Spinors and the AdS/CFT correspondence

We consider a free massive spinor field in Euclidean Anti-de Sitter space. The usual Dirac action in bulk is supplemented by a certain boundary term. The boundary conditions of the field are parametrized by a spinor on the boundary, subject to a projection. We calculate the dependence of the partiti...

Full description

Saved in:
Bibliographic Details
Published inPhysics letters. B Vol. 431; no. 1; pp. 63 - 68
Main Authors Henningson, Måns, Sfetsos, Konstadinos
Format Journal Article
LanguageEnglish
Published Elsevier B.V 09.07.1998
Online AccessGet full text
ISSN0370-2693
1873-2445
DOI10.1016/S0370-2693(98)00559-0

Cover

Loading…
Abstract We consider a free massive spinor field in Euclidean Anti-de Sitter space. The usual Dirac action in bulk is supplemented by a certain boundary term. The boundary conditions of the field are parametrized by a spinor on the boundary, subject to a projection. We calculate the dependence of the partition function on this boundary spinor. The result agrees with the generating functional of the correlation functions of a quasi-primary spinor operator, of a certain scaling dimension, in a free conformal field theory on the boundary.
AbstractList We consider a free massive spinor field in Euclidean Anti-de Sitter space. The usual Dirac action in bulk is supplemented by a certain boundary term. The boundary conditions of the field are parametrized by a spinor on the boundary, subject to a projection. We calculate the dependence of the partition function on this boundary spinor. The result agrees with the generating functional of the correlation functions of a quasi-primary spinor operator, of a certain scaling dimension, in a free conformal field theory on the boundary.
Author Sfetsos, Konstadinos
Henningson, Måns
Author_xml – sequence: 1
  givenname: Måns
  surname: Henningson
  fullname: Henningson, Måns
– sequence: 2
  givenname: Konstadinos
  surname: Sfetsos
  fullname: Sfetsos, Konstadinos
BookMark eNqFz01LAzEQgOEgFWyrP0HYk-hh7WST7GbxIGVpVSh4aD2HNJlgpCYlWQT_vf0QD156msu8wzwjMggxICHXFO4p0HqyBNZAWdUtu23lHYAQbQlnZEhlw8qKczEgw7-VCzLK-QMAqIB6SG6WWx9iyoUOtujfsZja5aSbrwoTU8K8jcFiMHhJzp3eZLz6nWPyNp-tuudy8fr00k0XpWG86sumrhiTIGkFUkttOFJaWduswTUomXPCWISWc8pYjcJwY9DWa-mcabHZfTcm4njXpJhzQqe2yX_q9K0oqD1WHbBqL1GtVAesgl338K8zvte9j6FP2m9O1o_HGne0L49JZeP3bOsTml7Z6E9c-AGCPW7X
CitedBy_id crossref_primary_10_1007_s00601_011_0252_7
crossref_primary_10_1016_j_physletb_2015_03_066
crossref_primary_10_1007_JHEP11_2011_125
crossref_primary_10_1007_JHEP10_2018_068
crossref_primary_10_1103_PhysRevD_79_086010
crossref_primary_10_1016_S0550_3213_98_00816_5
crossref_primary_10_1007_JHEP12_2018_080
crossref_primary_10_1007_JHEP10_2024_202
crossref_primary_10_1103_PhysRevD_70_025011
crossref_primary_10_1007_JHEP07_2020_203
crossref_primary_10_1103_PhysRevD_84_126012
crossref_primary_10_1007_JHEP01_2017_098
crossref_primary_10_1002_prop_200900057
crossref_primary_10_1103_PhysRevD_101_046021
crossref_primary_10_1007_JHEP06_2023_009
crossref_primary_10_1142_S0217751X00001439
crossref_primary_10_1016_j_physletb_2016_01_045
crossref_primary_10_1007_JHEP10_2014_172
crossref_primary_10_1103_PhysRevB_86_125145
crossref_primary_10_1007_JHEP09_2021_040
crossref_primary_10_1007_JHEP09_2021_160
crossref_primary_10_1142_S0218271820500789
crossref_primary_10_1140_epjc_s10052_018_6497_2
crossref_primary_10_1016_j_nuclphysb_2023_116400
crossref_primary_10_1103_PhysRevD_79_086006
crossref_primary_10_1103_PhysRevD_86_035011
crossref_primary_10_1103_PhysRevD_77_085030
crossref_primary_10_1088_1126_6708_2009_02_034
crossref_primary_10_1016_S0370_1573_99_00083_6
crossref_primary_10_1016_S0550_3213_99_00639_2
crossref_primary_10_1016_j_nuclphysb_2004_11_007
crossref_primary_10_1016_S0550_3213_99_00193_5
