Spinors and the AdS/CFT correspondence
We consider a free massive spinor field in Euclidean Anti-de Sitter space. The usual Dirac action in bulk is supplemented by a certain boundary term. The boundary conditions of the field are parametrized by a spinor on the boundary, subject to a projection. We calculate the dependence of the partiti...
Saved in:
Published in | Physics letters. B Vol. 431; no. 1; pp. 63 - 68 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
09.07.1998
|
Online Access | Get full text |
ISSN | 0370-2693 1873-2445 |
DOI | 10.1016/S0370-2693(98)00559-0 |
Cover
Loading…
Abstract | We consider a free massive spinor field in Euclidean Anti-de Sitter space. The usual Dirac action in bulk is supplemented by a certain boundary term. The boundary conditions of the field are parametrized by a spinor on the boundary, subject to a projection. We calculate the dependence of the partition function on this boundary spinor. The result agrees with the generating functional of the correlation functions of a quasi-primary spinor operator, of a certain scaling dimension, in a free conformal field theory on the boundary. |
---|---|
AbstractList | We consider a free massive spinor field in Euclidean Anti-de Sitter space. The usual Dirac action in bulk is supplemented by a certain boundary term. The boundary conditions of the field are parametrized by a spinor on the boundary, subject to a projection. We calculate the dependence of the partition function on this boundary spinor. The result agrees with the generating functional of the correlation functions of a quasi-primary spinor operator, of a certain scaling dimension, in a free conformal field theory on the boundary. |
Author | Sfetsos, Konstadinos Henningson, Måns |
Author_xml | – sequence: 1 givenname: Måns surname: Henningson fullname: Henningson, Måns – sequence: 2 givenname: Konstadinos surname: Sfetsos fullname: Sfetsos, Konstadinos |
BookMark | eNqFz01LAzEQgOEgFWyrP0HYk-hh7WST7GbxIGVpVSh4aD2HNJlgpCYlWQT_vf0QD156msu8wzwjMggxICHXFO4p0HqyBNZAWdUtu23lHYAQbQlnZEhlw8qKczEgw7-VCzLK-QMAqIB6SG6WWx9iyoUOtujfsZja5aSbrwoTU8K8jcFiMHhJzp3eZLz6nWPyNp-tuudy8fr00k0XpWG86sumrhiTIGkFUkttOFJaWduswTUomXPCWISWc8pYjcJwY9DWa-mcabHZfTcm4njXpJhzQqe2yX_q9K0oqD1WHbBqL1GtVAesgl338K8zvte9j6FP2m9O1o_HGne0L49JZeP3bOsTml7Z6E9c-AGCPW7X |
CitedBy_id | crossref_primary_10_1007_s00601_011_0252_7 crossref_primary_10_1016_j_physletb_2015_03_066 crossref_primary_10_1007_JHEP11_2011_125 crossref_primary_10_1007_JHEP10_2018_068 crossref_primary_10_1103_PhysRevD_79_086010 crossref_primary_10_1016_S0550_3213_98_00816_5 crossref_primary_10_1007_JHEP12_2018_080 crossref_primary_10_1007_JHEP10_2024_202 crossref_primary_10_1103_PhysRevD_70_025011 crossref_primary_10_1007_JHEP07_2020_203 crossref_primary_10_1103_PhysRevD_84_126012 crossref_primary_10_1007_JHEP01_2017_098 crossref_primary_10_1002_prop_200900057 crossref_primary_10_1103_PhysRevD_101_046021 crossref_primary_10_1007_JHEP06_2023_009 crossref_primary_10_1142_S0217751X00001439 crossref_primary_10_1016_j_physletb_2016_01_045 crossref_primary_10_1007_JHEP10_2014_172 crossref_primary_10_1103_PhysRevB_86_125145 crossref_primary_10_1007_JHEP09_2021_040 crossref_primary_10_1007_JHEP09_2021_160 crossref_primary_10_1142_S0218271820500789 crossref_primary_10_1140_epjc_s10052_018_6497_2 crossref_primary_10_1016_j_nuclphysb_2023_116400 crossref_primary_10_1103_PhysRevD_79_086006 crossref_primary_10_1103_PhysRevD_86_035011 crossref_primary_10_1103_PhysRevD_77_085030 crossref_primary_10_1088_1126_6708_2009_02_034 crossref_primary_10_1016_S0370_1573_99_00083_6 