasstransfer.2024.107509_bb0185) 2014
Habibi Khalaj (10.1016/j.icheatmasstransfer.2024.107509_bb0055) 2017; 205
Kanbur (10.1016/j.icheatmasstransfer.2024.107509_bb0100) 2021; 217
Sarangi (10.1016/j.icheatmasstransfer.2024.107509_bb0150) 2024
Li (10.1016/j.icheatmasstransfer.2024.107509_bb0180) 2023; 224
Cheng (10.1016/j.icheatmasstransfer.2024.107509_bb0080) 2020; 160
Pires (10.1016/j.icheatmasstransfer.2024.107509_bb0145) 2020; 56
Shah (10.1016/j.icheatmasstransfer.2024.107509_bb0160) 2019; 141
Shah (10.1016/j.icheatmasstransfer.2024.107509_bb0165) 2016
Chiriac (10.1016/j.icheatmasstransfer.2024.107509_bb0215) 2023; 11
Nadjahi (10.1016/j.icheatmasstransfer.2024.107509_bb0040) 2018; 19
Chu (10.1016/j.icheatmasstransfer.2024.107509_bb0045) 2019; 240
Qiu (10.1016/j.icheatmasstransfer.2024.107509_bb0095) 2017; 74
Ji (10.1016/j.icheatmasstransfer.2024.107509_bb0075) 2021; 288
Kheirabadi (10.1016/j.icheatmasstransfer.2024.107509_bb0025) 2018; 129
Liu (10.1016/j.icheatmasstransfer.2024.107509_bb0015) 2020; 3
Fulpagare (10.1016/j.icheatmasstransfer.2024.107509_bb0050) 2015; 43
Shrigondekar (10.1016/j.icheatmasstransfer.2024.107509_bb0140) 2023; 206
References_xml – start-page: 316
  year: 2016
  end-page: 325
  ident: bb0165
  article-title: Effects of mineral oil immersion cooling on it equipment reliability and reliability enhancements to data center operations
  publication-title: 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Itherm)
– volume: 147
  year: 2020
  ident: bb0105
  article-title: Water immersion cooling of high power density electronics
  publication-title: Int. J. Heat Mass Transf.
– start-page: 1
  year: 2024
  end-page: 5
  ident: bb0150
  article-title: Single-phase immersion cooling performance in intel servers with immersion influenced heatsink design
  publication-title: Modeling & Management Symposium (SEMI-THERM), 2022 38th Semiconductor Thermal Measurement
– volume: 131
  year: 2022
  ident: bb0175
  article-title: Research and optimization of thermophysical properties of sic oil-based nanofluids for data center immersion cooling
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 206
  year: 2023
  ident: bb0140
  article-title: Investigations on performance of single-phase immersion cooling system
  publication-title: Int. J. Heat Mass Transf.
– volume: 105
  start-page: 622
  year: 2016
  end-page: 638
  ident: bb0070
  article-title: Cooling of server electronics: a design review of existing technology
  publication-title: Appl. Therm. Eng.
– volume: 17
  start-page: 163
  year: 2014
  end-page: 174
  ident: bb0030
  article-title: Emerging challenges and materials for thermal management of electronics
  publication-title: Mater. Today
– volume: 142
  year: 2020
  ident: bb0115
  article-title: Measurement of the thermal performance of a custom-build single-phase immersion cooled server at various high and low temperatures for prolonged time
  publication-title: J. Electron. Packag.
– volume: 9
  start-page: 152536
  year: 2021
  end-page: 152563
  ident: bb0035
  article-title: A review of data centers energy consumption and reliability modeling
  publication-title: IEEE Access
– volume: 114
  start-page: 1224
  year: 2017
  end-page: 1239
  ident: bb0020
  article-title: A review of current status of free cooling in datacenters
  publication-title: Appl. Therm. Eng.
– volume: 234
  year: 2023
  ident: bb0130
  article-title: Experimental and numerical analysis of the thermal behaviour of a single-phase immersion-cooled data Centre
  publication-title: Appl. Therm. Eng.
– volume: 74
  start-page: 34
  year: 2017
  end-page: 43
  ident: bb0095
  article-title: Experimental and numerical study of 3D stacked dies under forced air cooling and water immersion cooling
  publication-title: Microelectron. Reliab.
– volume: 145
  year: 2023
  ident: bb0200
  article-title: Performance analysis of single-phase immersion cooling system of data center using FC-40 dielectric fluid
  publication-title: Int. Commun. Heat Mass Transf.