crossref_primary_10_1016_j_physletb_2020_135470
crossref_primary_10_1002_prop_201000080
crossref_primary_10_1016_S0370_2693_02_02777_6
crossref_primary_10_1007_JHEP07_2013_018
crossref_primary_10_1016_j_physletb_2006_03_052
crossref_primary_10_21468_SciPostPhys_17_4_123
crossref_primary_10_1103_PhysRevD_90_025017
crossref_primary_10_1007_JHEP03_2013_083
crossref_primary_10_1007_JHEP08_2020_143
crossref_primary_10_1007_JHEP08_2013_074
crossref_primary_10_1088_1126_6708_2009_11_034
crossref_primary_10_1016_S0370_2693_99_01112_0
crossref_primary_10_1103_PhysRevD_86_036007
crossref_primary_10_1088_1674_1137_44_6_064104
crossref_primary_10_1103_PhysRevD_60_046003
crossref_primary_10_1007_JHEP11_2010_085
crossref_primary_10_1103_PhysRevD_59_086003
crossref_primary_10_1103_PhysRevD_59_086002
crossref_primary_10_1103_PhysRevD_58_105008
crossref_primary_10_1007_JHEP07_2018_149
crossref_primary_10_1016_S0034_4877_15_30002_1
crossref_primary_10_1016_j_nuclphysb_2004_06_044
crossref_primary_10_1088_0264_9381_32_19_195003
crossref_primary_10_1103_PhysRevD_61_026002
crossref_primary_10_1103_PhysRevD_83_125002
crossref_primary_10_1088_1126_6708_2006_09_052
crossref_primary_10_1016_S0370_2693_99_00411_6
crossref_primary_10_1007_JHEP06_2012_078
crossref_primary_10_1103_PhysRevD_101_075048
crossref_primary_10_1088_1126_6708_2009_10_057
crossref_primary_10_1007_JHEP06_2017_053
crossref_primary_10_1007_JHEP04_2018_113
crossref_primary_10_1088_1126_6708_2006_03_043
crossref_primary_10_1103_PhysRevLett_92_161601
crossref_primary_10_1007_JHEP03_2010_027
crossref_primary_10_1007_JHEP03_2021_233
crossref_primary_10_1016_S0550_3213_00_00707_0
crossref_primary_10_21468_SciPostPhys_17_3_079
crossref_primary_10_1016_j_physrep_2015_05_001
crossref_primary_10_1103_PhysRevD_69_115013
crossref_primary_10_1103_PhysRevD_83_065029
crossref_primary_10_1134_S0040577916120084
crossref_primary_10_1007_JHEP02_2017_058
crossref_primary_10_1007_JHEP04_2018_123
crossref_primary_10_1142_S0217732399002856
crossref_primary_10_1142_S0217732399001887
crossref_primary_10_1103_PhysRevD_85_045025
crossref_primary_10_1016_S0370_2693_03_00301_0
crossref_primary_10_1007_JHEP03_2018_106
crossref_primary_10_1007_JHEP10_2021_173
crossref_primary_10_1016_j_nuclphysb_2012_10_023
crossref_primary_10_1016_S0550_3213_99_00554_4
crossref_primary_10_1103_PhysRevD_98_085020
crossref_primary_10_1103_PhysRevD_75_065013
crossref_primary_10_1016_S0550_3213_99_00833_0
crossref_primary_10_1088_1751_8113_46_21_214009
crossref_primary_10_1103_PhysRevD_60_106005
crossref_primary_10_1007_JHEP03_2021_138
crossref_primary_10_1088_1126_6708_2003_03_057
crossref_primary_10_1103_PhysRevD_102_086004
crossref_primary_10_1088_1126_6708_2007_11_036
crossref_primary_10_1142_S0217751X04017690
crossref_primary_10_1016_j_physletb_2007_01_030
crossref_primary_10_1088_1126_6708_2004_11_058
crossref_primary_10_1088_1126_6708_2009_05_081
crossref_primary_10_1007_JHEP05_2012_018
crossref_primary_10_1007_JHEP03_2017_047
crossref_primary_10_1007_JHEP11_2010_040
crossref_primary_10_1103_PhysRevD_86_026002
crossref_primary_10_1103_PhysRevD_59_104001
crossref_primary_10_1007_JHEP07_2012_162
crossref_primary_10_1016_S0550_3213_99_00284_9
crossref_primary_10_1016_j_nuclphysb_2023_116232
crossref_primary_10_1088_0264_9381_30_17_175001
crossref_primary_10_1007_JHEP07_2011_106
crossref_primary_10_1007_JHEP10_2019_145
crossref_primary_10_1103_PhysRevD_84_106002
crossref_primary_10_1088_0264_9381_22_13_016
crossref_primary_10_1088_1126_6708_2002_05_006
crossref_primary_10_1016_S0370_2693_99_01361_1
crossref_primary_10_1016_S0550_3213_01_00139_0
crossref_primary_10_1007_JHEP12_2015_028
crossref_primary_10_1016_S0550_3213_99_00310_7
crossref_primary_10_1007_JHEP04_2012_068
crossref_primary_10_1103_PhysRevD_95_124026
crossref_primary_10_1016_S0370_2693_98_01534_2