crossref_primary_10_1016_S0550_3213_99_00639_2 crossref_primary_10_1016_j_nuclphysb_2004_11_007 crossref_primary_10_1016_S0550_3213_99_00193_5 crossref_primary_10_1016_j_physletb_2020_135470 crossref_primary_10_1002_prop_201000080 crossref_primary_10_1016_S0370_2693_02_02777_6 crossref_primary_10_1007_JHEP07_2013_018 crossref_primary_10_1016_j_physletb_2006_03_052 crossref_primary_10_21468_SciPostPhys_17_4_123 crossref_primary_10_1103_PhysRevD_90_025017 crossref_primary_10_1007_JHEP03_2013_083 crossref_primary_10_1007_JHEP08_2020_143 crossref_primary_10_1007_JHEP08_2013_074 crossref_primary_10_1088_1126_6708_2009_11_034 crossref_primary_10_1016_S0370_2693_99_01112_0 crossref_primary_10_1103_PhysRevD_86_036007 crossref_primary_10_1088_1674_1137_44_6_064104 crossref_primary_10_1103_PhysRevD_60_046003 crossref_primary_10_1007_JHEP11_2010_085 crossref_primary_10_1103_PhysRevD_59_086003 crossref_primary_10_1103_PhysRevD_59_086002 crossref_primary_10_1103_PhysRevD_58_105008 crossref_primary_10_1007_JHEP07_2018_149 crossref_primary_10_1016_S0034_4877_15_30002_1 crossref_primary_10_1016_j_nuclphysb_2004_06_044 crossref_primary_10_1088_0264_9381_32_19_195003 crossref_primary_10_1103_PhysRevD_61_026002 crossref_primary_10_1103_PhysRevD_83_125002 crossref_primary_10_1088_1126_6708_2006_09_052 crossref_primary_10_1016_S0370_2693_99_00411_6 crossref_primary_10_1007_JHEP06_2012_078 crossref_primary_10_1103_PhysRevD_101_075048 crossref_primary_10_1088_1126_6708_2009_10_057 crossref_primary_10_1007_JHEP06_2017_053 crossref_primary_10_1007_JHEP04_2018_113 crossref_primary_10_1088_1126_6708_2006_03_043 crossref_primary_10_1103_PhysRevLett_92_161601 crossref_primary_10_1007_JHEP03_2010_027 crossref_primary_10_1007_JHEP03_2021_233 crossref_primary_10_1016_S0550_3213_00_00707_0 crossref_primary_10_21468_SciPostPhys_17_3_079 crossref_primary_10_1016_j_physrep_2015_05_001 crossref_primary_10_1103_PhysRevD_69_115013 crossref_primary_10_1103_PhysRevD_83_065029 crossref_primary_10_1134_S0040577916120084 crossref_primary_10_1007_JHEP02_2017_058 crossref_primary_10_1007_JHEP04_2018_123 crossref_primary_10_1142_S0217732399002856 crossref_primary_10_1142_S0217732399001887 crossref_primary_10_1103_PhysRevD_85_045025 crossref_primary_10_1016_S0370_2693_03_00301_0 crossref_primary_10_1007_JHEP03_2018_106 crossref_primary_10_1007_JHEP10_2021_173 crossref_primary_10_1016_j_nuclphysb_2012_10_023 crossref_primary_10_1016_S0550_3213_99_00554_4 crossref_primary_10_1103_PhysRevD_98_085020 crossref_primary_10_1103_PhysRevD_75_065013 crossref_primary_10_1016_S0550_3213_99_00833_0 crossref_primary_10_1088_1751_8113_46_21_214009 crossref_primary_10_1103_PhysRevD_60_106005 crossref_primary_10_1007_JHEP03_2021_138 crossref_primary_10_1088_1126_6708_2003_03_057 crossref_primary_10_1103_PhysRevD_102_086004 crossref_primary_10_1088_1126_6708_2007_11_036 crossref_primary_10_1142_S0217751X04017690 crossref_primary_10_1016_j_physletb_2007_01_030 crossref_primary_10_1088_1126_6708_2004_11_058 crossref_primary_10_1088_1126_6708_2009_05_081 crossref_primary_10_1007_JHEP05_2012_018 crossref_primary_10_1007_JHEP03_2017_047 crossref_primary_10_1007_JHEP11_2010_040 crossref_primary_10_1103_PhysRevD_86_026002 crossref_primary_10_1103_PhysRevD_59_104001 crossref_primary_10_1007_JHEP07_2012_162 crossref_primary_10_1016_S0550_3213_99_00284_9 crossref_primary_10_1016_j_nuclphysb_2023_116232 crossref_primary_10_1088_0264_9381_30_17_175001 crossref_primary_10_1007_JHEP07_2011_106 crossref_primary_10_1007_JHEP10_2019_145 crossref_primary_10_1103_PhysRevD_84_106002 