– year: 2018
  ident: bb0205
  article-title: Experimentation, Validation, and Uncertainty Analysis for Engineers
– start-page: 21
  year: 2020
  ident: bb0190
  article-title: Optimization of immersion cooling performance using the Taguchi method
  publication-title: Case Stud. Therm. Eng.
– volume: 119
  start-page: 275
  year: 2022
  end-page: 286
  ident: bb0155
  article-title: The use of single-phase immersion cooling by using two types of dielectric fluid for data center energy savings
  publication-title: Energy Eng.
– volume: 56
  start-page: 3231
  year: 2020
  end-page: 3237
  ident: bb0145
  article-title: An assessment of immersion cooling for power electronics: an oil volume case study
  publication-title: IEEE Trans. Ind. Appl.
– volume: 58
  start-page: 674
  year: 2016
  end-page: 691
  ident: bb0065
  article-title: Optimizing energy consumption for data centers
  publication-title: Renew. Sust. Energ. Rev.
– start-page: 101
  year: 2017
  end-page: 107
  ident: bb0195
  article-title: Liquid immersion cooling technology with natural convection in data center
  publication-title: Proceedings of the 2017 IEEE 6th International Conference on Cloud Networking (Cloudnet)
– volume: 3
  start-page: 272
  year: 2020
  end-page: 282
  ident: bb0015
  article-title: Energy consumption and emission mitigation prediction based on data center traffic and PUE for global data centers
  publication-title: Glob. Energy Interconnect.
– year: 2022
  ident: bb0210
  article-title: The study of the influence on heat dissipation effectiveness of the pin-fin angle and spacing in a liquid cooling module
  publication-title: 2022 17th International Microsystems, Packaging, Assembly and Circuits Technology Conference (Impact)
– volume: 43
  start-page: 981
  year: 2015
  end-page: 996
  ident: bb0050
  article-title: Advances in data center thermal management
  publication-title: Renew. Sust. Energ. Rev.
– volume: 32
  start-page: 957
  year: 2006
  end-page: 971
  ident: bb0135
  article-title: Measurements and high-speed visualizations of flow boiling of a dielectric fluid in a silicon microchannel heat sink
  publication-title: Int. J. Multiphase Flow
– volume: 205
  start-page: 1165
  year: 2017
  end-page: 1188
  ident: bb0055
  article-title: A review on efficient thermal management of air- and liquid-cooled data centers: from chip to the cooling system
  publication-title: Appl. Energy
– start-page: 706
  year: 2014
  end-page: 714
  ident: bb0185
  article-title: Flow rate and inlet temperature considerations for direct immersion of a single server in mineral oil
  publication-title: 2014 IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Itherm)
– volume: 129
  start-page: 1010
  year: 2018
  end-page: 1025
  ident: bb0025
  article-title: Experimental evaluation of a thermal contact liquid cooling system for server electronics
  publication-title: Appl. Therm. Eng.
– volume: 217
  year: 2021
  ident: bb0100
  article-title: System-level experimental investigations of the direct immersion cooling data center units with thermodynamic and thermoeconomic assessments
  publication-title: Energy
– volume: 49
  start-page: 8
  year: 2016
  end-page: 12
  ident: bb0005
  article-title: Industry 4.0-an introduction in the phenomenon
  publication-title: Ifac Papersonline
– volume: 224
  year: 2023
  ident: bb0180
  article-title: Server performance optimization for single-phase immersion cooling data center
  publication-title: Appl. Therm. Eng.
– volume: 11
  start-page: 1703
  year: 2021
  end-page: 1715
  ident: bb0060
  article-title: CPU overclocking: a performance assessment of air, cold plates, and two-phase immersion cooling
  publication-title: IEEE Trans. Compon. Packag. Manuf. Technol.
– volume: 2019
  start-page: 1402
  year: 2019
  ident: bb0085
  article-title: Immersion cooling as the next technology for data center cooling: A review
  publication-title: 4th Annual Applied Science and Engineering Conference
– volume: 46
  start-page: 2737
  year: 2003
  end-page: 2753
  ident: bb0110
  article-title: Measurement and prediction of pressure drop in two-phase micro-channel heat sinks
  publication-title: Int. J. Heat Mass Transf.
– volume: 207
  year: 2023
  ident: bb0120
  article-title: Natural and forced convection heat transfer characteristics of single-phase immersion cooling systems for data centers
  publication-title: Int. J. Heat Mass Transf.