crossref_primary_10_1016_j_nuclphysb_2005_07_027
crossref_primary_10_1088_1126_6708_2007_09_086
crossref_primary_10_4213_tmf9104
crossref_primary_10_1016_j_physletb_2018_11_042
crossref_primary_10_1142_S0217751X18500161
crossref_primary_10_1007_JHEP01_2020_099
crossref_primary_10_1088_1126_6708_2003_04_058
crossref_primary_10_1007_JHEP09_2023_142
crossref_primary_10_1088_0264_9381_31_6_065006
crossref_primary_10_1016_S0550_3213_00_00210_8
crossref_primary_10_1103_PhysRevD_81_035008
crossref_primary_10_1140_epja_i2015_15079_x
crossref_primary_10_1088_1751_8113_49_41_415403
crossref_primary_10_1007_JHEP10_2016_060
crossref_primary_10_1016_S0550_3213_02_00024_X
crossref_primary_10_1088_1126_6708_2004_06_054
crossref_primary_10_1007_JHEP06_2022_123
crossref_primary_10_1142_S0217751X99001287
crossref_primary_10_1155_2011_259025
crossref_primary_10_1016_S0370_2693_99_01275_7
crossref_primary_10_1007_JHEP02_2011_041
crossref_primary_10_1088_1751_8113_45_12_125401
crossref_primary_10_1007_JHEP04_2020_196
crossref_primary_10_1016_S0370_2693_00_00633_X
crossref_primary_10_1088_1674_1137_ac936b
crossref_primary_10_1007_s10773_017_3330_x
crossref_primary_10_1007_JHEP09_2019_014
crossref_primary_10_1016_S0550_3213_01_00126_2
crossref_primary_10_1088_0264_9381_19_21_302
crossref_primary_10_1142_S0217751X20501821
crossref_primary_10_1007_JHEP02_2020_129
crossref_primary_10_1007_JHEP05_2022_066
crossref_primary_10_1016_j_physletb_2015_04_067
crossref_primary_10_1016_j_physletb_2003_12_050
crossref_primary_10_1088_0264_9381_26_2_025010
crossref_primary_10_1103_PhysRevD_60_026004
crossref_primary_10_1103_PhysRevD_64_106009
crossref_primary_10_1142_S0217979200001874
crossref_primary_10_1088_0264_9381_31_1_015003
crossref_primary_10_1007_JHEP07_2022_018
crossref_primary_10_1007_JHEP05_2010_053
crossref_primary_10_1007_JHEP07_2012_125
crossref_primary_10_1051_epjconf_201612505009
crossref_primary_10_1103_PhysRevD_79_115003
crossref_primary_10_1007_JHEP11_2011_155
crossref_primary_10_1016_S0370_2693_99_00148_3
crossref_primary_10_1007_JHEP04_2017_087
crossref_primary_10_1103_PhysRevD_96_065025
crossref_primary_10_1103_PhysRevD_88_086002
crossref_primary_10_1007_JHEP02_2018_024
crossref_primary_10_1103_PhysRevD_61_046001
crossref_primary_10_1142_S0217751X9900172X
crossref_primary_10_1103_PhysRevD_104_126034
crossref_primary_10_1103_PhysRevD_71_126003
crossref_primary_10_1103_PhysRevD_85_076003
crossref_primary_10_1103_PhysRevD_105_L081902
crossref_primary_10_1007_JHEP07_2016_117
crossref_primary_10_1007_JHEP08_2016_167
crossref_primary_10_1007_JHEP04_2012_063
crossref_primary_10_1103_PhysRevD_96_065011
crossref_primary_10_1007_JHEP08_2022_043
crossref_primary_10_1103_PhysRevD_61_064009
crossref_primary_10_1103_PhysRevD_58_106006
crossref_primary_10_1007_JHEP12_2017_107
crossref_primary_10_1103_PhysRevD_97_034037
crossref_primary_10_1007_JHEP06_2019_081
crossref_primary_10_1007_JHEP12_2020_157
crossref_primary_10_1016_j_physletb_2004_03_057
crossref_primary_10_1016_j_physletb_2004_10_060
crossref_primary_10_1088_1126_6708_2009_06_027
crossref_primary_10_1103_PhysRevD_59_045008
crossref_primary_10_1142_S0217751X21500494
crossref_primary_10_1007_JHEP03_2023_245
crossref_primary_10_1007_JHEP08_2012_086
crossref_primary_10_1103_PhysRevD_86_046004
crossref_primary_10_1088_1126_6708_2002_08_042
crossref_primary_10_1103_PhysRevD_68_125012
crossref_primary_10_1103_PhysRevD_94_106013
Cites_doi 10.1016/S0550-3213(98)00023-6
10.1103/PhysRevD.26.1988
10.1103/PhysRevD.12.3819
10.1007/BF01205790
10.1016/0550-3213(88)90078-8
10.1063/1.524993
10.1103/PhysRevLett.71.3754
10.1016/0003-4916(69)90278-4
10.1063/1.1704016
10.1007/BF02907130
10.1016/0370-2693(86)90922-6
10.1088/0264-9381/12/12/012
10.1016/0550-3213(88)90077-6
ContentType Journal Article
Copyright 1998 Elsevier Science B.V.