crossref_primary_10_1088_0264_9381_22_13_016 crossref_primary_10_1088_1126_6708_2002_05_006 crossref_primary_10_1016_S0370_2693_99_01361_1 crossref_primary_10_1016_S0550_3213_01_00139_0 crossref_primary_10_1007_JHEP12_2015_028 crossref_primary_10_1016_S0550_3213_99_00310_7 crossref_primary_10_1007_JHEP04_2012_068 crossref_primary_10_1103_PhysRevD_95_124026 crossref_primary_10_1016_S0370_2693_98_01534_2 crossref_primary_10_1016_j_nuclphysb_2005_07_027 crossref_primary_10_1088_1126_6708_2007_09_086 crossref_primary_10_4213_tmf9104 crossref_primary_10_1016_j_physletb_2018_11_042 crossref_primary_10_1142_S0217751X18500161 crossref_primary_10_1007_JHEP01_2020_099 crossref_primary_10_1088_1126_6708_2003_04_058 crossref_primary_10_1007_JHEP09_2023_142 crossref_primary_10_1088_0264_9381_31_6_065006 crossref_primary_10_1016_S0550_3213_00_00210_8 crossref_primary_10_1103_PhysRevD_81_035008 crossref_primary_10_1140_epja_i2015_15079_x crossref_primary_10_1088_1751_8113_49_41_415403 crossref_primary_10_1007_JHEP10_2016_060 crossref_primary_10_1016_S0550_3213_02_00024_X crossref_primary_10_1088_1126_6708_2004_06_054 crossref_primary_10_1007_JHEP06_2022_123 crossref_primary_10_1142_S0217751X99001287 crossref_primary_10_1155_2011_259025 crossref_primary_10_1016_S0370_2693_99_01275_7 crossref_primary_10_1007_JHEP02_2011_041 crossref_primary_10_1088_1751_8113_45_12_125401 crossref_primary_10_1007_JHEP04_2020_196 crossref_primary_10_1016_S0370_2693_00_00633_X crossref_primary_10_1088_1674_1137_ac936b crossref_primary_10_1007_s10773_017_3330_x crossref_primary_10_1007_JHEP09_2019_014 crossref_primary_10_1016_S0550_3213_01_00126_2 crossref_primary_10_1088_0264_9381_19_21_302 crossref_primary_10_1142_S0217751X20501821 crossref_primary_10_1007_JHEP02_2020_129 crossref_primary_10_1007_JHEP05_2022_066 crossref_primary_10_1016_j_physletb_2015_04_067 crossref_primary_10_1016_j_physletb_2003_12_050 crossref_primary_10_1088_0264_9381_26_2_025010 crossref_primary_10_1103_PhysRevD_60_026004 crossref_primary_10_1103_PhysRevD_64_106009 crossref_primary_10_1142_S0217979200001874 crossref_primary_10_1088_0264_9381_31_1_015003 crossref_primary_10_1007_JHEP07_2022_018 crossref_primary_10_1007_JHEP05_2010_053 crossref_primary_10_1007_JHEP07_2012_125 crossref_primary_10_1051_epjconf_201612505009 crossref_primary_10_1103_PhysRevD_79_115003 crossref_primary_10_1007_JHEP11_2011_155 crossref_primary_10_1016_S0370_2693_99_00148_3 crossref_primary_10_1007_JHEP04_2017_087 crossref_primary_10_1103_PhysRevD_96_065025 crossref_primary_10_1103_PhysRevD_88_086002 crossref_primary_10_1007_JHEP02_2018_024 crossref_primary_10_1103_PhysRevD_61_046001 crossref_primary_10_1142_S0217751X9900172X crossref_primary_10_1103_PhysRevD_104_126034 crossref_primary_10_1103_PhysRevD_71_126003 crossref_primary_10_1103_PhysRevD_85_076003 crossref_primary_10_1103_PhysRevD_105_L081902 crossref_primary_10_1007_JHEP07_2016_117 crossref_primary_10_1007_JHEP08_2016_167 crossref_primary_10_1007_JHEP04_2012_063 crossref_primary_10_1103_PhysRevD_96_065011 crossref_primary_10_1007_JHEP08_2022_043 crossref_primary_10_1103_PhysRevD_61_064009 crossref_primary_10_1103_PhysRevD_58_106006 crossref_primary_10_1007_JHEP12_2017_107 crossref_primary_10_1103_PhysRevD_97_034037 crossref_primary_10_1007_JHEP06_2019_081 crossref_primary_10_1007_JHEP12_2020_157 crossref_primary_10_1016_j_physletb_2004_03_057 crossref_primary_10_1016_j_physletb_2004_10_060 crossref_primary_10_1088_1126_6708_2009_06_027 crossref_primary_10_1103_PhysRevD_59_045008 crossref_primary_10_1142_S0217751X21500494 crossref_primary_10_1007_JHEP03_2023_245 crossref_primary_10_1007_JHEP08_2012_086 crossref_primary_10_1103_PhysRevD_86_046004 crossref_primary_10_1088_1126_6708_2002_08_042 crossref_primary_10_1103_PhysRevD_68_125012 crossref_primary_10_1103_PhysRevD_94_106013 |