– volume: 19
  start-page: 14
  year: 2018
  end-page: 28
  ident: bb0040
  article-title: A review of thermal management and innovative cooling strategies for data center
  publication-title: Sustain. Comp. Inform. Syst.
– start-page: 1
  year: 2023
  end-page: 6
  ident: bb0125
  article-title: Thermal characterization of single-phase immersion cooling capability
  publication-title: 2023 22nd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
– volume: 160
  year: 2020
  ident: bb0080
  article-title: Design of a single-phase immersion cooling system through experimental and numerical analysis
  publication-title: Int. J. Heat Mass Transf.
– volume: 61
  start-page: 9509
  year: 2022
  end-page: 9527
  ident: bb0090
  article-title: The immersion cooling technology: current and future development in energy saving
  publication-title: Alex. Eng. J.
– volume: 288
  year: 2021
  ident: bb0075
  article-title: A transmissive concentrator photovoltaic module with cells directly cooled by silicone oil for solar cogeneration systems
  publication-title: Appl. Energy
– volume: 31
  start-page: 622
  year: 2014
  end-page: 638
  ident: bb0010
  article-title: A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities
  publication-title: Renew. Sust. Energ. Rev.
– volume: 2020
  year: 2019
  ident: bb0170
  article-title: Computational analysis for thermal optimization of server for single phase immersion cooling
  publication-title: Proceedings of the Asme International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
– volume: 141
  year: 2019
  ident: bb0160
  article-title: Reliability considerations for oil immersion-cooled data centers
  publication-title: J. Electron. Packag.
– volume: 240
  start-page: 84
  year: 2019
  end-page: 119
  ident: bb0045
  article-title: A review on airflow management in data centers
  publication-title: Appl. Energy
– volume: 11
  year: 2023
  ident: bb0215
  article-title: Influence of gravity on passively cooled heat sink using experimental data and finite element analysis
  publication-title: Processes
– volume: 145
  year: 2023
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0200
  article-title: Performance analysis of single-phase immersion cooling system of data center using FC-40 dielectric fluid
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2023.106843
– volume: 119
  start-page: 275
  issue: 1
  year: 2022
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0155
  article-title: The use of single-phase immersion cooling by using two types of dielectric fluid for data center energy savings
  publication-title: Energy Eng.
  doi: 10.32604/EE.2022.017356
– volume: 11
  issue: 3
  year: 2023
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0215
  article-title: Influence of gravity on passively cooled heat sink using experimental data and finite element analysis
  publication-title: Processes
  doi: 10.3390/pr11030896
– volume: 3
  start-page: 272
  issue: 3
  year: 2020
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0015
  article-title: Energy consumption and emission mitigation prediction based on data center traffic and PUE for global data centers
  publication-title: Glob. Energy Interconnect.
  doi: 10.1016/j.gloei.2020.07.008
– volume: 9
  start-page: 152536
  year: 2021
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0035
  article-title: A review of data centers energy consumption and reliability modeling
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3125092
– start-page: 1
  year: 2023
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0125
  article-title: Thermal characterization of single-phase immersion cooling capability
– volume: 2019
  start-page: 1402
  year: 2019
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0085
  article-title: Immersion cooling as the next technology for data center cooling: A review
– volume: 58
  start-page: 674
  year: 2016
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0065
  article-title: Optimizing energy consumption for data centers
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2015.12.283
– volume: 17
  start-page: 163
  issue: 4
  year: 2014
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0030
  article-title: Emerging challenges and materials for thermal management of electronics
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2014.04.003
– volume: 206
  year: 2023
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0140
  article-title: Investigations on performance of single-phase immersion cooling system
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2023.123961
– volume: 147
  year: 2020
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0105
  article-title: Water immersion cooling of high power density electronics
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.118918
– volume: 2020
  year: 2019
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0170
  article-title: Computational analysis for thermal optimization of server for single phase immersion cooling
– volume: 288
  year: 2021
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0075
  article-title: A transmissive concentrator photovoltaic module with cells directly cooled by silicone oil for solar cogeneration systems
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.116622
– volume: 224
  year: 2023
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0180
  article-title: Server performance optimization for single-phase immersion cooling data center
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2023.120080
– volume: 74
  start-page: 34
  year: 2017
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0095
  article-title: Experimental and numerical study of 3D stacked dies under forced air cooling and water immersion cooling
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2017.02.016
– volume: 11
  start-page: 1703
  issue: 10
  year: 2021
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0060
  article-title: CPU overclocking: a performance assessment of air, cold plates, and two-phase immersion cooling
  publication-title: IEEE Trans. Compon. Packag. Manuf. Technol.