Copyright_xml – notice: 1998 Elsevier Science B.V.
DBID AAYXX
CITATION
DOI 10.1016/S0370-2693(98)00559-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2445
EndPage 68
ExternalDocumentID 10_1016_S0370_2693_98_00559_0
S0370269398005590
GroupedDBID --K
--M
-~X
.~1
0R~
0SF
123
186
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
6I.
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYJJ
ABFNM
ABLJU
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFDAS
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIBLX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BCNDV
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
ER.
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GROUPED_DOAJ
HME
HVGLF
HZ~
IHE
IPNFZ
IXB
J1W
KOM
KQ8
LZ4
M41
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OGIMB
OK1
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SHN
SPC
SPCBC
SPD
SSQ
SSZ
T5K
TN5
WH7
WUQ
XJT
ZCG
~G-
AAFWJ
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFPKN
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c342t-762338081208a8ac4e112dd7b0f7e83ff5cde09441336e5c4cced6b8ffc9e7693
IEDL.DBID .~1
ISSN 0370-2693
IngestDate Tue Jul 01 04:17:37 EDT 2025
Thu Apr 24 23:07:28 EDT 2025
Fri Feb 23 02:27:05 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-762338081208a8ac4e112dd7b0f7e83ff5cde09441336e5c4cced6b8ffc9e7693
PageCount 6
ParticipantIDs crossref_primary_10_1016_S0370_2693_98_00559_0
crossref_citationtrail_10_1016_S0370_2693_98_00559_0
elsevier_sciencedirect_doi_10_1016_S0370_2693_98_00559_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1998-07-09
PublicationDateYYYYMMDD 1998-07-09
PublicationDate_xml – month: 07
  year: 1998
  text: 1998-07-09
  day: 09
PublicationDecade 1990
PublicationTitle Physics letters. B
PublicationYear 1998
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dirac (BIB1) 1963; 4
E. Bergshoeff, M.J. Duff, C.N. Pope, E. Sezgin, Phys. Lett. B 199 (1987) 69; M.P. Blencowe, M.J. Duff, Phys. Lett. B 203 (1988) 229; E. Bergshoeff, A. Salam, E. Sezgin, Y. Tanii, Phys. Lett. B 205 (1988) 237; Nucl. Phys. B 305 [FS23] (1988) 497.
Mack, Salam (BIB22) 1969; 53
untwisted, hep-th/9803061; E. Halyo, Supergravity on AdS
E. Witten, Anti-de Sitter Space, Thermal Phase Transition, And Confinement in Gauge Theories, hep-th/9803131.
M. Flato, C. Fronsdal, J. Math. Phys. 22 (1981) 1100; E. Angelopoulos, M. Flato, C. Fronsdal, D. Sternheimer, Phys. Rev. D 23 (1981) 1278.
R. Leigh, M. Rozali, The large
Henneaux, Teitelboim (BIB24) 1985; 98
Conformal Field Theories, hep-th/9803167; M.J. Duff, H. Lü, C.N. Pope, AdS
and Superconformal Field Theories, hep-th/9803051; S. Minwalla, Particles on AdS
C. Fronsdal, Phys. Rev. D 26 (1982) 1988; H. Nicolai, E. Sezgin, Phys. Lett. B 143 (1984) 389; M. Günaydin, N. Marcus, Class. Quant. Grav. 2 (1985) L1; M. Günaydin, P. van Nieuwenhuizen, N.P. Warner, Nucl. Phys. B 255 (1985) 63.
Gibbons, Townsend (BIB7) 1993; 71
J.D. Brown, M. Henneaux, Commun. Math. Phys. 104 (1986) 207; O. Coussaert, M. Henneaux, P. van Driel, Class. Quant. Grav. 12 (1995) 2961, qr-qc/9506019.
S. Ferrara, C. Fronsdal, Conformal Maxwell theory as a singleton field theory on AdS
E. Witten, Anti-de Sitter space and holography, hep-th/9802150.
S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory correlators from non-critical string theory, hep-th/9802109.