Cites_doi | 10.1016/S0550-3213(98)00023-6 10.1103/PhysRevD.26.1988 10.1103/PhysRevD.12.3819 10.1007/BF01205790 10.1016/0550-3213(88)90078-8 10.1063/1.524993 10.1103/PhysRevLett.71.3754 10.1016/0003-4916(69)90278-4 10.1063/1.1704016 10.1007/BF02907130 10.1016/0370-2693(86)90922-6 10.1088/0264-9381/12/12/012 10.1016/0550-3213(88)90077-6 |
ContentType | Journal Article |
Copyright | 1998 Elsevier Science B.V. |
Copyright_xml | – notice: 1998 Elsevier Science B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/S0370-2693(98)00559-0 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1873-2445 |
EndPage | 68 |
ExternalDocumentID | 10_1016_S0370_2693_98_00559_0 S0370269398005590 |
GroupedDBID | --K --M -~X .~1 0R~ 0SF 123 186 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 6I. 6TJ 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYJJ ABFNM ABLJU ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AENEX AEXQZ AFDAS AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIBLX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BCNDV BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 ER. FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GROUPED_DOAJ HME HVGLF HZ~ IHE IPNFZ IXB J1W KOM KQ8 LZ4 M41 MO0 MVM N9A NCXOZ O-L O9- OAUVE OGIMB OK1 OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SCC SDF SDG SDP SES SEW SHN SPC SPCBC SPD SSQ SSZ T5K TN5 WH7 WUQ XJT ZCG ~G- AAFWJ AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEIPS AEUPX AFPKN AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c342t-762338081208a8ac4e112dd7b0f7e83ff5cde09441336e5c4cced6b8ffc9e7693 |
IEDL.DBID | .~1 |
ISSN | 0370-2693 |
IngestDate | Tue Jul 01 04:17:37 EDT 2025 Thu Apr 24 23:07:28 EDT 2025 Fri Feb 23 02:27:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-762338081208a8ac4e112dd7b0f7e83ff5cde09441336e5c4cced6b8ffc9e7693 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1016_S0370_2693_98_00559_0 crossref_citationtrail_10_1016_S0370_2693_98_00559_0 elsevier_sciencedirect_doi_10_1016_S0370_2693_98_00559_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1998-07-09 |
PublicationDateYYYYMMDD | 1998-07-09 |
PublicationDate_xml | – month: 07 year: 1998 text: 1998-07-09 day: 09 |
PublicationDecade | 1990 |
PublicationTitle | Physics letters. B |
PublicationYear | 1998 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Dirac (BIB1) 1963; 4 E. Bergshoeff, M.J. Duff, C.N. Pope, E. Sezgin, Phys. Lett. B 199 (1987) 69; M.P. Blencowe, M.J. Duff, Phys. Lett. B 203 (1988) 229; E. Bergshoeff, A. Salam, E. Sezgin, Y. Tanii, Phys. Lett. B 205 (1988) 237; Nucl. Phys. B 305 [FS23] (1988) 497. Mack, Salam (BIB22) 1969; 53 untwisted, hep-th/9803061; E. Halyo, Supergravity on AdS E. Witten, Anti-de Sitter Space, Thermal Phase Transition, And Confinement in Gauge Theories, hep-th/9803131. M. Flato, C. Fronsdal, J. Math. Phys. 22 (1981) 1100; E. Angelopoulos, M. Flato, C. Fronsdal, D. Sternheimer, Phys. Rev. D 23 (1981) 1278. R. Leigh, M. Rozali, The large Henneaux, Teitelboim (BIB24) 1985; 98 Conformal Field Theories, hep-th/9803167; M.J. Duff, H. Lü, C.N. Pope, AdS and Superconformal Field Theories, hep-th/9803051; S. Minwalla, Particles on AdS C. Fronsdal, Phys. Rev. D 26 (1982) 1988; H. Nicolai, E. Sezgin, Phys. Lett. B 143 (1984) 389; M. Günaydin, N. Marcus, Class. Quant. Grav. 