  doi: 10.1109/TCPMT.2021.3106026
– volume: 43
  start-page: 981
  year: 2015
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0050
  article-title: Advances in data center thermal management
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2014.11.056
– volume: 56
  start-page: 3231
  issue: 3
  year: 2020
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0145
  article-title: An assessment of immersion cooling for power electronics: an oil volume case study
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2020.2975762
– year: 2018
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0205
– volume: 114
  start-page: 1224
  year: 2017
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0020
  article-title: A review of current status of free cooling in datacenters
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.10.093
– volume: 46
  start-page: 2737
  issue: 15
  year: 2003
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0110
  article-title: Measurement and prediction of pressure drop in two-phase micro-channel heat sinks
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(03)00044-9
– start-page: 706
  year: 2014
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0185
  article-title: Flow rate and inlet temperature considerations for direct immersion of a single server in mineral oil
– volume: 19
  start-page: 14
  year: 2018
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0040
  article-title: A review of thermal management and innovative cooling strategies for data center
  publication-title: Sustain. Comp. Inform. Syst.
– volume: 131
  year: 2022
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0175
  article-title: Research and optimization of thermophysical properties of sic oil-based nanofluids for data center immersion cooling
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2021.105863
– start-page: 316
  year: 2016
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0165
  article-title: Effects of mineral oil immersion cooling on it equipment reliability and reliability enhancements to data center operations
– volume: 32
  start-page: 957
  issue: 8
  year: 2006
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0135
  article-title: Measurements and high-speed visualizations of flow boiling of a dielectric fluid in a silicon microchannel heat sink
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2006.03.002
– start-page: 21
  year: 2020
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0190
  article-title: Optimization of immersion cooling performance using the Taguchi method
  publication-title: Case Stud. Therm. Eng.
– volume: 207
  year: 2023
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0120
  article-title: Natural and forced convection heat transfer characteristics of single-phase immersion cooling systems for data centers
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2023.124023
– volume: 142
  issue: 1
  year: 2020
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0115
  article-title: Measurement of the thermal performance of a custom-build single-phase immersion cooled server at various high and low temperatures for prolonged time
  publication-title: J. Electron. Packag.
  doi: 10.1115/1.4045156
– volume: 61
  start-page: 9509
  issue: 12
  year: 2022
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0090
  article-title: The immersion cooling technology: current and future development in energy saving
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2022.02.059
– volume: 217
  year: 2021
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0100
  article-title: System-level experimental investigations of the direct immersion cooling data center units with thermodynamic and thermoeconomic assessments
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119373
– volume: 141
  issue: 2
  year: 2019
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0160
  article-title: Reliability considerations for oil immersion-cooled data centers
  publication-title: J. Electron. Packag.
  doi: 10.1115/1.4042979
– start-page: 1
  year: 2024
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0150
  article-title: Single-phase immersion cooling performance in intel servers with immersion influenced heatsink design
– volume: 205
  start-page: 1165
  year: 2017
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0055
  article-title: A review on efficient thermal management of air- and liquid-cooled data centers: from chip to the cooling system
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.08.037
– start-page: 101
  year: 2017
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0195