P. Claus, R. Kallosh, A. Van Proeyen, M 5-brane and superconformal (0,2) tensor multiplet in 6 dimensions, hep-th/9711161; P. Claus, R. Kallosh, J. Kumar, P. Townsend, A. Van Proeyen, Conformal theory of M2, D3, M5 and D1+D5 branes, hep-th/9801206.
S. Ferrara, C. Fronsdal, Gauge fields as composite boundary excitations, hep-th/9802126.
×
and N=4 Superconformal Yang-Mills theory, hep-th/9802203; S. Ferrara, A. Kehagias, H. Partouche, A. Zaffaroni, Membranes and Fivebranes with Lower Supersymmetry and their AdS Supergravity Duals, hep-th/9803109; L. Andrianopoli, S. Ferrara, K-K excitations on AdS
O. Aharony, Y. Oz, Z. Yin, M Theory on AdS
limit of superconformal field theories and supergravity, hep-th/9711200.
4 “primary“ superfields, hep-th/9803171.
and 4
K. Sfetsos, K. Skenderis, Microscopic derivation of the Bekenstein-Hawking entropy formula for non-extremal black holes, Nucl. Phys. B, in press, hep-th/9711138.
Ferrara, Gatto, Grillo, Parisi (BIB25) 1972; 4
S.-J. Rey, J.-T. Yee, Macroscopic Strings as Heavy Quarks of Large N Gauge Theory and Anti-de Sitter Supergravity, hep-th/9803001; J. Maldacena, Wilson loops in large N field theories, hep-th/9803002; J. Minahan, Quark-Monopole Potentials in Large N Super Yang-Mills, hep-th/9803111; S.-J. Rey, S. Theisen, J.-T. Yee, Wilson-Polyakov Loop at Finite Temperature in Large N Gauge Theory and Anti-de Sitter Supergravity, hep-th/9803135; A. Brandhuber, N. Itzhaki, J. Sonnenschein, S. Yankielowicz, Wilson Loops in the Large N Limit at Finite Temperature, hep-th/9803137; A. Volovich, Near anti-de Sitter geometry and corrections to the large
limit of the (2,0) superconformal field theory, hep-th/9803068.
IIB three-branes and duality, hep-th/9712239; M. Günaydin, D. Minic, Singletons, Doubletons and M-theory, hep-th/9802047; S. Ferrara, C. Fronsdal, A. Zaffaroni, On N=8 Supergravity on AdS
and M Branes, hep-th/9803077.
as
Hopf Fibrations and Conformal Field Theories, hep-th/9803193; H.J. Boonstra, B. Peeters, K. Skenderis, Brane intersections, Anti-de Sitter spacetimes and dual superconformal theories, hep-th/9803231.
Fronsdal (BIB2) 1975; 12
S. Kachru, E. Silverstein, 4d Conformal Field Theories and Strings on Orbifolds, hep-th/9802183; M. Berkooz, Supergravity Dual of a (1,0) Field Theory in Six Dimensions, hep-th/9802195; A. Lawrence, N. Nekrasov, C. Vafa, On Conformal Theories in Four Dimensions, hep-th/9803015; M. Bershadsky, Z. Kakushadze, C. Vafa, String Expansion as Large N Expansion of Gauge Theories, hep-th/9803076; J. Gomis, Anti-de Sitter Geometry and Strongly Coupled Gauge Theories, hep-th/9803119; Y. Oz, J. Terning, Orbifolds of AdS
I.Ya. Aref'eva, I.V. Volovich, On Large N Conformal Theories, Field Theories in Anti-De Sitter Space and Singletons, hep-th/9803028; I.V. Volovich, Large N Gauge Theories and Anti-de Sitter Bag Model, hep-th/9803174.
H. Nicolai, E. Sezgin, Y. Tanii, Nucl. Phys. B 305 [FS23] (1988) 483.
Brane Worldvolumes, hep-th/9803053; E. Halyo, Supergravity on AdS
Wilson loop, hep-th/9803220.