2 (1985) L1; M. Günaydin, P. van Nieuwenhuizen, N.P. Warner, Nucl. Phys. B 255 (1985) 63. Gibbons, Townsend (BIB7) 1993; 71 J.D. Brown, M. Henneaux, Commun. Math. Phys. 104 (1986) 207; O. Coussaert, M. Henneaux, P. van Driel, Class. Quant. Grav. 12 (1995) 2961, qr-qc/9506019. S. Ferrara, C. Fronsdal, Conformal Maxwell theory as a singleton field theory on AdS E. Witten, Anti-de Sitter space and holography, hep-th/9802150. S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory correlators from non-critical string theory, hep-th/9802109. P. Claus, R. Kallosh, A. Van Proeyen, M 5-brane and superconformal (0,2) tensor multiplet in 6 dimensions, hep-th/9711161; P. Claus, R. Kallosh, J. Kumar, P. Townsend, A. Van Proeyen, Conformal theory of M2, D3, M5 and D1+D5 branes, hep-th/9801206. S. Ferrara, C. Fronsdal, Gauge fields as composite boundary excitations, hep-th/9802126. × and N=4 Superconformal Yang-Mills theory, hep-th/9802203; S. Ferrara, A. Kehagias, H. Partouche, A. Zaffaroni, Membranes and Fivebranes with Lower Supersymmetry and their AdS Supergravity Duals, hep-th/9803109; L. Andrianopoli, S. Ferrara, K-K excitations on AdS O. Aharony, Y. Oz, Z. Yin, M Theory on AdS limit of superconformal field theories and supergravity, hep-th/9711200. 4 “primary“ superfields, hep-th/9803171. and 4 K. Sfetsos, K. Skenderis, Microscopic derivation of the Bekenstein-Hawking entropy formula for non-extremal black holes, Nucl. Phys. B, in press, hep-th/9711138. Ferrara, Gatto, Grillo, Parisi (BIB25) 1972; 4 S.-J. Rey, J.-T. Yee, Macroscopic Strings as Heavy Quarks of Large N Gauge Theory and Anti-de Sitter Supergravity, hep-th/9803001; J. Maldacena, Wilson loops in large N field theories, hep-th/9803002; J. Minahan, Quark-Monopole Potentials in Large N Super Yang-Mills, hep-th/9803111; S.-J. Rey, S. Theisen, J.-T. Yee, Wilson-Polyakov Loop at Finite Temperature in Large N Gauge Theory and Anti-de Sitter Supergravity, hep-th/9803135; A. Brandhuber, N. Itzhaki, J. Sonnenschein, S. Yankielowicz, Wilson Loops in the Large N Limit at Finite Temperature, hep-th/9803137; A. Volovich, Near anti-de Sitter geometry and corrections to the large limit of the (2,0) superconformal field theory, hep-th/9803068. IIB three-branes and duality, hep-th/9712239; M. Günaydin, D. Minic, Singletons, Doubletons and M-theory, hep-th/9802047; S. Ferrara, C. Fronsdal, A. Zaffaroni, On N=8 Supergravity on AdS and M Branes, hep-th/9803077. as Hopf Fibrations and Conformal Field Theories, hep-th/9803193; H.J. Boonstra, B. Peeters, K. Skenderis, Brane intersections, Anti-de Sitter spacetimes and dual superconformal theories, hep-th/9803231. Fronsdal (BIB2) 1975; 12 S. Kachru, E. Silverstein, 4d Conformal Field Theories and Strings on Orbifolds, hep-th/9802183; M. Berkooz, Supergravity Dual of a (1,0) Field Theory in Six Dimensions, hep-th/9802195; A. Lawrence, N. Nekrasov, C. Vafa, On Conformal Theories in Four Dimensions, hep-th/9803015; M. Bershadsky, Z. Kakushadze, C. Vafa, String Expansion as Large N Expansion of Gauge Theories, hep-th/9803076; J. Gomis, Anti-de Sitter Geometry and Strongly Coupled Gauge Theories, hep-th/9803119; Y. Oz, J. Terning, Orbifolds of AdS I.Ya. Aref'eva, I.V. Volovich, On Large N Conformal Theories, Field Theories in Anti-De Sitter Space and Singletons, hep-th/9803028; I.V. Volovich, Large N Gauge Theories and Anti-de Sitter Bag Model, hep-th/9803174. H. Nicolai, E. Sezgin, Y. Tanii, Nucl. Phys. B 305 [FS23] (1988) 483. Brane Worldvolumes, hep-th/9803053; E. Halyo, Supergravity on AdS Wilson loop, hep-th/9803220. and Primary