  article-title: Liquid immersion cooling technology with natural convection in data center
– volume: 129
  start-page: 1010
  year: 2018
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0025
  article-title: Experimental evaluation of a thermal contact liquid cooling system for server electronics
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.10.098
– volume: 240
  start-page: 84
  year: 2019
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0045
  article-title: A review on airflow management in data centers
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.02.041
– volume: 160
  year: 2020
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0080
  article-title: Design of a single-phase immersion cooling system through experimental and numerical analysis
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2020.120203
– volume: 49
  start-page: 8
  issue: 25
  year: 2016
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0005
  article-title: Industry 4.0-an introduction in the phenomenon
  publication-title: Ifac Papersonline
  doi: 10.1016/j.ifacol.2016.12.002
– volume: 234
  year: 2023
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0130
  article-title: Experimental and numerical analysis of the thermal behaviour of a single-phase immersion-cooled data Centre
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2023.121260
– volume: 31
  start-page: 622
  year: 2014
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0010
  article-title: A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2013.12.007
– volume: 105
  start-page: 622
  year: 2016
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0070
  article-title: Cooling of server electronics: a design review of existing technology
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.03.056
– year: 2022
  ident: 10.1016/j.icheatmasstransfer.2024.107509_bb0210
  article-title: The study of the influence on heat dissipation effectiveness of the pin-fin angle and spacing in a liquid cooling module
SSID ssj0001818
Score 2.4198139
Snippet This study investigates improving traditional immersion cooling systems by employing cold plates in single-phase immersion cooling with dielectric fluids...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107509
SubjectTerms Bypass
Cold plate
Noah@3000A
PAO-4
Single-phase liquid immersion cooling
Title Investigation of the single-phase immersion cold plate amid PAO-4 and Noah@3000A – An experimental approach and its numerical verification
URI https://dx.doi.org/10.1016/j.icheatmasstransfer.2024.107509
Volume 155
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5VRSA4ICggyk81Bw5czG42TuKcIFpRLSAWJIrUW-TEYzXVNrui6RXxANx4Q56EGSehi-AAEsfYjpN4xjOfnfE3AE_SyNSWLR8vcvKp0kRGVcZbNa1TU0U1O0QvZ4ffLtPFR_36ODnegfl4FkbCKgfb39v0YK2HkskwmpNN00w-sHIK_BBGOV5bBepPrTPR8mefL8M82IMFa8yNlbS-Bk8vY7wk2tJ2ZwxTuwATSRhCZ5qrxZH-2VVtuZ_DW3BzwI1Y9K92G3ao3YMbW2yCe3A1RHPW53fg6xZ7xrrFtUeGeSi7AitSmxN2XNiEDWupZU1wuFkx5kR71jh8X7xTGm3rcLm2Jy9i_roCv3_5hkWL2_kAcKQjD22b7hzbi_73zwp5fkgIUnj8XTg6fHk0X6gh7YKqYz3rVOZNJhOZpuRzo5Mq5oLKUWIyihKfa2OTnJzOrdDDCT5KyFnJduPyjOL4Huy265buA85sHVkXOZ2SZ2CoDSXe1NpTlVBWpbN9eD4OcFkPlOSSGWNVjrFnp-XvIipFRGUvon3If_aw6ek5_uHe-SjT8heVK9mb_HUvD_5LLw_hulz1MWiPYLf7dEGPGe101UFQ5wO4Urx6s1j-AMboBYQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB5VRfwdEBQqyq8PIHExu8k6iXOo6KpQbWm7ILFIvVlOPFaDttkVmwpxQTxAb7wJj8STdCY_dBEcQKLXOHESz2Tms_P5G4AncaBzS5GPJjlpXypELTPtreznsc6CnBKi573DB-N49F69PowOV-B7txeGaZVt7G9ieh2t2yO9djR786LovSPnZPjBinI0twrSllm5h58_0bxtsbn7koz8NAx3Xk22R7ItLSDzgQormXidsLNiH32qVZQN6EDmMNIJBpFPlbZRik6lliXQGANE6CxXdHFpgrwISmH_kqJowVUTnn85p5VQxqyjPz2c5Ke7As_OOWXM7rTVMcHiqoalyIqkoaJmTtx_To1L6W7nJtxocaoYNkNxC1awXIPrS-qFa3C5Zo_mi9twuqTWMSvFzAuClYJXIaYo50eUKEVRL5BzK3meE_MpYVxhjwsn3g7fSCVs6cR4Zo-2BvR2Q_Hj6zcxLMVy_QHRyZ_X5xbVQpQnze-mqaDvkSlP9e3vwOQibLEOq-WsxLsgQpsH1gVOxegJiCqNkde58phFmGRxuAEvugE2eSuBzpU4pqbjun0wv5vIsIlMY6INSH_2MG_kQP7h2u3OpuYXFzeUvf66l3v_pZfHcHU0Odg3-7vjvftwjVsa_tsDWK0-nuBDQlpV9qh2bQHmgj-lM6hjP0Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+the+single-phase+immersion+cold+plate+amid+PAO-4+and+Noah%403000A+%E2%80%93+An+experimental+approach+and+its+numerical+verification&rft.jtitle=International+communications+in+heat+and+mass+transfer&rft.au=Zhang%2C+Yong-Dong&rft.au=Lin%2C+Yu-Chi&rft.au=Wang%2C+Chi-Chuan&rft.date=2024-06-01&rft.pub=Elsevier+Ltd&rft.issn=0735-1933&rft.eissn=1879-0178&rft.volume=155&rft_id=info:doi/10.1016%2Fj.icheatmasstransfer.2024.107509&rft.externalDocID=S0735193324002719
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0735-1933&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0735-1933&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0735-1933&client=summon