and Primary Operators on
J. Maldacena, The large
Günaydin, Nilsson, Sierra, Townsend (BIB8) 1986; 176
Gibbons (10.1016/S0370-2693(98)00559-0_BIB7) 1993; 71
Henneaux (10.1016/S0370-2693(98)00559-0_BIB24) 1985; 98
Fronsdal (10.1016/S0370-2693(98)00559-0_BIB2) 1975; 12
10.1016/S0370-2693(98)00559-0_BIB10
10.1016/S0370-2693(98)00559-0_BIB12
10.1016/S0370-2693(98)00559-0_BIB11
10.1016/S0370-2693(98)00559-0_BIB14
10.1016/S0370-2693(98)00559-0_BIB13
10.1016/S0370-2693(98)00559-0_BIB16
Mack (10.1016/S0370-2693(98)00559-0_BIB22) 1969; 53
10.1016/S0370-2693(98)00559-0_BIB15
10.1016/S0370-2693(98)00559-0_BIB18
10.1016/S0370-2693(98)00559-0_BIB17
10.1016/S0370-2693(98)00559-0_BIB19
Günaydin (10.1016/S0370-2693(98)00559-0_BIB8) 1986; 176
10.1016/S0370-2693(98)00559-0_BIB9
10.1016/S0370-2693(98)00559-0_BIB6
Dirac (10.1016/S0370-2693(98)00559-0_BIB1) 1963; 4
Ferrara (10.1016/S0370-2693(98)00559-0_BIB25) 1972; 4
10.1016/S0370-2693(98)00559-0_BIB4
10.1016/S0370-2693(98)00559-0_BIB21
10.1016/S0370-2693(98)00559-0_BIB5
10.1016/S0370-2693(98)00559-0_BIB20
10.1016/S0370-2693(98)00559-0_BIB23
10.1016/S0370-2693(98)00559-0_BIB3
References_xml – reference: E. Witten, Anti-de Sitter Space, Thermal Phase Transition, And Confinement in Gauge Theories, hep-th/9803131.
– reference: O. Aharony, Y. Oz, Z. Yin, M Theory on AdS
– reference: limit of the (2,0) superconformal field theory, hep-th/9803068.
– reference: and N=4 Superconformal Yang-Mills theory, hep-th/9802203; S. Ferrara, A. Kehagias, H. Partouche, A. Zaffaroni, Membranes and Fivebranes with Lower Supersymmetry and their AdS Supergravity Duals, hep-th/9803109; L. Andrianopoli, S. Ferrara, K-K excitations on AdS
– volume: 98
  start-page: 391
  year: 1985
  ident: BIB24
  publication-title: Commun. Math. Phys.
– reference: Conformal Field Theories, hep-th/9803167; M.J. Duff, H. Lü, C.N. Pope, AdS
– reference: C. Fronsdal, Phys. Rev. D 26 (1982) 1988; H. Nicolai, E. Sezgin, Phys. Lett. B 143 (1984) 389; M. Günaydin, N. Marcus, Class. Quant. Grav. 2 (1985) L1; M. Günaydin, P. van Nieuwenhuizen, N.P. Warner, Nucl. Phys. B 255 (1985) 63.
– reference: ×
– volume: 4
  start-page: 115
  year: 1972
  ident: BIB25
  publication-title: Lett. Nuovo Cim.
– reference: × Hopf Fibrations and Conformal Field Theories, hep-th/9803193; H.J. Boonstra, B. Peeters, K. Skenderis, Brane intersections, Anti-de Sitter spacetimes and dual superconformal theories, hep-th/9803231.
– reference: Brane Worldvolumes, hep-th/9803053; E. Halyo, Supergravity on AdS
– reference: E. Witten, Anti-de Sitter space and holography, hep-th/9802150.
– reference: and M Branes, hep-th/9803077.
– reference: =4 “primary“ superfields, hep-th/9803171.
– reference: and Superconformal Field Theories, hep-th/9803051; S. Minwalla, Particles on AdS
– reference: untwisted, hep-th/9803061; E. Halyo, Supergravity on AdS
– reference: J. Maldacena, The large
– reference: E. Bergshoeff, M.J. Duff, C.N. Pope, E. Sezgin, Phys. Lett. B 199 (1987) 69; M.P. Blencowe, M.J. Duff, Phys. Lett. B 203 (1988) 229; E. Bergshoeff, A. Salam, E. Sezgin, Y. Tanii, Phys. Lett. B 205 (1988) 237; Nucl. Phys. B 305 [FS23] (1988) 497.
– reference: I.Ya. Aref'eva, I.V. Volovich, On Large N Conformal Theories, Field Theories in Anti-De Sitter Space and Singletons, hep-th/9803028; I.V. Volovich, Large N Gauge Theories and Anti-de Sitter Bag Model, hep-th/9803174.
– reference: S. Kachru, E. Silverstein, 4d Conformal Field Theories and Strings on Orbifolds, hep-th/9802183; M. Berkooz, Supergravity Dual of a (1,0) Field Theory in Six Dimensions, hep-th/9802195; A. Lawrence, N. Nekrasov, C. Vafa, On Conformal Theories in Four Dimensions, hep-th/9803015; M. Bershadsky, Z. Kakushadze, C. Vafa, String Expansion as Large N Expansion of Gauge Theories, hep-th/9803076; J. Gomis, Anti-de Sitter Geometry and Strongly Coupled Gauge Theories, hep-th/9803119; Y. Oz, J. Terning, Orbifolds of AdS
– reference: , IIB three-branes and duality, hep-th/9712239; M. Günaydin, D. Minic, Singletons, Doubletons and M-theory, hep-th/9802047; S. Ferrara, C. Fronsdal, A. Zaffaroni, On N=8 Supergravity on AdS
– reference: P. Claus, R. Kallosh, A. Van Proeyen, M 5-brane and superconformal (0,2) tensor multiplet in 6 dimensions, hep-th/9711161; P. Claus, R. Kallosh, J. Kumar, P. Townsend, A. Van Proeyen, Conformal theory of M2, D3, M5 and D1+D5 branes, hep-th/9801206.