Operators on J. Maldacena, The large Günaydin, Nilsson, Sierra, Townsend (BIB8) 1986; 176 Gibbons (10.1016/S0370-2693(98)00559-0_BIB7) 1993; 71 Henneaux (10.1016/S0370-2693(98)00559-0_BIB24) 1985; 98 Fronsdal (10.1016/S0370-2693(98)00559-0_BIB2) 1975; 12 10.1016/S0370-2693(98)00559-0_BIB10 10.1016/S0370-2693(98)00559-0_BIB12 10.1016/S0370-2693(98)00559-0_BIB11 10.1016/S0370-2693(98)00559-0_BIB14 10.1016/S0370-2693(98)00559-0_BIB13 10.1016/S0370-2693(98)00559-0_BIB16 Mack (10.1016/S0370-2693(98)00559-0_BIB22) 1969; 53 10.1016/S0370-2693(98)00559-0_BIB15 10.1016/S0370-2693(98)00559-0_BIB18 10.1016/S0370-2693(98)00559-0_BIB17 10.1016/S0370-2693(98)00559-0_BIB19 Günaydin (10.1016/S0370-2693(98)00559-0_BIB8) 1986; 176 10.1016/S0370-2693(98)00559-0_BIB9 10.1016/S0370-2693(98)00559-0_BIB6 Dirac (10.1016/S0370-2693(98)00559-0_BIB1) 1963; 4 Ferrara (10.1016/S0370-2693(98)00559-0_BIB25) 1972; 4 10.1016/S0370-2693(98)00559-0_BIB4 10.1016/S0370-2693(98)00559-0_BIB21 10.1016/S0370-2693(98)00559-0_BIB5 10.1016/S0370-2693(98)00559-0_BIB20 10.1016/S0370-2693(98)00559-0_BIB23 10.1016/S0370-2693(98)00559-0_BIB3 |
References_xml | – reference: E. Witten, Anti-de Sitter Space, Thermal Phase Transition, And Confinement in Gauge Theories, hep-th/9803131. – reference: O. Aharony, Y. Oz, Z. Yin, M Theory on AdS – reference: limit of the (2,0) superconformal field theory, hep-th/9803068. – reference: and N=4 Superconformal Yang-Mills theory, hep-th/9802203; S. Ferrara, A. Kehagias, H. Partouche, A. Zaffaroni, Membranes and Fivebranes with Lower Supersymmetry and their AdS Supergravity Duals, hep-th/9803109; L. Andrianopoli, S. Ferrara, K-K excitations on AdS – volume: 98 start-page: 391 year: 1985 ident: BIB24 publication-title: Commun. Math. Phys. – reference: Conformal Field Theories, hep-th/9803167; M.J. Duff, H. Lü, C.N. Pope, AdS – reference: C. Fronsdal, Phys. Rev. D 26 (1982) 1988; H. Nicolai, E. Sezgin, Phys. Lett. B 143 (1984) 389; M. Günaydin, N. Marcus, Class. Quant. Grav. 2 (1985) L1; M. Günaydin, P. van Nieuwenhuizen, N.P. Warner, Nucl. Phys. B 255 (1985) 63. – reference: × – volume: 4 start-page: 115 year: 1972 ident: BIB25 publication-title: Lett. Nuovo Cim. – reference: × Hopf Fibrations and Conformal Field Theories, hep-th/9803193; H.J. Boonstra, B. Peeters, K. Skenderis, Brane intersections, Anti-de Sitter spacetimes and dual superconformal theories, hep-th/9803231. – reference: Brane Worldvolumes, hep-th/9803053; E. Halyo, Supergravity on AdS – reference: E. Witten, Anti-de Sitter space and holography, hep-th/9802150. – reference: and M Branes, hep-th/9803077. – reference: =4 “primary“ superfields, hep-th/9803171. – reference: and Superconformal Field Theories, hep-th/9803051; S. Minwalla, Particles on AdS – reference: untwisted, hep-th/9803061; E. Halyo, Supergravity on AdS – reference: J. Maldacena, The large – reference: E. Bergshoeff, M.J. Duff, C.N. Pope, E. Sezgin, Phys. Lett. B 199 (1987) 69; M.P. Blencowe, M.J. Duff, Phys. Lett. B 203 (1988) 229; E. Bergshoeff, A. Salam, E. Sezgin, Y. Tanii, Phys. Lett. B 205 (1988) 237; Nucl. Phys. B 305 [FS23] (1988) 497. – reference: I.Ya. Aref'eva, I.V. Volovich, On Large N Conformal Theories, Field Theories in Anti-De Sitter Space and Singletons, hep-th/9803028; I.V. Volovich, Large N Gauge Theories and Anti-de Sitter Bag Model, hep-th/9803174. – reference: S. Kachru, E. Silverstein, 4d Conformal Field Theories and Strings on Orbifolds, hep-th/9802183; M. Berkooz, Supergravity Dual of a (1,0) Field Theory in Six Dimensions, hep-th/9802195; A. Lawrence, N. Nekrasov, C. Vafa, On