– reference: Wilson loop, hep-th/9803220.
– reference: limit of superconformal field theories and supergravity, hep-th/9711200.
– volume: 53
  start-page: 174
  year: 1969
  ident: BIB22
  publication-title: Ann. Phys. (NY)
– reference: K. Sfetsos, K. Skenderis, Microscopic derivation of the Bekenstein-Hawking entropy formula for non-extremal black holes, Nucl. Phys. B, in press, hep-th/9711138.
– volume: 71
  start-page: 3754
  year: 1993
  ident: BIB7
  publication-title: Phys. Rev. Lett.
– reference: S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory correlators from non-critical string theory, hep-th/9802109.
– volume: 176
  start-page: 45
  year: 1986
  ident: BIB8
  publication-title: Phys. Lett. B
– reference: J.D. Brown, M. Henneaux, Commun. Math. Phys. 104 (1986) 207; O. Coussaert, M. Henneaux, P. van Driel, Class. Quant. Grav. 12 (1995) 2961, qr-qc/9506019.
– reference: S. Ferrara, C. Fronsdal, Conformal Maxwell theory as a singleton field theory on AdS
– reference: R. Leigh, M. Rozali, The large
– volume: 4
  start-page: 901
  year: 1963
  ident: BIB1
  publication-title: J. Math. Phys.
– volume: 12
  start-page: 3819
  year: 1975
  ident: BIB2
  publication-title: Phys. Rev. D
– reference: and Primary Operators on
– reference: S.-J. Rey, J.-T. Yee, Macroscopic Strings as Heavy Quarks of Large N Gauge Theory and Anti-de Sitter Supergravity, hep-th/9803001; J. Maldacena, Wilson loops in large N field theories, hep-th/9803002; J. Minahan, Quark-Monopole Potentials in Large N Super Yang-Mills, hep-th/9803111; S.-J. Rey, S. Theisen, J.-T. Yee, Wilson-Polyakov Loop at Finite Temperature in Large N Gauge Theory and Anti-de Sitter Supergravity, hep-th/9803135; A. Brandhuber, N. Itzhaki, J. Sonnenschein, S. Yankielowicz, Wilson Loops in the Large N Limit at Finite Temperature, hep-th/9803137; A. Volovich, Near anti-de Sitter geometry and corrections to the large
– reference: H. Nicolai, E. Sezgin, Y. Tanii, Nucl. Phys. B 305 [FS23] (1988) 483.
– reference: as
– reference: S. Ferrara, C. Fronsdal, Gauge fields as composite boundary excitations, hep-th/9802126.
– reference: M. Flato, C. Fronsdal, J. Math. Phys. 22 (1981) 1100; E. Angelopoulos, M. Flato, C. Fronsdal, D. Sternheimer, Phys. Rev. D 23 (1981) 1278.
– reference: and 4
– ident: 10.1016/S0370-2693(98)00559-0_BIB9
  doi: 10.1016/S0550-3213(98)00023-6
– ident: 10.1016/S0370-2693(98)00559-0_BIB20
– ident: 10.1016/S0370-2693(98)00559-0_BIB4
  doi: 10.1103/PhysRevD.26.1988
– ident: 10.1016/S0370-2693(98)00559-0_BIB12
– ident: 10.1016/S0370-2693(98)00559-0_BIB18
– ident: 10.1016/S0370-2693(98)00559-0_BIB16
– volume: 12
  start-page: 3819
  year: 1975
  ident: 10.1016/S0370-2693(98)00559-0_BIB2
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.12.3819
– ident: 10.1016/S0370-2693(98)00559-0_BIB10
– volume: 98
  start-page: 391
  year: 1985
  ident: 10.1016/S0370-2693(98)00559-0_BIB24
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01205790
– ident: 10.1016/S0370-2693(98)00559-0_BIB5
  doi: 10.1016/0550-3213(88)90078-8
– ident: 10.1016/S0370-2693(98)00559-0_BIB23
– ident: 10.1016/S0370-2693(98)00559-0_BIB21
– ident: 10.1016/S0370-2693(98)00559-0_BIB3
  doi: 10.1063/1.524993
– ident: 10.1016/S0370-2693(98)00559-0_BIB19
– volume: 71
  start-page: 3754
  year: 1993
  ident: 10.1016/S0370-2693(98)00559-0_BIB7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.71.3754
– volume: 53
  start-page: 174
  year: 1969
  ident: 10.1016/S0370-2693(98)00559-0_BIB22
  publication-title: Ann. Phys. (NY)
  doi: 10.1016/0003-4916(69)90278-4
– volume: 4
  start-page: 901
  year: 1963
  ident: 10.1016/S0370-2693(98)00559-0_BIB1
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1704016
– volume: 4
  start-page: 115
  year: 1972
  ident: 10.1016/S0370-2693(98)00559-0_BIB25
  publication-title: Lett. Nuovo Cim.