Conformal Theories in Four Dimensions, hep-th/9803015; M. Bershadsky, Z. Kakushadze, C. Vafa, String Expansion as Large N Expansion of Gauge Theories, hep-th/9803076; J. Gomis, Anti-de Sitter Geometry and Strongly Coupled Gauge Theories, hep-th/9803119; Y. Oz, J. Terning, Orbifolds of AdS – reference: , IIB three-branes and duality, hep-th/9712239; M. Günaydin, D. Minic, Singletons, Doubletons and M-theory, hep-th/9802047; S. Ferrara, C. Fronsdal, A. Zaffaroni, On N=8 Supergravity on AdS – reference: P. Claus, R. Kallosh, A. Van Proeyen, M 5-brane and superconformal (0,2) tensor multiplet in 6 dimensions, hep-th/9711161; P. Claus, R. Kallosh, J. Kumar, P. Townsend, A. Van Proeyen, Conformal theory of M2, D3, M5 and D1+D5 branes, hep-th/9801206. – reference: Wilson loop, hep-th/9803220. – reference: limit of superconformal field theories and supergravity, hep-th/9711200. – volume: 53 start-page: 174 year: 1969 ident: BIB22 publication-title: Ann. Phys. (NY) – reference: K. Sfetsos, K. Skenderis, Microscopic derivation of the Bekenstein-Hawking entropy formula for non-extremal black holes, Nucl. Phys. B, in press, hep-th/9711138. – volume: 71 start-page: 3754 year: 1993 ident: BIB7 publication-title: Phys. Rev. Lett. – reference: S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory correlators from non-critical string theory, hep-th/9802109. – volume: 176 start-page: 45 year: 1986 ident: BIB8 publication-title: Phys. Lett. B – reference: J.D. Brown, M. Henneaux, Commun. Math. Phys. 104 (1986) 207; O. Coussaert, M. Henneaux, P. van Driel, Class. Quant. Grav. 12 (1995) 2961, qr-qc/9506019. – reference: S. Ferrara, C. Fronsdal, Conformal Maxwell theory as a singleton field theory on AdS – reference: R. Leigh, M. Rozali, The large – volume: 4 start-page: 901 year: 1963 ident: BIB1 publication-title: J. Math. Phys. – volume: 12 start-page: 3819 year: 1975 ident: BIB2 publication-title: Phys. Rev. D – reference: and Primary Operators on – reference: S.-J. Rey, J.-T. Yee, Macroscopic Strings as Heavy Quarks of Large N Gauge Theory and Anti-de Sitter Supergravity, hep-th/9803001; J. Maldacena, Wilson loops in large N field theories, hep-th/9803002; J. Minahan, Quark-Monopole Potentials in Large N Super Yang-Mills, hep-th/9803111; S.-J. Rey, S. Theisen, J.-T. Yee, Wilson-Polyakov Loop at Finite Temperature in Large N Gauge Theory and Anti-de Sitter Supergravity, hep-th/9803135; A. Brandhuber, N. Itzhaki, J. Sonnenschein, S. Yankielowicz, Wilson Loops in the Large N Limit at Finite Temperature, hep-th/9803137; A. Volovich, Near anti-de Sitter geometry and corrections to the large – reference: H. Nicolai, E. Sezgin, Y. Tanii, Nucl. Phys. B 305 [FS23] (1988) 483. – reference: as – reference: S. Ferrara, C. Fronsdal, Gauge fields as composite boundary excitations, hep-th/9802126. – reference: M. Flato, C. Fronsdal, J. Math. Phys. 22 (1981) 1100; E. Angelopoulos, M. Flato, C. Fronsdal, D. Sternheimer, Phys. Rev. D 23 (1981) 1278. – reference: and 4 – ident: 10.1016/S0370-2693(98)00559-0_BIB9 doi: 10.1016/S0550-3213(98)00023-6 – ident: 10.1016/S0370-2693(98)00559-0_BIB20 – ident: 10.1016/S0370-2693(98)00559-0_BIB4 doi: 10.1103/PhysRevD.26.1988 – ident: 10.1016/S0370-2693(98)00559-0_BIB12 – ident: 10.1016/S0370-2693(98)00559-0_BIB18 – ident: 10.1016/S0370-2693(98)00559-0_BIB16 – volume: 12 start-page: 3819 year: 1975 ident: 10.1016/S0370-2693(98)00559-0_BIB2 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.12.3819 – ident: 10.1016/S0370-2693(98)00559-0_BIB10 – volume: 98 start-page: 391 year: 1985 ident: 10.1016/S0370-2693(98)00559-0_BIB24 publication-title: Commun. Math. Phys. doi: 10.1007/BF01205790 – ident: 10.1016/S0370-2693(98)00559-0_BIB5 doi: 10.1016/0550-3213(88)90078-8 – ident: 10.1016/S0370-2693(98)00559-0_BIB23 – ident: 10.1016/S0370-2693(98)00559-0_BIB21 – ident: 10.1016/S0370-2693(98)00559-0_BIB3 doi: 10.1063/1.524993 – ident: 10.1016/S0370-2693(98)00559-0_BIB19 – volume: 71 start-page: 3754 year: 1993 ident: 10.1016/S0370-2693(98)00559-0_BIB7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.71.3754 – volume: 53 start-page: 174 year: 1969 ident: 10.1016/S0370-2693(98)00559-0_BIB22 publication-title: Ann. Phys. (NY) doi: 10.1016/0003-4916(69)90278-4 – volume: 4 start-page: 901 year: 1963 ident: 10.1016/S0370-2693(98)00559-0_BIB1 publication-title: J. Math. Phys. doi: 10.1063/1.1704016 – volume: 4 start-page: 115 year: 1972 ident: 10.1016/S0370-2693(98)00559-0_BIB25 publication-title: Lett. Nuovo Cim. doi: 10.1007/BF02907130 – ident: 10.1016/S0370-2693(98)00559-0_BIB17 – volume: 176 start-page: 45 year: 1986 ident: 10.1016/S0370-2693(98)00559-0_BIB8 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(86)90922-6 – ident: 10.1016/S0370-2693(98)00559-0_BIB11 – ident: 10.1016/S0370-2693(98)00559-0_BIB13 – ident: 10.1016/S0370-2693(98)00559-0_BIB15 – ident: 10.1016/S0370-2693(98)00559-0_BIB14 doi: 10.1088/0264-9381/12/12/012 – ident: 10.1016/S0370-2693(98)00559-0_BIB6 doi: 10.1016/0550-3213(88)90077-6 |
SSID | ssj0001506 |
Score | 2.08753 |
Snippet | We consider a free massive spinor field in Euclidean Anti-de Sitter space. The usual Dirac action in bulk is supplemented by a certain boundary term. The... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 63 |
Title | Spinors and the AdS/CFT correspondence |
URI | https://dx.doi.org/10.1016/S0370-2693(98)00559-0 |
Volume | 431 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH-MieBF_MRNHT2I6CFbu6ZNepzDsSnusg12C2mSwkC6ss2rf7svaecURMFjQ9-j-SW893v0fQDcBGmMplEHRKXKEKqlJJJGmtgOOIoFMohdFf_LOB7O6NM8mtegv62FsWmVle0vbbqz1tVKp0KzUywWnYkfMgwgkjDhtpFUYuN2Spntn99-36V52A567k8C84l9e1fFU2pwi3cJv3dKiP-zf_ricwZHcFiRRa9Xfs8x1Ex-AvsuaVOtT-F2Uizy5WrtyVx7SOS8np7gLZ56yo3cKJa5Gxh6BrPB47Q_JNXcA6JC2t0QtE8YOKKv7vpccqmoQVKkNUv9jBkeZlmktMGwDEEOYxMpqhCsOOVZphJjZxueQz1f5uYCPK6QAEqFO0szimQkRcaEuo2xREUb0wC63a1QVVNwO5viVeyyvxAkYUESCRcOJOE3oP0pVpRdMf4S4FsoxbfjFWi5fxdt_l_0Eg7KEkJG_OQK6pvVm7lGDrFJW-6StGCvN3oejvFpNH_4ADaGvtg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6KInoRn1ifOYjoYdtNs0k2x1IsVdte2kJvy2Z3AwVJQ1uv_nZnN6lVEAWvS2bIfhlmviHzALj10whdo_aJSpUhTEtJJAs1sRNwVOxLP3Jd_INh1Juw52k4rUFn3Qtjyyor31_6dOetq5NmhWazmM2aIxrEmEAkQcLtIKkE8_ZtFgaxNe3G-6bOw47Qc78SYkrs45s2nlKFO7xP-IPTQujPAepL0OkewH7FFr12-UKHUDP5Eey4qk21PIa7UTHL54ulJ3PtIZPz2nqEZjz2lNu5UcxztzH0BCbdx3GnR6rFB0QFrLUi6KAwc8Rg3aJccqmYQVakdZzSLDY8yLJQaYN5GaIcRCZUTCFaUcqzTCXGLjc8ha18npsz8LhCBigV3izNGLKRFCkT6jbGMhVtTB3Y-rZCVVPB7XKKV7Ep_0KQhAVJJFw4kAStQ-NTrCjHYvwlwNdQim_fV6Dr_l30_P-iN7DbGw_6ov80fLmAvbKfMCY0uYSt1eLNXCGhWKXXzmA-AHGOv2o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spinors+and+the+AdS%2FCFT+correspondence&rft.jtitle=Physics+letters.+B&rft.au=Henningson%2C+M%C3%A5ns&rft.au=Sfetsos%2C+Konstadinos&rft.date=1998-07-09&rft.issn=0370-2693&rft.volume=431&rft.issue=1-2&rft.spage=63&rft.epage=68&rft_id=info:doi/10.1016%2FS0370-2693%2898%2900559-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0370_2693_98_00559_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0370-2693&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0370-2693&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0370-2693&client=summon |