  doi: 10.1007/BF02907130
– ident: 10.1016/S0370-2693(98)00559-0_BIB17
– volume: 176
  start-page: 45
  year: 1986
  ident: 10.1016/S0370-2693(98)00559-0_BIB8
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(86)90922-6
– ident: 10.1016/S0370-2693(98)00559-0_BIB11
– ident: 10.1016/S0370-2693(98)00559-0_BIB13
– ident: 10.1016/S0370-2693(98)00559-0_BIB15
– ident: 10.1016/S0370-2693(98)00559-0_BIB14
  doi: 10.1088/0264-9381/12/12/012
– ident: 10.1016/S0370-2693(98)00559-0_BIB6
  doi: 10.1016/0550-3213(88)90077-6
SSID ssj0001506
Score 2.08753
Snippet We consider a free massive spinor field in Euclidean Anti-de Sitter space. The usual Dirac action in bulk is supplemented by a certain boundary term. The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 63
Title Spinors and the AdS/CFT correspondence
URI https://dx.doi.org/10.1016/S0370-2693(98)00559-0
Volume 431
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH-MieBF_MRNHT2I6CFbu6ZNepzDsSnusg12C2mSwkC6ss2rf7svaecURMFjQ9-j-SW893v0fQDcBGmMplEHRKXKEKqlJJJGmtgOOIoFMohdFf_LOB7O6NM8mtegv62FsWmVle0vbbqz1tVKp0KzUywWnYkfMgwgkjDhtpFUYuN2Spntn99-36V52A567k8C84l9e1fFU2pwi3cJv3dKiP-zf_ricwZHcFiRRa9Xfs8x1Ex-AvsuaVOtT-F2Uizy5WrtyVx7SOS8np7gLZ56yo3cKJa5Gxh6BrPB47Q_JNXcA6JC2t0QtE8YOKKv7vpccqmoQVKkNUv9jBkeZlmktMGwDEEOYxMpqhCsOOVZphJjZxueQz1f5uYCPK6QAEqFO0szimQkRcaEuo2xREUb0wC63a1QVVNwO5viVeyyvxAkYUESCRcOJOE3oP0pVpRdMf4S4FsoxbfjFWi5fxdt_l_0Eg7KEkJG_OQK6pvVm7lGDrFJW-6StGCvN3oejvFpNH_4ADaGvtg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6KInoRn1ifOYjoYdtNs0k2x1IsVdte2kJvy2Z3AwVJQ1uv_nZnN6lVEAWvS2bIfhlmviHzALj10whdo_aJSpUhTEtJJAs1sRNwVOxLP3Jd_INh1Juw52k4rUFn3Qtjyyor31_6dOetq5NmhWazmM2aIxrEmEAkQcLtIKkE8_ZtFgaxNe3G-6bOw47Qc78SYkrs45s2nlKFO7xP-IPTQujPAepL0OkewH7FFr12-UKHUDP5Eey4qk21PIa7UTHL54ulJ3PtIZPz2nqEZjz2lNu5UcxztzH0BCbdx3GnR6rFB0QFrLUi6KAwc8Rg3aJccqmYQVakdZzSLDY8yLJQaYN5GaIcRCZUTCFaUcqzTCXGLjc8ha18npsz8LhCBigV3izNGLKRFCkT6jbGMhVtTB3Y-rZCVVPB7XKKV7Ep_0KQhAVJJFw4kAStQ-NTrCjHYvwlwNdQim_fV6Dr_l30_P-iN7DbGw_6ov80fLmAvbKfMCY0uYSt1eLNXCGhWKXXzmA-AHGOv2o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spinors+and+the+AdS%2FCFT+correspondence&rft.jtitle=Physics+letters.+B&rft.au=Henningson%2C+M%C3%A5ns&rft.au=Sfetsos%2C+Konstadinos&rft.date=1998-07-09&rft.issn=0370-2693&rft.volume=431&rft.issue=1-2&rft.spage=63&rft.epage=68&rft_id=info:doi/10.1016%2FS0370-2693%2898%2900559-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0370_2693_98_00559_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0370-2693&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0370-2693&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0370-2693&client=summon